Merge branch 'fixefi' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6
[deliverable/linux.git] / drivers / mtd / chips / cfi_cmdset_0002.c
CommitLineData
1da177e4
LT
1/*
2 * Common Flash Interface support:
3 * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4 *
5 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
02b15e34 7 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
1da177e4
LT
8 *
9 * 2_by_8 routines added by Simon Munton
10 *
11 * 4_by_16 work by Carolyn J. Smith
12 *
1f948b43 13 * XIP support hooks by Vitaly Wool (based on code for Intel flash
02b15e34 14 * by Nicolas Pitre)
1f948b43 15 *
87e92c06
CM
16 * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
17 *
1da177e4
LT
18 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
19 *
20 * This code is GPL
1da177e4
LT
21 */
22
1da177e4
LT
23#include <linux/module.h>
24#include <linux/types.h>
25#include <linux/kernel.h>
26#include <linux/sched.h>
27#include <linux/init.h>
28#include <asm/io.h>
29#include <asm/byteorder.h>
30
31#include <linux/errno.h>
32#include <linux/slab.h>
33#include <linux/delay.h>
34#include <linux/interrupt.h>
eafe1311 35#include <linux/reboot.h>
1da177e4
LT
36#include <linux/mtd/map.h>
37#include <linux/mtd/mtd.h>
38#include <linux/mtd/cfi.h>
02b15e34 39#include <linux/mtd/xip.h>
1da177e4
LT
40
41#define AMD_BOOTLOC_BUG
42#define FORCE_WORD_WRITE 0
43
44#define MAX_WORD_RETRIES 3
45
1da177e4 46#define SST49LF004B 0x0060
89072ef9 47#define SST49LF040B 0x0050
fb4a90bf 48#define SST49LF008A 0x005a
0165508c 49#define AT49BV6416 0x00d6
1da177e4
LT
50
51static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
52static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
53static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
54static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
55static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
56static void cfi_amdstd_sync (struct mtd_info *);
57static int cfi_amdstd_suspend (struct mtd_info *);
58static void cfi_amdstd_resume (struct mtd_info *);
eafe1311 59static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
1da177e4
LT
60static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
61
62static void cfi_amdstd_destroy(struct mtd_info *);
63
64struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
65static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
66
67static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
68static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
69#include "fwh_lock.h"
70
69423d99
AH
71static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
72static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
0165508c 73
1da177e4
LT
74static struct mtd_chip_driver cfi_amdstd_chipdrv = {
75 .probe = NULL, /* Not usable directly */
76 .destroy = cfi_amdstd_destroy,
77 .name = "cfi_cmdset_0002",
78 .module = THIS_MODULE
79};
80
81
82/* #define DEBUG_CFI_FEATURES */
83
84
85#ifdef DEBUG_CFI_FEATURES
86static void cfi_tell_features(struct cfi_pri_amdstd *extp)
87{
88 const char* erase_suspend[3] = {
89 "Not supported", "Read only", "Read/write"
90 };
91 const char* top_bottom[6] = {
92 "No WP", "8x8KiB sectors at top & bottom, no WP",
93 "Bottom boot", "Top boot",
94 "Uniform, Bottom WP", "Uniform, Top WP"
95 };
96
97 printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1);
1f948b43 98 printk(" Address sensitive unlock: %s\n",
1da177e4
LT
99 (extp->SiliconRevision & 1) ? "Not required" : "Required");
100
101 if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
102 printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
103 else
104 printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
105
106 if (extp->BlkProt == 0)
107 printk(" Block protection: Not supported\n");
108 else
109 printk(" Block protection: %d sectors per group\n", extp->BlkProt);
110
111
112 printk(" Temporary block unprotect: %s\n",
113 extp->TmpBlkUnprotect ? "Supported" : "Not supported");
114 printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
115 printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps);
116 printk(" Burst mode: %s\n",
117 extp->BurstMode ? "Supported" : "Not supported");
118 if (extp->PageMode == 0)
119 printk(" Page mode: Not supported\n");
120 else
121 printk(" Page mode: %d word page\n", extp->PageMode << 2);
122
1f948b43 123 printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
1da177e4 124 extp->VppMin >> 4, extp->VppMin & 0xf);
1f948b43 125 printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
1da177e4
LT
126 extp->VppMax >> 4, extp->VppMax & 0xf);
127
128 if (extp->TopBottom < ARRAY_SIZE(top_bottom))
129 printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
130 else
131 printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
132}
133#endif
134
135#ifdef AMD_BOOTLOC_BUG
136/* Wheee. Bring me the head of someone at AMD. */
cc318222 137static void fixup_amd_bootblock(struct mtd_info *mtd)
1da177e4
LT
138{
139 struct map_info *map = mtd->priv;
140 struct cfi_private *cfi = map->fldrv_priv;
141 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
142 __u8 major = extp->MajorVersion;
143 __u8 minor = extp->MinorVersion;
144
145 if (((major << 8) | minor) < 0x3131) {
146 /* CFI version 1.0 => don't trust bootloc */
87e92c06
CM
147
148 DEBUG(MTD_DEBUG_LEVEL1,
149 "%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
150 map->name, cfi->mfr, cfi->id);
151
152 /* AFAICS all 29LV400 with a bottom boot block have a device ID
153 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
154 * These were badly detected as they have the 0x80 bit set
155 * so treat them as a special case.
156 */
157 if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
158
159 /* Macronix added CFI to their 2nd generation
160 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
161 * Fujitsu, Spansion, EON, ESI and older Macronix)
162 * has CFI.
163 *
164 * Therefore also check the manufacturer.
165 * This reduces the risk of false detection due to
166 * the 8-bit device ID.
167 */
f3e69c65 168 (cfi->mfr == CFI_MFR_MACRONIX)) {
87e92c06
CM
169 DEBUG(MTD_DEBUG_LEVEL1,
170 "%s: Macronix MX29LV400C with bottom boot block"
171 " detected\n", map->name);
172 extp->TopBottom = 2; /* bottom boot */
173 } else
1da177e4
LT
174 if (cfi->id & 0x80) {
175 printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
176 extp->TopBottom = 3; /* top boot */
177 } else {
178 extp->TopBottom = 2; /* bottom boot */
179 }
87e92c06
CM
180
181 DEBUG(MTD_DEBUG_LEVEL1,
182 "%s: AMD CFI PRI V%c.%c has no boot block field;"
183 " deduced %s from Device ID\n", map->name, major, minor,
184 extp->TopBottom == 2 ? "bottom" : "top");
1da177e4
LT
185 }
186}
187#endif
188
cc318222 189static void fixup_use_write_buffers(struct mtd_info *mtd)
1da177e4
LT
190{
191 struct map_info *map = mtd->priv;
192 struct cfi_private *cfi = map->fldrv_priv;
193 if (cfi->cfiq->BufWriteTimeoutTyp) {
194 DEBUG(MTD_DEBUG_LEVEL1, "Using buffer write method\n" );
195 mtd->write = cfi_amdstd_write_buffers;
196 }
197}
198
5b0c5c2c 199/* Atmel chips don't use the same PRI format as AMD chips */
cc318222 200static void fixup_convert_atmel_pri(struct mtd_info *mtd)
5b0c5c2c
HS
201{
202 struct map_info *map = mtd->priv;
203 struct cfi_private *cfi = map->fldrv_priv;
204 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
205 struct cfi_pri_atmel atmel_pri;
206
207 memcpy(&atmel_pri, extp, sizeof(atmel_pri));
de591dac 208 memset((char *)extp + 5, 0, sizeof(*extp) - 5);
5b0c5c2c
HS
209
210 if (atmel_pri.Features & 0x02)
211 extp->EraseSuspend = 2;
212
be8f78b8
HS
213 /* Some chips got it backwards... */
214 if (cfi->id == AT49BV6416) {
215 if (atmel_pri.BottomBoot)
216 extp->TopBottom = 3;
217 else
218 extp->TopBottom = 2;
219 } else {
220 if (atmel_pri.BottomBoot)
221 extp->TopBottom = 2;
222 else
223 extp->TopBottom = 3;
224 }
d10a39d1
HCE
225
226 /* burst write mode not supported */
227 cfi->cfiq->BufWriteTimeoutTyp = 0;
228 cfi->cfiq->BufWriteTimeoutMax = 0;
5b0c5c2c
HS
229}
230
cc318222 231static void fixup_use_secsi(struct mtd_info *mtd)
1da177e4
LT
232{
233 /* Setup for chips with a secsi area */
234 mtd->read_user_prot_reg = cfi_amdstd_secsi_read;
235 mtd->read_fact_prot_reg = cfi_amdstd_secsi_read;
236}
237
cc318222 238static void fixup_use_erase_chip(struct mtd_info *mtd)
1da177e4
LT
239{
240 struct map_info *map = mtd->priv;
241 struct cfi_private *cfi = map->fldrv_priv;
242 if ((cfi->cfiq->NumEraseRegions == 1) &&
243 ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
244 mtd->erase = cfi_amdstd_erase_chip;
245 }
1f948b43 246
1da177e4
LT
247}
248
0165508c
HS
249/*
250 * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
251 * locked by default.
