mmc: clarify DDR timing mode between SD-UHS and eMMC
[deliverable/linux.git] / drivers / mmc / host / mmci.c
CommitLineData
1da177e4 1/*
70f10482 2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
1da177e4
LT
3 *
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
c8ebae37 5 * Copyright (C) 2010 ST-Ericsson SA
1da177e4
LT
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
1da177e4
LT
11#include <linux/module.h>
12#include <linux/moduleparam.h>
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/device.h>
16#include <linux/interrupt.h>
613b152c 17#include <linux/kernel.h>
000bc9d5 18#include <linux/slab.h>
1da177e4
LT
19#include <linux/delay.h>
20#include <linux/err.h>
21#include <linux/highmem.h>
019a5f56 22#include <linux/log2.h>
70be208f 23#include <linux/mmc/pm.h>
1da177e4 24#include <linux/mmc/host.h>
34177802 25#include <linux/mmc/card.h>
a62c80e5 26#include <linux/amba/bus.h>
f8ce2547 27#include <linux/clk.h>
bd6dee6f 28#include <linux/scatterlist.h>
89001446 29#include <linux/gpio.h>
9a597016 30#include <linux/of_gpio.h>
34e84f39 31#include <linux/regulator/consumer.h>
c8ebae37
RK
32#include <linux/dmaengine.h>
33#include <linux/dma-mapping.h>
34#include <linux/amba/mmci.h>
1c3be369 35#include <linux/pm_runtime.h>
258aea76 36#include <linux/types.h>
a9a83785 37#include <linux/pinctrl/consumer.h>
1da177e4 38
7b09cdac 39#include <asm/div64.h>
1da177e4 40#include <asm/io.h>
c6b8fdad 41#include <asm/sizes.h>
1da177e4
LT
42
43#include "mmci.h"
44
45#define DRIVER_NAME "mmci-pl18x"
46
1da177e4
LT
47static unsigned int fmax = 515633;
48
4956e109
RV
49/**
50 * struct variant_data - MMCI variant-specific quirks
51 * @clkreg: default value for MCICLOCK register
4380c14f 52 * @clkreg_enable: enable value for MMCICLOCK register
08458ef6 53 * @datalength_bits: number of bits in the MMCIDATALENGTH register
8301bb68
RV
54 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
55 * is asserted (likewise for RX)
56 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
57 * is asserted (likewise for RX)
34177802 58 * @sdio: variant supports SDIO
b70a67f9 59 * @st_clkdiv: true if using a ST-specific clock divider algorithm
1784b157 60 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
7d72a1d4 61 * @pwrreg_powerup: power up value for MMCIPOWER register
4d1a3a0d 62 * @signal_direction: input/out direction of bus signals can be indicated
f4670dae 63 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
01259620 64 * @busy_detect: true if busy detection on dat0 is supported
1ff44433 65 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
4956e109
RV
66 */
67struct variant_data {
68 unsigned int clkreg;
4380c14f 69 unsigned int clkreg_enable;
08458ef6 70 unsigned int datalength_bits;
8301bb68
RV
71 unsigned int fifosize;
72 unsigned int fifohalfsize;
34177802 73 bool sdio;
b70a67f9 74 bool st_clkdiv;
1784b157 75 bool blksz_datactrl16;
7d72a1d4 76 u32 pwrreg_powerup;
4d1a3a0d 77 bool signal_direction;
f4670dae 78 bool pwrreg_clkgate;
01259620 79 bool busy_detect;
1ff44433 80 bool pwrreg_nopower;
4956e109
RV
81};
82
83static struct variant_data variant_arm = {
8301bb68
RV
84 .fifosize = 16 * 4,
85 .fifohalfsize = 8 * 4,
08458ef6 86 .datalength_bits = 16,
7d72a1d4 87 .pwrreg_powerup = MCI_PWR_UP,
4956e109
RV
88};
89
768fbc18
PM
90static struct variant_data variant_arm_extended_fifo = {
91 .fifosize = 128 * 4,
92 .fifohalfsize = 64 * 4,
93 .datalength_bits = 16,
7d72a1d4 94 .pwrreg_powerup = MCI_PWR_UP,
768fbc18
PM
95};
96
3a37298a
PM
97static struct variant_data variant_arm_extended_fifo_hwfc = {
98 .fifosize = 128 * 4,
99 .fifohalfsize = 64 * 4,
100 .clkreg_enable = MCI_ARM_HWFCEN,
101 .datalength_bits = 16,
102 .pwrreg_powerup = MCI_PWR_UP,
103};
104
4956e109 105static struct variant_data variant_u300 = {
8301bb68
RV
106 .fifosize = 16 * 4,
107 .fifohalfsize = 8 * 4,
49ac215e 108 .clkreg_enable = MCI_ST_U300_HWFCEN,
08458ef6 109 .datalength_bits = 16,
34177802 110 .sdio = true,
7d72a1d4 111 .pwrreg_powerup = MCI_PWR_ON,
4d1a3a0d 112 .signal_direction = true,
f4670dae 113 .pwrreg_clkgate = true,
1ff44433 114 .pwrreg_nopower = true,
4956e109
RV
115};
116
34fd4213
LW
117static struct variant_data variant_nomadik = {
118 .fifosize = 16 * 4,
119 .fifohalfsize = 8 * 4,
120 .clkreg = MCI_CLK_ENABLE,
121 .datalength_bits = 24,
122 .sdio = true,
123 .st_clkdiv = true,
124 .pwrreg_powerup = MCI_PWR_ON,
125 .signal_direction = true,
f4670dae 126 .pwrreg_clkgate = true,
1ff44433 127 .pwrreg_nopower = true,
34fd4213
LW
128};
129
4956e109 130static struct variant_data variant_ux500 = {
8301bb68
RV
131 .fifosize = 30 * 4,
132 .fifohalfsize = 8 * 4,
4956e109 133 .clkreg = MCI_CLK_ENABLE,
49ac215e 134 .clkreg_enable = MCI_ST_UX500_HWFCEN,
08458ef6 135 .datalength_bits = 24,
34177802 136 .sdio = true,
b70a67f9 137 .st_clkdiv = true,
7d72a1d4 138 .pwrreg_powerup = MCI_PWR_ON,
4d1a3a0d 139 .signal_direction = true,
f4670dae 140 .pwrreg_clkgate = true,
01259620 141 .busy_detect = true,
1ff44433 142 .pwrreg_nopower = true,
4956e109 143};
b70a67f9 144
1784b157
PL
145static struct variant_data variant_ux500v2 = {
146 .fifosize = 30 * 4,
147 .fifohalfsize = 8 * 4,
148 .clkreg = MCI_CLK_ENABLE,
149 .clkreg_enable = MCI_ST_UX500_HWFCEN,
150 .datalength_bits = 24,
151 .sdio = true,
152 .st_clkdiv = true,
153 .blksz_datactrl16 = true,
7d72a1d4 154 .pwrreg_powerup = MCI_PWR_ON,
4d1a3a0d 155 .signal_direction = true,
f4670dae 156 .pwrreg_clkgate = true,
01259620 157 .busy_detect = true,
1ff44433 158 .pwrreg_nopower = true,
1784b157
PL
159};
160
01259620
UH
161static int mmci_card_busy(struct mmc_host *mmc)
162{
163 struct mmci_host *host = mmc_priv(mmc);
164 unsigned long flags;
165 int busy = 0;
166
167 pm_runtime_get_sync(mmc_dev(mmc));
168
169 spin_lock_irqsave(&host->lock, flags);
170 if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY)
171 busy = 1;
172 spin_unlock_irqrestore(&host->lock, flags);
173
174 pm_runtime_mark_last_busy(mmc_dev(mmc));
175 pm_runtime_put_autosuspend(mmc_dev(mmc));
176
177 return busy;
178}
179
653a761e
UH
180/*
181 * Validate mmc prerequisites
182 */
183static int mmci_validate_data(struct mmci_host *host,
184 struct mmc_data *data)
185{
186 if (!data)
187 return 0;
188
189 if (!is_power_of_2(data->blksz)) {
190 dev_err(mmc_dev(host->mmc),
191 "unsupported block size (%d bytes)\n", data->blksz);
192 return -EINVAL;
193 }
194
195 return 0;
196}
197
f829c042
UH
198static void mmci_reg_delay(struct mmci_host *host)
199{
200 /*
201 * According to the spec, at least three feedback clock cycles
202 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
203 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
204 * Worst delay time during card init is at 100 kHz => 30 us.
205 * Worst delay time when up and running is at 25 MHz => 120 ns.
