Merge remote-tracking branch 'asoc/topic/cs4271' into asoc-next
[deliverable/linux.git] / drivers / mtd / chips / cfi_cmdset_0001.c
CommitLineData
1da177e4
LT
1/*
2 * Common Flash Interface support:
3 * Intel Extended Vendor Command Set (ID 0x0001)
4 *
5 * (C) 2000 Red Hat. GPL'd
6 *
1da177e4 7 *
2f82af08 8 * 10/10/2000 Nicolas Pitre <nico@fluxnic.net>
1da177e4
LT
9 * - completely revamped method functions so they are aware and
10 * independent of the flash geometry (buswidth, interleave, etc.)
11 * - scalability vs code size is completely set at compile-time
12 * (see include/linux/mtd/cfi.h for selection)
13 * - optimized write buffer method
14 * 02/05/2002 Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com>
15 * - reworked lock/unlock/erase support for var size flash
0ecbc81a
RG
16 * 21/03/2007 Rodolfo Giometti <giometti@linux.it>
17 * - auto unlock sectors on resume for auto locking flash on power up
1da177e4
LT
18 */
19
20#include <linux/module.h>
21#include <linux/types.h>
22#include <linux/kernel.h>
23#include <linux/sched.h>
24#include <linux/init.h>
25#include <asm/io.h>
26#include <asm/byteorder.h>
27
28#include <linux/errno.h>
29#include <linux/slab.h>
30#include <linux/delay.h>
31#include <linux/interrupt.h>
963a6fb0 32#include <linux/reboot.h>
0ecbc81a 33#include <linux/bitmap.h>
1da177e4
LT
34#include <linux/mtd/xip.h>
35#include <linux/mtd/map.h>
36#include <linux/mtd/mtd.h>
1da177e4
LT
37#include <linux/mtd/cfi.h>
38
39/* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */
40/* #define CMDSET0001_DISABLE_WRITE_SUSPEND */
41
42// debugging, turns off buffer write mode if set to 1
43#define FORCE_WORD_WRITE 0
44
b2ef1a2b 45/* Intel chips */
1da177e4
LT
46#define I82802AB 0x00ad
47#define I82802AC 0x00ac
ec2d0d84 48#define PF38F4476 0x881c
b2ef1a2b 49/* STMicroelectronics chips */
1da177e4 50#define M50LPW080 0x002F
deb1a5f1
NC
51#define M50FLW080A 0x0080
52#define M50FLW080B 0x0081
8dbaea4b 53/* Atmel chips */
d10a39d1 54#define AT49BV640D 0x02de
8dbaea4b 55#define AT49BV640DT 0x02db
1da177e4
LT
56
57static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
1da177e4
LT
58static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
59static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
e102d54a 60static int cfi_intelext_writev(struct mtd_info *, const struct kvec *, unsigned long, loff_t, size_t *);
1da177e4
LT
61static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *);
62static void cfi_intelext_sync (struct mtd_info *);
69423d99
AH
63static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
64static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
9938424f
RC
65static int cfi_intelext_is_locked(struct mtd_info *mtd, loff_t ofs,
66 uint64_t len);
8048d2fc 67#ifdef CONFIG_MTD_OTP
f77814dd
NP
68static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
69static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
70static int cfi_intelext_write_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
71static int cfi_intelext_lock_user_prot_reg (struct mtd_info *, loff_t, size_t);
72static int cfi_intelext_get_fact_prot_info (struct mtd_info *,
73 struct otp_info *, size_t);
74static int cfi_intelext_get_user_prot_info (struct mtd_info *,
75 struct otp_info *, size_t);
8048d2fc 76#endif
1da177e4
LT
77static int cfi_intelext_suspend (struct mtd_info *);
78static void cfi_intelext_resume (struct mtd_info *);
963a6fb0 79static int cfi_intelext_reboot (struct notifier_block *, unsigned long, void *);
1da177e4
LT
80
81static void cfi_intelext_destroy(struct mtd_info *);
82
83struct mtd_info *cfi_cmdset_0001(struct map_info *, int);
84
85static struct mtd_info *cfi_intelext_setup (struct mtd_info *);
86static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **);
87
88static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len,
a98889f3 89 size_t *retlen, void **virt, resource_size_t *phys);
5e4e6e3f 90static int cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
1da177e4 91
5a37cf19 92static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
1da177e4
LT
93static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
94static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
95#include "fwh_lock.h"
96
97
98
99/*
100 * *********** SETUP AND PROBE BITS ***********
101 */
102
103static struct mtd_chip_driver cfi_intelext_chipdrv = {
104 .probe = NULL, /* Not usable directly */
105 .destroy = cfi_intelext_destroy,
106 .name = "cfi_cmdset_0001",
107 .module = THIS_MODULE
108};
109
110/* #define DEBUG_LOCK_BITS */
111/* #define DEBUG_CFI_FEATURES */
112
113#ifdef DEBUG_CFI_FEATURES
114static void cfi_tell_features(struct cfi_pri_intelext *extp)
115{
116 int i;
638d9838 117 printk(" Extended Query version %c.%c\n", extp->MajorVersion, extp->MinorVersion);
1da177e4
LT
118 printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport);
119 printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported");
120 printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported");
121 printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported");
122 printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported");
123 printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported");
124 printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported");
125 printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported");
126 printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported");
127 printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported");
128 printk(" - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported");
638d9838
NP
129 printk(" - Extended Flash Array: %s\n", extp->FeatureSupport&1024?"supported":"unsupported");
130 for (i=11; i<32; i++) {
1f948b43 131 if (extp->FeatureSupport & (1<<i))
1da177e4
LT
132 printk(" - Unknown Bit %X: supported\n", i);
133 }
1f948b43 134
1da177e4
LT
135 printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
136 printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
137 for (i=1; i<8; i++) {
138 if (extp->SuspendCmdSupport & (1<<i))
139 printk(" - Unknown Bit %X: supported\n", i);
140 }
1f948b43 141
1da177e4
LT
142 printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
143 printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no");
638d9838
NP
144 printk(" - Lock-Down Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no");
145 for (i=2; i<3; i++) {
1da177e4
LT
146 if (extp->BlkStatusRegMask & (1<<i))
147 printk(" - Unknown Bit %X Active: yes\n",i);
148 }
638d9838
NP
149 printk(" - EFA Lock Bit: %s\n", extp->BlkStatusRegMask&16?"yes":"no");
150 printk(" - EFA Lock-Down Bit: %s\n", extp->BlkStatusRegMask&32?"yes":"no");
151 for (i=6; i<16; i++) {
152 if (extp->BlkStatusRegMask & (1<<i))
153 printk(" - Unknown Bit %X Active: yes\n",i);
154 }
155
1f948b43 156 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
1da177e4
LT
157 extp->VccOptimal >> 4, extp->VccOptimal & 0xf);
158 if (extp->VppOptimal)
1f948b43 159 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
1da177e4
LT
160 extp->VppOptimal >> 4, extp->VppOptimal & 0xf);
161}
162#endif
163
d10a39d1 164/* Atmel chips don't use the same PRI format as Intel chips */
cc318222 165static void fixup_convert_atmel_pri(struct mtd_info *mtd)
d10a39d1
HCE
166{
167 struct map_info *map = mtd->priv;
168 struct cfi_private *cfi = map->fldrv_priv;
169 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
170 struct cfi_pri_atmel atmel_pri;
171 uint32_t features = 0;
172
173 /* Reverse byteswapping */
174 extp->FeatureSupport = cpu_to_le32(extp->FeatureSupport);
175 extp->BlkStatusRegMask = cpu_to_le16(extp->BlkStatusRegMask);
176 extp->ProtRegAddr = cpu_to_le16(extp->ProtRegAddr);
177
178 memcpy(&atmel_pri, extp, sizeof(atmel_pri));
179 memset((char *)extp + 5, 0, sizeof(*extp) - 5);
180
181 printk(KERN_ERR "atmel Features: %02x\n", atmel_pri.Features);
182
183 if (atmel_pri.Features & 0x01) /* chip erase supported */
184 features |= (1<<0);
185 if (atmel_pri.Features & 0x02) /* erase suspend supported */
186 features |= (1<<1);
187 if (atmel_pri.Features & 0x04) /* program suspend supported */
188 features |= (1<<2);
189 if (atmel_pri.Features & 0x08) /* simultaneous operations supported */
190 features |= (1<<9);
191 if (atmel_pri.Features & 0x20) /* page mode read supported */
192 features |= (1<<7);
193 if (atmel_pri.Features & 0x40) /* queued erase supported */
194 features |= (1<<4);
195 if (atmel_pri.Features & 0x80) /* Protection bits supported */
196 features |= (1<<6);
197
198 extp->FeatureSupport = features;
199
200 /* burst write mode not supported */
201 cfi->cfiq->BufWriteTimeoutTyp = 0;
202 cfi->cfiq->BufWriteTimeoutMax = 0;
203}
204
cc318222 205static void fixup_at49bv640dx_lock(struct mtd_info *mtd)
8dbaea4b
HCE
206{
207 struct map_info *map = mtd->priv;
208 struct cfi_private *cfi = map->fldrv_priv;
209 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
210
211 cfip->FeatureSupport |= (1 << 5);
212 mtd->flags |= MTD_POWERUP_LOCK;
213}
214
1da177e4 215#ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
1f948b43 216/* Some Intel Strata Flash prior to FPO revision C has bugs in this area */
cc318222 217static void fixup_intel_strataflash(struct mtd_info *mtd)
1da177e4
LT
218{
219 struct map_info *map = mtd->priv;
220 struct cfi_private *cfi = map->fldrv_priv;
91949d64 221 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
1da177e4
LT
222
223 printk(KERN_WARNING "cfi_cmdset_0001: Suspend "
224 "erase on write disabled.\n");
225 extp->SuspendCmdSupport &= ~1;
226}
227#endif
228
229#ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
cc318222 230static void fixup_no_write_suspend(struct mtd_info *mtd)
1da177e4
LT
231{
232 struct map_info *map = mtd->priv;
233 struct cfi_private *cfi = map->fldrv_priv;
234 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
235
236 if (cfip && (cfip->FeatureSupport&4)) {
237 cfip->FeatureSupport &= ~4;
238 printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n");
239 }
240}
241#endif
242
cc318222 243static void fixup_st_m28w320ct(struct mtd_info *mtd)
1da177e4
LT
244{
245 struct map_info *map = mtd->priv;
246 struct cfi_private *cfi = map->fldrv_priv;
1f948b43 247
1da177e4
LT
248 cfi->cfiq->BufWriteTimeoutTyp = 0; /* Not supported */
249 cfi->cfiq->BufWriteTimeoutMax = 0; /* Not supported */
250}
251
cc318222 252static void fixup_st_m28w320cb(struct mtd_info *mtd)
1da177e4
LT
253{
254 struct map_info *map = mtd->priv;
255 struct cfi_private *cfi = map->fldrv_priv;
1f948b43 256
1da177e4
LT
257 /* Note this is done after the region info is endian swapped */
258 cfi->cfiq->EraseRegionInfo[1] =
259 (cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e;
260};
261
cc318222 262static void fixup_use_point(struct mtd_info *mtd)
1da177e4
LT
263{
264 struct map_info *map = mtd->priv;
3c3c10bb
AB
265 if (!mtd->_point && map_is_linear(map)) {
266 mtd->_point = cfi_intelext_point;
267 mtd->_unpoint = cfi_intelext_unpoint;
1da177e4
LT
268 }
269}
270
cc318222 271static void fixup_use_write_buffers(struct mtd_info *mtd)
1da177e4
LT
272{
273 struct map_info *map = mtd->priv;
274 struct cfi_private *cfi = map->fldrv_priv;
275 if (cfi->cfiq->BufWriteTimeoutTyp) {
276 printk(KERN_INFO "Using buffer write method\n" );
3c3c10bb
AB
277 mtd->_write = cfi_intelext_write_buffers;
278 mtd->_writev = cfi_intelext_writev;
1da177e4
LT
279 }
280}
281
0ecbc81a
RG
282/*
283 * Some chips power-up with all sectors locked by default.