252 */
cc318222 253static void fixup_use_atmel_lock(struct mtd_info *mtd)
0165508c
HS
254{
255 mtd->lock = cfi_atmel_lock;
256 mtd->unlock = cfi_atmel_unlock;
e619a75f 257 mtd->flags |= MTD_POWERUP_LOCK;
0165508c
HS
258}
259
83dcd3bb
GL
260static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
261{
262 struct map_info *map = mtd->priv;
263 struct cfi_private *cfi = map->fldrv_priv;
264
265 /*
25985edc 266 * These flashes report two separate eraseblock regions based on the
83dcd3bb
GL
267 * sector_erase-size and block_erase-size, although they both operate on the
268 * same memory. This is not allowed according to CFI, so we just pick the
269 * sector_erase-size.
270 */
271 cfi->cfiq->NumEraseRegions = 1;
272}
273
cc318222 274static void fixup_sst39vf(struct mtd_info *mtd)
83dcd3bb
GL
275{
276 struct map_info *map = mtd->priv;
277 struct cfi_private *cfi = map->fldrv_priv;
278
279 fixup_old_sst_eraseregion(mtd);
280
281 cfi->addr_unlock1 = 0x5555;
282 cfi->addr_unlock2 = 0x2AAA;
283}
284
cc318222 285static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
5a0563f0
GL
286{
287 struct map_info *map = mtd->priv;
288 struct cfi_private *cfi = map->fldrv_priv;
289
290 fixup_old_sst_eraseregion(mtd);
291
292 cfi->addr_unlock1 = 0x555;
293 cfi->addr_unlock2 = 0x2AA;
08968041
GL
294
295 cfi->sector_erase_cmd = CMD(0x50);
5a0563f0
GL
296}
297
cc318222 298static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
9fc05fca
GL
299{
300 struct map_info *map = mtd->priv;
301 struct cfi_private *cfi = map->fldrv_priv;
302
cc318222 303 fixup_sst39vf_rev_b(mtd);
9fc05fca
GL
304
305 /*
306 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
307 * it should report a size of 8KBytes (0x0020*256).
308 */
309 cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
310 pr_warning("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n", mtd->name);
311}
312
cc318222 313static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
70b07255
TP
314{
315 struct map_info *map = mtd->priv;
316 struct cfi_private *cfi = map->fldrv_priv;
317
318 if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
319 cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
320 pr_warning("%s: Bad S29GL064N CFI data, adjust from 64 to 128 sectors\n", mtd->name);
321 }
322}
323
cc318222 324static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
70b07255
TP
325{
326 struct map_info *map = mtd->priv;
327 struct cfi_private *cfi = map->fldrv_priv;
328
329 if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
330 cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
331 pr_warning("%s: Bad S29GL032N CFI data, adjust from 127 to 63 sectors\n", mtd->name);
332 }
333}
334
83dcd3bb
GL
335/* Used to fix CFI-Tables of chips without Extended Query Tables */
336static struct cfi_fixup cfi_nopri_fixup_table[] = {
cc318222
GL
337 { CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
338 { CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
339 { CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
340 { CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
341 { CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
342 { CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
343 { CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
344 { CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
345 { 0, 0, NULL }
83dcd3bb
GL
346};
347
1da177e4 348static struct cfi_fixup cfi_fixup_table[] = {
cc318222 349 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
1da177e4 350#ifdef AMD_BOOTLOC_BUG
cc318222 351 { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
1065cda8 352 { CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
cc318222 353 { CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
1da177e4 354#endif
cc318222
GL
355 { CFI_MFR_AMD, 0x0050, fixup_use_secsi },
356 { CFI_MFR_AMD, 0x0053, fixup_use_secsi },
357 { CFI_MFR_AMD, 0x0055, fixup_use_secsi },
358 { CFI_MFR_AMD, 0x0056, fixup_use_secsi },
359 { CFI_MFR_AMD, 0x005C, fixup_use_secsi },
360 { CFI_MFR_AMD, 0x005F, fixup_use_secsi },
361 { CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
362 { CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
363 { CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
364 { CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
365 { CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
366 { CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
367 { CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
368 { CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
1da177e4 369#if !FORCE_WORD_WRITE
cc318222 370 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
1da177e4 371#endif
cc318222 372 { 0, 0, NULL }
1da177e4
LT
373};
374static struct cfi_fixup jedec_fixup_table[] = {
cc318222
GL
375 { CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
376 { CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
377 { CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
378 { 0, 0, NULL }
1da177e4
LT
379};
380
381static struct cfi_fixup fixup_table[] = {
382 /* The CFI vendor ids and the JEDEC vendor IDs appear
383 * to be common. It is like the devices id's are as
384 * well. This table is to pick all cases where
385 * we know that is the case.
386 */
cc318222
GL
387 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
388 { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
389 { 0, 0, NULL }
1da177e4
LT
390};
391
392
fefae48b
WG
393static void cfi_fixup_major_minor(struct cfi_private *cfi,
394 struct cfi_pri_amdstd *extp)
395{
e6372763 396 if (cfi->mfr == CFI_MFR_SAMSUNG) {
e8953b73
GL
397 if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
398 (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
e6372763
GL
399 /*
400 * Samsung K8P2815UQB and K8D6x16UxM chips
401 * report major=0 / minor=0.
e8953b73 402 * K8D3x16UxC chips report major=3 / minor=3.
e6372763
GL
403 */
404 printk(KERN_NOTICE " Fixing Samsung's Amd/Fujitsu"
405 " Extended Query version to 1.%c\n",
406 extp->MinorVersion);
407 extp->MajorVersion = '1';
408 }
409 }
410
9fc05fca
GL
411 /*
412 * SST 38VF640x chips report major=0xFF / minor=0xFF.
413 */
414 if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
415 extp->MajorVersion = '1';
416 extp->MinorVersion = '0';
417 }
fefae48b
WG
418}
419
1da177e4
LT
420struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
421{
422 struct cfi_private *cfi = map->fldrv_priv;
423 struct mtd_info *mtd;
424 int i;
425
95b93a0c 426 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
1da177e4
LT
427 if (!mtd) {
428 printk(KERN_WARNING "Failed to allocate memory for MTD device\n");
429 return NULL;
430 }
1da177e4
LT
431 mtd->priv = map;
432 mtd->type = MTD_NORFLASH;
433
434 /* Fill in the default mtd operations */
435 mtd->erase = cfi_amdstd_erase_varsize;
436 mtd->write = cfi_amdstd_write_words;
437 mtd->read = cfi_amdstd_read;
438 mtd->sync = cfi_amdstd_sync;
439 mtd->suspend = cfi_amdstd_suspend;
440 mtd->resume = cfi_amdstd_resume;
441 mtd->flags = MTD_CAP_NORFLASH;
442 mtd->name = map->name;
783ed81f 443 mtd->writesize = 1;
13ce77f4 444 mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
d261c72a
AG
445
446 DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): write buffer size %d\n",
447 __func__, mtd->writebufsize);
1da177e4 448
eafe1311
KC
449 mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
450
1da177e4
LT
451 if (cfi->cfi_mode==CFI_MODE_CFI){
452 unsigned char bootloc;
1da177e4
LT
453 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
454 struct cfi_pri_amdstd *extp;
455
456 extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
564b8497
GL
457 if (extp) {
458 /*
459 * It's a real CFI chip, not one for which the probe
460 * routine faked a CFI structure.