206 */
207 if (host->cclk < 25000000)
208 udelay(30);
209 else
210 ndelay(120);
211}
212
7437cfa5
UH
213/*
214 * This must be called with host->lock held
215 */
216static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
217{
218 if (host->clk_reg != clk) {
219 host->clk_reg = clk;
220 writel(clk, host->base + MMCICLOCK);
221 }
222}
223
224/*
225 * This must be called with host->lock held
226 */
227static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
228{
229 if (host->pwr_reg != pwr) {
230 host->pwr_reg = pwr;
231 writel(pwr, host->base + MMCIPOWER);
232 }
233}
234
9cc639a2
UH
235/*
236 * This must be called with host->lock held
237 */
238static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
239{
01259620
UH
240 /* Keep ST Micro busy mode if enabled */
241 datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE;
242
9cc639a2
UH
243 if (host->datactrl_reg != datactrl) {
244 host->datactrl_reg = datactrl;
245 writel(datactrl, host->base + MMCIDATACTRL);
246 }
247}
248
a6a6464a
LW
249/*
250 * This must be called with host->lock held
251 */
252static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
253{
4956e109
RV
254 struct variant_data *variant = host->variant;
255 u32 clk = variant->clkreg;
a6a6464a 256
c58a8509
UH
257 /* Make sure cclk reflects the current calculated clock */
258 host->cclk = 0;
259
a6a6464a
LW
260 if (desired) {
261 if (desired >= host->mclk) {
991a86e1 262 clk = MCI_CLK_BYPASS;
399bc486
LW
263 if (variant->st_clkdiv)
264 clk |= MCI_ST_UX500_NEG_EDGE;
a6a6464a 265 host->cclk = host->mclk;
b70a67f9
LW
266 } else if (variant->st_clkdiv) {
267 /*
268 * DB8500 TRM says f = mclk / (clkdiv + 2)
269 * => clkdiv = (mclk / f) - 2
270 * Round the divider up so we don't exceed the max
271 * frequency
272 */
273 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
274 if (clk >= 256)
275 clk = 255;
276 host->cclk = host->mclk / (clk + 2);
a6a6464a 277 } else {
b70a67f9
LW
278 /*
279 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
280 * => clkdiv = mclk / (2 * f) - 1
281 */
a6a6464a
LW
282 clk = host->mclk / (2 * desired) - 1;
283 if (clk >= 256)
284 clk = 255;
285 host->cclk = host->mclk / (2 * (clk + 1));
286 }
4380c14f
RV
287
288 clk |= variant->clkreg_enable;
a6a6464a
LW
289 clk |= MCI_CLK_ENABLE;
290 /* This hasn't proven to be worthwhile */
291 /* clk |= MCI_CLK_PWRSAVE; */
292 }
293
c58a8509
UH
294 /* Set actual clock for debug */
295 host->mmc->actual_clock = host->cclk;
296
9e6c82cd 297 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
771dc157
LW
298 clk |= MCI_4BIT_BUS;
299 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
300 clk |= MCI_ST_8BIT_BUS;
9e6c82cd 301
6dbb6ee0
UH
302 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
303 clk |= MCI_ST_UX500_NEG_EDGE;
304
7437cfa5 305 mmci_write_clkreg(host, clk);
a6a6464a
LW
306}
307
1da177e4
LT
308static void
309mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
310{
311 writel(0, host->base + MMCICOMMAND);
312
e47c222b
RK
313 BUG_ON(host->data);
314
1da177e4
LT
315 host->mrq = NULL;
316 host->cmd = NULL;
317
1da177e4 318 mmc_request_done(host->mmc, mrq);
2cd976c4
UH
319
320 pm_runtime_mark_last_busy(mmc_dev(host->mmc));
321 pm_runtime_put_autosuspend(mmc_dev(host->mmc));
1da177e4
LT
322}
323
2686b4b4
LW
324static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
325{
326 void __iomem *base = host->base;
327
328 if (host->singleirq) {
329 unsigned int mask0 = readl(base + MMCIMASK0);
330
331 mask0 &= ~MCI_IRQ1MASK;
332 mask0 |= mask;
333
334 writel(mask0, base + MMCIMASK0);
335 }
336
337 writel(mask, base + MMCIMASK1);
338}
339
1da177e4
LT
340static void mmci_stop_data(struct mmci_host *host)
341{
9cc639a2 342 mmci_write_datactrlreg(host, 0);
2686b4b4 343 mmci_set_mask1(host, 0);
1da177e4
LT
344 host->data = NULL;
345}
346
4ce1d6cb
RV
347static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
348{
349 unsigned int flags = SG_MITER_ATOMIC;
350
351 if (data->flags & MMC_DATA_READ)
352 flags |= SG_MITER_TO_SG;
353 else
354 flags |= SG_MITER_FROM_SG;
355
356 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
357}
358
c8ebae37
RK
359/*
360 * All the DMA operation mode stuff goes inside this ifdef.
361 * This assumes that you have a generic DMA device interface,
362 * no custom DMA interfaces are supported.
363 */
364#ifdef CONFIG_DMA_ENGINE
c3be1efd 365static void mmci_dma_setup(struct mmci_host *host)
c8ebae37
RK
366{
367 struct mmci_platform_data *plat = host->plat;
368 const char *rxname, *txname;
369 dma_cap_mask_t mask;
370
1fd83f0e
LJ
371 host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
372 host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
c8ebae37 373
58c7ccbf
PF
374 /* initialize pre request cookie */
375 host->next_data.cookie = 1;
376
c8ebae37
RK
377 /* Try to acquire a generic DMA engine slave channel */
378 dma_cap_zero(mask);
379 dma_cap_set(DMA_SLAVE, mask);
380
1fd83f0e
LJ
381 if (plat && plat->dma_filter) {
382 if (!host->dma_rx_channel && plat->dma_rx_param) {
383 host->dma_rx_channel = dma_request_channel(mask,
c8ebae37
RK
384 plat->dma_filter,
385 plat->dma_rx_param);
1fd83f0e
LJ
386 /* E.g if no DMA hardware is present */
387 if (!host->dma_rx_channel)
388 dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
389 }
c8ebae37 390
1fd83f0e
LJ
391 if (!host->dma_tx_channel && plat->dma_tx_param) {
392 host->dma_tx_channel = dma_request_channel(mask,
c8ebae37
RK
393 plat->dma_filter,
394 plat->dma_tx_param);
1fd83f0e
LJ
395 if (!host->dma_tx_channel)
396 dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
397 }
c8ebae37
RK
398 }
399
1fd83f0e
LJ
400 /*
401 * If only an RX channel is specified, the driver will
402 * attempt to use it bidirectionally, however if it is
403 * is specified but cannot be located, DMA will be disabled.
404 */
405 if (host->dma_rx_channel && !host->dma_tx_channel)
406 host->dma_tx_channel = host->dma_rx_channel;
407
c8ebae37
RK
408 if (host->dma_rx_channel)
409 rxname = dma_chan_name(host->dma_rx_channel);
410 else
411 rxname = "none";
412
413 if (host->dma_tx_channel)
414 txname = dma_chan_name(host->dma_tx_channel);
415 else
416 txname = "none";
417
418 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
419 rxname, txname);
420
421 /*
422 * Limit the maximum segment size in any SG entry according to
423 * the parameters of the DMA engine device.
424 */
425 if (host->dma_tx_channel) {
426 struct device *dev = host->dma_tx_channel->device->dev;
427 unsigned int max_seg_size = dma_get_max_seg_size(dev);
428
429 if (max_seg_size < host->mmc->max_seg_size)
430 host->mmc->max_seg_size = max_seg_size;
431 }
432 if (host->dma_rx_channel) {
433 struct device *dev = host->dma_rx_channel->device->dev;
434 unsigned int max_seg_size = dma_get_max_seg_size(dev);
435
436 if (max_seg_size < host->mmc->max_seg_size)
437 host->mmc->max_seg_size = max_seg_size;
438 }
439}
440
441/*
6e0ee714 442 * This is used in or so inline it
c8ebae37
RK
443 * so it can be discarded.
444 */
445static inline void mmci_dma_release(struct mmci_host *host)
446{
447 struct mmci_platform_data *plat = host->plat;
448
449 if (host->dma_rx_channel)
450 dma_release_channel(host->dma_rx_channel);
451 if (host->dma_tx_channel && plat->dma_tx_param)
452 dma_release_channel(host->dma_tx_channel);
453 host->dma_rx_channel = host->dma_tx_channel = NULL;
454}
455
653a761e
UH
456static void mmci_dma_data_error(struct mmci_host *host)
457{
458 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
459 dmaengine_terminate_all(host->dma_current);
460 host->dma_current = NULL;
461 host->dma_desc_current = NULL;
462 host->data->host_cookie = 0;
463}
464
c8ebae37
RK
465static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
466{
653a761e 467 struct dma_chan *chan;
c8ebae37 468 enum dma_data_direction dir;
653a761e
UH
469
470 if (data->flags & MMC_DATA_READ) {
471 dir = DMA_FROM_DEVICE;
472 chan = host->dma_rx_channel;
473 } else {
474 dir = DMA_TO_DEVICE;
475 chan = host->dma_tx_channel;
476 }
477
478 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
479}
480
481static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
482{
c8ebae37
RK
483 u32 status;
484 int i;
485
486 /* Wait up to 1ms for the DMA to complete */
487 for (i = 0; ; i++) {
488 status = readl(host->base + MMCISTATUS);
489 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
490 break;
491 udelay(10);
492 }
493
494 /*
495 * Check to see whether we still have some data left in the FIFO -
496 * this catches DMA controllers which are unable to monitor the
497 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
498 * contiguous buffers. On TX, we'll get a FIFO underrun error.
