mtd: add leading underscore to all mtd functions
[deliverable/linux.git] / drivers / mtd / chips / cfi_cmdset_0002.c
CommitLineData
1da177e4
LT
1/*
2 * Common Flash Interface support:
3 * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4 *
5 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
02b15e34 7 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
1da177e4
LT
8 *
9 * 2_by_8 routines added by Simon Munton
10 *
11 * 4_by_16 work by Carolyn J. Smith
12 *
1f948b43 13 * XIP support hooks by Vitaly Wool (based on code for Intel flash
02b15e34 14 * by Nicolas Pitre)
1f948b43 15 *
87e92c06
CM
16 * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
17 *
1da177e4
LT
18 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
19 *
20 * This code is GPL
1da177e4
LT
21 */
22
1da177e4
LT
23#include <linux/module.h>
24#include <linux/types.h>
25#include <linux/kernel.h>
26#include <linux/sched.h>
27#include <linux/init.h>
28#include <asm/io.h>
29#include <asm/byteorder.h>
30
31#include <linux/errno.h>
32#include <linux/slab.h>
33#include <linux/delay.h>
34#include <linux/interrupt.h>
eafe1311 35#include <linux/reboot.h>
1da177e4
LT
36#include <linux/mtd/map.h>
37#include <linux/mtd/mtd.h>
38#include <linux/mtd/cfi.h>
02b15e34 39#include <linux/mtd/xip.h>
1da177e4
LT
40
41#define AMD_BOOTLOC_BUG
42#define FORCE_WORD_WRITE 0
43
44#define MAX_WORD_RETRIES 3
45
1da177e4 46#define SST49LF004B 0x0060
89072ef9 47#define SST49LF040B 0x0050
fb4a90bf 48#define SST49LF008A 0x005a
0165508c 49#define AT49BV6416 0x00d6
1da177e4
LT
50
51static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
52static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
53static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
54static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
55static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
56static void cfi_amdstd_sync (struct mtd_info *);
57static int cfi_amdstd_suspend (struct mtd_info *);
58static void cfi_amdstd_resume (struct mtd_info *);
eafe1311 59static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
1da177e4
LT
60static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
61
30ec5a2c
IS
62static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
63 size_t *retlen, const u_char *buf);
64
1da177e4
LT
65static void cfi_amdstd_destroy(struct mtd_info *);
66
67struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
68static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
69
70static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
71static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
72#include "fwh_lock.h"
73
69423d99
AH
74static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
75static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
0165508c 76
1da177e4
LT
77static struct mtd_chip_driver cfi_amdstd_chipdrv = {
78 .probe = NULL, /* Not usable directly */
79 .destroy = cfi_amdstd_destroy,
80 .name = "cfi_cmdset_0002",
81 .module = THIS_MODULE
82};
83
84
85/* #define DEBUG_CFI_FEATURES */
86
87
88#ifdef DEBUG_CFI_FEATURES
89static void cfi_tell_features(struct cfi_pri_amdstd *extp)
90{
91 const char* erase_suspend[3] = {
92 "Not supported", "Read only", "Read/write"
93 };
94 const char* top_bottom[6] = {
95 "No WP", "8x8KiB sectors at top & bottom, no WP",
96 "Bottom boot", "Top boot",
97 "Uniform, Bottom WP", "Uniform, Top WP"
98 };
99
100 printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1);
1f948b43 101 printk(" Address sensitive unlock: %s\n",
1da177e4
LT