284 */
cc318222 285static void fixup_unlock_powerup_lock(struct mtd_info *mtd)
0ecbc81a 286{
e619a75f
JT
287 struct map_info *map = mtd->priv;
288 struct cfi_private *cfi = map->fldrv_priv;
289 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
290
291 if (cfip->FeatureSupport&32) {
292 printk(KERN_INFO "Using auto-unlock on power-up/resume\n" );
293 mtd->flags |= MTD_POWERUP_LOCK;
294 }
0ecbc81a
RG
295}
296
1da177e4 297static struct cfi_fixup cfi_fixup_table[] = {
cc318222
GL
298 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
299 { CFI_MFR_ATMEL, AT49BV640D, fixup_at49bv640dx_lock },
300 { CFI_MFR_ATMEL, AT49BV640DT, fixup_at49bv640dx_lock },
1da177e4 301#ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
cc318222 302 { CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash },
1da177e4
LT
303#endif
304#ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
cc318222 305 { CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend },
1da177e4
LT
306#endif
307#if !FORCE_WORD_WRITE
cc318222 308 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
1da177e4 309#endif
cc318222
GL
310 { CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct },
311 { CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb },
312 { CFI_MFR_INTEL, CFI_ID_ANY, fixup_unlock_powerup_lock },
313 { 0, 0, NULL }
1da177e4
LT
314};
315
316static struct cfi_fixup jedec_fixup_table[] = {
cc318222
GL
317 { CFI_MFR_INTEL, I82802AB, fixup_use_fwh_lock },
318 { CFI_MFR_INTEL, I82802AC, fixup_use_fwh_lock },
319 { CFI_MFR_ST, M50LPW080, fixup_use_fwh_lock },
320 { CFI_MFR_ST, M50FLW080A, fixup_use_fwh_lock },
321 { CFI_MFR_ST, M50FLW080B, fixup_use_fwh_lock },
322 { 0, 0, NULL }
1da177e4
LT
323};
324static struct cfi_fixup fixup_table[] = {
325 /* The CFI vendor ids and the JEDEC vendor IDs appear
326 * to be common. It is like the devices id's are as
327 * well. This table is to pick all cases where
328 * we know that is the case.
329 */
cc318222
GL
330 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point },
331 { 0, 0, NULL }
1da177e4
LT
332};
333
ec2d0d84
DR
334static void cfi_fixup_major_minor(struct cfi_private *cfi,
335 struct cfi_pri_intelext *extp)
336{
b2ef1a2b 337 if (cfi->mfr == CFI_MFR_INTEL &&
ec2d0d84
DR
338 cfi->id == PF38F4476 && extp->MinorVersion == '3')
339 extp->MinorVersion = '1';
340}
341
1da177e4
LT
342static inline struct cfi_pri_intelext *
343read_pri_intelext(struct map_info *map, __u16 adr)
344{
ec2d0d84 345 struct cfi_private *cfi = map->fldrv_priv;
1da177e4 346 struct cfi_pri_intelext *extp;
e1b158ab 347 unsigned int extra_size = 0;
1da177e4
LT
348 unsigned int extp_size = sizeof(*extp);
349
350 again:
351 extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp");
352 if (!extp)
353 return NULL;
354
ec2d0d84
DR
355 cfi_fixup_major_minor(cfi, extp);
356
d88f977b 357 if (extp->MajorVersion != '1' ||
b1c9c9be 358 (extp->MinorVersion < '0' || extp->MinorVersion > '5')) {
d88f977b
TP
359 printk(KERN_ERR " Unknown Intel/Sharp Extended Query "
360 "version %c.%c.\n", extp->MajorVersion,
361 extp->MinorVersion);
362 kfree(extp);
363 return NULL;
364 }
365
1da177e4
LT
366 /* Do some byteswapping if necessary */
367 extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport);
368 extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask);
369 extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr);
370
e1b158ab
DR
371 if (extp->MinorVersion >= '0') {
372 extra_size = 0;
1da177e4
LT
373
374 /* Protection Register info */
72b56a2d
NP
375 extra_size += (extp->NumProtectionFields - 1) *
376 sizeof(struct cfi_intelext_otpinfo);
e1b158ab 377 }
1da177e4 378
e1b158ab 379 if (extp->MinorVersion >= '1') {
1da177e4 380 /* Burst Read info */
6f6ed056
NP
381 extra_size += 2;
382 if (extp_size < sizeof(*extp) + extra_size)
383 goto need_more;
e1b158ab
DR
384 extra_size += extp->extra[extra_size - 1];
385 }
386
387 if (extp->MinorVersion >= '3') {
388 int nb_parts, i;
1da177e4
LT
389
390 /* Number of hardware-partitions */
391 extra_size += 1;
392 if (extp_size < sizeof(*extp) + extra_size)
393 goto need_more;
394 nb_parts = extp->extra[extra_size - 1];
395
638d9838
NP
396 /* skip the sizeof(partregion) field in CFI 1.4 */
397 if (extp->MinorVersion >= '4')
398 extra_size += 2;
399
1da177e4
LT
400 for (i = 0; i < nb_parts; i++) {
401 struct cfi_intelext_regioninfo *rinfo;
402 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size];
403 extra_size += sizeof(*rinfo);
404 if (extp_size < sizeof(*extp) + extra_size)
405 goto need_more;
406 rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions);
407 extra_size += (rinfo->NumBlockTypes - 1)
408 * sizeof(struct cfi_intelext_blockinfo);
409 }
410
638d9838
NP
411 if (extp->MinorVersion >= '4')
412 extra_size += sizeof(struct cfi_intelext_programming_regioninfo);
413
1da177e4
LT
414 if (extp_size < sizeof(*extp) + extra_size) {
415 need_more:
416 extp_size = sizeof(*extp) + extra_size;
417 kfree(extp);
418 if (extp_size > 4096) {
419 printk(KERN_ERR
420 "%s: cfi_pri_intelext is too fat\n",
cb53b3b9 421 __func__);
1da177e4
LT
422 return NULL;
423 }
424 goto again;
425 }
426 }
1f948b43 427
1da177e4
LT
428 return extp;
429}
430
1da177e4
LT
431struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary)
432{
433 struct cfi_private *cfi = map->fldrv_priv;
434 struct mtd_info *mtd;
435 int i;
436
95b93a0c 437 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
1da177e4
LT
438 if (!mtd) {
439 printk(KERN_ERR "Failed to allocate memory for MTD device\n");
440 return NULL;
441 }
1da177e4
LT
442 mtd->priv = map;
443 mtd->type = MTD_NORFLASH;
444
445 /* Fill in the default mtd operations */
3c3c10bb
AB
446 mtd->_erase = cfi_intelext_erase_varsize;
447 mtd->_read = cfi_intelext_read;
448 mtd->_write = cfi_intelext_write_words;
449 mtd->_sync = cfi_intelext_sync;
450 mtd->_lock = cfi_intelext_lock;
451 mtd->_unlock = cfi_intelext_unlock;
452 mtd->_is_locked = cfi_intelext_is_locked;
453 mtd->_suspend = cfi_intelext_suspend;
454 mtd->_resume = cfi_intelext_resume;
1da177e4
LT
455 mtd->flags = MTD_CAP_NORFLASH;
456 mtd->name = map->name;
17ffc7ba 457 mtd->writesize = 1;
13ce77f4 458 mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
963a6fb0
NP
459
460 mtd->reboot_notifier.notifier_call = cfi_intelext_reboot;
461
1da177e4 462 if (cfi->cfi_mode == CFI_MODE_CFI) {
1f948b43 463 /*
1da177e4
LT
464 * It's a real CFI chip, not one for which the probe
465 * routine faked a CFI structure. So we read the feature
466 * table from it.
467 */
468 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
469 struct cfi_pri_intelext *extp;
470
471 extp = read_pri_intelext(map, adr);
472 if (!extp) {
473 kfree(mtd);
474 return NULL;
475 }
476
477 /* Install our own private info structure */
1f948b43 478 cfi->cmdset_priv = extp;
1da177e4
LT
479
480 cfi_fixup(mtd, cfi_fixup_table);
481
482#ifdef DEBUG_CFI_FEATURES
483 /* Tell the user about it in lots of lovely detail */
484 cfi_tell_features(extp);
1f948b43 485#endif
1da177e4
LT
486
487 if(extp->SuspendCmdSupport & 1) {
488 printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n");
489 }
490 }
491 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
492 /* Apply jedec specific fixups */
493 cfi_fixup(mtd, jedec_fixup_table);
494 }
495 /* Apply generic fixups */
496 cfi_fixup(mtd, fixup_table);
497
498 for (i=0; i< cfi->numchips; i++) {
2a5bd596
DW
499 if (cfi->cfiq->WordWriteTimeoutTyp)
500 cfi->chips[i].word_write_time =
501 1<<cfi->cfiq->WordWriteTimeoutTyp;
502 else
503 cfi->chips[i].word_write_time = 50000;
504
505 if (cfi->cfiq->BufWriteTimeoutTyp)
506 cfi->chips[i].buffer_write_time =
507 1<<cfi->cfiq->BufWriteTimeoutTyp;
508 /* No default; if it isn't specified, we won't use it */
509
510 if (cfi->cfiq->BlockEraseTimeoutTyp)
511 cfi->chips[i].erase_time =
512 1000<<cfi->cfiq->BlockEraseTimeoutTyp;
513 else
514 cfi->chips[i].erase_time = 2000000;
515
e93cafe4
AG
516 if (cfi->cfiq->WordWriteTimeoutTyp &&
517 cfi->cfiq->WordWriteTimeoutMax)
518 cfi->chips[i].word_write_time_max =
519 1<<(cfi->cfiq->WordWriteTimeoutTyp +
520 cfi->cfiq->WordWriteTimeoutMax);
521 else
522 cfi->chips[i].word_write_time_max = 50000 * 8;
523
524 if (cfi->cfiq->BufWriteTimeoutTyp &&
525 cfi->cfiq->BufWriteTimeoutMax)
526 cfi->chips[i].buffer_write_time_max =
527 1<<(cfi->cfiq->BufWriteTimeoutTyp +
528 cfi->cfiq->BufWriteTimeoutMax);
529
530 if (cfi->cfiq->BlockEraseTimeoutTyp &&
531 cfi->cfiq->BlockEraseTimeoutMax)
532 cfi->chips[i].erase_time_max =
533 1000<<(cfi->cfiq->BlockEraseTimeoutTyp +
534 cfi->cfiq->BlockEraseTimeoutMax);
535 else
536 cfi->chips[i].erase_time_max = 2000000 * 8;
537
1da177e4 538 cfi->chips[i].ref_point_counter = 0;
c314b6f1 539 init_waitqueue_head(&(cfi->chips[i].wq));
1f948b43 540 }
1da177e4
LT
541
542 map->fldrv = &cfi_intelext_chipdrv;
1f948b43 543
1da177e4
LT
544 return cfi_intelext_setup(mtd);
545}
a15bdeef
DW
546struct mtd_info *cfi_cmdset_0003(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
547struct mtd_info *cfi_cmdset_0200(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
548EXPORT_SYMBOL_GPL(cfi_cmdset_0001);
549EXPORT_SYMBOL_GPL(cfi_cmdset_0003);
550EXPORT_SYMBOL_GPL(cfi_cmdset_0200);
1da177e4
LT
551
552static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd)
553{
554 struct map_info *map = mtd->priv;
555 struct cfi_private *cfi = map->fldrv_priv;
556 unsigned long offset = 0;
557 int i,j;
558 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
559
560 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
561
562 mtd->size = devsize * cfi->numchips;
563
564 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
1f948b43 565 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
1da177e4 566 * mtd->numeraseregions, GFP_KERNEL);
1f948b43 567 if (!mtd->eraseregions) {
1da177e4
LT
568 printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n");
569 goto setup_err;
570 }
1f948b43 571
1da177e4
LT
572 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
573 unsigned long ernum, ersize;
574 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
575 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
576
577 if (mtd->erasesize < ersize) {
578 mtd->erasesize = ersize;
579 }
580 for (j=0; j<cfi->numchips; j++) {
581 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
582 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
583 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
0ecbc81a 584 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap = kmalloc(ernum / 8 + 1, GFP_KERNEL);
1da177e4
LT
585 }
586 offset += (ersize * ernum);
587 }
588
589 if (offset != devsize) {
590 /* Argh */
591 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
592 goto setup_err;
593 }
594
595 for (i=0; i<mtd->numeraseregions;i++){
69423d99
AH
596 printk(KERN_DEBUG "erase region %d: offset=0x%llx,size=0x%x,blocks=%d\n",
597 i,(unsigned long long)mtd->eraseregions[i].offset,
1da177e4
LT
598 mtd->eraseregions[i].erasesize,
599 mtd->eraseregions[i].numblocks);
600 }
601
f77814dd 602#ifdef CONFIG_MTD_OTP
3c3c10bb
AB
603 mtd->_read_fact_prot_reg = cfi_intelext_read_fact_prot_reg;
604 mtd->_read_user_prot_reg = cfi_intelext_read_user_prot_reg;
605 mtd->_write_user_prot_reg = cfi_intelext_write_user_prot_reg;
606 mtd->_lock_user_prot_reg = cfi_intelext_lock_user_prot_reg;
607 mtd->_get_fact_prot_info = cfi_intelext_get_fact_prot_info;
608 mtd->_get_user_prot_info = cfi_intelext_get_user_prot_info;
1da177e4
LT
609#endif
610
611 /* This function has the potential to distort the reality
612 a bit and therefore should be called last. */
613 if (cfi_intelext_partition_fixup(mtd, &cfi) != 0)
614 goto setup_err;
615
616 __module_get(THIS_MODULE);
963a6fb0 617 register_reboot_notifier(&mtd->reboot_notifier);
1da177e4
LT
618 return mtd;
619
620 setup_err:
17fabf15
JS
621 kfree(mtd->eraseregions);
622 kfree(mtd);
1da177e4
LT
623 kfree(cfi->cmdset_priv);
624 return NULL;
625}
626
627static int cfi_intelext_partition_fixup(struct mtd_info *mtd,
628 struct cfi_private **pcfi)
629{
630 struct map_info *map = mtd->priv;
631 struct cfi_private *cfi = *pcfi;
632 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
633
634 /*
8f1a866f 635 * Probing of multi-partition flash chips.