499 */
500 if (status & MCI_RXDATAAVLBLMASK) {
653a761e 501 mmci_dma_data_error(host);
c8ebae37
RK
502 if (!data->error)
503 data->error = -EIO;
504 }
505
58c7ccbf 506 if (!data->host_cookie)
653a761e 507 mmci_dma_unmap(host, data);
c8ebae37
RK
508
509 /*
510 * Use of DMA with scatter-gather is impossible.
511 * Give up with DMA and switch back to PIO mode.
512 */
513 if (status & MCI_RXDATAAVLBLMASK) {
514 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
515 mmci_dma_release(host);
516 }
c8ebae37 517
653a761e
UH
518 host->dma_current = NULL;
519 host->dma_desc_current = NULL;
c8ebae37
RK
520}
521
653a761e
UH
522/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
523static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
524 struct dma_chan **dma_chan,
525 struct dma_async_tx_descriptor **dma_desc)
c8ebae37
RK
526{
527 struct variant_data *variant = host->variant;
528 struct dma_slave_config conf = {
529 .src_addr = host->phybase + MMCIFIFO,
530 .dst_addr = host->phybase + MMCIFIFO,
531 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
532 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
533 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
534 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
258aea76 535 .device_fc = false,
c8ebae37 536 };
c8ebae37
RK
537 struct dma_chan *chan;
538 struct dma_device *device;
539 struct dma_async_tx_descriptor *desc;
05f5799c 540 enum dma_data_direction buffer_dirn;
c8ebae37
RK
541 int nr_sg;
542
c8ebae37 543 if (data->flags & MMC_DATA_READ) {
05f5799c
VK
544 conf.direction = DMA_DEV_TO_MEM;
545 buffer_dirn = DMA_FROM_DEVICE;
c8ebae37
RK
546 chan = host->dma_rx_channel;
547 } else {
05f5799c
VK
548 conf.direction = DMA_MEM_TO_DEV;
549 buffer_dirn = DMA_TO_DEVICE;
c8ebae37
RK
550 chan = host->dma_tx_channel;
551 }
552
553 /* If there's no DMA channel, fall back to PIO */
554 if (!chan)
555 return -EINVAL;
556
557 /* If less than or equal to the fifo size, don't bother with DMA */
58c7ccbf 558 if (data->blksz * data->blocks <= variant->fifosize)
c8ebae37
RK
559 return -EINVAL;
560
561 device = chan->device;
05f5799c 562 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
c8ebae37
RK
563 if (nr_sg == 0)
564 return -EINVAL;
565
566 dmaengine_slave_config(chan, &conf);
16052827 567 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
c8ebae37
RK
568 conf.direction, DMA_CTRL_ACK);
569 if (!desc)
570 goto unmap_exit;
571
653a761e
UH
572 *dma_chan = chan;
573 *dma_desc = desc;
58c7ccbf
PF
574
575 return 0;
c8ebae37 576
58c7ccbf 577 unmap_exit:
05f5799c 578 dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
58c7ccbf
PF
579 return -ENOMEM;
580}
581
653a761e
UH
582static inline int mmci_dma_prep_data(struct mmci_host *host,
583 struct mmc_data *data)
584{
585 /* Check if next job is already prepared. */
586 if (host->dma_current && host->dma_desc_current)
587 return 0;
588
589 /* No job were prepared thus do it now. */
590 return __mmci_dma_prep_data(host, data, &host->dma_current,
591 &host->dma_desc_current);
592}
593
594static inline int mmci_dma_prep_next(struct mmci_host *host,
595 struct mmc_data *data)
596{
597 struct mmci_host_next *nd = &host->next_data;
598 return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
599}
600
58c7ccbf
PF
601static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
602{
603 int ret;
604 struct mmc_data *data = host->data;
605
653a761e 606 ret = mmci_dma_prep_data(host, host->data);
58c7ccbf
PF
607 if (ret)
608 return ret;
609
610 /* Okay, go for it. */
c8ebae37
RK
611 dev_vdbg(mmc_dev(host->mmc),
612 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
613 data->sg_len, data->blksz, data->blocks, data->flags);
58c7ccbf
PF
614 dmaengine_submit(host->dma_desc_current);
615 dma_async_issue_pending(host->dma_current);
c8ebae37
RK
616
617 datactrl |= MCI_DPSM_DMAENABLE;
618
619 /* Trigger the DMA transfer */
9cc639a2 620 mmci_write_datactrlreg(host, datactrl);
c8ebae37
RK
621
622 /*
623 * Let the MMCI say when the data is ended and it's time
624 * to fire next DMA request. When that happens, MMCI will
625 * call mmci_data_end()
626 */
627 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
628 host->base + MMCIMASK0);
629 return 0;
58c7ccbf 630}
c8ebae37 631
58c7ccbf
PF
632static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
633{
634 struct mmci_host_next *next = &host->next_data;
635
653a761e
UH
636 WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
637 WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
58c7ccbf
PF
638
639 host->dma_desc_current = next->dma_desc;
640 host->dma_current = next->dma_chan;
58c7ccbf
PF
641 next->dma_desc = NULL;
642 next->dma_chan = NULL;
c8ebae37 643}
58c7ccbf
PF
644
645static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
646 bool is_first_req)
647{
648 struct mmci_host *host = mmc_priv(mmc);
649 struct mmc_data *data = mrq->data;
650 struct mmci_host_next *nd = &host->next_data;
651
652 if (!data)
653 return;
654
653a761e
UH
655 BUG_ON(data->host_cookie);
656
657 if (mmci_validate_data(host, data))
58c7ccbf 658 return;
58c7ccbf 659
653a761e
UH
660 if (!mmci_dma_prep_next(host, data))
661 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
58c7ccbf
PF
662}
663
664static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
665 int err)
666{
667 struct mmci_host *host = mmc_priv(mmc);
668 struct mmc_data *data = mrq->data;
58c7ccbf 669
653a761e 670 if (!data || !data->host_cookie)
58c7ccbf
PF
671 return;
672
653a761e 673 mmci_dma_unmap(host, data);
58c7ccbf 674
653a761e
UH
675 if (err) {
676 struct mmci_host_next *next = &host->next_data;
677 struct dma_chan *chan;
678 if (data->flags & MMC_DATA_READ)
679 chan = host->dma_rx_channel;
680 else
681 chan = host->dma_tx_channel;
682 dmaengine_terminate_all(chan);
58c7ccbf 683
653a761e
UH
684 next->dma_desc = NULL;
685 next->dma_chan = NULL;
58c7ccbf
PF
686 }
687}
688
c8ebae37
RK
689#else
690/* Blank functions if the DMA engine is not available */
58c7ccbf
PF
691static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
692{
693}
c8ebae37
RK
694static inline void mmci_dma_setup(struct mmci_host *host)
695{
696}
697
698static inline void mmci_dma_release(struct mmci_host *host)
699{
700}
701
702static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
703{
704}
705
653a761e
UH
706static inline void mmci_dma_finalize(struct mmci_host *host,
707 struct mmc_data *data)
708{
709}
710
c8ebae37
RK
711static inline void mmci_dma_data_error(struct mmci_host *host)
712{
713}
714
715static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
716{
717 return -ENOSYS;
718}
58c7ccbf
PF
719
720#define mmci_pre_request NULL
721#define mmci_post_request NULL
722
c8ebae37
RK
723#endif
724
1da177e4
LT
725static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
726{
8301bb68 727 struct variant_data *variant = host->variant;
1da177e4 728 unsigned int datactrl, timeout, irqmask;
7b09cdac 729 unsigned long long clks;
1da177e4 730 void __iomem *base;
3bc87f24 731 int blksz_bits;
1da177e4 732
64de0289
LW
733 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
734 data->blksz, data->blocks, data->flags);
1da177e4
LT
735
736 host->data = data;
528320db 737 host->size = data->blksz * data->blocks;
51d4375d 738 data->bytes_xfered = 0;
1da177e4 739
7b09cdac
RK
740 clks = (unsigned long long)data->timeout_ns * host->cclk;
741 do_div(clks, 1000000000UL);
742
743 timeout = data->timeout_clks + (unsigned int)clks;
1da177e4
LT
744
745 base = host->base;
746 writel(timeout, base + MMCIDATATIMER);
747 writel(host->size, base + MMCIDATALENGTH);
748
3bc87f24
RK
749 blksz_bits = ffs(data->blksz) - 1;
750 BUG_ON(1 << blksz_bits != data->blksz);
751
1784b157
PL
752 if (variant->blksz_datactrl16)
753 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
754 else
755 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
c8ebae37
RK
756
757 if (data->flags & MMC_DATA_READ)
1da177e4 758 datactrl |= MCI_DPSM_DIRECTION;
c8ebae37 759
7258db7e
UH
760 /* The ST Micro variants has a special bit to enable SDIO */
761 if (variant->sdio && host->mmc->card)
06c1a121
UH
762 if (mmc_card_sdio(host->mmc->card)) {
763 /*
764 * The ST Micro variants has a special bit
765 * to enable SDIO.