102 (extp->SiliconRevision & 1) ? "Not required" : "Required");
103
104 if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
105 printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
106 else
107 printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
108
109 if (extp->BlkProt == 0)
110 printk(" Block protection: Not supported\n");
111 else
112 printk(" Block protection: %d sectors per group\n", extp->BlkProt);
113
114
115 printk(" Temporary block unprotect: %s\n",
116 extp->TmpBlkUnprotect ? "Supported" : "Not supported");
117 printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
118 printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps);
119 printk(" Burst mode: %s\n",
120 extp->BurstMode ? "Supported" : "Not supported");
121 if (extp->PageMode == 0)
122 printk(" Page mode: Not supported\n");
123 else
124 printk(" Page mode: %d word page\n", extp->PageMode << 2);
125
1f948b43 126 printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
1da177e4 127 extp->VppMin >> 4, extp->VppMin & 0xf);
1f948b43 128 printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
1da177e4
LT
129 extp->VppMax >> 4, extp->VppMax & 0xf);
130
131 if (extp->TopBottom < ARRAY_SIZE(top_bottom))
132 printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
133 else
134 printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
135}
136#endif
137
138#ifdef AMD_BOOTLOC_BUG
139/* Wheee. Bring me the head of someone at AMD. */
cc318222 140static void fixup_amd_bootblock(struct mtd_info *mtd)
1da177e4
LT
141{
142 struct map_info *map = mtd->priv;
143 struct cfi_private *cfi = map->fldrv_priv;
144 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
145 __u8 major = extp->MajorVersion;
146 __u8 minor = extp->MinorVersion;
147
148 if (((major << 8) | minor) < 0x3131) {
149 /* CFI version 1.0 => don't trust bootloc */
87e92c06 150
289c0522 151 pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
87e92c06
CM
152 map->name, cfi->mfr, cfi->id);
153
154 /* AFAICS all 29LV400 with a bottom boot block have a device ID
155 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
156 * These were badly detected as they have the 0x80 bit set
157 * so treat them as a special case.
158 */
159 if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
160
161 /* Macronix added CFI to their 2nd generation
162 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
163 * Fujitsu, Spansion, EON, ESI and older Macronix)
164 * has CFI.
165 *
166 * Therefore also check the manufacturer.
167 * This reduces the risk of false detection due to
168 * the 8-bit device ID.
169 */
f3e69c65 170 (cfi->mfr == CFI_MFR_MACRONIX)) {
289c0522 171 pr_debug("%s: Macronix MX29LV400C with bottom boot block"
87e92c06
CM
172 " detected\n", map->name);
173 extp->TopBottom = 2; /* bottom boot */
174 } else
1da177e4
LT
175 if (cfi->id & 0x80) {
176 printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
177 extp->TopBottom = 3; /* top boot */
178 } else {
179 extp->TopBottom = 2; /* bottom boot */
180 }
87e92c06 181
289c0522 182 pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
87e92c06
CM
183 " deduced %s from Device ID\n", map->name, major, minor,
184 extp->TopBottom == 2 ? "bottom" : "top");
1da177e4
LT
185 }
186}
187#endif
188
cc318222 189static void fixup_use_write_buffers(struct mtd_info *mtd)
1da177e4
LT
190{
191 struct map_info *map = mtd->priv;
192 struct cfi_private *cfi = map->fldrv_priv;
193 if (cfi->cfiq->BufWriteTimeoutTyp) {
289c0522 194 pr_debug("Using buffer write method\n" );