1da177e4
LT
636 *
637 * To support multiple partitions when available, we simply arrange
638 * for each of them to have their own flchip structure even if they
639 * are on the same physical chip. This means completely recreating
640 * a new cfi_private structure right here which is a blatent code
641 * layering violation, but this is still the least intrusive
642 * arrangement at this point. This can be rearranged in the future
643 * if someone feels motivated enough. --nico
644 */
638d9838 645 if (extp && extp->MajorVersion == '1' && extp->MinorVersion >= '3'
1da177e4
LT
646 && extp->FeatureSupport & (1 << 9)) {
647 struct cfi_private *newcfi;
648 struct flchip *chip;
649 struct flchip_shared *shared;
650 int offs, numregions, numparts, partshift, numvirtchips, i, j;
651
652 /* Protection Register info */
72b56a2d
NP
653 offs = (extp->NumProtectionFields - 1) *
654 sizeof(struct cfi_intelext_otpinfo);
1da177e4
LT
655
656 /* Burst Read info */
6f6ed056 657 offs += extp->extra[offs+1]+2;
1da177e4
LT
658
659 /* Number of partition regions */
660 numregions = extp->extra[offs];
661 offs += 1;
662
638d9838
NP
663 /* skip the sizeof(partregion) field in CFI 1.4 */
664 if (extp->MinorVersion >= '4')
665 offs += 2;
666
1da177e4
LT
667 /* Number of hardware partitions */
668 numparts = 0;
669 for (i = 0; i < numregions; i++) {
670 struct cfi_intelext_regioninfo *rinfo;
671 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs];
672 numparts += rinfo->NumIdentPartitions;
673 offs += sizeof(*rinfo)
674 + (rinfo->NumBlockTypes - 1) *
675 sizeof(struct cfi_intelext_blockinfo);
676 }
677
fe224668
TK
678 if (!numparts)
679 numparts = 1;
680
638d9838
NP
681 /* Programming Region info */
682 if (extp->MinorVersion >= '4') {
683 struct cfi_intelext_programming_regioninfo *prinfo;
684 prinfo = (struct cfi_intelext_programming_regioninfo *)&extp->extra[offs];
28318776 685 mtd->writesize = cfi->interleave << prinfo->ProgRegShift;
5fa43394 686 mtd->flags &= ~MTD_BIT_WRITEABLE;
638d9838 687 printk(KERN_DEBUG "%s: program region size/ctrl_valid/ctrl_inval = %d/%d/%d\n",
28318776 688 map->name, mtd->writesize,
d4160855
AB
689 cfi->interleave * prinfo->ControlValid,
690 cfi->interleave * prinfo->ControlInvalid);
638d9838
NP
691 }
692
1da177e4
LT
693 /*
694 * All functions below currently rely on all chips having
695 * the same geometry so we'll just assume that all hardware
696 * partitions are of the same size too.
697 */
698 partshift = cfi->chipshift - __ffs(numparts);
699
700 if ((1 << partshift) < mtd->erasesize) {
701 printk( KERN_ERR
702 "%s: bad number of hw partitions (%d)\n",
cb53b3b9 703 __func__, numparts);
1da177e4
LT
704 return -EINVAL;
705 }
706
707 numvirtchips = cfi->numchips * numparts;
708 newcfi = kmalloc(sizeof(struct cfi_private) + numvirtchips * sizeof(struct flchip), GFP_KERNEL);
709 if (!newcfi)
710 return -ENOMEM;
711 shared = kmalloc(sizeof(struct flchip_shared) * cfi->numchips, GFP_KERNEL);
712 if (!shared) {
713 kfree(newcfi);
714 return -ENOMEM;
715 }
716 memcpy(newcfi, cfi, sizeof(struct cfi_private));
717 newcfi->numchips = numvirtchips;
718 newcfi->chipshift = partshift;
719
720 chip = &newcfi->chips[0];
721 for (i = 0; i < cfi->numchips; i++) {
722 shared[i].writing = shared[i].erasing = NULL;
8ae66418 723 mutex_init(&shared[i].lock);
1da177e4
LT
724 for (j = 0; j < numparts; j++) {
725 *chip = cfi->chips[i];
726 chip->start += j << partshift;
727 chip->priv = &shared[i];
728 /* those should be reset too since
729 they create memory references. */
730 init_waitqueue_head(&chip->wq);
c4e77376 731 mutex_init(&chip->mutex);
1da177e4
LT
732 chip++;
733 }
734 }
735
736 printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips "
737 "--> %d partitions of %d KiB\n",
738 map->name, cfi->numchips, cfi->interleave,
739 newcfi->numchips, 1<<(newcfi->chipshift-10));
740
741 map->fldrv_priv = newcfi;
742 *pcfi = newcfi;
743 kfree(cfi);
744 }
745
746 return 0;
747}
748
749/*
750 * *********** CHIP ACCESS FUNCTIONS ***********
751 */
5a37cf19 752static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
1da177e4
LT
753{
754 DECLARE_WAITQUEUE(wait, current);
755 struct cfi_private *cfi = map->fldrv_priv;
756 map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01);
1da177e4 757 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
5a37cf19 758 unsigned long timeo = jiffies + HZ;
1da177e4 759
3afe7eb3
AB
760 /* Prevent setting state FL_SYNCING for chip in suspended state. */
761 if (mode == FL_SYNCING && chip->oldstate != FL_READY)
762 goto sleep;
763
1da177e4
LT
764 switch (chip->state) {
765
766 case FL_STATUS:
767 for (;;) {
768 status = map_read(map, adr);
769 if (map_word_andequal(map, status, status_OK, status_OK))
770 break;
771
772 /* At this point we're fine with write operations
773 in other partitions as they don't conflict. */
774 if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS))
775 break;
776
c4e77376 777 mutex_unlock(&chip->mutex);
1da177e4 778 cfi_udelay(1);
c4e77376 779 mutex_lock(&chip->mutex);
1da177e4 780 /* Someone else might have been playing with it. */
5a37cf19 781 return -EAGAIN;
1da177e4 782 }
fb6d080c 783 /* Fall through */
1da177e4
LT
784 case FL_READY:
785 case FL_CFI_QUERY:
786 case FL_JEDEC_QUERY:
787 return 0;
788
789 case FL_ERASING:
790 if (!cfip ||
791 !(cfip->FeatureSupport & 2) ||
792 !(mode == FL_READY || mode == FL_POINT ||
793 (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1))))
794 goto sleep;
795
796
797 /* Erase suspend */
798 map_write(map, CMD(0xB0), adr);
799
800 /* If the flash has finished erasing, then 'erase suspend'
801 * appears to make some (28F320) flash devices switch to
802 * 'read' mode. Make sure that we switch to 'read status'
803 * mode so we get the right data. --rmk
804 */
805 map_write(map, CMD(0x70), adr);
806 chip->oldstate = FL_ERASING;
807 chip->state = FL_ERASE_SUSPENDING;
808 chip->erase_suspended = 1;
809 for (;;) {
810 status = map_read(map, adr);
811 if (map_word_andequal(map, status, status_OK, status_OK))
812 break;
813
814 if (time_after(jiffies, timeo)) {
100f2341
TA
815 /* Urgh. Resume and pretend we weren't here.
816 * Make sure we're in 'read status' mode if it had finished */
817 put_chip(map, chip, adr);
4843653c
NP
818 printk(KERN_ERR "%s: Chip not ready after erase "
819 "suspended: status = 0x%lx\n", map->name, status.x[0]);
1da177e4
LT
820 return -EIO;
821 }
822
c4e77376 823 mutex_unlock(&chip->mutex);
1da177e4 824 cfi_udelay(1);
c4e77376 825 mutex_lock(&chip->mutex);
1da177e4
LT
826 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
827 So we can just loop here. */
828 }
829 chip->state = FL_STATUS;
830 return 0;
831
832 case FL_XIP_WHILE_ERASING:
833 if (mode != FL_READY && mode != FL_POINT &&
834 (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1)))
835 goto sleep;
836 chip->oldstate = chip->state;
837 chip->state = FL_READY;
838 return 0;
839
fb6d080c
AK
840 case FL_SHUTDOWN:
841 /* The machine is rebooting now,so no one can get chip anymore */
842 return -EIO;
1da177e4
LT
843 case FL_POINT:
844 /* Only if there's no operation suspended... */
845 if (mode == FL_READY && chip->oldstate == FL_READY)
846 return 0;
fb6d080c 847 /* Fall through */
1da177e4
LT
848 default:
849 sleep:
850 set_current_state(TASK_UNINTERRUPTIBLE);
851 add_wait_queue(&chip->wq, &wait);
c4e77376 852 mutex_unlock(&chip->mutex);
1da177e4
LT
853 schedule();
854 remove_wait_queue(&chip->wq, &wait);
c4e77376 855 mutex_lock(&chip->mutex);
5a37cf19
AK
856 return -EAGAIN;
857 }
858}
859
860static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
861{
862 int ret;
6c24e416 863 DECLARE_WAITQUEUE(wait, current);
5a37cf19
AK
864
865 retry:
3afe7eb3
AB
866 if (chip->priv &&
867 (mode == FL_WRITING || mode == FL_ERASING || mode == FL_OTP_WRITE
868 || mode == FL_SHUTDOWN) && chip->state != FL_SYNCING) {
5a37cf19
AK
869 /*
870 * OK. We have possibility for contention on the write/erase
871 * operations which are global to the real chip and not per
872 * partition. So let's fight it over in the partition which
873 * currently has authority on the operation.
874 *
875 * The rules are as follows:
876 *
877 * - any write operation must own shared->writing.
878 *
879 * - any erase operation must own _both_ shared->writing and
880 * shared->erasing.
881 *
882 * - contention arbitration is handled in the owner's context.
883 *
884 * The 'shared' struct can be read and/or written only when
885 * its lock is taken.
886 */
887 struct flchip_shared *shared = chip->priv;
888 struct flchip *contender;
8ae66418 889 mutex_lock(&shared->lock);
5a37cf19
AK
890 contender = shared->writing;
891 if (contender && contender != chip) {
892 /*
893 * The engine to perform desired operation on this
894 * partition is already in use by someone else.
895 * Let's fight over it in the context of the chip
896 * currently using it. If it is possible to suspend,
897 * that other partition will do just that, otherwise
898 * it'll happily send us to sleep. In any case, when
899 * get_chip returns success we're clear to go ahead.
900 */
c4e77376 901 ret = mutex_trylock(&contender->mutex);
8ae66418 902 mutex_unlock(&shared->lock);
5a37cf19
AK
903 if (!ret)
904 goto retry;
c4e77376 905 mutex_unlock(&chip->mutex);
5a37cf19 906 ret = chip_ready(map, contender, contender->start, mode);
c4e77376 907 mutex_lock(&chip->mutex);
5a37cf19
AK
908
909 if (ret == -EAGAIN) {
c4e77376 910 mutex_unlock(&contender->mutex);
5a37cf19
AK
911 goto retry;
912 }
913 if (ret) {
c4e77376 914 mutex_unlock(&contender->mutex);
5a37cf19
AK
915 return ret;
916 }
8ae66418 917 mutex_lock(&shared->lock);
3afe7eb3
AB
918
919 /* We should not own chip if it is already
920 * in FL_SYNCING state. Put contender and retry. */
921 if (chip->state == FL_SYNCING) {
922 put_chip(map, contender, contender->start);
c4e77376 923 mutex_unlock(&contender->mutex);
3afe7eb3
AB
924 goto retry;
925 }
c4e77376 926 mutex_unlock(&contender->mutex);
5a37cf19
AK
927 }
928
6c24e416
AB
929 /* Check if we already have suspended erase
930 * on this chip. Sleep. */
931 if (mode == FL_ERASING && shared->erasing
932 && shared->erasing->oldstate == FL_ERASING) {
8ae66418 933 mutex_unlock(&shared->lock);
6c24e416
AB
934 set_current_state(TASK_UNINTERRUPTIBLE);
935 add_wait_queue(&chip->wq, &wait);
c4e77376 936 mutex_unlock(&chip->mutex);
6c24e416
AB
937 schedule();
938 remove_wait_queue(&chip->wq, &wait);
c4e77376 939 mutex_lock(&chip->mutex);
6c24e416
AB
940 goto retry;
941 }
942
5a37cf19
AK
943 /* We now own it */
944 shared->writing = chip;
945 if (mode == FL_ERASING)
946 shared->erasing = chip;
8ae66418 947 mutex_unlock(&shared->lock);
1da177e4 948 }
5a37cf19
AK
949 ret = chip_ready(map, chip, adr, mode);
950 if (ret == -EAGAIN)
951 goto retry;
952
953 return ret;
1da177e4
LT
954}
955
956static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
957{
958 struct cfi_private *cfi = map->fldrv_priv;
959
960 if (chip->priv) {
961 struct flchip_shared *shared = chip->priv;
8ae66418 962 mutex_lock(&shared->lock);
1da177e4
LT
963 if (shared->writing == chip && chip->oldstate == FL_READY) {
964 /* We own the ability to write, but we're done */
965 shared->writing = shared->erasing;
966 if (shared->writing && shared->writing != chip) {
967 /* give back ownership to who we loaned it from */
968 struct flchip *loaner = shared->writing;
c4e77376 969 mutex_lock(&loaner->mutex);
8ae66418 970 mutex_unlock(&shared->lock);
c4e77376 971 mutex_unlock(&chip->mutex);
1da177e4 972 put_chip(map, loaner, loaner->start);
c4e77376
SS
973 mutex_lock(&chip->mutex);
974 mutex_unlock(&loaner->mutex);
1da177e4
LT
975 wake_up(&chip->wq);
976 return;
977 }
978 shared->erasing = NULL;
979 shared->writing = NULL;
980 } else if (shared->erasing == chip && shared->writing != chip) {
981 /*
982 * We own the ability to erase without the ability
983 * to write, which means the erase was suspended
984 * and some other partition is currently writing.