766 */
767 u32 clk;
768
7258db7e
UH
769 datactrl |= MCI_ST_DPSM_SDIOEN;
770
06c1a121 771 /*
70ac0935
UH
772 * The ST Micro variant for SDIO small write transfers
773 * needs to have clock H/W flow control disabled,
774 * otherwise the transfer will not start. The threshold
775 * depends on the rate of MCLK.
06c1a121 776 */
70ac0935
UH
777 if (data->flags & MMC_DATA_WRITE &&
778 (host->size < 8 ||
779 (host->size <= 8 && host->mclk > 50000000)))
06c1a121
UH
780 clk = host->clk_reg & ~variant->clkreg_enable;
781 else
782 clk = host->clk_reg | variant->clkreg_enable;
783
784 mmci_write_clkreg(host, clk);
785 }
786
6dbb6ee0
UH
787 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
788 datactrl |= MCI_ST_DPSM_DDRMODE;
789
c8ebae37
RK
790 /*
791 * Attempt to use DMA operation mode, if this
792 * should fail, fall back to PIO mode
793 */
794 if (!mmci_dma_start_data(host, datactrl))
795 return;
796
797 /* IRQ mode, map the SG list for CPU reading/writing */
798 mmci_init_sg(host, data);
799
800 if (data->flags & MMC_DATA_READ) {
1da177e4 801 irqmask = MCI_RXFIFOHALFFULLMASK;
0425a142
RK
802
803 /*
c4d877c1
RK
804 * If we have less than the fifo 'half-full' threshold to
805 * transfer, trigger a PIO interrupt as soon as any data
806 * is available.
0425a142 807 */
c4d877c1 808 if (host->size < variant->fifohalfsize)
0425a142 809 irqmask |= MCI_RXDATAAVLBLMASK;
1da177e4
LT
810 } else {
811 /*
812 * We don't actually need to include "FIFO empty" here
813 * since its implicit in "FIFO half empty".
814 */
815 irqmask = MCI_TXFIFOHALFEMPTYMASK;
816 }
817
9cc639a2 818 mmci_write_datactrlreg(host, datactrl);
1da177e4 819 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
2686b4b4 820 mmci_set_mask1(host, irqmask);
1da177e4
LT
821}
822
823static void
824mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
825{
826 void __iomem *base = host->base;
827
64de0289 828 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1da177e4
LT
829 cmd->opcode, cmd->arg, cmd->flags);
830
831 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
832 writel(0, base + MMCICOMMAND);
833 udelay(1);
834 }
835
836 c |= cmd->opcode | MCI_CPSM_ENABLE;
e9225176
RK
837 if (cmd->flags & MMC_RSP_PRESENT) {
838 if (cmd->flags & MMC_RSP_136)
839 c |= MCI_CPSM_LONGRSP;
1da177e4 840 c |= MCI_CPSM_RESPONSE;
1da177e4
LT
841 }
842 if (/*interrupt*/0)
843 c |= MCI_CPSM_INTERRUPT;
844
845 host->cmd = cmd;
846
847 writel(cmd->arg, base + MMCIARGUMENT);
848 writel(c, base + MMCICOMMAND);
849}
850
851static void
852mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
853 unsigned int status)
854{
f20f8f21 855 /* First check for errors */
b63038d6
UH
856 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
857 MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
8cb28155 858 u32 remain, success;
f20f8f21 859
c8ebae37 860 /* Terminate the DMA transfer */
653a761e 861 if (dma_inprogress(host)) {
c8ebae37 862 mmci_dma_data_error(host);
653a761e
UH
863 mmci_dma_unmap(host, data);
864 }
e9c091b4
RK
865
866 /*
c8afc9d5
RK
867 * Calculate how far we are into the transfer. Note that
868 * the data counter gives the number of bytes transferred
869 * on the MMC bus, not on the host side. On reads, this
870 * can be as much as a FIFO-worth of data ahead. This
871 * matters for FIFO overruns only.
e9c091b4 872 */
f5a106d9 873 remain = readl(host->base + MMCIDATACNT);
8cb28155
LW
874 success = data->blksz * data->blocks - remain;
875
c8afc9d5
RK
876 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
877 status, success);
8cb28155
LW
878 if (status & MCI_DATACRCFAIL) {
879 /* Last block was not successful */
c8afc9d5 880 success -= 1;
17b0429d 881 data->error = -EILSEQ;
8cb28155 882 } else if (status & MCI_DATATIMEOUT) {
17b0429d 883 data->error = -ETIMEDOUT;
757df746
LW
884 } else if (status & MCI_STARTBITERR) {
885 data->error = -ECOMM;
c8afc9d5
RK
886 } else if (status & MCI_TXUNDERRUN) {
887 data->error = -EIO;
888 } else if (status & MCI_RXOVERRUN) {
889 if (success > host->variant->fifosize)
890 success -= host->variant->fifosize;
891 else
892 success = 0;
17b0429d 893 data->error = -EIO;
4ce1d6cb 894 }
51d4375d 895 data->bytes_xfered = round_down(success, data->blksz);
1da177e4 896 }
f20f8f21 897
8cb28155
LW
898 if (status & MCI_DATABLOCKEND)
899 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
f20f8f21 900
ccff9b51 901 if (status & MCI_DATAEND || data->error) {
c8ebae37 902 if (dma_inprogress(host))
653a761e 903 mmci_dma_finalize(host, data);
1da177e4
LT
904 mmci_stop_data(host);
905
8cb28155
LW
906 if (!data->error)
907 /* The error clause is handled above, success! */
51d4375d 908 data->bytes_xfered = data->blksz * data->blocks;
f20f8f21 909
024629c6 910 if (!data->stop || host->mrq->sbc) {
1da177e4
LT
911 mmci_request_end(host, data->mrq);
912 } else {
913 mmci_start_command(host, data->stop, 0);
914 }
915 }
916}
917
918static void
919mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
920 unsigned int status)
921{
922 void __iomem *base = host->base;
024629c6 923 bool sbc = (cmd == host->mrq->sbc);
8d94b54d
UH
924 bool busy_resp = host->variant->busy_detect &&
925 (cmd->flags & MMC_RSP_BUSY);
926
927 /* Check if we need to wait for busy completion. */
928 if (host->busy_status && (status & MCI_ST_CARDBUSY))
929 return;
930
931 /* Enable busy completion if needed and supported. */
932 if (!host->busy_status && busy_resp &&
933 !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
934 (readl(base + MMCISTATUS) & MCI_ST_CARDBUSY)) {
935 writel(readl(base + MMCIMASK0) | MCI_ST_BUSYEND,
936 base + MMCIMASK0);
937 host->busy_status = status & (MCI_CMDSENT|MCI_CMDRESPEND);
938 return;
939 }
940
941 /* At busy completion, mask the IRQ and complete the request. */
942 if (host->busy_status) {
943 writel(readl(base + MMCIMASK0) & ~MCI_ST_BUSYEND,
944 base + MMCIMASK0);
945 host->busy_status = 0;
946 }
1da177e4
LT
947
948 host->cmd = NULL;
949
1da177e4 950 if (status & MCI_CMDTIMEOUT) {
17b0429d 951 cmd->error = -ETIMEDOUT;
1da177e4 952 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
17b0429d 953 cmd->error = -EILSEQ;
9047b435
RKAL
954 } else {
955 cmd->resp[0] = readl(base + MMCIRESPONSE0);
956 cmd->resp[1] = readl(base + MMCIRESPONSE1);
957 cmd->resp[2] = readl(base + MMCIRESPONSE2);
958 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1da177e4
LT
959 }
960
024629c6 961 if ((!sbc && !cmd->data) || cmd->error) {
3b6e3c73
UH
962 if (host->data) {
963 /* Terminate the DMA transfer */
653a761e 964 if (dma_inprogress(host)) {
3b6e3c73 965 mmci_dma_data_error(host);
653a761e
UH
966 mmci_dma_unmap(host, host->data);
967 }
e47c222b 968 mmci_stop_data(host);
3b6e3c73 969 }
024629c6
UH
970 mmci_request_end(host, host->mrq);
971 } else if (sbc) {
972 mmci_start_command(host, host->mrq->cmd, 0);
1da177e4
LT
973 } else if (!(cmd->data->flags & MMC_DATA_READ)) {
974 mmci_start_data(host, cmd->data);
975 }
976}
977
978static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
979{
980 void __iomem *base = host->base;
981 char *ptr = buffer;
982 u32 status;
26eed9a5 983 int host_remain = host->size;
1da177e4
LT
984
985 do {
26eed9a5 986 int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
1da177e4
LT
987
988 if (count > remain)
989 count = remain;
990
991 if (count <= 0)
992 break;
993
393e5e24
UH
994 /*
995 * SDIO especially may want to send something that is
996 * not divisible by 4 (as opposed to card sectors
997 * etc). Therefore make sure to always read the last bytes
998 * while only doing full 32-bit reads towards the FIFO.