461 */
462 cfi_fixup_major_minor(cfi, extp);
463
e17f47a1 464 /*
c9ddab25 465 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
631dd1a8
JM
466 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
467 * http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
5da19532 468 * http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
c9ddab25 469 * http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
e17f47a1 470 */
564b8497 471 if (extp->MajorVersion != '1' ||
c9ddab25 472 (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
564b8497 473 printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query "
e17f47a1
GL
474 "version %c.%c (%#02x/%#02x).\n",
475 extp->MajorVersion, extp->MinorVersion,
476 extp->MajorVersion, extp->MinorVersion);
564b8497
GL
477 kfree(extp);
478 kfree(mtd);
479 return NULL;
480 }
d88f977b 481
e17f47a1
GL
482 printk(KERN_INFO " Amd/Fujitsu Extended Query version %c.%c.\n",
483 extp->MajorVersion, extp->MinorVersion);
484
564b8497
GL
485 /* Install our own private info structure */
486 cfi->cmdset_priv = extp;
1da177e4 487
564b8497
GL
488 /* Apply cfi device specific fixups */
489 cfi_fixup(mtd, cfi_fixup_table);
1da177e4
LT
490
491#ifdef DEBUG_CFI_FEATURES
564b8497
GL
492 /* Tell the user about it in lots of lovely detail */
493 cfi_tell_features(extp);
1f948b43 494#endif
1da177e4 495
564b8497 496 bootloc = extp->TopBottom;
412da2f6
DW
497 if ((bootloc < 2) || (bootloc > 5)) {
498 printk(KERN_WARNING "%s: CFI contains unrecognised boot "
499 "bank location (%d). Assuming bottom.\n",
abab7ebf 500 map->name, bootloc);
564b8497
GL
501 bootloc = 2;
502 }
1da177e4 503
564b8497 504 if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
412da2f6 505 printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
1f948b43 506
564b8497
GL
507 for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
508 int j = (cfi->cfiq->NumEraseRegions-1)-i;
509 __u32 swap;
1f948b43 510
564b8497
GL
511 swap = cfi->cfiq->EraseRegionInfo[i];
512 cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
513 cfi->cfiq->EraseRegionInfo[j] = swap;
514 }
1da177e4 515 }
564b8497
GL
516 /* Set the default CFI lock/unlock addresses */
517 cfi->addr_unlock1 = 0x555;
518 cfi->addr_unlock2 = 0x2aa;
519 }
83dcd3bb 520 cfi_fixup(mtd, cfi_nopri_fixup_table);
564b8497
GL
521
522 if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
523 kfree(mtd);
524 return NULL;
1da177e4 525 }
1da177e4
LT
526
527 } /* CFI mode */
528 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
529 /* Apply jedec specific fixups */
530 cfi_fixup(mtd, jedec_fixup_table);
531 }
532 /* Apply generic fixups */
533 cfi_fixup(mtd, fixup_table);
534
535 for (i=0; i< cfi->numchips; i++) {
536 cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
537 cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
538 cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
83d48091
VS
539 cfi->chips[i].ref_point_counter = 0;
540 init_waitqueue_head(&(cfi->chips[i].wq));
1f948b43
TG
541 }
542
1da177e4 543 map->fldrv = &cfi_amdstd_chipdrv;
1f948b43 544
1da177e4
LT
545 return cfi_amdstd_setup(mtd);
546}
80461128 547struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
1e804cec 548struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
83ea4ef2 549EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
80461128 550EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
1e804cec 551EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
1da177e4
LT
552
553static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
554{
555 struct map_info *map = mtd->priv;
556 struct cfi_private *cfi = map->fldrv_priv;
557 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
558 unsigned long offset = 0;
559 int i,j;
560
1f948b43 561 printk(KERN_NOTICE "number of %s chips: %d\n",
1da177e4 562 (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
1f948b43 563 /* Select the correct geometry setup */
1da177e4
LT
564 mtd->size = devsize * cfi->numchips;
565
566 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
567 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
568 * mtd->numeraseregions, GFP_KERNEL);
1f948b43 569 if (!mtd->eraseregions) {
1da177e4
LT
570 printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n");
571 goto setup_err;
572 }
1f948b43 573
1da177e4
LT
574 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
575 unsigned long ernum, ersize;
576 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
577 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
1f948b43 578
1da177e4
LT
579 if (mtd->erasesize < ersize) {
580 mtd->erasesize = ersize;
581 }
582 for (j=0; j<cfi->numchips; j++) {
583 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
584 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
585 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
586 }
587 offset += (ersize * ernum);
588 }
589 if (offset != devsize) {
590 /* Argh */
591 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
592 goto setup_err;
593 }
1da177e4 594
1da177e4 595 __module_get(THIS_MODULE);
eafe1311 596 register_reboot_notifier(&mtd->reboot_notifier);
1da177e4
LT
597 return mtd;
598
599 setup_err:
17fabf15
JS
600 kfree(mtd->eraseregions);
601 kfree(mtd);
1da177e4
LT
602 kfree(cfi->cmdset_priv);
603 kfree(cfi->cfiq);
604 return NULL;
605}
606
607/*
608 * Return true if the chip is ready.
609 *
610 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
611 * non-suspended sector) and is indicated by no toggle bits toggling.
612 *
613 * Note that anything more complicated than checking if no bits are toggling
614 * (including checking DQ5 for an error status) is tricky to get working
25985edc
LDM
615 * correctly and is therefore not done (particularly with interleaved chips
616 * as each chip must be checked independently of the others).
1da177e4 617 */
02b15e34 618static int __xipram chip_ready(struct map_info *map, unsigned long addr)
1da177e4
LT
619{
620 map_word d, t;
621
622 d = map_read(map, addr);
623 t = map_read(map, addr);
624
625 return map_word_equal(map, d, t);
626}
627
fb4a90bf
EB
628/*
629 * Return true if the chip is ready and has the correct value.
630 *
631 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
632 * non-suspended sector) and it is indicated by no bits toggling.
633 *
634 * Error are indicated by toggling bits or bits held with the wrong value,
635 * or with bits toggling.
636 *
637 * Note that anything more complicated than checking if no bits are toggling
638 * (including checking DQ5 for an error status) is tricky to get working
25985edc
LDM
639 * correctly and is therefore not done (particularly with interleaved chips
640 * as each chip must be checked independently of the others).
fb4a90bf
EB
641 *
642 */
02b15e34 643static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
fb4a90bf
EB
644{
645 map_word oldd, curd;
646
647 oldd = map_read(map, addr);
648 curd = map_read(map, addr);
649
1f948b43 650 return map_word_equal(map, oldd, curd) &&
fb4a90bf
EB
651 map_word_equal(map, curd, expected);
652}
653
1da177e4
LT
654static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
655{
656 DECLARE_WAITQUEUE(wait, current);
657 struct cfi_private *cfi = map->fldrv_priv;
658 unsigned long timeo;
659 struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
660
661 resettime:
662 timeo = jiffies + HZ;
663 retry:
664 switch (chip->state) {
665
666 case FL_STATUS:
667 for (;;) {
668 if (chip_ready(map, adr))
669 break;
670
671 if (time_after(jiffies, timeo)) {
672 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
1da177e4
LT
673 return -EIO;
674 }
c4e77376 675 mutex_unlock(&chip->mutex);
1da177e4 676 cfi_udelay(1);
c4e77376 677 mutex_lock(&chip->mutex);
1da177e4
LT
678 /* Someone else might have been playing with it. */
679 goto retry;
680 }
1f948b43 681
1da177e4
LT
682 case FL_READY:
683 case FL_CFI_QUERY:
684 case FL_JEDEC_QUERY:
685 return 0;
686
687 case FL_ERASING:
2695eab9
JT
688 if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
689 !(mode == FL_READY || mode == FL_POINT ||
690 (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
1da177e4
LT
691 goto sleep;
692
693 /* We could check to see if we're trying to access the sector
694 * that is currently being erased. However, no user will try
695 * anything like that so we just wait for the timeout. */
696
697 /* Erase suspend */
698 /* It's harmless to issue the Erase-Suspend and Erase-Resume
699 * commands when the erase algorithm isn't in progress. */
700 map_write(map, CMD(0xB0), chip->in_progress_block_addr);
701 chip->oldstate = FL_ERASING;
702 chip->state = FL_ERASE_SUSPENDING;
703 chip->erase_suspended = 1;
704 for (;;) {
705 if (chip_ready(map, adr))
706 break;
707
708 if (time_after(jiffies, timeo)) {
709 /* Should have suspended the erase by now.
710 * Send an Erase-Resume command as either
711 * there was an error (so leave the erase
712 * routine to recover from it) or we trying to
713 * use the erase-in-progress sector. */
100f2341 714 put_chip(map, chip, adr);
1da177e4
LT
715 printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
716 return -EIO;
717 }
1f948b43 718
c4e77376 719 mutex_unlock(&chip->mutex);
1da177e4 720 cfi_udelay(1);
c4e77376 721 mutex_lock(&chip->mutex);
1da177e4
LT
722 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
723 So we can just loop here. */
724 }
725 chip->state = FL_READY;
726 return 0;
727
02b15e34
TP
728 case FL_XIP_WHILE_ERASING:
729 if (mode != FL_READY && mode != FL_POINT &&
730 (!cfip || !(cfip->EraseSuspend&2)))
731 goto sleep;
732 chip->oldstate = chip->state;
733 chip->state = FL_READY;
734 return 0;
735
eafe1311
KC
736 case FL_SHUTDOWN:
737 /* The machine is rebooting */
738 return -EIO;
739
1da177e4
LT
740 case FL_POINT:
741 /* Only if there's no operation suspended... */
742 if (mode == FL_READY && chip->oldstate == FL_READY)
743 return 0;
744
745 default:
746 sleep:
747 set_current_state(TASK_UNINTERRUPTIBLE);
748 add_wait_queue(&chip->wq, &wait);
c4e77376 749 mutex_unlock(&chip->mutex);
1da177e4
LT
750 schedule();
751 remove_wait_queue(&chip->wq, &wait);
c4e77376 752 mutex_lock(&chip->mutex);
1da177e4
LT
753 goto resettime;
754 }
755}
756
757
758static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
759{
760 struct cfi_private *cfi = map->fldrv_priv;
761
762 switch(chip->oldstate) {
763 case FL_ERASING:
08968041 764 map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
1da177e4
LT
765 chip->oldstate = FL_READY;
766 chip->state = FL_ERASING;
767 break;
768
02b15e34
TP
769 case FL_XIP_WHILE_ERASING:
770 chip->state = chip->oldstate;
771 chip->oldstate = FL_READY;
772 break;
773
1da177e4
LT
774 case FL_READY:
775 case FL_STATUS:
776 /* We should really make set_vpp() count, rather than doing this */
777 DISABLE_VPP(map);
778 break;
779 default:
780 printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
781 }
782 wake_up(&chip->wq);
783}
784
02b15e34
TP
785#ifdef CONFIG_MTD_XIP
786
787/*
788 * No interrupt what so ever can be serviced while the flash isn't in array
789 * mode. This is ensured by the xip_disable() and xip_enable() functions
790 * enclosing any code path where the flash is known not to be in array mode.