985 * Don't let the switch below mess things up since
986 * we don't have ownership to resume anything.
987 */
8ae66418 988 mutex_unlock(&shared->lock);
1da177e4
LT
989 wake_up(&chip->wq);
990 return;
991 }
8ae66418 992 mutex_unlock(&shared->lock);
1da177e4
LT
993 }
994
995 switch(chip->oldstate) {
996 case FL_ERASING:
1f948b43 997 /* What if one interleaved chip has finished and the
1da177e4 998 other hasn't? The old code would leave the finished
1f948b43 999 one in READY mode. That's bad, and caused -EROFS
1da177e4
LT
1000 errors to be returned from do_erase_oneblock because
1001 that's the only bit it checked for at the time.
1f948b43 1002 As the state machine appears to explicitly allow
1da177e4 1003 sending the 0x70 (Read Status) command to an erasing
1f948b43 1004 chip and expecting it to be ignored, that's what we
1da177e4
LT
1005 do. */
1006 map_write(map, CMD(0xd0), adr);
1007 map_write(map, CMD(0x70), adr);
1008 chip->oldstate = FL_READY;
1009 chip->state = FL_ERASING;
1010 break;
1011
1012 case FL_XIP_WHILE_ERASING:
1013 chip->state = chip->oldstate;
1014 chip->oldstate = FL_READY;
1015 break;
1016
1017 case FL_READY:
1018 case FL_STATUS:
1019 case FL_JEDEC_QUERY:
1da177e4
LT
1020 break;
1021 default:
4843653c 1022 printk(KERN_ERR "%s: put_chip() called with oldstate %d!!\n", map->name, chip->oldstate);
1da177e4
LT
1023 }
1024 wake_up(&chip->wq);
1025}
1026
1027#ifdef CONFIG_MTD_XIP
1028
1029/*
1030 * No interrupt what so ever can be serviced while the flash isn't in array
1031 * mode. This is ensured by the xip_disable() and xip_enable() functions
1032 * enclosing any code path where the flash is known not to be in array mode.
1033 * And within a XIP disabled code path, only functions marked with __xipram
1034 * may be called and nothing else (it's a good thing to inspect generated
1035 * assembly to make sure inline functions were actually inlined and that gcc
1036 * didn't emit calls to its own support functions). Also configuring MTD CFI
1037 * support to a single buswidth and a single interleave is also recommended.
1da177e4
LT
1038 */
1039
1040static void xip_disable(struct map_info *map, struct flchip *chip,
1041 unsigned long adr)
1042{
1043 /* TODO: chips with no XIP use should ignore and return */
1044 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
1da177e4
LT
1045 local_irq_disable();
1046}
1047
1048static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
1049 unsigned long adr)
1050{
1051 struct cfi_private *cfi = map->fldrv_priv;
1052 if (chip->state != FL_POINT && chip->state != FL_READY) {
1053 map_write(map, CMD(0xff), adr);
1054 chip->state = FL_READY;
1055 }
1056 (void) map_read(map, adr);
97f927a4 1057 xip_iprefetch();
1da177e4 1058 local_irq_enable();
1da177e4
LT
1059}
1060
1061/*
1062 * When a delay is required for the flash operation to complete, the
c172471b
NP
1063 * xip_wait_for_operation() function is polling for both the given timeout
1064 * and pending (but still masked) hardware interrupts. Whenever there is an
1065 * interrupt pending then the flash erase or write operation is suspended,
1066 * array mode restored and interrupts unmasked. Task scheduling might also
1067 * happen at that point. The CPU eventually returns from the interrupt or
1068 * the call to schedule() and the suspended flash operation is resumed for
1069 * the remaining of the delay period.
1da177e4
LT
1070 *
1071 * Warning: this function _will_ fool interrupt latency tracing tools.
1072 */
1073
c172471b
NP
1074static int __xipram xip_wait_for_operation(
1075 struct map_info *map, struct flchip *chip,
e93cafe4 1076 unsigned long adr, unsigned int chip_op_time_max)
1da177e4
LT
1077{
1078 struct cfi_private *cfi = map->fldrv_priv;
1079 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
1080 map_word status, OK = CMD(0x80);
c172471b 1081 unsigned long usec, suspended, start, done;
1da177e4
LT
1082 flstate_t oldstate, newstate;
1083
c172471b 1084 start = xip_currtime();
e93cafe4 1085 usec = chip_op_time_max;
c172471b
NP
1086 if (usec == 0)
1087 usec = 500000;
1088 done = 0;
1089
1da177e4
LT
1090 do {
1091 cpu_relax();
1092 if (xip_irqpending() && cfip &&
1093 ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) ||
1094 (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) &&
1095 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
1096 /*
1097 * Let's suspend the erase or write operation when
1098 * supported. Note that we currently don't try to
1099 * suspend interleaved chips if there is already
1100 * another operation suspended (imagine what happens
1101 * when one chip was already done with the current
1102 * operation while another chip suspended it, then
1103 * we resume the whole thing at once). Yes, it
1104 * can happen!
1105 */
c172471b 1106 usec -= done;
1da177e4
LT
1107 map_write(map, CMD(0xb0), adr);
1108 map_write(map, CMD(0x70), adr);
1da177e4
LT
1109 suspended = xip_currtime();
1110 do {
1111 if (xip_elapsed_since(suspended) > 100000) {
1112 /*
1113 * The chip doesn't want to suspend
1114 * after waiting for 100 msecs.
1115 * This is a critical error but there
1116 * is not much we can do here.
1117 */
c172471b 1118 return -EIO;
1da177e4
LT
1119 }
1120 status = map_read(map, adr);
1121 } while (!map_word_andequal(map, status, OK, OK));
1122
1123 /* Suspend succeeded */
1124 oldstate = chip->state;
1125 if (oldstate == FL_ERASING) {
1126 if (!map_word_bitsset(map, status, CMD(0x40)))
1127 break;
1128 newstate = FL_XIP_WHILE_ERASING;
1129 chip->erase_suspended = 1;
1130 } else {
1131 if (!map_word_bitsset(map, status, CMD(0x04)))
1132 break;
1133 newstate = FL_XIP_WHILE_WRITING;
1134 chip->write_suspended = 1;
1135 }
1136 chip->state = newstate;
1137 map_write(map, CMD(0xff), adr);
1138 (void) map_read(map, adr);
ca5c23c3 1139 xip_iprefetch();
1da177e4 1140 local_irq_enable();
c4e77376 1141 mutex_unlock(&chip->mutex);
ca5c23c3 1142 xip_iprefetch();
1da177e4
LT
1143 cond_resched();
1144
1145 /*
1146 * We're back. However someone else might have
1147 * decided to go write to the chip if we are in
1148 * a suspended erase state. If so let's wait
1149 * until it's done.
1150 */
c4e77376 1151 mutex_lock(&chip->mutex);
1da177e4
LT
1152 while (chip->state != newstate) {
1153 DECLARE_WAITQUEUE(wait, current);
1154 set_current_state(TASK_UNINTERRUPTIBLE);
1155 add_wait_queue(&chip->wq, &wait);
c4e77376 1156 mutex_unlock(&chip->mutex);
1da177e4
LT
1157 schedule();
1158 remove_wait_queue(&chip->wq, &wait);
c4e77376 1159 mutex_lock(&chip->mutex);
1da177e4
LT
1160 }
1161 /* Disallow XIP again */
1162 local_irq_disable();
1163
1164 /* Resume the write or erase operation */
1165 map_write(map, CMD(0xd0), adr);
1166 map_write(map, CMD(0x70), adr);
1167 chip->state = oldstate;
1168 start = xip_currtime();
1169 } else if (usec >= 1000000/HZ) {
1170 /*
1171 * Try to save on CPU power when waiting delay
1172 * is at least a system timer tick period.
1173 * No need to be extremely accurate here.
1174 */
1175 xip_cpu_idle();
1176 }
1177 status = map_read(map, adr);
c172471b 1178 done = xip_elapsed_since(start);
1da177e4 1179 } while (!map_word_andequal(map, status, OK, OK)
c172471b 1180 && done < usec);
1da177e4 1181
c172471b
NP
1182 return (done >= usec) ? -ETIME : 0;
1183}
1da177e4
LT
1184
1185/*
1186 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1187 * the flash is actively programming or erasing since we have to poll for
1188 * the operation to complete anyway. We can't do that in a generic way with
6da70124 1189 * a XIP setup so do it before the actual flash operation in this case
c172471b 1190 * and stub it out from INVAL_CACHE_AND_WAIT.
1da177e4 1191 */
6da70124
NP
1192#define XIP_INVAL_CACHED_RANGE(map, from, size) \
1193 INVALIDATE_CACHED_RANGE(map, from, size)
1194
e93cafe4
AG
1195#define INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, inval_adr, inval_len, usec, usec_max) \
1196 xip_wait_for_operation(map, chip, cmd_adr, usec_max)
1da177e4
LT
1197
1198#else
1199
1200#define xip_disable(map, chip, adr)
1201#define xip_enable(map, chip, adr)
1da177e4 1202#define XIP_INVAL_CACHED_RANGE(x...)
c172471b
NP
1203#define INVAL_CACHE_AND_WAIT inval_cache_and_wait_for_operation
1204
1205static int inval_cache_and_wait_for_operation(
1206 struct map_info *map, struct flchip *chip,
1207 unsigned long cmd_adr, unsigned long inval_adr, int inval_len,
e93cafe4 1208 unsigned int chip_op_time, unsigned int chip_op_time_max)
c172471b
NP
1209{
1210 struct cfi_private *cfi = map->fldrv_priv;
1211 map_word status, status_OK = CMD(0x80);
46a1652c 1212 int chip_state = chip->state;
998453fb 1213 unsigned int timeo, sleep_time, reset_timeo;
c172471b 1214
c4e77376 1215 mutex_unlock(&chip->mutex);
c172471b
NP
1216 if (inval_len)
1217 INVALIDATE_CACHED_RANGE(map, inval_adr, inval_len);
c4e77376 1218 mutex_lock(&chip->mutex);
c172471b 1219
e93cafe4 1220 timeo = chip_op_time_max;
46a1652c
AK
1221 if (!timeo)
1222 timeo = 500000;
998453fb 1223 reset_timeo = timeo;
46a1652c 1224 sleep_time = chip_op_time / 2;
c172471b 1225
c172471b 1226 for (;;) {
ecf3fde0
JT
1227 if (chip->state != chip_state) {
1228 /* Someone's suspended the operation: sleep */
1229 DECLARE_WAITQUEUE(wait, current);
1230 set_current_state(TASK_UNINTERRUPTIBLE);
1231 add_wait_queue(&chip->wq, &wait);
1232 mutex_unlock(&chip->mutex);
1233 schedule();
1234 remove_wait_queue(&chip->wq, &wait);
1235 mutex_lock(&chip->mutex);
1236 continue;
1237 }
1238
c172471b
NP
1239 status = map_read(map, cmd_adr);
1240 if (map_word_andequal(map, status, status_OK, status_OK))
1241 break;
1da177e4 1242
ecf3fde0 1243 if (chip->erase_suspended && chip_state == FL_ERASING) {
25985edc 1244 /* Erase suspend occurred while sleep: reset timeout */
ecf3fde0
JT
1245 timeo = reset_timeo;
1246 chip->erase_suspended = 0;
1247 }
1248 if (chip->write_suspended && chip_state == FL_WRITING) {
25985edc 1249 /* Write suspend occurred while sleep: reset timeout */
ecf3fde0
JT
1250 timeo = reset_timeo;
1251 chip->write_suspended = 0;
1252 }
46a1652c 1253 if (!timeo) {
c172471b
NP
1254 map_write(map, CMD(0x70), cmd_adr);
1255 chip->state = FL_STATUS;
1256 return -ETIME;
1257 }
1258
46a1652c 1259 /* OK Still waiting. Drop the lock, wait a while and retry. */
c4e77376 1260 mutex_unlock(&chip->mutex);
46a1652c
AK
1261 if (sleep_time >= 1000000/HZ) {
1262 /*
1263 * Half of the normal delay still remaining
1264 * can be performed with a sleeping delay instead
1265 * of busy waiting.