999 */
1000 if (unlikely(count & 0x3)) {
1001 if (count < 4) {
1002 unsigned char buf[4];
4b85da08 1003 ioread32_rep(base + MMCIFIFO, buf, 1);
393e5e24
UH
1004 memcpy(ptr, buf, count);
1005 } else {
4b85da08 1006 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
393e5e24
UH
1007 count &= ~0x3;
1008 }
1009 } else {
4b85da08 1010 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
393e5e24 1011 }
1da177e4
LT
1012
1013 ptr += count;
1014 remain -= count;
26eed9a5 1015 host_remain -= count;
1da177e4
LT
1016
1017 if (remain == 0)
1018 break;
1019
1020 status = readl(base + MMCISTATUS);
1021 } while (status & MCI_RXDATAAVLBL);
1022
1023 return ptr - buffer;
1024}
1025
1026static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1027{
8301bb68 1028 struct variant_data *variant = host->variant;
1da177e4
LT
1029 void __iomem *base = host->base;
1030 char *ptr = buffer;
1031
1032 do {
1033 unsigned int count, maxcnt;
1034
8301bb68
RV
1035 maxcnt = status & MCI_TXFIFOEMPTY ?
1036 variant->fifosize : variant->fifohalfsize;
1da177e4
LT
1037 count = min(remain, maxcnt);
1038
34177802
LW
1039 /*
1040 * SDIO especially may want to send something that is
1041 * not divisible by 4 (as opposed to card sectors
1042 * etc), and the FIFO only accept full 32-bit writes.
1043 * So compensate by adding +3 on the count, a single
1044 * byte become a 32bit write, 7 bytes will be two
1045 * 32bit writes etc.
1046 */
4b85da08 1047 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1da177e4
LT
1048
1049 ptr += count;
1050 remain -= count;
1051
1052 if (remain == 0)
1053 break;
1054
1055 status = readl(base + MMCISTATUS);
1056 } while (status & MCI_TXFIFOHALFEMPTY);
1057
1058 return ptr - buffer;
1059}
1060
1061/*
1062 * PIO data transfer IRQ handler.
1063 */
7d12e780 1064static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1da177e4
LT
1065{
1066 struct mmci_host *host = dev_id;
4ce1d6cb 1067 struct sg_mapping_iter *sg_miter = &host->sg_miter;
8301bb68 1068 struct variant_data *variant = host->variant;
1da177e4 1069 void __iomem *base = host->base;
4ce1d6cb 1070 unsigned long flags;
1da177e4
LT
1071 u32 status;
1072
1073 status = readl(base + MMCISTATUS);
1074
64de0289 1075 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1da177e4 1076
4ce1d6cb
RV
1077 local_irq_save(flags);
1078
1da177e4 1079 do {
1da177e4
LT
1080 unsigned int remain, len;
1081 char *buffer;
1082
1083 /*
1084 * For write, we only need to test the half-empty flag
1085 * here - if the FIFO is completely empty, then by
1086 * definition it is more than half empty.
1087 *
1088 * For read, check for data available.
1089 */
1090 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1091 break;
1092
4ce1d6cb
RV
1093 if (!sg_miter_next(sg_miter))
1094 break;
1095
1096 buffer = sg_miter->addr;
1097 remain = sg_miter->length;
1da177e4
LT
1098
1099 len = 0;
1100 if (status & MCI_RXACTIVE)
1101 len = mmci_pio_read(host, buffer, remain);
1102 if (status & MCI_TXACTIVE)
1103 len = mmci_pio_write(host, buffer, remain, status);
1104
4ce1d6cb 1105 sg_miter->consumed = len;
1da177e4 1106
1da177e4
LT
1107 host->size -= len;
1108 remain -= len;
1109
1110 if (remain)
1111 break;
1112
1da177e4
LT
1113 status = readl(base + MMCISTATUS);
1114 } while (1);
1115
4ce1d6cb
RV
1116 sg_miter_stop(sg_miter);
1117
1118 local_irq_restore(flags);
1119
1da177e4 1120 /*
c4d877c1
RK
1121 * If we have less than the fifo 'half-full' threshold to transfer,
1122 * trigger a PIO interrupt as soon as any data is available.
1da177e4 1123 */
c4d877c1 1124 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
2686b4b4 1125 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1da177e4
LT
1126
1127 /*
1128 * If we run out of data, disable the data IRQs; this
1129 * prevents a race where the FIFO becomes empty before
1130 * the chip itself has disabled the data path, and
1131 * stops us racing with our data end IRQ.
1132 */
1133 if (host->size == 0) {
2686b4b4 1134 mmci_set_mask1(host, 0);
1da177e4
LT
1135 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1136 }
1137
1138 return IRQ_HANDLED;
1139}
1140
1141/*
1142 * Handle completion of command and data transfers.
1143 */
7d12e780 1144static irqreturn_t mmci_irq(int irq, void *dev_id)
1da177e4
LT
1145{
1146 struct mmci_host *host = dev_id;
1147 u32 status;
1148 int ret = 0;
1149
1150 spin_lock(&host->lock);
1151
1152 do {
1153 struct mmc_command *cmd;
1154 struct mmc_data *data;
1155
1156 status = readl(host->base + MMCISTATUS);
2686b4b4
LW
1157
1158 if (host->singleirq) {
1159 if (status & readl(host->base + MMCIMASK1))
1160 mmci_pio_irq(irq, dev_id);
1161
1162 status &= ~MCI_IRQ1MASK;
1163 }
1164
8d94b54d
UH
1165 /*
1166 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's
1167 * enabled) since the HW seems to be triggering the IRQ on both
1168 * edges while monitoring DAT0 for busy completion.
1169 */
1da177e4
LT
1170 status &= readl(host->base + MMCIMASK0);
1171 writel(status, host->base + MMCICLEAR);
1172
64de0289 1173 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1da177e4 1174
e7f3d222 1175 cmd = host->cmd;
8d94b54d
UH
1176 if ((status|host->busy_status) & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|
1177 MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
e7f3d222
UH
1178 mmci_cmd_irq(host, cmd, status);
1179
1da177e4 1180 data = host->data;
b63038d6
UH
1181 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1182 MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1183 MCI_DATABLOCKEND) && data)
1da177e4
LT
1184 mmci_data_irq(host, data, status);
1185
8d94b54d
UH
1186 /* Don't poll for busy completion in irq context. */
1187 if (host->busy_status)
1188 status &= ~MCI_ST_CARDBUSY;
1189
1da177e4
LT
1190 ret = 1;
1191 } while (status);
1192
1193 spin_unlock(&host->lock);
1194
1195 return IRQ_RETVAL(ret);
1196}
1197
1198static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1199{
1200 struct mmci_host *host = mmc_priv(mmc);
9e943021 1201 unsigned long flags;
1da177e4
LT
1202
1203 WARN_ON(host->mrq != NULL);
1204
653a761e
UH
1205 mrq->cmd->error = mmci_validate_data(host, mrq->data);
1206 if (mrq->cmd->error) {
255d01af
PO
1207 mmc_request_done(mmc, mrq);
1208 return;
1209 }
1210
1c3be369
RK
1211 pm_runtime_get_sync(mmc_dev(mmc));
1212
9e943021 1213 spin_lock_irqsave(&host->lock, flags);
1da177e4
LT
1214
1215 host->mrq = mrq;
1216
58c7ccbf
PF
1217 if (mrq->data)
1218 mmci_get_next_data(host, mrq->data);
1219
1da177e4
LT
1220 if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1221 mmci_start_data(host, mrq->data);
1222
024629c6
UH
1223 if (mrq->sbc)
1224 mmci_start_command(host, mrq->sbc, 0);
1225 else
1226 mmci_start_command(host, mrq->cmd, 0);
1da177e4 1227
9e943021 1228 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
1229}
1230
1231static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1232{
1233 struct mmci_host *host = mmc_priv(mmc);
7d72a1d4 1234 struct variant_data *variant = host->variant;
a6a6464a
LW
1235 u32 pwr = 0;
1236 unsigned long flags;
db90f91f 1237 int ret;
1da177e4 1238
2cd976c4
UH
1239 pm_runtime_get_sync(mmc_dev(mmc));
1240
bc521818
UH
1241 if (host->plat->ios_handler &&
1242 host->plat->ios_handler(mmc_dev(mmc), ios))
1243 dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1244
1da177e4
LT
1245 switch (ios->power_mode) {
1246 case MMC_POWER_OFF:
599c1d5c
UH
1247 if (!IS_ERR(mmc->supply.vmmc))
1248 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
237fb5e6 1249
7c0136ef 1250 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
237fb5e6 1251 regulator_disable(mmc->supply.vqmmc);
7c0136ef
UH
1252 host->vqmmc_enabled = false;
1253 }
237fb5e6 1254
1da177e4
LT
1255 break;
1256 case MMC_POWER_UP:
599c1d5c
UH
1257 if (!IS_ERR(mmc->supply.vmmc))
1258 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1259
7d72a1d4
UH
1260 /*
1261 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1262 * and instead uses MCI_PWR_ON so apply whatever value is
1263 * configured in the variant data.