791 * And within a XIP disabled code path, only functions marked with __xipram
792 * may be called and nothing else (it's a good thing to inspect generated
793 * assembly to make sure inline functions were actually inlined and that gcc
794 * didn't emit calls to its own support functions). Also configuring MTD CFI
795 * support to a single buswidth and a single interleave is also recommended.
796 */
f8eb321b 797
02b15e34
TP
798static void xip_disable(struct map_info *map, struct flchip *chip,
799 unsigned long adr)
800{
801 /* TODO: chips with no XIP use should ignore and return */
802 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
803 local_irq_disable();
804}
805
806static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
807 unsigned long adr)
808{
809 struct cfi_private *cfi = map->fldrv_priv;
810
811 if (chip->state != FL_POINT && chip->state != FL_READY) {
812 map_write(map, CMD(0xf0), adr);
813 chip->state = FL_READY;
814 }
815 (void) map_read(map, adr);
97f927a4 816 xip_iprefetch();
02b15e34
TP
817 local_irq_enable();
818}
819
820/*
821 * When a delay is required for the flash operation to complete, the
822 * xip_udelay() function is polling for both the given timeout and pending
823 * (but still masked) hardware interrupts. Whenever there is an interrupt
1f948b43 824 * pending then the flash erase operation is suspended, array mode restored
02b15e34
TP
825 * and interrupts unmasked. Task scheduling might also happen at that
826 * point. The CPU eventually returns from the interrupt or the call to
827 * schedule() and the suspended flash operation is resumed for the remaining
828 * of the delay period.
829 *
830 * Warning: this function _will_ fool interrupt latency tracing tools.
831 */
832
833static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
834 unsigned long adr, int usec)
835{
836 struct cfi_private *cfi = map->fldrv_priv;
837 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
838 map_word status, OK = CMD(0x80);
839 unsigned long suspended, start = xip_currtime();
840 flstate_t oldstate;
841
842 do {
843 cpu_relax();
844 if (xip_irqpending() && extp &&
845 ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
846 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
847 /*
1f948b43
TG
848 * Let's suspend the erase operation when supported.
849 * Note that we currently don't try to suspend
850 * interleaved chips if there is already another
02b15e34
TP
851 * operation suspended (imagine what happens
852 * when one chip was already done with the current
853 * operation while another chip suspended it, then
854 * we resume the whole thing at once). Yes, it
855 * can happen!
856 */
857 map_write(map, CMD(0xb0), adr);
858 usec -= xip_elapsed_since(start);
859 suspended = xip_currtime();
860 do {
861 if (xip_elapsed_since(suspended) > 100000) {
862 /*
863 * The chip doesn't want to suspend
864 * after waiting for 100 msecs.
865 * This is a critical error but there
866 * is not much we can do here.
867 */
868 return;
869 }
870 status = map_read(map, adr);
871 } while (!map_word_andequal(map, status, OK, OK));
872
873 /* Suspend succeeded */
874 oldstate = chip->state;
875 if (!map_word_bitsset(map, status, CMD(0x40)))
876 break;
877 chip->state = FL_XIP_WHILE_ERASING;
878 chip->erase_suspended = 1;
879 map_write(map, CMD(0xf0), adr);
880 (void) map_read(map, adr);
ca5c23c3 881 xip_iprefetch();
02b15e34 882 local_irq_enable();
c4e77376 883 mutex_unlock(&chip->mutex);
ca5c23c3 884 xip_iprefetch();
02b15e34
TP
885 cond_resched();
886
887 /*
888 * We're back. However someone else might have
889 * decided to go write to the chip if we are in
890 * a suspended erase state. If so let's wait
891 * until it's done.
892 */
c4e77376 893 mutex_lock(&chip->mutex);
02b15e34
TP
894 while (chip->state != FL_XIP_WHILE_ERASING) {
895 DECLARE_WAITQUEUE(wait, current);
896 set_current_state(TASK_UNINTERRUPTIBLE);
897 add_wait_queue(&chip->wq, &wait);
c4e77376 898 mutex_unlock(&chip->mutex);
02b15e34
TP
899 schedule();
900 remove_wait_queue(&chip->wq, &wait);
c4e77376 901 mutex_lock(&chip->mutex);
02b15e34
TP
902 }
903 /* Disallow XIP again */
904 local_irq_disable();
905
906 /* Resume the write or erase operation */
08968041 907 map_write(map, cfi->sector_erase_cmd, adr);
02b15e34
TP
908 chip->state = oldstate;
909 start = xip_currtime();
910 } else if (usec >= 1000000/HZ) {
911 /*
912 * Try to save on CPU power when waiting delay
913 * is at least a system timer tick period.
914 * No need to be extremely accurate here.
915 */
916 xip_cpu_idle();
917 }
918 status = map_read(map, adr);
919 } while (!map_word_andequal(map, status, OK, OK)
920 && xip_elapsed_since(start) < usec);
921}
922
923#define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
924
925/*
926 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
927 * the flash is actively programming or erasing since we have to poll for
928 * the operation to complete anyway. We can't do that in a generic way with
929 * a XIP setup so do it before the actual flash operation in this case
930 * and stub it out from INVALIDATE_CACHE_UDELAY.
931 */
932#define XIP_INVAL_CACHED_RANGE(map, from, size) \
933 INVALIDATE_CACHED_RANGE(map, from, size)
934
935#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
936 UDELAY(map, chip, adr, usec)
937
938/*
939 * Extra notes:
940 *
941 * Activating this XIP support changes the way the code works a bit. For
942 * example the code to suspend the current process when concurrent access
943 * happens is never executed because xip_udelay() will always return with the
944 * same chip state as it was entered with. This is why there is no care for
945 * the presence of add_wait_queue() or schedule() calls from within a couple
946 * xip_disable()'d areas of code, like in do_erase_oneblock for example.
947 * The queueing and scheduling are always happening within xip_udelay().
948 *
949 * Similarly, get_chip() and put_chip() just happen to always be executed
950 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
951 * is in array mode, therefore never executing many cases therein and not
952 * causing any problem with XIP.
953 */
954
955#else
956
957#define xip_disable(map, chip, adr)
958#define xip_enable(map, chip, adr)
959#define XIP_INVAL_CACHED_RANGE(x...)