1266 */
1267 msleep(sleep_time/1000);
1268 timeo -= sleep_time;
1269 sleep_time = 1000000/HZ;
1270 } else {
1271 udelay(1);
1272 cond_resched();
1273 timeo--;
1274 }
c4e77376 1275 mutex_lock(&chip->mutex);
46a1652c 1276 }
c172471b
NP
1277
1278 /* Done and happy. */
1279 chip->state = FL_STATUS;
1280 return 0;
1281}
6da70124 1282
1da177e4
LT
1283#endif
1284
e93cafe4
AG
1285#define WAIT_TIMEOUT(map, chip, adr, udelay, udelay_max) \
1286 INVAL_CACHE_AND_WAIT(map, chip, adr, 0, 0, udelay, udelay_max);
c172471b
NP
1287
1288
1da177e4
LT
1289static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len)
1290{
1291 unsigned long cmd_addr;
1292 struct cfi_private *cfi = map->fldrv_priv;
1293 int ret = 0;
1294
1295 adr += chip->start;
1296
1f948b43
TG
1297 /* Ensure cmd read/writes are aligned. */
1298 cmd_addr = adr & ~(map_bankwidth(map)-1);
1da177e4 1299
c4e77376 1300 mutex_lock(&chip->mutex);
1da177e4
LT
1301
1302 ret = get_chip(map, chip, cmd_addr, FL_POINT);
1303
1304 if (!ret) {
1305 if (chip->state != FL_POINT && chip->state != FL_READY)
1306 map_write(map, CMD(0xff), cmd_addr);
1307
1308 chip->state = FL_POINT;
1309 chip->ref_point_counter++;
1310 }
c4e77376 1311 mutex_unlock(&chip->mutex);
1da177e4
LT
1312
1313 return ret;
1314}
1315
a98889f3
JH
1316static int cfi_intelext_point(struct mtd_info *mtd, loff_t from, size_t len,
1317 size_t *retlen, void **virt, resource_size_t *phys)
1da177e4
LT
1318{
1319 struct map_info *map = mtd->priv;
1320 struct cfi_private *cfi = map->fldrv_priv;
097f2576 1321 unsigned long ofs, last_end = 0;
1da177e4
LT
1322 int chipnum;
1323 int ret = 0;
1324
5def4898 1325 if (!map->virt)
1da177e4 1326 return -EINVAL;
1f948b43 1327
1da177e4
LT
1328 /* Now lock the chip(s) to POINT state */
1329
1330 /* ofs: offset within the first chip that the first read should start */
1331 chipnum = (from >> cfi->chipshift);
1332 ofs = from - (chipnum << cfi->chipshift);
1333
a98889f3 1334 *virt = map->virt + cfi->chips[chipnum].start + ofs;
a98889f3
JH
1335 if (phys)
1336 *phys = map->phys + cfi->chips[chipnum].start + ofs;
097f2576 1337
1da177e4
LT
1338 while (len) {
1339 unsigned long thislen;
1340
1341 if (chipnum >= cfi->numchips)
1342 break;
1343
097f2576
AL
1344 /* We cannot point across chips that are virtually disjoint */
1345 if (!last_end)
1346 last_end = cfi->chips[chipnum].start;
1347 else if (cfi->chips[chipnum].start != last_end)
1348 break;
1349
1da177e4
LT
1350 if ((len + ofs -1) >> cfi->chipshift)
1351 thislen = (1<<cfi->chipshift) - ofs;
1352 else
1353 thislen = len;
1354
1355 ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen);
1356 if (ret)
1357 break;
1358
1359 *retlen += thislen;
1360 len -= thislen;
1f948b43 1361
1da177e4 1362 ofs = 0;
097f2576 1363 last_end += 1 << cfi->chipshift;
1da177e4
LT
1364 chipnum++;
1365 }
1366 return 0;
1367}
1368
5e4e6e3f 1369static int cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1da177e4
LT
1370{
1371 struct map_info *map = mtd->priv;
1372 struct cfi_private *cfi = map->fldrv_priv;
1373 unsigned long ofs;
5e4e6e3f 1374 int chipnum, err = 0;
1da177e4
LT
1375
1376 /* Now unlock the chip(s) POINT state */
1377
1378 /* ofs: offset within the first chip that the first read should start */
1379 chipnum = (from >> cfi->chipshift);
1380 ofs = from - (chipnum << cfi->chipshift);
1381
5e4e6e3f 1382 while (len && !err) {
1da177e4
LT
1383 unsigned long thislen;
1384 struct flchip *chip;
1385
1386 chip = &cfi->chips[chipnum];
1387 if (chipnum >= cfi->numchips)
1388 break;
1389
1390 if ((len + ofs -1) >> cfi->chipshift)
1391 thislen = (1<<cfi->chipshift) - ofs;
1392 else
1393 thislen = len;
1394
c4e77376 1395 mutex_lock(&chip->mutex);
1da177e4
LT
1396 if (chip->state == FL_POINT) {
1397 chip->ref_point_counter--;
1398 if(chip->ref_point_counter == 0)
1399 chip->state = FL_READY;
5e4e6e3f
AB
1400 } else {
1401 printk(KERN_ERR "%s: Error: unpoint called on non pointed region\n", map->name);
1402 err = -EINVAL;
1403 }
1da177e4
LT
1404
1405 put_chip(map, chip, chip->start);
c4e77376 1406 mutex_unlock(&chip->mutex);
1da177e4
LT
1407
1408 len -= thislen;
1409 ofs = 0;
1410 chipnum++;
1411 }
5e4e6e3f
AB
1412
1413 return err;
1da177e4
LT
1414}
1415
1416static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1417{
1418 unsigned long cmd_addr;
1419 struct cfi_private *cfi = map->fldrv_priv;
1420 int ret;
1421
1422 adr += chip->start;
1423
1f948b43
TG
1424 /* Ensure cmd read/writes are aligned. */
1425 cmd_addr = adr & ~(map_bankwidth(map)-1);
1da177e4 1426
c4e77376 1427 mutex_lock(&chip->mutex);
1da177e4
LT
1428 ret = get_chip(map, chip, cmd_addr, FL_READY);
1429 if (ret) {
c4e77376 1430 mutex_unlock(&chip->mutex);
1da177e4
LT
1431 return ret;
1432 }
1433
1434 if (chip->state != FL_POINT && chip->state != FL_READY) {
1435 map_write(map, CMD(0xff), cmd_addr);
1436
1437 chip->state = FL_READY;
1438 }
1439
1440 map_copy_from(map, buf, adr, len);
1441
1442 put_chip(map, chip, cmd_addr);
1443
c4e77376 1444 mutex_unlock(&chip->mutex);
1da177e4
LT
1445 return 0;
1446}
1447
1448static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1449{
1450 struct map_info *map = mtd->priv;
1451 struct cfi_private *cfi = map->fldrv_priv;
1452 unsigned long ofs;
1453 int chipnum;
1454 int ret = 0;
1455
1456 /* ofs: offset within the first chip that the first read should start */
1457 chipnum = (from >> cfi->chipshift);
1458 ofs = from - (chipnum << cfi->chipshift);
1459
1da177e4
LT
1460 while (len) {
1461 unsigned long thislen;
1462
1463 if (chipnum >= cfi->numchips)
1464 break;
1465
1466 if ((len + ofs -1) >> cfi->chipshift)
1467 thislen = (1<<cfi->chipshift) - ofs;
1468 else
1469 thislen = len;
1470
1471 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1472 if (ret)
1473 break;
1474
1475 *retlen += thislen;
1476 len -= thislen;
1477 buf += thislen;
1f948b43 1478
1da177e4
LT
1479 ofs = 0;
1480 chipnum++;
1481 }
1482 return ret;
1483}
1484
1da177e4 1485static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
f77814dd 1486 unsigned long adr, map_word datum, int mode)
1da177e4
LT
1487{
1488 struct cfi_private *cfi = map->fldrv_priv;
c172471b
NP
1489 map_word status, write_cmd;
1490 int ret=0;
1da177e4
LT
1491
1492 adr += chip->start;
1493
f77814dd 1494 switch (mode) {
638d9838 1495 case FL_WRITING:
b5d194ce 1496 write_cmd = (cfi->cfiq->P_ID != P_ID_INTEL_PERFORMANCE) ? CMD(0x40) : CMD(0x41);
638d9838
NP
1497 break;
1498 case FL_OTP_WRITE:
1499 write_cmd = CMD(0xc0);
1500 break;
1501 default:
1502 return -EINVAL;
f77814dd 1503 }
1da177e4 1504
c4e77376 1505 mutex_lock(&chip->mutex);
f77814dd 1506 ret = get_chip(map, chip, adr, mode);
1da177e4 1507 if (ret) {
c4e77376 1508 mutex_unlock(&chip->mutex);
1da177e4
LT
1509 return ret;
1510 }
1511
1512 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1513 ENABLE_VPP(map);
1514 xip_disable(map, chip, adr);
f77814dd 1515 map_write(map, write_cmd, adr);
1da177e4 1516 map_write(map, datum, adr);
f77814dd 1517 chip->state = mode;
1da177e4 1518
c172471b
NP
1519 ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
1520 adr, map_bankwidth(map),
e93cafe4
AG
1521 chip->word_write_time,
1522 chip->word_write_time_max);
c172471b
NP
1523 if (ret) {
1524 xip_enable(map, chip, adr);
1525 printk(KERN_ERR "%s: word write error (status timeout)\n", map->name);
1526 goto out;
1da177e4 1527 }
1da177e4 1528
4843653c 1529 /* check for errors */
c172471b 1530 status = map_read(map, adr);
4843653c
NP
1531 if (map_word_bitsset(map, status, CMD(0x1a))) {
1532 unsigned long chipstatus = MERGESTATUS(status);
1533
1534 /* reset status */
1da177e4 1535 map_write(map, CMD(0x50), adr);
1da177e4 1536 map_write(map, CMD(0x70), adr);
4843653c
NP
1537 xip_enable(map, chip, adr);
1538
1539 if (chipstatus & 0x02) {
1540 ret = -EROFS;
1541 } else if (chipstatus & 0x08) {
1542 printk(KERN_ERR "%s: word write error (bad VPP)\n", map->name);
1543 ret = -EIO;
1544 } else {
1545 printk(KERN_ERR "%s: word write error (status 0x%lx)\n", map->name, chipstatus);
1546 ret = -EINVAL;
1547 }
1548
1549 goto out;
1da177e4
LT
1550 }
1551
1552 xip_enable(map, chip, adr);
85e5b2f2
PP
1553 out: DISABLE_VPP(map);
1554 put_chip(map, chip, adr);
c4e77376 1555 mutex_unlock(&chip->mutex);
1da177e4
LT
1556 return ret;
1557}
1558
1559
1560static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf)
1561{
1562 struct map_info *map = mtd->priv;
1563 struct cfi_private *cfi = map->fldrv_priv;
1564 int ret = 0;
1565 int chipnum;
1566 unsigned long ofs;
1567
1da177e4
LT
1568 chipnum = to >> cfi->chipshift;
1569 ofs = to - (chipnum << cfi->chipshift);
1570
1571 /* If it's not bus-aligned, do the first byte write */
1572 if (ofs & (map_bankwidth(map)-1)) {
1573 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1574 int gap = ofs - bus_ofs;
1575 int n;
1576 map_word datum;
1577
1578 n = min_t(int, len, map_bankwidth(map)-gap);
1579 datum = map_word_ff(map);
1580 datum = map_word_load_partial(map, datum, buf, gap, n);
1581
1582 ret = do_write_oneword(map, &cfi->chips[chipnum],
f77814dd 1583 bus_ofs, datum, FL_WRITING);
1f948b43 1584 if (ret)
1da177e4
LT
1585 return ret;
1586
1587 len -= n;
1588 ofs += n;
1589 buf += n;
1590 (*retlen) += n;
1591
1592 if (ofs >> cfi->chipshift) {
1f948b43 1593 chipnum ++;
1da177e4
LT
1594 ofs = 0;
1595 if (chipnum == cfi->numchips)
1596 return 0;
1597 }
1598 }
1f948b43 1599
1da177e4
LT
1600 while(len >= map_bankwidth(map)) {
1601 map_word datum = map_word_load(map, buf);
1602
1603 ret = do_write_oneword(map, &cfi->chips[chipnum],
f77814dd 1604 ofs, datum, FL_WRITING);
1da177e4
LT
1605 if (ret)
1606 return ret;
1607
1608 ofs += map_bankwidth(map);
1609 buf += map_bankwidth(map);
1610 (*retlen) += map_bankwidth(map);
1611 len -= map_bankwidth(map);
1612
1613 if (ofs >> cfi->chipshift) {
1f948b43 1614 chipnum ++;
1da177e4
LT
1615 ofs = 0;
1616 if (chipnum == cfi->numchips)
1617 return 0;
1618 }
1619 }
1620
1621 if (len & (map_bankwidth(map)-1)) {
1622 map_word datum;
1623
1624 datum = map_word_ff(map);
1625 datum = map_word_load_partial(map, datum, buf, 0, len);
1626
1627 ret = do_write_oneword(map, &cfi->chips[chipnum],
f77814dd 1628 ofs, datum, FL_WRITING);
1f948b43 1629 if (ret)
1da177e4 1630 return ret;
1f948b43 1631
1da177e4
LT
1632 (*retlen) += len;
1633 }
1634
1635 return 0;
1636}
1637
1638
1f948b43 1639static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
e102d54a
NP
1640 unsigned long adr, const struct kvec **pvec,
1641 unsigned long *pvec_seek, int len)
1da177e4
LT
1642{
1643 struct cfi_private *cfi = map->fldrv_priv;
c172471b
NP
1644 map_word status, write_cmd, datum;
1645 unsigned long cmd_adr;
1646 int ret, wbufsize, word_gap, words;
e102d54a
NP
1647 const struct kvec *vec;
1648 unsigned long vec_seek;
646fd127
MC
1649 unsigned long initial_adr;
1650 int initial_len = len;
1da177e4
LT
1651
1652 wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1653 adr += chip->start;
646fd127 1654 initial_adr = adr;
1da177e4 1655 cmd_adr = adr & ~(wbufsize-1);
638d9838 1656
1da177e4 1657 /* Let's determine this according to the interleave only once */
b5d194ce 1658 write_cmd = (cfi->cfiq->P_ID != P_ID_INTEL_PERFORMANCE) ? CMD(0xe8) : CMD(0xe9);
1da177e4 1659
c4e77376 1660 mutex_lock(&chip->mutex);
1da177e4
LT
1661 ret = get_chip(map, chip, cmd_adr, FL_WRITING);
1662 if (ret) {
c4e77376 1663 mutex_unlock(&chip->mutex);
1da177e4
LT
1664 return ret;
1665 }
1666
646fd127 1667 XIP_INVAL_CACHED_RANGE(map, initial_adr, initial_len);
1da177e4
LT
1668 ENABLE_VPP(map);
1669 xip_disable(map, chip, cmd_adr);
1670
151e7659 1671 /* §4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set
1f948b43 1672 [...], the device will not accept any more Write to Buffer commands".