1264 */
1265 pwr |= variant->pwrreg_powerup;
1266
1267 break;
1da177e4 1268 case MMC_POWER_ON:
7c0136ef 1269 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
db90f91f
LJ
1270 ret = regulator_enable(mmc->supply.vqmmc);
1271 if (ret < 0)
1272 dev_err(mmc_dev(mmc),
1273 "failed to enable vqmmc regulator\n");
7c0136ef
UH
1274 else
1275 host->vqmmc_enabled = true;
db90f91f 1276 }
237fb5e6 1277
1da177e4
LT
1278 pwr |= MCI_PWR_ON;
1279 break;
1280 }
1281
4d1a3a0d
UH
1282 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1283 /*
1284 * The ST Micro variant has some additional bits
1285 * indicating signal direction for the signals in
1286 * the SD/MMC bus and feedback-clock usage.
1287 */
1288 pwr |= host->plat->sigdir;
1289
1290 if (ios->bus_width == MMC_BUS_WIDTH_4)
1291 pwr &= ~MCI_ST_DATA74DIREN;
1292 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1293 pwr &= (~MCI_ST_DATA74DIREN &
1294 ~MCI_ST_DATA31DIREN &
1295 ~MCI_ST_DATA2DIREN);
1296 }
1297
cc30d60e 1298 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
f17a1f06 1299 if (host->hw_designer != AMBA_VENDOR_ST)
cc30d60e
LW
1300 pwr |= MCI_ROD;
1301 else {
1302 /*
1303 * The ST Micro variant use the ROD bit for something
1304 * else and only has OD (Open Drain).
1305 */
1306 pwr |= MCI_OD;
1307 }
1308 }
1da177e4 1309
f4670dae
UH
1310 /*
1311 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1312 * gating the clock, the MCI_PWR_ON bit is cleared.
1313 */
1314 if (!ios->clock && variant->pwrreg_clkgate)
1315 pwr &= ~MCI_PWR_ON;
1316
a6a6464a
LW
1317 spin_lock_irqsave(&host->lock, flags);
1318
1319 mmci_set_clkreg(host, ios->clock);
7437cfa5 1320 mmci_write_pwrreg(host, pwr);
f829c042 1321 mmci_reg_delay(host);
a6a6464a
LW
1322
1323 spin_unlock_irqrestore(&host->lock, flags);
2cd976c4 1324
2cd976c4
UH
1325 pm_runtime_mark_last_busy(mmc_dev(mmc));
1326 pm_runtime_put_autosuspend(mmc_dev(mmc));
1da177e4
LT
1327}
1328
89001446
RK
1329static int mmci_get_ro(struct mmc_host *mmc)
1330{
1331 struct mmci_host *host = mmc_priv(mmc);
1332
1333 if (host->gpio_wp == -ENOSYS)
1334 return -ENOSYS;
1335
18a06301 1336 return gpio_get_value_cansleep(host->gpio_wp);
89001446
RK
1337}
1338
1339static int mmci_get_cd(struct mmc_host *mmc)
1340{
1341 struct mmci_host *host = mmc_priv(mmc);
29719445 1342 struct mmci_platform_data *plat = host->plat;
89001446
RK
1343 unsigned int status;
1344
4b8caec0
RV
1345 if (host->gpio_cd == -ENOSYS) {
1346 if (!plat->status)
1347 return 1; /* Assume always present */
1348
29719445 1349 status = plat->status(mmc_dev(host->mmc));
4b8caec0 1350 } else
18a06301
LW
1351 status = !!gpio_get_value_cansleep(host->gpio_cd)
1352 ^ plat->cd_invert;
89001446 1353
74bc8093
RK
1354 /*
1355 * Use positive logic throughout - status is zero for no card,
1356 * non-zero for card inserted.
1357 */
1358 return status;
89001446
RK
1359}
1360
0f3ed7f7
UH
1361static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1362{
1363 int ret = 0;
1364
1365 if (!IS_ERR(mmc->supply.vqmmc)) {
1366
1367 pm_runtime_get_sync(mmc_dev(mmc));
1368
1369 switch (ios->signal_voltage) {
1370 case MMC_SIGNAL_VOLTAGE_330:
1371 ret = regulator_set_voltage(mmc->supply.vqmmc,
1372 2700000, 3600000);
1373 break;
1374 case MMC_SIGNAL_VOLTAGE_180:
1375 ret = regulator_set_voltage(mmc->supply.vqmmc,
1376 1700000, 1950000);
1377 break;
1378 case MMC_SIGNAL_VOLTAGE_120:
1379 ret = regulator_set_voltage(mmc->supply.vqmmc,
1380 1100000, 1300000);
1381 break;
1382 }
1383
1384 if (ret)
1385 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1386
1387 pm_runtime_mark_last_busy(mmc_dev(mmc));
1388 pm_runtime_put_autosuspend(mmc_dev(mmc));
1389 }
1390
1391 return ret;
1392}
1393
148b8b39
RV
1394static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1395{
1396 struct mmci_host *host = dev_id;
1397
1398 mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1399
1400 return IRQ_HANDLED;
1401}
1402
01259620 1403static struct mmc_host_ops mmci_ops = {
1da177e4 1404 .request = mmci_request,
58c7ccbf
PF
1405 .pre_req = mmci_pre_request,
1406 .post_req = mmci_post_request,
1da177e4 1407 .set_ios = mmci_set_ios,
89001446
RK
1408 .get_ro = mmci_get_ro,
1409 .get_cd = mmci_get_cd,
0f3ed7f7 1410 .start_signal_voltage_switch = mmci_sig_volt_switch,
1da177e4
LT
1411};
1412
000bc9d5
LJ
1413#ifdef CONFIG_OF
1414static void mmci_dt_populate_generic_pdata(struct device_node *np,
1415 struct mmci_platform_data *pdata)
1416{
1417 int bus_width = 0;
1418
9a597016 1419 pdata->gpio_wp = of_get_named_gpio(np, "wp-gpios", 0);
9a597016 1420 pdata->gpio_cd = of_get_named_gpio(np, "cd-gpios", 0);
000bc9d5
LJ
1421
1422 if (of_get_property(np, "cd-inverted", NULL))
1423 pdata->cd_invert = true;
1424 else
1425 pdata->cd_invert = false;
1426
1427 of_property_read_u32(np, "max-frequency", &pdata->f_max);
1428 if (!pdata->f_max)
1429 pr_warn("%s has no 'max-frequency' property\n", np->full_name);
1430
1431 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1432 pdata->capabilities |= MMC_CAP_MMC_HIGHSPEED;
1433 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1434 pdata->capabilities |= MMC_CAP_SD_HIGHSPEED;
1435
1436 of_property_read_u32(np, "bus-width", &bus_width);
1437 switch (bus_width) {
1438 case 0 :
1439 /* No bus-width supplied. */
1440 break;
1441 case 4 :
1442 pdata->capabilities |= MMC_CAP_4_BIT_DATA;
1443 break;
1444 case 8 :
1445 pdata->capabilities |= MMC_CAP_8_BIT_DATA;
1446 break;
1447 default :
1448 pr_warn("%s: Unsupported bus width\n", np->full_name);
1449 }
1450}
c0a120a4
LJ
1451#else
1452static void mmci_dt_populate_generic_pdata(struct device_node *np,
1453 struct mmci_platform_data *pdata)
1454{
1455 return;
1456}
000bc9d5
LJ
1457#endif
1458
c3be1efd 1459static int mmci_probe(struct amba_device *dev,
aa25afad 1460 const struct amba_id *id)
1da177e4 1461{
6ef297f8 1462 struct mmci_platform_data *plat = dev->dev.platform_data;
000bc9d5 1463 struct device_node *np = dev->dev.of_node;
4956e109 1464 struct variant_data *variant = id->data;
1da177e4
LT
1465 struct mmci_host *host;
1466 struct mmc_host *mmc;
1467 int ret;
1468
000bc9d5
LJ
1469 /* Must have platform data or Device Tree. */
1470 if (!plat && !np) {
1471 dev_err(&dev->dev, "No plat data or DT found\n");
1472 return -EINVAL;
1da177e4
LT
1473 }
1474
b9b52918
LJ
1475 if (!plat) {
1476 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1477 if (!plat)
1478 return -ENOMEM;
1479 }
1480
000bc9d5
LJ
1481 if (np)
1482 mmci_dt_populate_generic_pdata(np, plat);
1483
1da177e4
LT
1484 ret = amba_request_regions(dev, DRIVER_NAME);
1485 if (ret)
1486 goto out;
1487
1488 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1489 if (!mmc) {
1490 ret = -ENOMEM;
1491 goto rel_regions;
1492 }
1493
1494 host = mmc_priv(mmc);
4ea580f1 1495 host->mmc = mmc;
012b7d33 1496
89001446
RK
1497 host->gpio_wp = -ENOSYS;
1498 host->gpio_cd = -ENOSYS;
148b8b39 1499 host->gpio_cd_irq = -1;
89001446 1500
012b7d33
RK
1501 host->hw_designer = amba_manf(dev);
1502 host->hw_revision = amba_rev(dev);
64de0289
LW
1503 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1504 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
012b7d33 1505
665ba56f 1506 host->clk = devm_clk_get(&dev->dev, NULL);
1da177e4
LT
1507 if (IS_ERR(host->clk)) {
1508 ret = PTR_ERR(host->clk);
1da177e4
LT
1509 goto host_free;
1510 }
1511
ac940938 1512 ret = clk_prepare_enable(host->clk);
1da177e4 1513 if (ret)
665ba56f 1514 goto host_free;
1da177e4
LT
1515
1516 host->plat = plat;
4956e109 1517 host->variant = variant;
1da177e4 1518 host->mclk = clk_get_rate(host->clk);
c8df9a53
LW
1519 /*
1520 * According to the spec, mclk is max 100 MHz,
1521 * so we try to adjust the clock down to this,
1522 * (if possible).