3c3c10bb 195 mtd->_write = cfi_amdstd_write_buffers;
1da177e4
LT
196 }
197}
198
5b0c5c2c 199/* Atmel chips don't use the same PRI format as AMD chips */
cc318222 200static void fixup_convert_atmel_pri(struct mtd_info *mtd)
5b0c5c2c
HS
201{
202 struct map_info *map = mtd->priv;
203 struct cfi_private *cfi = map->fldrv_priv;
204 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
205 struct cfi_pri_atmel atmel_pri;
206
207 memcpy(&atmel_pri, extp, sizeof(atmel_pri));
de591dac 208 memset((char *)extp + 5, 0, sizeof(*extp) - 5);
5b0c5c2c
HS
209
210 if (atmel_pri.Features & 0x02)
211 extp->EraseSuspend = 2;
212
be8f78b8
HS
213 /* Some chips got it backwards... */
214 if (cfi->id == AT49BV6416) {
215 if (atmel_pri.BottomBoot)
216 extp->TopBottom = 3;
217 else
218 extp->TopBottom = 2;
219 } else {
220 if (atmel_pri.BottomBoot)
221 extp->TopBottom = 2;
222 else
223 extp->TopBottom = 3;
224 }
d10a39d1
HCE
225
226 /* burst write mode not supported */
227 cfi->cfiq->BufWriteTimeoutTyp = 0;
228 cfi->cfiq->BufWriteTimeoutMax = 0;
5b0c5c2c
HS
229}
230
cc318222 231static void fixup_use_secsi(struct mtd_info *mtd)
1da177e4
LT
232{
233 /* Setup for chips with a secsi area */
3c3c10bb
AB
234 mtd->_read_user_prot_reg = cfi_amdstd_secsi_read;
235 mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read;
1da177e4
LT
236}
237
cc318222 238static void fixup_use_erase_chip(struct mtd_info *mtd)
1da177e4
LT
239{
240 struct map_info *map = mtd->priv;
241 struct cfi_private *cfi = map->fldrv_priv;
242 if ((cfi->cfiq->NumEraseRegions == 1) &&
243 ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
3c3c10bb 244 mtd->_erase = cfi_amdstd_erase_chip;
1da177e4 245 }
1f948b43 246
1da177e4
LT
247}
248
0165508c
HS
249/*
250 * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
251 * locked by default.
252 */
cc318222 253static void fixup_use_atmel_lock(struct mtd_info *mtd)
0165508c 254{
3c3c10bb
AB
255 mtd->_lock = cfi_atmel_lock;
256 mtd->_unlock = cfi_atmel_unlock;
e619a75f 257 mtd->flags |= MTD_POWERUP_LOCK;
0165508c
HS
258}
259
83dcd3bb
GL
260static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
261{
262 struct map_info *map = mtd->priv;
263 struct cfi_private *cfi = map->fldrv_priv;
264
265 /*
25985edc 266 * These flashes report two separate eraseblock regions based on the
83dcd3bb
GL
267 * sector_erase-size and block_erase-size, although they both operate on the
268 * same memory. This is not allowed according to CFI, so we just pick the
269 * sector_erase-size.
270 */
271 cfi->cfiq->NumEraseRegions = 1;
272}
273
cc318222 274static void fixup_sst39vf(struct mtd_info *mtd)
83dcd3bb
GL
275{
276 struct map_info *map = mtd->priv;
277 struct cfi_private *cfi = map->fldrv_priv;
278
279 fixup_old_sst_eraseregion(mtd);
280
281 cfi->addr_unlock1 = 0x5555;
282 cfi->addr_unlock2 = 0x2AAA;
283}
284
cc318222 285static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
5a0563f0
GL
286{
287 struct map_info *map = mtd->priv;
288 struct cfi_private *cfi = map->fldrv_priv;
289
290 fixup_old_sst_eraseregion(mtd);
291
292 cfi->addr_unlock1 = 0x555;
293 cfi->addr_unlock2 = 0x2AA;
08968041
GL
294
295 cfi->sector_erase_cmd = CMD(0x50);
5a0563f0
GL
296}
297
cc318222 298static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
9fc05fca
GL
299{
300 struct map_info *map = mtd->priv;
301 struct cfi_private *cfi = map->fldrv_priv;
302
cc318222 303 fixup_sst39vf_rev_b(mtd);
9fc05fca
GL
304
305 /*
306 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
307 * it should report a size of 8KBytes (0x0020*256).