960
961#define UDELAY(map, chip, adr, usec) \
962do { \
c4e77376 963 mutex_unlock(&chip->mutex); \
02b15e34 964 cfi_udelay(usec); \
c4e77376 965 mutex_lock(&chip->mutex); \
02b15e34
TP
966} while (0)
967
968#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
969do { \
c4e77376 970 mutex_unlock(&chip->mutex); \
02b15e34
TP
971 INVALIDATE_CACHED_RANGE(map, adr, len); \
972 cfi_udelay(usec); \
c4e77376 973 mutex_lock(&chip->mutex); \
02b15e34
TP
974} while (0)
975
976#endif
1da177e4
LT
977
978static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
979{
980 unsigned long cmd_addr;
981 struct cfi_private *cfi = map->fldrv_priv;
982 int ret;
983
984 adr += chip->start;
985
1f948b43
TG
986 /* Ensure cmd read/writes are aligned. */
987 cmd_addr = adr & ~(map_bankwidth(map)-1);
1da177e4 988
c4e77376 989 mutex_lock(&chip->mutex);
1da177e4
LT
990 ret = get_chip(map, chip, cmd_addr, FL_READY);
991 if (ret) {
c4e77376 992 mutex_unlock(&chip->mutex);
1da177e4
LT
993 return ret;
994 }
995
996 if (chip->state != FL_POINT && chip->state != FL_READY) {
997 map_write(map, CMD(0xf0), cmd_addr);
998 chip->state = FL_READY;
999 }
1000
1001 map_copy_from(map, buf, adr, len);
1002
1003 put_chip(map, chip, cmd_addr);
1004
c4e77376 1005 mutex_unlock(&chip->mutex);
1da177e4
LT
1006 return 0;
1007}
1008
1009
1010static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1011{
1012 struct map_info *map = mtd->priv;
1013 struct cfi_private *cfi = map->fldrv_priv;
1014 unsigned long ofs;
1015 int chipnum;
1016 int ret = 0;
1017
1018 /* ofs: offset within the first chip that the first read should start */
1019
1020 chipnum = (from >> cfi->chipshift);
1021 ofs = from - (chipnum << cfi->chipshift);
1022
1023
1024 *retlen = 0;
1025
1026 while (len) {
1027 unsigned long thislen;
1028
1029 if (chipnum >= cfi->numchips)
1030 break;
1031
1032 if ((len + ofs -1) >> cfi->chipshift)
1033 thislen = (1<<cfi->chipshift) - ofs;
1034 else
1035 thislen = len;
1036
1037 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1038 if (ret)
1039 break;
1040
1041 *retlen += thislen;
1042 len -= thislen;
1043 buf += thislen;
1044
1045 ofs = 0;
1046 chipnum++;
1047 }
1048 return ret;
1049}
1050
1051
1052static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1053{
1054 DECLARE_WAITQUEUE(wait, current);
1055 unsigned long timeo = jiffies + HZ;
1056 struct cfi_private *cfi = map->fldrv_priv;
1057
1058 retry:
c4e77376 1059 mutex_lock(&chip->mutex);
1da177e4
LT
1060
1061 if (chip->state != FL_READY){
1da177e4
LT
1062 set_current_state(TASK_UNINTERRUPTIBLE);
1063 add_wait_queue(&chip->wq, &wait);
1f948b43 1064
c4e77376 1065 mutex_unlock(&chip->mutex);
1da177e4
LT
1066
1067 schedule();
1068 remove_wait_queue(&chip->wq, &wait);
1da177e4
LT
1069 timeo = jiffies + HZ;
1070
1071 goto retry;
1f948b43 1072 }
1da177e4
LT
1073
1074 adr += chip->start;
1075
1076 chip->state = FL_READY;
1077
1078 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1079 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1080 cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1f948b43 1081
1da177e4
LT
1082 map_copy_from(map, buf, adr, len);
1083
1084 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1085 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1086 cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1087 cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1f948b43 1088
1da177e4 1089 wake_up(&chip->wq);
c4e77376 1090 mutex_unlock(&chip->mutex);
1da177e4
LT
1091
1092 return 0;
1093}
1094
1095static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1096{
1097 struct map_info *map = mtd->priv;
1098 struct cfi_private *cfi = map->fldrv_priv;
1099 unsigned long ofs;
1100 int chipnum;
1101 int ret = 0;
1102
1103
1104 /* ofs: offset within the first chip that the first read should start */
1105
1106 /* 8 secsi bytes per chip */
1107 chipnum=from>>3;
1108 ofs=from & 7;
1109
1110
1111 *retlen = 0;
1112
1113 while (len) {
1114 unsigned long thislen;
1115
1116 if (chipnum >= cfi->numchips)
1117 break;
1118
1119 if ((len + ofs -1) >> 3)
1120 thislen = (1<<3) - ofs;
1121 else
1122 thislen = len;
1123
1124 ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1125 if (ret)
1126 break;
1127
1128 *retlen += thislen;
1129 len -= thislen;
1130 buf += thislen;
1131
1132 ofs = 0;
1133 chipnum++;
1134 }
1135 return ret;
1136}
1137
1138
02b15e34 1139static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum)
1da177e4
LT
1140{
1141 struct cfi_private *cfi = map->fldrv_priv;
1142 unsigned long timeo = jiffies + HZ;
1143 /*
1144 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1145 * have a max write time of a few hundreds usec). However, we should
1146 * use the maximum timeout value given by the chip at probe time
1147 * instead. Unfortunately, struct flchip does have a field for
1148 * maximum timeout, only for typical which can be far too short
1149 * depending of the conditions. The ' + 1' is to avoid having a
1150 * timeout of 0 jiffies if HZ is smaller than 1000.
1151 */
1152 unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1153 int ret = 0;
1154 map_word oldd;
1155 int retry_cnt = 0;
1156
1157 adr += chip->start;
1158
c4e77376 1159 mutex_lock(&chip->mutex);
1da177e4
LT
1160 ret = get_chip(map, chip, adr, FL_WRITING);
1161 if (ret) {
c4e77376 1162 mutex_unlock(&chip->mutex);
1da177e4
LT
1163 return ret;
1164 }
1165
1166 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1167 __func__, adr, datum.x[0] );
1168
1169 /*
1170 * Check for a NOP for the case when the datum to write is already
1171 * present - it saves time and works around buggy chips that corrupt
1172 * data at other locations when 0xff is written to a location that
1173 * already contains 0xff.
1174 */
1175 oldd = map_read(map, adr);
1176 if (map_word_equal(map, oldd, datum)) {
1177 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): NOP\n",
1178 __func__);
1179 goto op_done;
1180 }
1181
02b15e34 1182 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1da177e4 1183 ENABLE_VPP(map);
02b15e34 1184 xip_disable(map, chip, adr);
1da177e4
LT
1185 retry:
1186 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1187 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1188 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1189 map_write(map, datum, adr);
1190 chip->state = FL_WRITING;
1191
02b15e34
TP
1192 INVALIDATE_CACHE_UDELAY(map, chip,
1193 adr, map_bankwidth(map),
1194 chip->word_write_time);
1da177e4
LT
1195
1196 /* See comment above for timeout value. */
1f948b43 1197 timeo = jiffies + uWriteTimeout;
1da177e4
LT
1198 for (;;) {
1199 if (chip->state != FL_WRITING) {
1200 /* Someone's suspended the write. Sleep */
1201 DECLARE_WAITQUEUE(wait, current);
1202
1203 set_current_state(TASK_UNINTERRUPTIBLE);
1204 add_wait_queue(&chip->wq, &wait);
c4e77376 1205 mutex_unlock(&chip->mutex);
1da177e4
LT
1206 schedule();
1207 remove_wait_queue(&chip->wq, &wait);
1208 timeo = jiffies + (HZ / 2); /* FIXME */
c4e77376 1209 mutex_lock(&chip->mutex);
1da177e4
LT
1210 continue;
1211 }
1212
b95f9609 1213 if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
02b15e34 1214 xip_enable(map, chip, adr);
fb4a90bf 1215 printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
02b15e34 1216 xip_disable(map, chip, adr);
b95f9609 1217 break;
fb4a90bf 1218 }
1da177e4 1219
b95f9609
KB
1220 if (chip_ready(map, adr))
1221 break;
1222
1da177e4 1223 /* Latency issues. Drop the lock, wait a while and retry */
02b15e34 1224 UDELAY(map, chip, adr, 1);
1da177e4 1225 }
fb4a90bf
EB
1226 /* Did we succeed? */
1227 if (!chip_good(map, adr, datum)) {
1228 /* reset on all failures. */
1229 map_write( map, CMD(0xF0), chip->start );
1230 /* FIXME - should have reset delay before continuing */
1da177e4 1231
1f948b43 1232 if (++retry_cnt <= MAX_WORD_RETRIES)
fb4a90bf 1233 goto retry;
1da177e4 1234
fb4a90bf
EB
1235 ret = -EIO;
1236 }
02b15e34 1237 xip_enable(map, chip, adr);
1da177e4
LT
1238 op_done:
1239 chip->state = FL_READY;
1240 put_chip(map, chip, adr);
c4e77376 1241 mutex_unlock(&chip->mutex);
1da177e4
LT
1242
1243 return ret;
1244}
1245
1246
1247static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1248 size_t *retlen, const u_char *buf)
1249{
1250 struct map_info *map = mtd->priv;
1251 struct cfi_private *cfi = map->fldrv_priv;
1252 int ret = 0;
1253 int chipnum;
1254 unsigned long ofs, chipstart;
1255 DECLARE_WAITQUEUE(wait, current);
1256
1257 *retlen = 0;
1258 if (!len)
1259 return 0;
1260
1261 chipnum = to >> cfi->chipshift;
1262 ofs = to - (chipnum << cfi->chipshift);
1263 chipstart = cfi->chips[chipnum].start;