1523 */
1524 if (host->mclk > 100000000) {
1525 ret = clk_set_rate(host->clk, 100000000);
1526 if (ret < 0)
1527 goto clk_disable;
1528 host->mclk = clk_get_rate(host->clk);
64de0289
LW
1529 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1530 host->mclk);
c8df9a53 1531 }
c8ebae37 1532 host->phybase = dev->res.start;
dc890c2d 1533 host->base = ioremap(dev->res.start, resource_size(&dev->res));
1da177e4
LT
1534 if (!host->base) {
1535 ret = -ENOMEM;
1536 goto clk_disable;
1537 }
1538
7f294e49
LW
1539 /*
1540 * The ARM and ST versions of the block have slightly different
1541 * clock divider equations which means that the minimum divider
1542 * differs too.
1543 */
1544 if (variant->st_clkdiv)
1545 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1546 else
1547 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
808d97cc
LW
1548 /*
1549 * If the platform data supplies a maximum operating
1550 * frequency, this takes precedence. Else, we fall back
1551 * to using the module parameter, which has a (low)
1552 * default value in case it is not specified. Either
1553 * value must not exceed the clock rate into the block,
1554 * of course.
1555 */
1556 if (plat->f_max)
1557 mmc->f_max = min(host->mclk, plat->f_max);
1558 else
1559 mmc->f_max = min(host->mclk, fmax);
64de0289
LW
1560 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1561
599c1d5c
UH
1562 /* Get regulators and the supported OCR mask */
1563 mmc_regulator_get_supply(mmc);
1564 if (!mmc->ocr_avail)
34e84f39 1565 mmc->ocr_avail = plat->ocr_mask;
599c1d5c
UH
1566 else if (plat->ocr_mask)
1567 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1568
9e6c82cd 1569 mmc->caps = plat->capabilities;
5a092627 1570 mmc->caps2 = plat->capabilities2;
1da177e4 1571
8d94b54d
UH
1572 if (variant->busy_detect) {
1573 mmci_ops.card_busy = mmci_card_busy;
1574 mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE);
1575 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1576 mmc->max_busy_timeout = 0;
1577 }
1578
1579 mmc->ops = &mmci_ops;
1580
70be208f
UH
1581 /* We support these PM capabilities. */
1582 mmc->pm_caps = MMC_PM_KEEP_POWER;
1583
1da177e4
LT
1584 /*
1585 * We can do SGIO
1586 */
a36274e0 1587 mmc->max_segs = NR_SG;
1da177e4
LT
1588
1589 /*
08458ef6
RV
1590 * Since only a certain number of bits are valid in the data length
1591 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1592 * single request.
1da177e4 1593 */
08458ef6 1594 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1da177e4
LT
1595
1596 /*
1597 * Set the maximum segment size. Since we aren't doing DMA
1598 * (yet) we are only limited by the data length register.
1599 */
55db890a 1600 mmc->max_seg_size = mmc->max_req_size;
1da177e4 1601
fe4a3c7a
PO
1602 /*
1603 * Block size can be up to 2048 bytes, but must be a power of two.
1604 */
8f7f6b7e 1605 mmc->max_blk_size = 1 << 11;
fe4a3c7a 1606
55db890a 1607 /*
8f7f6b7e
WD
1608 * Limit the number of blocks transferred so that we don't overflow
1609 * the maximum request size.
55db890a 1610 */
8f7f6b7e 1611 mmc->max_blk_count = mmc->max_req_size >> 11;
55db890a 1612
1da177e4
LT
1613 spin_lock_init(&host->lock);
1614
1615 writel(0, host->base + MMCIMASK0);
1616 writel(0, host->base + MMCIMASK1);
1617 writel(0xfff, host->base + MMCICLEAR);
1618
2805b9ab
RS
1619 if (plat->gpio_cd == -EPROBE_DEFER) {
1620 ret = -EPROBE_DEFER;
1621 goto err_gpio_cd;
1622 }
89001446
RK
1623 if (gpio_is_valid(plat->gpio_cd)) {
1624 ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1625 if (ret == 0)
1626 ret = gpio_direction_input(plat->gpio_cd);
1627 if (ret == 0)
1628 host->gpio_cd = plat->gpio_cd;
1629 else if (ret != -ENOSYS)
1630 goto err_gpio_cd;
148b8b39 1631
17ee083b
LW
1632 /*
1633 * A gpio pin that will detect cards when inserted and removed
1634 * will most likely want to trigger on the edges if it is
1635 * 0 when ejected and 1 when inserted (or mutatis mutandis
1636 * for the inverted case) so we request triggers on both
1637 * edges.
1638 */
148b8b39 1639 ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
17ee083b
LW
1640 mmci_cd_irq,
1641 IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1642 DRIVER_NAME " (cd)", host);
148b8b39
RV
1643 if (ret >= 0)
1644 host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
89001446 1645 }
2805b9ab
RS
1646 if (plat->gpio_wp == -EPROBE_DEFER) {
1647 ret = -EPROBE_DEFER;
1648 goto err_gpio_wp;
1649 }
89001446
RK
1650 if (gpio_is_valid(plat->gpio_wp)) {
1651 ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1652 if (ret == 0)
1653 ret = gpio_direction_input(plat->gpio_wp);
1654 if (ret == 0)
1655 host->gpio_wp = plat->gpio_wp;
1656 else if (ret != -ENOSYS)
1657 goto err_gpio_wp;
1658 }
1659
4b8caec0
RV
1660 if ((host->plat->status || host->gpio_cd != -ENOSYS)
1661 && host->gpio_cd_irq < 0)
148b8b39
RV
1662 mmc->caps |= MMC_CAP_NEEDS_POLL;
1663
dace1453 1664 ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1da177e4
LT
1665 if (ret)
1666 goto unmap;
1667
dfb85185 1668 if (!dev->irq[1])
2686b4b4
LW
1669 host->singleirq = true;
1670 else {
1671 ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1672 DRIVER_NAME " (pio)", host);
1673 if (ret)
1674 goto irq0_free;
1675 }
1da177e4 1676
8cb28155 1677 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1da177e4
LT
1678
1679 amba_set_drvdata(dev, mmc);
1680
c8ebae37
RK
1681 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1682 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1683 amba_rev(dev), (unsigned long long)dev->res.start,
1684 dev->irq[0], dev->irq[1]);
1685
1686 mmci_dma_setup(host);
1da177e4 1687
2cd976c4
UH
1688 pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1689 pm_runtime_use_autosuspend(&dev->dev);
1c3be369
RK
1690 pm_runtime_put(&dev->dev);
1691
8c11a94d
RK
1692 mmc_add_host(mmc);
1693
1da177e4
LT
1694 return 0;
1695
1696 irq0_free:
1697 free_irq(dev->irq[0], host);
1698 unmap:
89001446
RK
1699 if (host->gpio_wp != -ENOSYS)
1700 gpio_free(host->gpio_wp);
1701 err_gpio_wp:
148b8b39
RV
1702 if (host->gpio_cd_irq >= 0)
1703 free_irq(host->gpio_cd_irq, host);
89001446
RK
1704 if (host->gpio_cd != -ENOSYS)
1705 gpio_free(host->gpio_cd);
1706 err_gpio_cd:
1da177e4
LT
1707 iounmap(host->base);
1708 clk_disable:
ac940938 1709 clk_disable_unprepare(host->clk);
1da177e4
LT
1710 host_free:
1711 mmc_free_host(mmc);
1712 rel_regions:
1713 amba_release_regions(dev);
1714 out:
1715 return ret;
1716}
1717
6e0ee714 1718static int mmci_remove(struct amba_device *dev)
1da177e4
LT
1719{
1720 struct mmc_host *mmc = amba_get_drvdata(dev);
1721
1da177e4
LT
1722 if (mmc) {
1723 struct mmci_host *host = mmc_priv(mmc);
1724
1c3be369
RK
1725 /*
1726 * Undo pm_runtime_put() in probe. We use the _sync
1727 * version here so that we can access the primecell.