1da177e4
LT
1673 So we must check here and reset those bits if they're set. Otherwise
1674 we're just pissing in the wind */
6e7a6809 1675 if (chip->state != FL_STATUS) {
1da177e4 1676 map_write(map, CMD(0x70), cmd_adr);
6e7a6809
NP
1677 chip->state = FL_STATUS;
1678 }
1da177e4
LT
1679 status = map_read(map, cmd_adr);
1680 if (map_word_bitsset(map, status, CMD(0x30))) {
1681 xip_enable(map, chip, cmd_adr);
1682 printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]);
1683 xip_disable(map, chip, cmd_adr);
1684 map_write(map, CMD(0x50), cmd_adr);
1685 map_write(map, CMD(0x70), cmd_adr);
1686 }
1687
1688 chip->state = FL_WRITING_TO_BUFFER;
c172471b 1689 map_write(map, write_cmd, cmd_adr);
e93cafe4 1690 ret = WAIT_TIMEOUT(map, chip, cmd_adr, 0, 0);
c172471b
NP
1691 if (ret) {
1692 /* Argh. Not ready for write to buffer */
1693 map_word Xstatus = map_read(map, cmd_adr);
1694 map_write(map, CMD(0x70), cmd_adr);
1695 chip->state = FL_STATUS;
1da177e4 1696 status = map_read(map, cmd_adr);
c172471b
NP
1697 map_write(map, CMD(0x50), cmd_adr);
1698 map_write(map, CMD(0x70), cmd_adr);
1699 xip_enable(map, chip, cmd_adr);
1700 printk(KERN_ERR "%s: Chip not ready for buffer write. Xstatus = %lx, status = %lx\n",
1701 map->name, Xstatus.x[0], status.x[0]);
1702 goto out;
1da177e4
LT
1703 }
1704
e102d54a
NP
1705 /* Figure out the number of words to write */
1706 word_gap = (-adr & (map_bankwidth(map)-1));
c8872b06 1707 words = DIV_ROUND_UP(len - word_gap, map_bankwidth(map));
e102d54a
NP
1708 if (!word_gap) {
1709 words--;
1710 } else {
1711 word_gap = map_bankwidth(map) - word_gap;
1712 adr -= word_gap;
1713 datum = map_word_ff(map);
1714 }
1715
1da177e4 1716 /* Write length of data to come */
e102d54a 1717 map_write(map, CMD(words), cmd_adr );
1da177e4
LT
1718
1719 /* Write data */
e102d54a
NP
1720 vec = *pvec;
1721 vec_seek = *pvec_seek;
1722 do {
1723 int n = map_bankwidth(map) - word_gap;
1724 if (n > vec->iov_len - vec_seek)
1725 n = vec->iov_len - vec_seek;
1726 if (n > len)
1727 n = len;
1da177e4 1728
e102d54a
NP
1729 if (!word_gap && len < map_bankwidth(map))
1730 datum = map_word_ff(map);
1da177e4 1731
e102d54a 1732 datum = map_word_load_partial(map, datum,
1f948b43 1733 vec->iov_base + vec_seek,
e102d54a 1734 word_gap, n);
1da177e4 1735
e102d54a
NP
1736 len -= n;
1737 word_gap += n;
1738 if (!len || word_gap == map_bankwidth(map)) {
1739 map_write(map, datum, adr);
1740 adr += map_bankwidth(map);
1741 word_gap = 0;
1742 }
1da177e4 1743
e102d54a
NP
1744 vec_seek += n;
1745 if (vec_seek == vec->iov_len) {
1746 vec++;
1747 vec_seek = 0;
1748 }
1749 } while (len);
1750 *pvec = vec;
1751 *pvec_seek = vec_seek;
1da177e4
LT
1752
1753 /* GO GO GO */
1754 map_write(map, CMD(0xd0), cmd_adr);
1755 chip->state = FL_WRITING;
1756
c172471b 1757 ret = INVAL_CACHE_AND_WAIT(map, chip, cmd_adr,
646fd127 1758 initial_adr, initial_len,
e93cafe4
AG
1759 chip->buffer_write_time,
1760 chip->buffer_write_time_max);
c172471b
NP
1761 if (ret) {
1762 map_write(map, CMD(0x70), cmd_adr);
1763 chip->state = FL_STATUS;
1764 xip_enable(map, chip, cmd_adr);
1765 printk(KERN_ERR "%s: buffer write error (status timeout)\n", map->name);
1766 goto out;
1da177e4 1767 }
1da177e4 1768
4843653c 1769 /* check for errors */
c172471b 1770 status = map_read(map, cmd_adr);
4843653c
NP
1771 if (map_word_bitsset(map, status, CMD(0x1a))) {
1772 unsigned long chipstatus = MERGESTATUS(status);
1773
1774 /* reset status */
1da177e4 1775 map_write(map, CMD(0x50), cmd_adr);
4843653c
NP
1776 map_write(map, CMD(0x70), cmd_adr);
1777 xip_enable(map, chip, cmd_adr);
1778
1779 if (chipstatus & 0x02) {
1780 ret = -EROFS;
1781 } else if (chipstatus & 0x08) {
1782 printk(KERN_ERR "%s: buffer write error (bad VPP)\n", map->name);
1783 ret = -EIO;
1784 } else {
1785 printk(KERN_ERR "%s: buffer write error (status 0x%lx)\n", map->name, chipstatus);
1786 ret = -EINVAL;
1787 }
1788
1789 goto out;
1da177e4
LT
1790 }
1791
1792 xip_enable(map, chip, cmd_adr);
85e5b2f2
PP
1793 out: DISABLE_VPP(map);
1794 put_chip(map, chip, cmd_adr);
c4e77376 1795 mutex_unlock(&chip->mutex);
1da177e4
LT
1796 return ret;
1797}
1798
e102d54a
NP
1799static int cfi_intelext_writev (struct mtd_info *mtd, const struct kvec *vecs,
1800 unsigned long count, loff_t to, size_t *retlen)
1da177e4
LT
1801{
1802 struct map_info *map = mtd->priv;
1803 struct cfi_private *cfi = map->fldrv_priv;
1804 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1805 int ret = 0;
1806 int chipnum;
e102d54a
NP
1807 unsigned long ofs, vec_seek, i;
1808 size_t len = 0;
1809
1810 for (i = 0; i < count; i++)
1811 len += vecs[i].iov_len;
1da177e4 1812
1da177e4
LT
1813 if (!len)
1814 return 0;
1815
1816 chipnum = to >> cfi->chipshift;
e102d54a
NP
1817 ofs = to - (chipnum << cfi->chipshift);
1818 vec_seek = 0;
1da177e4 1819
e102d54a 1820 do {
1da177e4
LT
1821 /* We must not cross write block boundaries */
1822 int size = wbufsize - (ofs & (wbufsize-1));
1823
1824 if (size > len)
1825 size = len;
1f948b43 1826 ret = do_write_buffer(map, &cfi->chips[chipnum],
e102d54a 1827 ofs, &vecs, &vec_seek, size);
1da177e4
LT
1828 if (ret)
1829 return ret;
1830
1831 ofs += size;
1da177e4
LT
1832 (*retlen) += size;
1833 len -= size;
1834
1835 if (ofs >> cfi->chipshift) {
1f948b43 1836 chipnum ++;
1da177e4
LT
1837 ofs = 0;
1838 if (chipnum == cfi->numchips)
1839 return 0;
1840 }
df54b52c
JB
1841
1842 /* Be nice and reschedule with the chip in a usable state for other
1843 processes. */
1844 cond_resched();
1845
e102d54a
NP
1846 } while (len);
1847
1da177e4
LT
1848 return 0;
1849}
1850
e102d54a
NP
1851static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to,
1852 size_t len, size_t *retlen, const u_char *buf)
1853{
1854 struct kvec vec;
1855
1856 vec.iov_base = (void *) buf;
1857 vec.iov_len = len;
1858
1859 return cfi_intelext_writev(mtd, &vec, 1, to, retlen);
1860}
1861
1da177e4
LT
1862static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
1863 unsigned long adr, int len, void *thunk)
1864{
1865 struct cfi_private *cfi = map->fldrv_priv;
c172471b 1866 map_word status;
1da177e4 1867 int retries = 3;
c172471b 1868 int ret;
1da177e4
LT
1869
1870 adr += chip->start;
1871
1da177e4 1872 retry:
c4e77376 1873 mutex_lock(&chip->mutex);
1da177e4
LT
1874 ret = get_chip(map, chip, adr, FL_ERASING);
1875 if (ret) {
c4e77376 1876 mutex_unlock(&chip->mutex);
1da177e4
LT
1877 return ret;
1878 }
1879
1880 XIP_INVAL_CACHED_RANGE(map, adr, len);
1881 ENABLE_VPP(map);
1882 xip_disable(map, chip, adr);
1883
1884 /* Clear the status register first */
1885 map_write(map, CMD(0x50), adr);
1886
1887 /* Now erase */
1888 map_write(map, CMD(0x20), adr);
1889 map_write(map, CMD(0xD0), adr);
1890 chip->state = FL_ERASING;
1891 chip->erase_suspended = 0;
1892
c172471b
NP
1893 ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
1894 adr, len,
e93cafe4
AG
1895 chip->erase_time,
1896 chip->erase_time_max);
c172471b
NP
1897 if (ret) {
1898 map_write(map, CMD(0x70), adr);
1899 chip->state = FL_STATUS;
1900 xip_enable(map, chip, adr);
1901 printk(KERN_ERR "%s: block erase error: (status timeout)\n", map->name);
1902 goto out;
1da177e4
LT
1903 }
1904
1905 /* We've broken this before. It doesn't hurt to be safe */
1906 map_write(map, CMD(0x70), adr);
1907 chip->state = FL_STATUS;
1908 status = map_read(map, adr);
1909
4843653c 1910 /* check for errors */
1da177e4 1911 if (map_word_bitsset(map, status, CMD(0x3a))) {
4843653c 1912 unsigned long chipstatus = MERGESTATUS(status);
1da177e4
LT
1913
1914 /* Reset the error bits */
1915 map_write(map, CMD(0x50), adr);
1916 map_write(map, CMD(0x70), adr);
1917 xip_enable(map, chip, adr);
1918
1da177e4 1919 if ((chipstatus & 0x30) == 0x30) {
4843653c
NP
1920 printk(KERN_ERR "%s: block erase error: (bad command sequence, status 0x%lx)\n", map->name, chipstatus);
1921 ret = -EINVAL;
1da177e4
LT
1922 } else if (chipstatus & 0x02) {
1923 /* Protection bit set */
1924 ret = -EROFS;
1925 } else if (chipstatus & 0x8) {
1926 /* Voltage */
4843653c 1927 printk(KERN_ERR "%s: block erase error: (bad VPP)\n", map->name);
1da177e4 1928 ret = -EIO;
4843653c
NP
1929 } else if (chipstatus & 0x20 && retries--) {
1930 printk(KERN_DEBUG "block erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr, chipstatus);
85e5b2f2 1931 DISABLE_VPP(map);
4843653c 1932 put_chip(map, chip, adr);
c4e77376 1933 mutex_unlock(&chip->mutex);
4843653c
NP
1934 goto retry;
1935 } else {
1936 printk(KERN_ERR "%s: block erase failed at 0x%08lx (status 0x%lx)\n", map->name, adr, chipstatus);
1da177e4
LT
1937 ret = -EIO;
1938 }
4843653c
NP
1939
1940 goto out;
1da177e4
LT
1941 }
1942
4843653c 1943 xip_enable(map, chip, adr);
85e5b2f2
PP
1944 out: DISABLE_VPP(map);
1945 put_chip(map, chip, adr);
c4e77376 1946 mutex_unlock(&chip->mutex);
1da177e4
LT
1947 return ret;
1948}
1949
029a9eb1 1950static int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1da177e4
LT
1951{
1952 unsigned long ofs, len;
1953 int ret;
1954
1955 ofs = instr->addr;
1956 len = instr->len;
1957
1958 ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1959 if (ret)
1960 return ret;
1961
1962 instr->state = MTD_ERASE_DONE;
1963 mtd_erase_callback(instr);
1f948b43 1964
1da177e4
LT
1965 return 0;
1966}
1967
1968static void cfi_intelext_sync (struct mtd_info *mtd)
1969{
1970 struct map_info *map = mtd->priv;
1971 struct cfi_private *cfi = map->fldrv_priv;
1972 int i;
1973 struct flchip *chip;
1974 int ret = 0;
1975
1976 for (i=0; !ret && i<cfi->numchips; i++) {
1977 chip = &cfi->chips[i];
1978
c4e77376 1979 mutex_lock(&chip->mutex);
1da177e4
LT
1980 ret = get_chip(map, chip, chip->start, FL_SYNCING);
1981
1982 if (!ret) {
1983 chip->oldstate = chip->state;
1984 chip->state = FL_SYNCING;
1f948b43 1985 /* No need to wake_up() on this state change -
1da177e4
LT
1986 * as the whole point is that nobody can do anything
1987 * with the chip now anyway.