1264
1265 /* If it's not bus-aligned, do the first byte write */
1266 if (ofs & (map_bankwidth(map)-1)) {
1267 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1268 int i = ofs - bus_ofs;
1269 int n = 0;
1270 map_word tmp_buf;
1271
1272 retry:
c4e77376 1273 mutex_lock(&cfi->chips[chipnum].mutex);
1da177e4
LT
1274
1275 if (cfi->chips[chipnum].state != FL_READY) {
1da177e4
LT
1276 set_current_state(TASK_UNINTERRUPTIBLE);
1277 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1278
c4e77376 1279 mutex_unlock(&cfi->chips[chipnum].mutex);
1da177e4
LT
1280
1281 schedule();
1282 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1da177e4
LT
1283 goto retry;
1284 }
1285
1286 /* Load 'tmp_buf' with old contents of flash */
1287 tmp_buf = map_read(map, bus_ofs+chipstart);
1288
c4e77376 1289 mutex_unlock(&cfi->chips[chipnum].mutex);
1da177e4
LT
1290
1291 /* Number of bytes to copy from buffer */
1292 n = min_t(int, len, map_bankwidth(map)-i);
1f948b43 1293
1da177e4
LT
1294 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1295
1f948b43 1296 ret = do_write_oneword(map, &cfi->chips[chipnum],
1da177e4 1297 bus_ofs, tmp_buf);
1f948b43 1298 if (ret)
1da177e4 1299 return ret;
1f948b43 1300
1da177e4
LT
1301 ofs += n;
1302 buf += n;
1303 (*retlen) += n;
1304 len -= n;
1305
1306 if (ofs >> cfi->chipshift) {
1f948b43 1307 chipnum ++;
1da177e4
LT
1308 ofs = 0;
1309 if (chipnum == cfi->numchips)
1310 return 0;
1311 }
1312 }
1f948b43 1313
1da177e4
LT
1314 /* We are now aligned, write as much as possible */
1315 while(len >= map_bankwidth(map)) {
1316 map_word datum;
1317
1318 datum = map_word_load(map, buf);
1319
1320 ret = do_write_oneword(map, &cfi->chips[chipnum],
1321 ofs, datum);
1322 if (ret)
1323 return ret;
1324
1325 ofs += map_bankwidth(map);
1326 buf += map_bankwidth(map);
1327 (*retlen) += map_bankwidth(map);
1328 len -= map_bankwidth(map);
1329
1330 if (ofs >> cfi->chipshift) {
1f948b43 1331 chipnum ++;
1da177e4
LT
1332 ofs = 0;
1333 if (chipnum == cfi->numchips)
1334 return 0;
1335 chipstart = cfi->chips[chipnum].start;
1336 }
1337 }
1338
1339 /* Write the trailing bytes if any */
1340 if (len & (map_bankwidth(map)-1)) {
1341 map_word tmp_buf;
1342
1343 retry1:
c4e77376 1344 mutex_lock(&cfi->chips[chipnum].mutex);
1da177e4
LT
1345
1346 if (cfi->chips[chipnum].state != FL_READY) {
1da177e4
LT
1347 set_current_state(TASK_UNINTERRUPTIBLE);
1348 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1349
c4e77376 1350 mutex_unlock(&cfi->chips[chipnum].mutex);
1da177e4
LT
1351
1352 schedule();
1353 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1da177e4
LT
1354 goto retry1;
1355 }
1356
1357 tmp_buf = map_read(map, ofs + chipstart);
1358
c4e77376 1359 mutex_unlock(&cfi->chips[chipnum].mutex);
1da177e4
LT
1360
1361 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1f948b43
TG
1362
1363 ret = do_write_oneword(map, &cfi->chips[chipnum],
1da177e4 1364 ofs, tmp_buf);
1f948b43 1365 if (ret)
1da177e4 1366 return ret;
1f948b43 1367
1da177e4
LT
1368 (*retlen) += len;
1369 }
1370
1371 return 0;
1372}
1373
1374
1375/*
1376 * FIXME: interleaved mode not tested, and probably not supported!
1377 */
02b15e34 1378static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1f948b43 1379 unsigned long adr, const u_char *buf,
02b15e34 1380 int len)
1da177e4
LT
1381{
1382 struct cfi_private *cfi = map->fldrv_priv;
1383 unsigned long timeo = jiffies + HZ;
1384 /* see comments in do_write_oneword() regarding uWriteTimeo. */
1385 unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1386 int ret = -EIO;
1387 unsigned long cmd_adr;
1388 int z, words;
1389 map_word datum;
1390
1391 adr += chip->start;
1392 cmd_adr = adr;
1393
c4e77376 1394 mutex_lock(&chip->mutex);
1da177e4
LT
1395 ret = get_chip(map, chip, adr, FL_WRITING);
1396 if (ret) {
c4e77376 1397 mutex_unlock(&chip->mutex);
1da177e4
LT
1398 return ret;
1399 }
1400
1401 datum = map_word_load(map, buf);
1402
1403 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1404 __func__, adr, datum.x[0] );
1405
02b15e34 1406 XIP_INVAL_CACHED_RANGE(map, adr, len);
1da177e4 1407 ENABLE_VPP(map);
02b15e34 1408 xip_disable(map, chip, cmd_adr);
1f948b43 1409
1da177e4
LT
1410 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1411 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1da177e4
LT
1412
1413 /* Write Buffer Load */
1414 map_write(map, CMD(0x25), cmd_adr);
1415
1416 chip->state = FL_WRITING_TO_BUFFER;
1417
1418 /* Write length of data to come */
1419 words = len / map_bankwidth(map);
1420 map_write(map, CMD(words - 1), cmd_adr);
1421 /* Write data */
1422 z = 0;
1423 while(z < words * map_bankwidth(map)) {
1424 datum = map_word_load(map, buf);
1425 map_write(map, datum, adr + z);
1426
1427 z += map_bankwidth(map);
1428 buf += map_bankwidth(map);
1429 }
1430 z -= map_bankwidth(map);
1431
1432 adr += z;
1433
1434 /* Write Buffer Program Confirm: GO GO GO */
1435 map_write(map, CMD(0x29), cmd_adr);
1436 chip->state = FL_WRITING;
1437
02b15e34
TP
1438 INVALIDATE_CACHE_UDELAY(map, chip,
1439 adr, map_bankwidth(map),
1440 chip->word_write_time);
1da177e4 1441
1f948b43
TG
1442 timeo = jiffies + uWriteTimeout;
1443
1da177e4
LT
1444 for (;;) {
1445 if (chip->state != FL_WRITING) {
1446 /* Someone's suspended the write. Sleep */
1447 DECLARE_WAITQUEUE(wait, current);
1448
1449 set_current_state(TASK_UNINTERRUPTIBLE);
1450 add_wait_queue(&chip->wq, &wait);
c4e77376 1451 mutex_unlock(&chip->mutex);
1da177e4
LT
1452 schedule();
1453 remove_wait_queue(&chip->wq, &wait);
1454 timeo = jiffies + (HZ / 2); /* FIXME */
c4e77376 1455 mutex_lock(&chip->mutex);
1da177e4
LT
1456 continue;
1457 }
1458
b95f9609
KB
1459 if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1460 break;
1461
02b15e34
TP
1462 if (chip_ready(map, adr)) {
1463 xip_enable(map, chip, adr);
1da177e4 1464 goto op_done;
02b15e34 1465 }
1da177e4
LT
1466
1467 /* Latency issues. Drop the lock, wait a while and retry */
02b15e34 1468 UDELAY(map, chip, adr, 1);
1da177e4
LT
1469 }
1470
1da177e4
LT
1471 /* reset on all failures. */
1472 map_write( map, CMD(0xF0), chip->start );
02b15e34 1473 xip_enable(map, chip, adr);
1da177e4
LT
1474 /* FIXME - should have reset delay before continuing */
1475
02b15e34
TP
1476 printk(KERN_WARNING "MTD %s(): software timeout\n",
1477 __func__ );
1478
1da177e4
LT
1479 ret = -EIO;
1480 op_done:
1481 chip->state = FL_READY;
1482 put_chip(map, chip, adr);
c4e77376 1483 mutex_unlock(&chip->mutex);
1da177e4
LT
1484
1485 return ret;
1486}
1487
1488
1489static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1490 size_t *retlen, const u_char *buf)
1491{
1492 struct map_info *map = mtd->priv;
1493 struct cfi_private *cfi = map->fldrv_priv;
1494 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1495 int ret = 0;
1496 int chipnum;
1497 unsigned long ofs;
1498
1499 *retlen = 0;
1500 if (!len)
1501 return 0;
1502
1503 chipnum = to >> cfi->chipshift;
1504 ofs = to - (chipnum << cfi->chipshift);
1505
1506 /* If it's not bus-aligned, do the first word write */
1507 if (ofs & (map_bankwidth(map)-1)) {
1508 size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1509 if (local_len > len)
1510 local_len = len;
1511 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1512 local_len, retlen, buf);
1513 if (ret)
1514 return ret;
1515 ofs += local_len;
1516 buf += local_len;
1517 len -= local_len;
1518
1519 if (ofs >> cfi->chipshift) {
1520 chipnum ++;
1521 ofs = 0;
1522 if (chipnum == cfi->numchips)
1523 return 0;
1524 }
1525 }
1526
1527 /* Write buffer is worth it only if more than one word to write... */
1528 while (len >= map_bankwidth(map) * 2) {
1529 /* We must not cross write block boundaries */
1530 int size = wbufsize - (ofs & (wbufsize-1));
1531
1532 if (size > len)
1533 size = len;
1534 if (size % map_bankwidth(map))
1535 size -= size % map_bankwidth(map);
1536
1f948b43 1537 ret = do_write_buffer(map, &cfi->chips[chipnum],
1da177e4
LT
1538 ofs, buf, size);
1539 if (ret)
1540 return ret;
1541
1542 ofs += size;
1543 buf += size;
1544 (*retlen) += size;
1545 len -= size;
1546
1547 if (ofs >> cfi->chipshift) {
1f948b43 1548 chipnum ++;
1da177e4
LT
1549 ofs = 0;
1550 if (chipnum == cfi->numchips)
1551 return 0;
1552 }
1553 }
1554
1555 if (len) {
1556 size_t retlen_dregs = 0;
1557
1558 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1559 len, &retlen_dregs, buf);
1560
1561 *retlen += retlen_dregs;
1562 return ret;
1563 }
1564
1565 return 0;
1566}
1567
1568
1569/*
1570 * Handle devices with one erase region, that only implement
1571 * the chip erase command.