308 */
309 cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
310 pr_warning("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n", mtd->name);
311}
312
cc318222 313static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
70b07255
TP
314{
315 struct map_info *map = mtd->priv;
316 struct cfi_private *cfi = map->fldrv_priv;
317
318 if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
319 cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
320 pr_warning("%s: Bad S29GL064N CFI data, adjust from 64 to 128 sectors\n", mtd->name);
321 }
322}
323
cc318222 324static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
70b07255
TP
325{
326 struct map_info *map = mtd->priv;
327 struct cfi_private *cfi = map->fldrv_priv;
328
329 if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
330 cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
331 pr_warning("%s: Bad S29GL032N CFI data, adjust from 127 to 63 sectors\n", mtd->name);
332 }
333}
334
83dcd3bb
GL
335/* Used to fix CFI-Tables of chips without Extended Query Tables */
336static struct cfi_fixup cfi_nopri_fixup_table[] = {
cc318222
GL
337 { CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
338 { CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
339 { CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
340 { CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
341 { CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
342 { CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
343 { CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
344 { CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
345 { 0, 0, NULL }
83dcd3bb
GL
346};
347
1da177e4 348static struct cfi_fixup cfi_fixup_table[] = {
cc318222 349 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
1da177e4 350#ifdef AMD_BOOTLOC_BUG
cc318222 351 { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
1065cda8 352 { CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
cc318222 353 { CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
1da177e4 354#endif
cc318222
GL
355 { CFI_MFR_AMD, 0x0050, fixup_use_secsi },
356 { CFI_MFR_AMD, 0x0053, fixup_use_secsi },
357 { CFI_MFR_AMD, 0x0055, fixup_use_secsi },
358 { CFI_MFR_AMD, 0x0056, fixup_use_secsi },
359 { CFI_MFR_AMD, 0x005C, fixup_use_secsi },
360 { CFI_MFR_AMD, 0x005F, fixup_use_secsi },
361 { CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
362 { CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
363 { CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
364 { CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
365 { CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
366 { CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
367 { CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
368 { CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
1da177e4 369#if !FORCE_WORD_WRITE
cc318222 370 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
1da177e4 371#endif
cc318222 372 { 0, 0, NULL }
1da177e4
LT
373};
374static struct cfi_fixup jedec_fixup_table[] = {
cc318222
GL
375 { CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
376 { CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
377 { CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
378 { 0, 0, NULL }
1da177e4
LT
379};
380
381static struct cfi_fixup fixup_table[] = {
382 /* The CFI vendor ids and the JEDEC vendor IDs appear
383 * to be common. It is like the devices id's are as
384 * well. This table is to pick all cases where
385 * we know that is the case.
386 */
cc318222
GL
387 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
388 { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
389 { 0, 0, NULL }
1da177e4
LT
390};
391
392
fefae48b
WG
393static void cfi_fixup_major_minor(struct cfi_private *cfi,
394 struct cfi_pri_amdstd *extp)
395{
e6372763 396 if (cfi->mfr == CFI_MFR_SAMSUNG) {
e8953b73
GL
397 if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
398 (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
e6372763
GL
399 /*
400 * Samsung K8P2815UQB and K8D6x16UxM chips
401 * report major=0 / minor=0.
e8953b73 402 * K8D3x16UxC chips report major=3 / minor=3.
e6372763
GL
403 */
404 printk(KERN_NOTICE " Fixing Samsung's Amd/Fujitsu"
405 " Extended Query version to 1.%c\n",
406 extp->MinorVersion);
407 extp->MajorVersion = '1';
408 }
409 }
410
9fc05fca
GL
411 /*
412 * SST 38VF640x chips report major=0xFF / minor=0xFF.