1988 */
1989 }
c4e77376 1990 mutex_unlock(&chip->mutex);
1da177e4
LT
1991 }
1992
1993 /* Unlock the chips again */
1994
1995 for (i--; i >=0; i--) {
1996 chip = &cfi->chips[i];
1997
c4e77376 1998 mutex_lock(&chip->mutex);
1f948b43 1999
1da177e4
LT
2000 if (chip->state == FL_SYNCING) {
2001 chip->state = chip->oldstate;
09c79335 2002 chip->oldstate = FL_READY;
1da177e4
LT
2003 wake_up(&chip->wq);
2004 }
c4e77376 2005 mutex_unlock(&chip->mutex);
1da177e4
LT
2006 }
2007}
2008
0ecbc81a 2009static int __xipram do_getlockstatus_oneblock(struct map_info *map,
1da177e4
LT
2010 struct flchip *chip,
2011 unsigned long adr,
2012 int len, void *thunk)
2013{
2014 struct cfi_private *cfi = map->fldrv_priv;
2015 int status, ofs_factor = cfi->interleave * cfi->device_type;
2016
c25bb1f5 2017 adr += chip->start;
1da177e4 2018 xip_disable(map, chip, adr+(2*ofs_factor));
c25bb1f5 2019 map_write(map, CMD(0x90), adr+(2*ofs_factor));
1da177e4
LT
2020 chip->state = FL_JEDEC_QUERY;
2021 status = cfi_read_query(map, adr+(2*ofs_factor));
2022 xip_enable(map, chip, 0);
0ecbc81a
RG
2023 return status;
2024}
2025
2026#ifdef DEBUG_LOCK_BITS
2027static int __xipram do_printlockstatus_oneblock(struct map_info *map,
2028 struct flchip *chip,
2029 unsigned long adr,
2030 int len, void *thunk)
2031{
1da177e4 2032 printk(KERN_DEBUG "block status register for 0x%08lx is %x\n",
0ecbc81a 2033 adr, do_getlockstatus_oneblock(map, chip, adr, len, thunk));
1da177e4
LT
2034 return 0;
2035}
2036#endif
2037
2038#define DO_XXLOCK_ONEBLOCK_LOCK ((void *) 1)
2039#define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *) 2)
2040
2041static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip,
2042 unsigned long adr, int len, void *thunk)
2043{
2044 struct cfi_private *cfi = map->fldrv_priv;
9a6e73ec 2045 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
7be1f6b9 2046 int mdelay;
1da177e4
LT
2047 int ret;
2048
2049 adr += chip->start;
2050
c4e77376 2051 mutex_lock(&chip->mutex);
1da177e4
LT
2052 ret = get_chip(map, chip, adr, FL_LOCKING);
2053 if (ret) {
c4e77376 2054 mutex_unlock(&chip->mutex);
1da177e4
LT
2055 return ret;
2056 }
2057
2058 ENABLE_VPP(map);
2059 xip_disable(map, chip, adr);
1f948b43 2060
1da177e4
LT
2061 map_write(map, CMD(0x60), adr);
2062 if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2063 map_write(map, CMD(0x01), adr);
2064 chip->state = FL_LOCKING;
2065 } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2066 map_write(map, CMD(0xD0), adr);
2067 chip->state = FL_UNLOCKING;
2068 } else
2069 BUG();
2070
9a6e73ec
TP
2071 /*
2072 * If Instant Individual Block Locking supported then no need
2073 * to delay.
2074 */
7be1f6b9
SR
2075 /*
2076 * Unlocking may take up to 1.4 seconds on some Intel flashes. So
2077 * lets use a max of 1.5 seconds (1500ms) as timeout.
2078 *
2079 * See "Clear Block Lock-Bits Time" on page 40 in
2080 * "3 Volt Intel StrataFlash Memory" 28F128J3,28F640J3,28F320J3 manual
2081 * from February 2003
2082 */
2083 mdelay = (!extp || !(extp->FeatureSupport & (1 << 5))) ? 1500 : 0;
9a6e73ec 2084
7be1f6b9 2085 ret = WAIT_TIMEOUT(map, chip, adr, mdelay, mdelay * 1000);
c172471b
NP
2086 if (ret) {
2087 map_write(map, CMD(0x70), adr);
2088 chip->state = FL_STATUS;
2089 xip_enable(map, chip, adr);
2090 printk(KERN_ERR "%s: block unlock error: (status timeout)\n", map->name);
2091 goto out;
1da177e4 2092 }
1f948b43 2093
1da177e4 2094 xip_enable(map, chip, adr);
85e5b2f2
PP
2095 out: DISABLE_VPP(map);
2096 put_chip(map, chip, adr);
c4e77376 2097 mutex_unlock(&chip->mutex);
c172471b 2098 return ret;
1da177e4
LT
2099}
2100
69423d99 2101static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1da177e4
LT
2102{
2103 int ret;
2104
2105#ifdef DEBUG_LOCK_BITS
2106 printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
cb53b3b9 2107 __func__, ofs, len);
1da177e4 2108 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
1da1caf8 2109 ofs, len, NULL);
1da177e4
LT
2110#endif
2111
1f948b43 2112 ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
1da177e4 2113 ofs, len, DO_XXLOCK_ONEBLOCK_LOCK);
1f948b43 2114
1da177e4
LT
2115#ifdef DEBUG_LOCK_BITS
2116 printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
cb53b3b9 2117 __func__, ret);
1da177e4 2118 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
1da1caf8 2119 ofs, len, NULL);
1da177e4
LT
2120#endif
2121
2122 return ret;
2123}
2124
69423d99 2125static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1da177e4
LT
2126{
2127 int ret;
2128
2129#ifdef DEBUG_LOCK_BITS
2130 printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
cb53b3b9 2131 __func__, ofs, len);
1da177e4 2132 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
1da1caf8 2133 ofs, len, NULL);
1da177e4
LT
2134#endif
2135
2136 ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
2137 ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK);
1f948b43 2138
1da177e4
LT
2139#ifdef DEBUG_LOCK_BITS
2140 printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
cb53b3b9 2141 __func__, ret);
1f948b43 2142 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
1da1caf8 2143 ofs, len, NULL);
1da177e4 2144#endif
1f948b43 2145
1da177e4
LT
2146 return ret;
2147}
2148
9938424f
RC
2149static int cfi_intelext_is_locked(struct mtd_info *mtd, loff_t ofs,
2150 uint64_t len)
2151{
2152 return cfi_varsize_frob(mtd, do_getlockstatus_oneblock,
2153 ofs, len, NULL) ? 1 : 0;
2154}
2155
f77814dd
NP
2156#ifdef CONFIG_MTD_OTP
2157
1f948b43 2158typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
f77814dd
NP
2159 u_long data_offset, u_char *buf, u_int size,
2160 u_long prot_offset, u_int groupno, u_int groupsize);
2161
2162static int __xipram
2163do_otp_read(struct map_info *map, struct flchip *chip, u_long offset,
2164 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2165{
2166 struct cfi_private *cfi = map->fldrv_priv;
2167 int ret;
2168
c4e77376 2169 mutex_lock(&chip->mutex);
f77814dd
NP
2170 ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY);
2171 if (ret) {
c4e77376 2172 mutex_unlock(&chip->mutex);
f77814dd
NP
2173 return ret;
2174 }
2175
2176 /* let's ensure we're not reading back cached data from array mode */
6da70124 2177 INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
f77814dd
NP
2178
2179 xip_disable(map, chip, chip->start);
2180 if (chip->state != FL_JEDEC_QUERY) {
2181 map_write(map, CMD(0x90), chip->start);
2182 chip->state = FL_JEDEC_QUERY;
2183 }
2184 map_copy_from(map, buf, chip->start + offset, size);
2185 xip_enable(map, chip, chip->start);
2186
2187 /* then ensure we don't keep OTP data in the cache */
6da70124 2188 INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
f77814dd
NP
2189
2190 put_chip(map, chip, chip->start);
c4e77376 2191 mutex_unlock(&chip->mutex);
f77814dd
NP
2192 return 0;
2193}
2194
2195static int
2196do_otp_write(struct map_info *map, struct flchip *chip, u_long offset,
2197 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2198{
2199 int ret;
2200
2201 while (size) {
2202 unsigned long bus_ofs = offset & ~(map_bankwidth(map)-1);
2203 int gap = offset - bus_ofs;
2204 int n = min_t(int, size, map_bankwidth(map)-gap);
2205 map_word datum = map_word_ff(map);
2206
2207 datum = map_word_load_partial(map, datum, buf, gap, n);
2208 ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
1f948b43 2209 if (ret)
f77814dd
NP
2210 return ret;
2211
2212 offset += n;
2213 buf += n;
2214 size -= n;
2215 }
2216
2217 return 0;
2218}
2219
2220static int
2221do_otp_lock(struct map_info *map, struct flchip *chip, u_long offset,
2222 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2223{
2224 struct cfi_private *cfi = map->fldrv_priv;
2225 map_word datum;
2226
2227 /* make sure area matches group boundaries */
332d71f7 2228 if (size != grpsz)
f77814dd
NP
2229 return -EXDEV;
2230
2231 datum = map_word_ff(map);
2232 datum = map_word_clr(map, datum, CMD(1 << grpno));
2233 return do_write_oneword(map, chip, prot, datum, FL_OTP_WRITE);
2234}
2235
2236static int cfi_intelext_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
2237 size_t *retlen, u_char *buf,
2238 otp_op_t action, int user_regs)
2239{
2240 struct map_info *map = mtd->priv;
2241 struct cfi_private *cfi = map->fldrv_priv;
2242 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2243 struct flchip *chip;
2244 struct cfi_intelext_otpinfo *otp;
2245 u_long devsize, reg_prot_offset, data_offset;
2246 u_int chip_num, chip_step, field, reg_fact_size, reg_user_size;
2247 u_int groups, groupno, groupsize, reg_fact_groups, reg_user_groups;
2248 int ret;
2249
2250 *retlen = 0;
2251
2252 /* Check that we actually have some OTP registers */
2253 if (!extp || !(extp->FeatureSupport & 64) || !extp->NumProtectionFields)
2254 return -ENODATA;
2255
2256 /* we need real chips here not virtual ones */
2257 devsize = (1 << cfi->cfiq->DevSize) * cfi->interleave;
2258 chip_step = devsize >> cfi->chipshift;
dce2b4da
NP
2259 chip_num = 0;
2260
2261 /* Some chips have OTP located in the _top_ partition only.