1572 */
02b15e34 1573static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
1da177e4
LT
1574{
1575 struct cfi_private *cfi = map->fldrv_priv;
1576 unsigned long timeo = jiffies + HZ;
1577 unsigned long int adr;
1578 DECLARE_WAITQUEUE(wait, current);
1579 int ret = 0;
1580
1581 adr = cfi->addr_unlock1;
1582
c4e77376 1583 mutex_lock(&chip->mutex);
1da177e4
LT
1584 ret = get_chip(map, chip, adr, FL_WRITING);
1585 if (ret) {
c4e77376 1586 mutex_unlock(&chip->mutex);
1da177e4
LT
1587 return ret;
1588 }
1589
1590 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1591 __func__, chip->start );
1592
02b15e34 1593 XIP_INVAL_CACHED_RANGE(map, adr, map->size);
1da177e4 1594 ENABLE_VPP(map);
02b15e34
TP
1595 xip_disable(map, chip, adr);
1596
1da177e4
LT
1597 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1598 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1599 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1600 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1601 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1602 cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1603
1604 chip->state = FL_ERASING;
1605 chip->erase_suspended = 0;
1606 chip->in_progress_block_addr = adr;
1607
02b15e34
TP
1608 INVALIDATE_CACHE_UDELAY(map, chip,
1609 adr, map->size,
1610 chip->erase_time*500);
1da177e4
LT
1611
1612 timeo = jiffies + (HZ*20);
1613
1614 for (;;) {
1615 if (chip->state != FL_ERASING) {
1616 /* Someone's suspended the erase. Sleep */
1617 set_current_state(TASK_UNINTERRUPTIBLE);
1618 add_wait_queue(&chip->wq, &wait);
c4e77376 1619 mutex_unlock(&chip->mutex);
1da177e4
LT
1620 schedule();
1621 remove_wait_queue(&chip->wq, &wait);
c4e77376 1622 mutex_lock(&chip->mutex);
1da177e4
LT
1623 continue;
1624 }
1625 if (chip->erase_suspended) {
1626 /* This erase was suspended and resumed.
1627 Adjust the timeout */
1628 timeo = jiffies + (HZ*20); /* FIXME */
1629 chip->erase_suspended = 0;
1630 }
1631
1632 if (chip_ready(map, adr))
fb4a90bf 1633 break;
1da177e4 1634
fb4a90bf
EB
1635 if (time_after(jiffies, timeo)) {
1636 printk(KERN_WARNING "MTD %s(): software timeout\n",
1637 __func__ );
1da177e4 1638 break;
fb4a90bf 1639 }
1da177e4
LT
1640
1641 /* Latency issues. Drop the lock, wait a while and retry */
02b15e34 1642 UDELAY(map, chip, adr, 1000000/HZ);
1da177e4 1643 }
fb4a90bf
EB
1644 /* Did we succeed? */
1645 if (!chip_good(map, adr, map_word_ff(map))) {
1646 /* reset on all failures. */
1647 map_write( map, CMD(0xF0), chip->start );
1648 /* FIXME - should have reset delay before continuing */
1da177e4 1649
fb4a90bf
EB
1650 ret = -EIO;
1651 }
1da177e4 1652
1da177e4 1653 chip->state = FL_READY;
02b15e34 1654 xip_enable(map, chip, adr);
1da177e4 1655 put_chip(map, chip, adr);
c4e77376 1656 mutex_unlock(&chip->mutex);
1da177e4
LT
1657
1658 return ret;
1659}
1660
1661
02b15e34 1662static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
1da177e4
LT
1663{
1664 struct cfi_private *cfi = map->fldrv_priv;
1665 unsigned long timeo = jiffies + HZ;
1666 DECLARE_WAITQUEUE(wait, current);
1667 int ret = 0;
1668
1669 adr += chip->start;
1670
c4e77376 1671 mutex_lock(&chip->mutex);
1da177e4
LT
1672 ret = get_chip(map, chip, adr, FL_ERASING);
1673 if (ret) {
c4e77376 1674 mutex_unlock(&chip->mutex);
1da177e4
LT
1675 return ret;
1676 }
1677
1678 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1679 __func__, adr );
1680
02b15e34 1681 XIP_INVAL_CACHED_RANGE(map, adr, len);
1da177e4 1682 ENABLE_VPP(map);
02b15e34
TP
1683 xip_disable(map, chip, adr);
1684
1da177e4
LT
1685 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1686 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1687 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1688 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1689 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
08968041 1690 map_write(map, cfi->sector_erase_cmd, adr);
1da177e4
LT
1691
1692 chip->state = FL_ERASING;
1693 chip->erase_suspended = 0;
1694 chip->in_progress_block_addr = adr;
02b15e34
TP
1695
1696 INVALIDATE_CACHE_UDELAY(map, chip,
1697 adr, len,
1698 chip->erase_time*500);
1da177e4
LT
1699
1700 timeo = jiffies + (HZ*20);
1701
1702 for (;;) {
1703 if (chip->state != FL_ERASING) {
1704 /* Someone's suspended the erase. Sleep */
1705 set_current_state(TASK_UNINTERRUPTIBLE);
1706 add_wait_queue(&chip->wq, &wait);
c4e77376 1707 mutex_unlock(&chip->mutex);
1da177e4
LT
1708 schedule();
1709 remove_wait_queue(&chip->wq, &wait);
c4e77376 1710 mutex_lock(&chip->mutex);
1da177e4
LT
1711 continue;
1712 }
1713 if (chip->erase_suspended) {
1714 /* This erase was suspended and resumed.
1715 Adjust the timeout */
1716 timeo = jiffies + (HZ*20); /* FIXME */
1717 chip->erase_suspended = 0;
1718 }
1719
02b15e34
TP
1720 if (chip_ready(map, adr)) {
1721 xip_enable(map, chip, adr);
fb4a90bf 1722 break;
02b15e34 1723 }
1da177e4 1724
fb4a90bf 1725 if (time_after(jiffies, timeo)) {
02b15e34 1726 xip_enable(map, chip, adr);
fb4a90bf
EB
1727 printk(KERN_WARNING "MTD %s(): software timeout\n",
1728 __func__ );
1da177e4 1729 break;
fb4a90bf 1730 }
1da177e4
LT
1731
1732 /* Latency issues. Drop the lock, wait a while and retry */
02b15e34 1733 UDELAY(map, chip, adr, 1000000/HZ);
1da177e4 1734 }
fb4a90bf 1735 /* Did we succeed? */
22fd9a87 1736 if (!chip_good(map, adr, map_word_ff(map))) {
fb4a90bf
EB
1737 /* reset on all failures. */
1738 map_write( map, CMD(0xF0), chip->start );
1739 /* FIXME - should have reset delay before continuing */
1740
1741 ret = -EIO;
1742 }
1da177e4 1743
1da177e4
LT
1744 chip->state = FL_READY;
1745 put_chip(map, chip, adr);
c4e77376 1746 mutex_unlock(&chip->mutex);
1da177e4
LT
1747 return ret;
1748}
1749
1750
ce0f33ad 1751static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1da177e4
LT
1752{
1753 unsigned long ofs, len;
1754 int ret;
1755
1756 ofs = instr->addr;
1757 len = instr->len;
1758
1759 ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1760 if (ret)
1761 return ret;
1762
1763 instr->state = MTD_ERASE_DONE;
1764 mtd_erase_callback(instr);
1f948b43 1765
1da177e4
LT
1766 return 0;
1767}
1768
1769
1770static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
1771{
1772 struct map_info *map = mtd->priv;
1773 struct cfi_private *cfi = map->fldrv_priv;
1774 int ret = 0;
1775
1776 if (instr->addr != 0)
1777 return -EINVAL;
1778
1779 if (instr->len != mtd->size)
1780 return -EINVAL;
1781
1782 ret = do_erase_chip(map, &cfi->chips[0]);
1783 if (ret)
1784 return ret;
1785
1786 instr->state = MTD_ERASE_DONE;
1787 mtd_erase_callback(instr);
1f948b43 1788
1da177e4
LT
1789 return 0;
1790}
1791
0165508c
HS
1792static int do_atmel_lock(struct map_info *map, struct flchip *chip,
1793 unsigned long adr, int len, void *thunk)
1794{
1795 struct cfi_private *cfi = map->fldrv_priv;
1796 int ret;
1797
c4e77376 1798 mutex_lock(&chip->mutex);
0165508c
HS
1799 ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
1800 if (ret)
1801 goto out_unlock;
1802 chip->state = FL_LOCKING;
1803
1804 DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1805 __func__, adr, len);
1806
1807 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1808 cfi->device_type, NULL);