413 */
414 if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
415 extp->MajorVersion = '1';
416 extp->MinorVersion = '0';
417 }
fefae48b
WG
418}
419
1da177e4
LT
420struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
421{
422 struct cfi_private *cfi = map->fldrv_priv;
423 struct mtd_info *mtd;
424 int i;
425
95b93a0c 426 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
1da177e4
LT
427 if (!mtd) {
428 printk(KERN_WARNING "Failed to allocate memory for MTD device\n");
429 return NULL;
430 }
1da177e4
LT
431 mtd->priv = map;
432 mtd->type = MTD_NORFLASH;
433
434 /* Fill in the default mtd operations */
3c3c10bb
AB
435 mtd->_erase = cfi_amdstd_erase_varsize;
436 mtd->_write = cfi_amdstd_write_words;
437 mtd->_read = cfi_amdstd_read;
438 mtd->_sync = cfi_amdstd_sync;
439 mtd->_suspend = cfi_amdstd_suspend;
440 mtd->_resume = cfi_amdstd_resume;
1da177e4
LT
441 mtd->flags = MTD_CAP_NORFLASH;
442 mtd->name = map->name;
783ed81f 443 mtd->writesize = 1;
13ce77f4 444 mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
d261c72a 445
0a32a102
BN
446 pr_debug("MTD %s(): write buffer size %d\n", __func__,
447 mtd->writebufsize);
1da177e4 448
3c3c10bb 449 mtd->_panic_write = cfi_amdstd_panic_write;
eafe1311
KC
450 mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
451
1da177e4
LT
452 if (cfi->cfi_mode==CFI_MODE_CFI){
453 unsigned char bootloc;
1da177e4
LT
454 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
455 struct cfi_pri_amdstd *extp;
456
457 extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
564b8497
GL
458 if (extp) {
459 /*
460 * It's a real CFI chip, not one for which the probe
461 * routine faked a CFI structure.
462 */
463 cfi_fixup_major_minor(cfi, extp);
464
e17f47a1 465 /*
c9ddab25 466 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
631dd1a8
JM
467 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
468 * http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
5da19532 469 * http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
c9ddab25 470 * http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
e17f47a1 471 */
564b8497 472 if (extp->MajorVersion != '1' ||
c9ddab25 473 (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
564b8497 474 printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query "
e17f47a1
GL
475 "version %c.%c (%#02x/%#02x).\n",
476 extp->MajorVersion, extp->MinorVersion,
477 extp->MajorVersion, extp->MinorVersion);
564b8497
GL
478 kfree(extp);
479 kfree(mtd);
480 return NULL;
481 }
d88f977b 482
e17f47a1
GL
483 printk(KERN_INFO " Amd/Fujitsu Extended Query version %c.%c.\n",
484 extp->MajorVersion, extp->MinorVersion);
485
564b8497
GL
486 /* Install our own private info structure */
487 cfi->cmdset_priv = extp;
1da177e4 488
564b8497
GL
489 /* Apply cfi device specific fixups */
490 cfi_fixup(mtd, cfi_fixup_table);
1da177e4
LT
491
492#ifdef DEBUG_CFI_FEATURES
564b8497
GL
493 /* Tell the user about it in lots of lovely detail */
494 cfi_tell_features(extp);
1f948b43 495#endif
1da177e4 496
564b8497 497 bootloc = extp->TopBottom;
412da2f6
DW
498 if ((bootloc < 2) || (bootloc > 5)) {
499 printk(KERN_WARNING "%s: CFI contains unrecognised boot "
500 "bank location (%d). Assuming bottom.\n",
abab7ebf 501 map->name, bootloc);
564b8497
GL
502 bootloc = 2;
503 }
1da177e4 504
564b8497 505 if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
412da2f6 506 printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
1f948b43 507
564b8497
GL
508 for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
509 int j = (cfi->cfiq->NumEraseRegions-1)-i;
510 __u32 swap;
1f948b43 511
564b8497
GL
512 swap = cfi->cfiq->EraseRegionInfo[i];
513 cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
514 cfi->cfiq->EraseRegionInfo[j] = swap;
515 }
1da177e4 516 }
564b8497
GL
517 /* Set the default CFI lock/unlock addresses */
518 cfi->addr_unlock1 = 0x555;
519 cfi->addr_unlock2 = 0x2aa;
520 }
83dcd3bb 521 cfi_fixup(mtd, cfi_nopri_fixup_table);
564b8497
GL
522
523 if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