2262 For example: Intel 28F256L18T (T means top-parameter device) */
b2ef1a2b 2263 if (cfi->mfr == CFI_MFR_INTEL) {
dce2b4da
NP
2264 switch (cfi->id) {
2265 case 0x880b:
2266 case 0x880c:
2267 case 0x880d:
2268 chip_num = chip_step - 1;
2269 }
2270 }
f77814dd 2271
dce2b4da 2272 for ( ; chip_num < cfi->numchips; chip_num += chip_step) {
f77814dd
NP
2273 chip = &cfi->chips[chip_num];
2274 otp = (struct cfi_intelext_otpinfo *)&extp->extra[0];
2275
2276 /* first OTP region */
2277 field = 0;
2278 reg_prot_offset = extp->ProtRegAddr;
2279 reg_fact_groups = 1;
2280 reg_fact_size = 1 << extp->FactProtRegSize;
2281 reg_user_groups = 1;
2282 reg_user_size = 1 << extp->UserProtRegSize;
2283
2284 while (len > 0) {
2285 /* flash geometry fixup */
2286 data_offset = reg_prot_offset + 1;
2287 data_offset *= cfi->interleave * cfi->device_type;
2288 reg_prot_offset *= cfi->interleave * cfi->device_type;
2289 reg_fact_size *= cfi->interleave;
2290 reg_user_size *= cfi->interleave;
2291
2292 if (user_regs) {
2293 groups = reg_user_groups;
2294 groupsize = reg_user_size;
2295 /* skip over factory reg area */
2296 groupno = reg_fact_groups;
2297 data_offset += reg_fact_groups * reg_fact_size;
2298 } else {
2299 groups = reg_fact_groups;
2300 groupsize = reg_fact_size;
2301 groupno = 0;
2302 }
2303
332d71f7 2304 while (len > 0 && groups > 0) {
f77814dd
NP
2305 if (!action) {
2306 /*
2307 * Special case: if action is NULL
2308 * we fill buf with otp_info records.
2309 */
2310 struct otp_info *otpinfo;
2311 map_word lockword;
2312 len -= sizeof(struct otp_info);
2313 if (len <= 0)
2314 return -ENOSPC;
2315 ret = do_otp_read(map, chip,
2316 reg_prot_offset,
2317 (u_char *)&lockword,
2318 map_bankwidth(map),
2319 0, 0, 0);
2320 if (ret)
2321 return ret;
2322 otpinfo = (struct otp_info *)buf;
2323 otpinfo->start = from;
2324 otpinfo->length = groupsize;
2325 otpinfo->locked =
2326 !map_word_bitsset(map, lockword,
2327 CMD(1 << groupno));
2328 from += groupsize;
2329 buf += sizeof(*otpinfo);
2330 *retlen += sizeof(*otpinfo);
2331 } else if (from >= groupsize) {
2332 from -= groupsize;
332d71f7 2333 data_offset += groupsize;
f77814dd
NP
2334 } else {
2335 int size = groupsize;
2336 data_offset += from;
2337 size -= from;
2338 from = 0;
2339 if (size > len)
2340 size = len;
2341 ret = action(map, chip, data_offset,
2342 buf, size, reg_prot_offset,
2343 groupno, groupsize);
2344 if (ret < 0)
2345 return ret;
2346 buf += size;
2347 len -= size;
2348 *retlen += size;
332d71f7 2349 data_offset += size;
f77814dd
NP
2350 }
2351 groupno++;
2352 groups--;
2353 }
2354
2355 /* next OTP region */
2356 if (++field == extp->NumProtectionFields)
2357 break;
2358 reg_prot_offset = otp->ProtRegAddr;
2359 reg_fact_groups = otp->FactGroups;
2360 reg_fact_size = 1 << otp->FactProtRegSize;
2361 reg_user_groups = otp->UserGroups;
2362 reg_user_size = 1 << otp->UserProtRegSize;
2363 otp++;
2364 }
2365 }
2366
2367 return 0;
2368}
2369
2370static int cfi_intelext_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
2371 size_t len, size_t *retlen,
2372 u_char *buf)
2373{
2374 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2375 buf, do_otp_read, 0);
2376}
2377
2378static int cfi_intelext_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
2379 size_t len, size_t *retlen,
2380 u_char *buf)
2381{
2382 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2383 buf, do_otp_read, 1);
2384}
2385
2386static int cfi_intelext_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
2387 size_t len, size_t *retlen,
2388 u_char *buf)
2389{
2390 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2391 buf, do_otp_write, 1);
2392}
2393
2394static int cfi_intelext_lock_user_prot_reg(struct mtd_info *mtd,
2395 loff_t from, size_t len)
2396{
2397 size_t retlen;
2398 return cfi_intelext_otp_walk(mtd, from, len, &retlen,
2399 NULL, do_otp_lock, 1);
2400}
2401
1f948b43 2402static int cfi_intelext_get_fact_prot_info(struct mtd_info *mtd,
f77814dd
NP
2403 struct otp_info *buf, size_t len)
2404{
2405 size_t retlen;
2406 int ret;
2407
2408 ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 0);
2409 return ret ? : retlen;
2410}
2411
2412static int cfi_intelext_get_user_prot_info(struct mtd_info *mtd,
2413 struct otp_info *buf, size_t len)
2414{
2415 size_t retlen;
2416 int ret;
2417
2418 ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 1);
2419 return ret ? : retlen;
2420}
2421
2422#endif
2423
0ecbc81a
RG
2424static void cfi_intelext_save_locks(struct mtd_info *mtd)
2425{
2426 struct mtd_erase_region_info *region;
2427 int block, status, i;
2428 unsigned long adr;
2429 size_t len;
2430
2431 for (i = 0; i < mtd->numeraseregions; i++) {
2432 region = &mtd->eraseregions[i];
2433 if (!region->lockmap)
2434 continue;
2435
2436 for (block = 0; block < region->numblocks; block++){
2437 len = region->erasesize;
2438 adr = region->offset + block * len;
2439
2440 status = cfi_varsize_frob(mtd,
029a9eb1 2441 do_getlockstatus_oneblock, adr, len, NULL);
0ecbc81a
RG
2442 if (status)
2443 set_bit(block, region->lockmap);
2444 else
2445 clear_bit(block, region->lockmap);
2446 }
2447 }
2448}
2449
1da177e4
LT
2450static int cfi_intelext_suspend(struct mtd_info *mtd)
2451{
2452 struct map_info *map = mtd->priv;
2453 struct cfi_private *cfi = map->fldrv_priv;
0ecbc81a 2454 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
1da177e4
LT
2455 int i;
2456 struct flchip *chip;
2457 int ret = 0;
2458
e619a75f 2459 if ((mtd->flags & MTD_POWERUP_LOCK)
0ecbc81a
RG
2460 && extp && (extp->FeatureSupport & (1 << 5)))
2461 cfi_intelext_save_locks(mtd);
2462
1da177e4
LT
2463 for (i=0; !ret && i<cfi->numchips; i++) {
2464 chip = &cfi->chips[i];
2465
c4e77376 2466 mutex_lock(&chip->mutex);
1da177e4
LT
2467
2468 switch (chip->state) {
2469 case FL_READY:
2470 case FL_STATUS:
2471 case FL_CFI_QUERY:
2472 case FL_JEDEC_QUERY:
2473 if (chip->oldstate == FL_READY) {
a86aaa6d
DA
2474 /* place the chip in a known state before suspend */
2475 map_write(map, CMD(0xFF), cfi->chips[i].start);
1da177e4
LT
2476 chip->oldstate = chip->state;
2477 chip->state = FL_PM_SUSPENDED;
1f948b43 2478 /* No need to wake_up() on this state change -
1da177e4
LT
2479 * as the whole point is that nobody can do anything
2480 * with the chip now anyway.
2481 */
2482 } else {
2483 /* There seems to be an operation pending. We must wait for it. */
2484 printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate);
2485 ret = -EAGAIN;
2486 }
2487 break;
2488 default:
2489 /* Should we actually wait? Once upon a time these routines weren't
2490 allowed to. Or should we return -EAGAIN, because the upper layers
2491 ought to have already shut down anything which was using the device
2492 anyway? The latter for now. */
342d3a93 2493 printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->state);
1da177e4
LT
2494 ret = -EAGAIN;
2495 case FL_PM_SUSPENDED:
2496 break;
2497 }
c4e77376 2498 mutex_unlock(&chip->mutex);
1da177e4
LT
2499 }
2500
2501 /* Unlock the chips again */
2502
2503 if (ret) {
2504 for (i--; i >=0; i--) {
2505 chip = &cfi->chips[i];
1f948b43 2506
c4e77376 2507 mutex_lock(&chip->mutex);
1f948b43 2508
1da177e4
LT
2509 if (chip->state == FL_PM_SUSPENDED) {
2510 /* No need to force it into a known state here,
2511 because we're returning failure, and it didn't
2512 get power cycled */
2513 chip->state = chip->oldstate;
2514 chip->oldstate = FL_READY;
2515 wake_up(&chip->wq);
2516 }
c4e77376 2517 mutex_unlock(&chip->mutex);
1da177e4 2518 }
1f948b43
TG
2519 }
2520
1da177e4
LT
2521 return ret;
2522}
2523
0ecbc81a
RG
2524static void cfi_intelext_restore_locks(struct mtd_info *mtd)
2525{
2526 struct mtd_erase_region_info *region;
2527 int block, i;
2528 unsigned long adr;
2529 size_t len;
2530
2531 for (i = 0; i < mtd->numeraseregions; i++) {
2532 region = &mtd->eraseregions[i];
2533 if (!region->lockmap)
2534 continue;
2535
c527b414 2536 for_each_clear_bit(block, region->lockmap, region->numblocks) {
0ecbc81a
RG
2537 len = region->erasesize;
2538 adr = region->offset + block * len;
c527b414 2539 cfi_intelext_unlock(mtd, adr, len);
0ecbc81a
RG
2540 }
2541 }
2542}
2543
1da177e4
LT
2544static void cfi_intelext_resume(struct mtd_info *mtd)
2545{
2546 struct map_info *map = mtd->priv;
2547 struct cfi_private *cfi = map->fldrv_priv;
0ecbc81a 2548 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
1da177e4
LT
2549 int i;
2550 struct flchip *chip;
2551
2552 for (i=0; i<cfi->numchips; i++) {
1f948b43 2553
1da177e4
LT
2554 chip = &cfi->chips[i];
2555
c4e77376 2556 mutex_lock(&chip->mutex);
1f948b43 2557
1da177e4
LT
2558 /* Go to known state. Chip may have been power cycled */
2559 if (chip->state == FL_PM_SUSPENDED) {
2560 map_write(map, CMD(0xFF), cfi->chips[i].start);
2561 chip->oldstate = chip->state = FL_READY;
2562 wake_up(&chip->wq);
2563 }
2564
c4e77376 2565 mutex_unlock(&chip->mutex);
1da177e4 2566 }
0ecbc81a 2567
e619a75f 2568 if ((mtd->flags & MTD_POWERUP_LOCK)
0ecbc81a
RG
2569 && extp && (extp->FeatureSupport & (1 << 5)))
2570 cfi_intelext_restore_locks(mtd);
1da177e4
LT
2571}
2572
963a6fb0
NP
2573static int cfi_intelext_reset(struct mtd_info *mtd)
2574{
2575 struct map_info *map = mtd->priv;
2576 struct cfi_private *cfi = map->fldrv_priv;
2577 int i, ret;
2578
2579 for (i=0; i < cfi->numchips; i++) {
2580 struct flchip *chip = &cfi->chips[i];
2581
2582 /* force the completion of any ongoing operation
1f948b43 2583 and switch to array mode so any bootloader in
963a6fb0 2584 flash is accessible for soft reboot. */
c4e77376 2585 mutex_lock(&chip->mutex);
c4a9f88d 2586 ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
963a6fb0
NP
2587 if (!ret) {
2588 map_write(map, CMD(0xff), chip->start);
c4a9f88d 2589 chip->state = FL_SHUTDOWN;
c9f7ec30 2590 put_chip(map, chip, chip->start);
963a6fb0 2591 }
c4e77376 2592 mutex_unlock(&chip->mutex);
963a6fb0
NP
2593 }
2594
2595 return 0;
2596}
2597
2598static int cfi_intelext_reboot(struct notifier_block *nb, unsigned long val,
2599 void *v)
2600{
2601 struct mtd_info *mtd;
2602
2603 mtd = container_of(nb, struct mtd_info, reboot_notifier);
2604 cfi_intelext_reset(mtd);
2605 return NOTIFY_DONE;
2606}
2607
1da177e4
LT
2608static void cfi_intelext_destroy(struct mtd_info *mtd)
2609{
2610 struct map_info *map = mtd->priv;
2611 struct cfi_private *cfi = map->fldrv_priv;
0ecbc81a
RG
2612 struct mtd_erase_region_info *region;
2613 int i;
963a6fb0
NP
2614 cfi_intelext_reset(mtd);
2615 unregister_reboot_notifier(&mtd->reboot_notifier);
1da177e4
LT
2616 kfree(cfi->cmdset_priv);
2617 kfree(cfi->cfiq);
2618 kfree(cfi->chips[0].priv);
2619 kfree(cfi);
0ecbc81a
RG
2620 for (i = 0; i < mtd->numeraseregions; i++) {
2621 region = &mtd->eraseregions[i];
2622 if (region->lockmap)
2623 kfree(region->lockmap);
2624 }
1da177e4
LT
2625 kfree(mtd->eraseregions);
2626}
2627
1da177e4
LT
2628MODULE_LICENSE("GPL");
2629MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
2630MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips");
a15bdeef
DW
2631MODULE_ALIAS("cfi_cmdset_0003");
2632MODULE_ALIAS("cfi_cmdset_0200");
This page took 0.92754 seconds and 5 git commands to generate.