1809 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1810 cfi->device_type, NULL);
1811 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
1812 cfi->device_type, NULL);
1813 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1814 cfi->device_type, NULL);
1815 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1816 cfi->device_type, NULL);
1817 map_write(map, CMD(0x40), chip->start + adr);
1818
1819 chip->state = FL_READY;
1820 put_chip(map, chip, adr + chip->start);
1821 ret = 0;
1822
1823out_unlock:
c4e77376 1824 mutex_unlock(&chip->mutex);
0165508c
HS
1825 return ret;
1826}
1827
1828static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
1829 unsigned long adr, int len, void *thunk)
1830{
1831 struct cfi_private *cfi = map->fldrv_priv;
1832 int ret;
1833
c4e77376 1834 mutex_lock(&chip->mutex);
0165508c
HS
1835 ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
1836 if (ret)
1837 goto out_unlock;
1838 chip->state = FL_UNLOCKING;
1839
1840 DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1841 __func__, adr, len);
1842
1843 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1844 cfi->device_type, NULL);
1845 map_write(map, CMD(0x70), adr);
1846
1847 chip->state = FL_READY;
1848 put_chip(map, chip, adr + chip->start);
1849 ret = 0;
1850
1851out_unlock:
c4e77376 1852 mutex_unlock(&chip->mutex);
0165508c
HS
1853 return ret;
1854}
1855
69423d99 1856static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
0165508c
HS
1857{
1858 return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
1859}
1860
69423d99 1861static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
0165508c
HS
1862{
1863 return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
1864}
1865
1da177e4
LT
1866
1867static void cfi_amdstd_sync (struct mtd_info *mtd)
1868{
1869 struct map_info *map = mtd->priv;
1870 struct cfi_private *cfi = map->fldrv_priv;
1871 int i;
1872 struct flchip *chip;
1873 int ret = 0;
1874 DECLARE_WAITQUEUE(wait, current);
1875
1876 for (i=0; !ret && i<cfi->numchips; i++) {
1877 chip = &cfi->chips[i];
1878
1879 retry:
c4e77376 1880 mutex_lock(&chip->mutex);
1da177e4
LT
1881
1882 switch(chip->state) {
1883 case FL_READY:
1884 case FL_STATUS:
1885 case FL_CFI_QUERY:
1886 case FL_JEDEC_QUERY:
1887 chip->oldstate = chip->state;
1888 chip->state = FL_SYNCING;
1f948b43 1889 /* No need to wake_up() on this state change -
1da177e4
LT
1890 * as the whole point is that nobody can do anything
1891 * with the chip now anyway.
1892 */
1893 case FL_SYNCING:
c4e77376 1894 mutex_unlock(&chip->mutex);
1da177e4
LT
1895 break;
1896
1897 default:
1898 /* Not an idle state */
f8e30e44 1899 set_current_state(TASK_UNINTERRUPTIBLE);
1da177e4 1900 add_wait_queue(&chip->wq, &wait);
1f948b43 1901
c4e77376 1902 mutex_unlock(&chip->mutex);
1da177e4
LT
1903
1904 schedule();
1905
1906 remove_wait_queue(&chip->wq, &wait);
1f948b43 1907
1da177e4
LT
1908 goto retry;
1909 }
1910 }
1911
1912 /* Unlock the chips again */
1913
1914 for (i--; i >=0; i--) {
1915 chip = &cfi->chips[i];
1916
c4e77376 1917 mutex_lock(&chip->mutex);
1f948b43 1918
1da177e4
LT
1919 if (chip->state == FL_SYNCING) {
1920 chip->state = chip->oldstate;
1921 wake_up(&chip->wq);
1922 }
c4e77376 1923 mutex_unlock(&chip->mutex);
1da177e4
LT
1924 }
1925}
1926
1927
1928static int cfi_amdstd_suspend(struct mtd_info *mtd)
1929{
1930 struct map_info *map = mtd->priv;
1931 struct cfi_private *cfi = map->fldrv_priv;
1932 int i;
1933 struct flchip *chip;
1934 int ret = 0;
1935
1936 for (i=0; !ret && i<cfi->numchips; i++) {
1937 chip = &cfi->chips[i];
1938
c4e77376 1939 mutex_lock(&chip->mutex);
1da177e4
LT
1940
1941 switch(chip->state) {
1942 case FL_READY:
1943 case FL_STATUS:
1944 case FL_CFI_QUERY:
1945 case FL_JEDEC_QUERY:
1946 chip->oldstate = chip->state;
1947 chip->state = FL_PM_SUSPENDED;
1f948b43 1948 /* No need to wake_up() on this state change -
1da177e4
LT
1949 * as the whole point is that nobody can do anything
1950 * with the chip now anyway.
1951 */
1952 case FL_PM_SUSPENDED:
1953 break;
1954
1955 default:
1956 ret = -EAGAIN;
1957 break;
1958 }
c4e77376 1959 mutex_unlock(&chip->mutex);
1da177e4
LT
1960 }
1961
1962 /* Unlock the chips again */
1963
1964 if (ret) {
1965 for (i--; i >=0; i--) {
1966 chip = &cfi->chips[i];
1967
c4e77376 1968 mutex_lock(&chip->mutex);
1f948b43 1969
1da177e4
LT
1970 if (chip->state == FL_PM_SUSPENDED) {
1971 chip->state = chip->oldstate;
1972 wake_up(&chip->wq);
1973 }
c4e77376 1974 mutex_unlock(&chip->mutex);
1da177e4
LT
1975 }
1976 }
1f948b43 1977
1da177e4
LT
1978 return ret;
1979}
1980
1981
1982static void cfi_amdstd_resume(struct mtd_info *mtd)
1983{
1984 struct map_info *map = mtd->priv;
1985 struct cfi_private *cfi = map->fldrv_priv;
1986 int i;
1987 struct flchip *chip;
1988
1989 for (i=0; i<cfi->numchips; i++) {
1f948b43 1990
1da177e4
LT
1991 chip = &cfi->chips[i];
1992
c4e77376 1993 mutex_lock(&chip->mutex);
1f948b43 1994
1da177e4
LT
1995 if (chip->state == FL_PM_SUSPENDED) {
1996 chip->state = FL_READY;
1997 map_write(map, CMD(0xF0), chip->start);
1998 wake_up(&chip->wq);
1999 }
2000 else
2001 printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
2002
c4e77376 2003 mutex_unlock(&chip->mutex);
1da177e4
LT
2004 }
2005}
2006
eafe1311
KC
2007
2008/*
2009 * Ensure that the flash device is put back into read array mode before
2010 * unloading the driver or rebooting. On some systems, rebooting while
2011 * the flash is in query/program/erase mode will prevent the CPU from
2012 * fetching the bootloader code, requiring a hard reset or power cycle.
2013 */
2014static int cfi_amdstd_reset(struct mtd_info *mtd)
2015{
2016 struct map_info *map = mtd->priv;
2017 struct cfi_private *cfi = map->fldrv_priv;
2018 int i, ret;
2019 struct flchip *chip;
2020
2021 for (i = 0; i < cfi->numchips; i++) {
2022
2023 chip = &cfi->chips[i];
2024
2025 mutex_lock(&chip->mutex);
2026
2027 ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2028 if (!ret) {
2029 map_write(map, CMD(0xF0), chip->start);
2030 chip->state = FL_SHUTDOWN;
2031 put_chip(map, chip, chip->start);
2032 }
2033
2034 mutex_unlock(&chip->mutex);
2035 }
2036
2037 return 0;
2038}
2039
2040
2041static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
2042 void *v)
2043{
2044 struct mtd_info *mtd;
2045
2046 mtd = container_of(nb, struct mtd_info, reboot_notifier);
2047 cfi_amdstd_reset(mtd);
2048 return NOTIFY_DONE;
2049}
2050
2051
1da177e4
LT
2052static void cfi_amdstd_destroy(struct mtd_info *mtd)
2053{
2054 struct map_info *map = mtd->priv;
2055 struct cfi_private *cfi = map->fldrv_priv;
fa671646 2056
eafe1311
KC
2057 cfi_amdstd_reset(mtd);
2058 unregister_reboot_notifier(&mtd->reboot_notifier);
1da177e4
LT
2059 kfree(cfi->cmdset_priv);
2060 kfree(cfi->cfiq);
2061 kfree(cfi);
2062 kfree(mtd->eraseregions);
2063}
2064
1da177e4
LT
2065MODULE_LICENSE("GPL");
2066MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
2067MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
80461128 2068MODULE_ALIAS("cfi_cmdset_0006");
1e804cec 2069MODULE_ALIAS("cfi_cmdset_0701");
This page took 0.602706 seconds and 5 git commands to generate.