524 kfree(mtd);
525 return NULL;
1da177e4 526 }
1da177e4
LT
527
528 } /* CFI mode */
529 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
530 /* Apply jedec specific fixups */
531 cfi_fixup(mtd, jedec_fixup_table);
532 }
533 /* Apply generic fixups */
534 cfi_fixup(mtd, fixup_table);
535
536 for (i=0; i< cfi->numchips; i++) {
537 cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
538 cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
539 cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
83d48091
VS
540 cfi->chips[i].ref_point_counter = 0;
541 init_waitqueue_head(&(cfi->chips[i].wq));
1f948b43
TG
542 }
543
1da177e4 544 map->fldrv = &cfi_amdstd_chipdrv;
1f948b43 545
1da177e4
LT
546 return cfi_amdstd_setup(mtd);
547}
80461128 548struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
1e804cec 549struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
83ea4ef2 550EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
80461128 551EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
1e804cec 552EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
1da177e4
LT
553
554static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
555{
556 struct map_info *map = mtd->priv;
557 struct cfi_private *cfi = map->fldrv_priv;
558 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
559 unsigned long offset = 0;
560 int i,j;
561
1f948b43 562 printk(KERN_NOTICE "number of %s chips: %d\n",
1da177e4 563 (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
1f948b43 564 /* Select the correct geometry setup */
1da177e4
LT
565 mtd->size = devsize * cfi->numchips;
566
567 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
568 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
569 * mtd->numeraseregions, GFP_KERNEL);
1f948b43 570 if (!mtd->eraseregions) {
1da177e4
LT
571 printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n");
572 goto setup_err;
573 }
1f948b43 574
1da177e4
LT
575 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
576 unsigned long ernum, ersize;
577 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
578 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
1f948b43 579
1da177e4
LT
580 if (mtd->erasesize < ersize) {
581 mtd->erasesize = ersize;
582 }
583 for (j=0; j<cfi->numchips; j++) {
584 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
585 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
586 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
587 }
588 offset += (ersize * ernum);
589 }
590 if (offset != devsize) {
591 /* Argh */
592 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
593 goto setup_err;
594 }
1da177e4 595
1da177e4 596 __module_get(THIS_MODULE);
eafe1311 597 register_reboot_notifier(&mtd->reboot_notifier);
1da177e4
LT
598 return mtd;
599
600 setup_err:
17fabf15
JS
601 kfree(mtd->eraseregions);
602 kfree(mtd);
1da177e4
LT
603 kfree(cfi->cmdset_priv);
604 kfree(cfi->cfiq);
605 return NULL;
606}
607
608/*
609 * Return true if the chip is ready.
610 *
611 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
612 * non-suspended sector) and is indicated by no toggle bits toggling.
613 *
614 * Note that anything more complicated than checking if no bits are toggling
615 * (including checking DQ5 for an error status) is tricky to get working
25985edc
LDM
616 * correctly and is therefore not done (particularly with interleaved chips
617 * as each chip must be checked independently of the others).
1da177e4 618 */
02b15e34 619static int __xipram chip_ready(struct map_info *map, unsigned long addr)
1da177e4
LT
620{
621 map_word d, t;
622
623 d = map_read(map, addr);
624 t = map_read(map, addr);
625
626 return map_word_equal(map, d, t);
627}
628
fb4a90bf
EB
629/*
630 * Return true if the chip is ready and has the correct value.
631 *
632 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
633 * non-suspended sector) and it is indicated by no bits toggling.
634 *
635 * Error are indicated by toggling bits or bits held with the wrong value,
636 * or with bits toggling.