1728 */
1729 pm_runtime_get_sync(&dev->dev);
1730
1da177e4
LT
1731 mmc_remove_host(mmc);
1732
1733 writel(0, host->base + MMCIMASK0);
1734 writel(0, host->base + MMCIMASK1);
1735
1736 writel(0, host->base + MMCICOMMAND);
1737 writel(0, host->base + MMCIDATACTRL);
1738
c8ebae37 1739 mmci_dma_release(host);
1da177e4 1740 free_irq(dev->irq[0], host);
2686b4b4
LW
1741 if (!host->singleirq)
1742 free_irq(dev->irq[1], host);
1da177e4 1743
89001446
RK
1744 if (host->gpio_wp != -ENOSYS)
1745 gpio_free(host->gpio_wp);
148b8b39
RV
1746 if (host->gpio_cd_irq >= 0)
1747 free_irq(host->gpio_cd_irq, host);
89001446
RK
1748 if (host->gpio_cd != -ENOSYS)
1749 gpio_free(host->gpio_cd);
1750
1da177e4 1751 iounmap(host->base);
ac940938 1752 clk_disable_unprepare(host->clk);
1da177e4
LT
1753
1754 mmc_free_host(mmc);
1755
1756 amba_release_regions(dev);
1757 }
1758
1759 return 0;
1760}
1761
48fa7003
UH
1762#ifdef CONFIG_SUSPEND
1763static int mmci_suspend(struct device *dev)
1da177e4 1764{
48fa7003
UH
1765 struct amba_device *adev = to_amba_device(dev);
1766 struct mmc_host *mmc = amba_get_drvdata(adev);
1da177e4
LT
1767
1768 if (mmc) {
1769 struct mmci_host *host = mmc_priv(mmc);
578aebc7
UH
1770 pm_runtime_get_sync(dev);
1771 writel(0, host->base + MMCIMASK0);
1da177e4
LT
1772 }
1773
578aebc7 1774 return 0;
1da177e4
LT
1775}
1776
48fa7003 1777static int mmci_resume(struct device *dev)
1da177e4 1778{
48fa7003
UH
1779 struct amba_device *adev = to_amba_device(dev);
1780 struct mmc_host *mmc = amba_get_drvdata(adev);
1da177e4
LT
1781
1782 if (mmc) {
1783 struct mmci_host *host = mmc_priv(mmc);
1da177e4 1784 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
2cd976c4 1785 pm_runtime_put(dev);
1da177e4
LT
1786 }
1787
578aebc7 1788 return 0;
1da177e4 1789}
1da177e4
LT
1790#endif
1791
8259293a 1792#ifdef CONFIG_PM_RUNTIME
1ff44433
UH
1793static void mmci_save(struct mmci_host *host)
1794{
1795 unsigned long flags;
1796
1797 if (host->variant->pwrreg_nopower) {
1798 spin_lock_irqsave(&host->lock, flags);
1799
1800 writel(0, host->base + MMCIMASK0);
1801 writel(0, host->base + MMCIDATACTRL);
1802 writel(0, host->base + MMCIPOWER);
1803 writel(0, host->base + MMCICLOCK);
1804 mmci_reg_delay(host);
1805
1806 spin_unlock_irqrestore(&host->lock, flags);
1807 }
1808
1809}
1810
1811static void mmci_restore(struct mmci_host *host)
1812{
1813 unsigned long flags;
1814
1815 if (host->variant->pwrreg_nopower) {
1816 spin_lock_irqsave(&host->lock, flags);
1817
1818 writel(host->clk_reg, host->base + MMCICLOCK);
1819 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1820 writel(host->pwr_reg, host->base + MMCIPOWER);
1821 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1822 mmci_reg_delay(host);
1823
1824 spin_unlock_irqrestore(&host->lock, flags);
1825 }
1826}
1827
8259293a
UH
1828static int mmci_runtime_suspend(struct device *dev)
1829{
1830 struct amba_device *adev = to_amba_device(dev);
1831 struct mmc_host *mmc = amba_get_drvdata(adev);
1832
1833 if (mmc) {
1834 struct mmci_host *host = mmc_priv(mmc);
e36bd9c6 1835 pinctrl_pm_select_sleep_state(dev);
1ff44433 1836 mmci_save(host);
8259293a
UH
1837 clk_disable_unprepare(host->clk);
1838 }
1839
1840 return 0;
1841}
1842
1843static int mmci_runtime_resume(struct device *dev)
1844{
1845 struct amba_device *adev = to_amba_device(dev);
1846 struct mmc_host *mmc = amba_get_drvdata(adev);
1847
1848 if (mmc) {
1849 struct mmci_host *host = mmc_priv(mmc);
1850 clk_prepare_enable(host->clk);
1ff44433 1851 mmci_restore(host);
e36bd9c6 1852 pinctrl_pm_select_default_state(dev);
8259293a
UH
1853 }
1854
1855 return 0;
1856}
1857#endif
1858
48fa7003
UH
1859static const struct dev_pm_ops mmci_dev_pm_ops = {
1860 SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume)
8259293a 1861 SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
48fa7003
UH
1862};
1863
1da177e4
LT
1864static struct amba_id mmci_ids[] = {
1865 {
1866 .id = 0x00041180,
768fbc18 1867 .mask = 0xff0fffff,
4956e109 1868 .data = &variant_arm,
1da177e4 1869 },
768fbc18
PM
1870 {
1871 .id = 0x01041180,
1872 .mask = 0xff0fffff,
1873 .data = &variant_arm_extended_fifo,
1874 },
3a37298a
PM
1875 {
1876 .id = 0x02041180,
1877 .mask = 0xff0fffff,
1878 .data = &variant_arm_extended_fifo_hwfc,
1879 },
1da177e4
LT
1880 {
1881 .id = 0x00041181,
1882 .mask = 0x000fffff,
4956e109 1883 .data = &variant_arm,
1da177e4 1884 },
cc30d60e
LW
1885 /* ST Micro variants */
1886 {
1887 .id = 0x00180180,
1888 .mask = 0x00ffffff,
4956e109 1889 .data = &variant_u300,
cc30d60e 1890 },
34fd4213
LW
1891 {
1892 .id = 0x10180180,
1893 .mask = 0xf0ffffff,
1894 .data = &variant_nomadik,
1895 },
cc30d60e
LW
1896 {
1897 .id = 0x00280180,
1898 .mask = 0x00ffffff,
4956e109
RV
1899 .data = &variant_u300,
1900 },
1901 {
1902 .id = 0x00480180,
1784b157 1903 .mask = 0xf0ffffff,
4956e109 1904 .data = &variant_ux500,
cc30d60e 1905 },
1784b157
PL
1906 {
1907 .id = 0x10480180,
1908 .mask = 0xf0ffffff,
1909 .data = &variant_ux500v2,
1910 },
1da177e4
LT
1911 { 0, 0 },
1912};
1913
9f99835f
DM
1914MODULE_DEVICE_TABLE(amba, mmci_ids);
1915
1da177e4
LT
1916static struct amba_driver mmci_driver = {
1917 .drv = {
1918 .name = DRIVER_NAME,
48fa7003 1919 .pm = &mmci_dev_pm_ops,
1da177e4
LT
1920 },
1921 .probe = mmci_probe,
0433c143 1922 .remove = mmci_remove,
1da177e4
LT
1923 .id_table = mmci_ids,
1924};
1925
9e5ed094 1926module_amba_driver(mmci_driver);
1da177e4 1927
1da177e4
LT
1928module_param(fmax, uint, 0444);
1929
1930MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1931MODULE_LICENSE("GPL");
This page took 0.759196 seconds and 5 git commands to generate.