637 *
638 * Note that anything more complicated than checking if no bits are toggling
639 * (including checking DQ5 for an error status) is tricky to get working
25985edc
LDM
640 * correctly and is therefore not done (particularly with interleaved chips
641 * as each chip must be checked independently of the others).
fb4a90bf
EB
642 *
643 */
02b15e34 644static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
fb4a90bf
EB
645{
646 map_word oldd, curd;
647
648 oldd = map_read(map, addr);
649 curd = map_read(map, addr);
650
1f948b43 651 return map_word_equal(map, oldd, curd) &&
fb4a90bf
EB
652 map_word_equal(map, curd, expected);
653}
654
1da177e4
LT
655static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
656{
657 DECLARE_WAITQUEUE(wait, current);
658 struct cfi_private *cfi = map->fldrv_priv;
659 unsigned long timeo;
660 struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
661
662 resettime:
663 timeo = jiffies + HZ;
664 retry:
665 switch (chip->state) {
666
667 case FL_STATUS:
668 for (;;) {
669 if (chip_ready(map, adr))
670 break;
671
672 if (time_after(jiffies, timeo)) {
673 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
1da177e4
LT
674 return -EIO;
675 }
c4e77376 676 mutex_unlock(&chip->mutex);
1da177e4 677 cfi_udelay(1);
c4e77376 678 mutex_lock(&chip->mutex);
1da177e4
LT
679 /* Someone else might have been playing with it. */
680 goto retry;
681 }
1f948b43 682
1da177e4
LT
683 case FL_READY:
684 case FL_CFI_QUERY:
685 case FL_JEDEC_QUERY:
686 return 0;
687
688 case FL_ERASING:
2695eab9
JT
689 if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
690 !(mode == FL_READY || mode == FL_POINT ||
691 (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
1da177e4
LT
692 goto sleep;
693
694 /* We could check to see if we're trying to access the sector
695 * that is currently being erased. However, no user will try
696 * anything like that so we just wait for the timeout. */
697
698 /* Erase suspend */
699 /* It's harmless to issue the Erase-Suspend and Erase-Resume
700 * commands when the erase algorithm isn't in progress. */
701 map_write(map, CMD(0xB0), chip->in_progress_block_addr);
702 chip->oldstate = FL_ERASING;
703 chip->state = FL_ERASE_SUSPENDING;
704 chip->erase_suspended = 1;
705 for (;;) {
706 if (chip_ready(map, adr))
707 break;
708
709 if (time_after(jiffies, timeo)) {
710 /* Should have suspended the erase by now.
711 * Send an Erase-Resume command as either
712 * there was an error (so leave the erase
713 * routine to recover from it) or we trying to
714 * use the erase-in-progress sector. */
100f2341 715 put_chip(map, chip, adr);
1da177e4
LT
716 printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
717 return -EIO;
718 }
1f948b43 719
c4e77376 720 mutex_unlock(&chip->mutex);
1da177e4 721 cfi_udelay(1);
c4e77376 722 mutex_lock(&chip->mutex);
1da177e4
LT
723 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
724 So we can just loop here. */
725 }
726 chip->state = FL_READY;
727 return 0;
728
02b15e34
TP
729 case FL_XIP_WHILE_ERASING:
730 if (mode != FL_READY && mode != FL_POINT &&
731 (!cfip || !(cfip->EraseSuspend&2)))
732 goto sleep;
733 chip->oldstate = chip->state;
734 chip->state = FL_READY;
735 return 0;
736
eafe1311
KC
737 case FL_SHUTDOWN:
738 /* The machine is rebooting */
739 return -EIO;
740
1da177e4
LT
741 case FL_POINT:
742 /* Only if there's no operation suspended... */
743 if (mode == FL_READY && chip->oldstate == FL_READY)
744 return 0;
745
746 default:
747 sleep:
748 set_current_state(TASK_UNINTERRUPTIBLE);
749 add_wait_queue(&chip->wq, &wait);
c4e77376 750 mutex_unlock(&chip->mutex);
1da177e4
LT
751 schedule();
752 remove_wait_queue(&chip->wq, &wait);
c4e77376 753 mutex_lock(&chip->mutex);
1da177e4
LT
754 goto resettime;
755 }
756}
757
758
759static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
760{
761 struct cfi_private *cfi = map->fldrv_priv;
762
763 switch(chip->oldstate) {
764 case FL_ERASING:
08968041 765 map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
1da177e4
LT
766 chip->oldstate = FL_READY;
767 chip->state = FL_ERASING;
768 break;
769
02b15e34
TP
770 case FL_XIP_WHILE_ERASING:
771 chip->state = chip->oldstate;
772 chip->oldstate = FL_READY;
773 break;
774
1da177e4
LT
775 case FL_READY:
776 case FL_STATUS:
777 /* We should really make set_vpp() count, rather than doing this */
778 DISABLE_VPP(map);
779 break;
780 default:
781 printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
782 }
783 wake_up(&chip->wq);
784}
785
02b15e34
TP
786#ifdef CONFIG_MTD_XIP
787
788/*
789 * No interrupt what so ever can be serviced while the flash isn't in array
790 * mode. This is ensured by the xip_disable() and xip_enable() functions
791 * enclosing any code path where the flash is known not to be in array mode.
792 * And within a XIP disabled code path, only functions marked with __xipram
793 * may be called and nothing else (it's a good thing to inspect generated
794 * assembly to make sure inline functions were actually inlined and that gcc
795 * didn't emit calls to its own support functions). Also configuring MTD CFI
796 * support to a single buswidth and a single interleave is also recommended.
797 */
f8eb321b 798
02b15e34
TP
799static void xip_disable(struct map_info *map, struct flchip *chip,
800 unsigned long adr)
801{
802 /* TODO: chips with no XIP use should ignore and return */
803 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
804 local_irq_disable();
805}
806
807static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
808 unsigned long adr)
809{
810 struct cfi_private *cfi = map->fldrv_priv;
811
812 if (chip->state != FL_POINT && chip->state != FL_READY) {
813 map_write(map, CMD(0xf0), adr);
814 chip->state = FL_READY;
815 }
816 (void) map_read(map, adr);
97f927a4 817 xip_iprefetch();
02b15e34
TP
818 local_irq_enable();
819}
820
821/*
822 * When a delay is required for the flash operation to complete, the
823 * xip_udelay() function is polling for both the given timeout and pending
824 * (but still masked) hardware interrupts. Whenever there is an interrupt
1f948b43 825 * pending then the flash erase operation is suspended, array mode restored
02b15e34
TP
826 * and interrupts unmasked. Task scheduling might also happen at that
827 * point. The CPU eventually returns from the interrupt or the call to
828 * schedule() and the suspended flash operation is resumed for the remaining
829 * of the delay period.
830 *
831 * Warning: this function _will_ fool interrupt latency tracing tools.
832 */
833
834static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
835 unsigned long adr, int usec)
836{
837 struct cfi_private *cfi = map->fldrv_priv;
838 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
839 map_word status, OK = CMD(0x80);
840 unsigned long suspended, start = xip_currtime();
841 flstate_t oldstate;
842
843 do {
844 cpu_relax();
845 if (xip_irqpending() && extp &&
846 ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
847 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
848 /*
1f948b43
TG
849 * Let's suspend the erase operation when supported.
850 * Note that we currently don't try to suspend
851 * interleaved chips if there is already another
02b15e34
TP
852 * operation suspended (imagine what happens
853 * when one chip was already done with the current
854 * operation while another chip suspended it, then
855 * we resume the whole thing at once). Yes, it
856 * can happen!
857 */
858 map_write(map, CMD(0xb0), adr);
859 usec -= xip_elapsed_since(start);
860 suspended = xip_currtime();
861 do {
862 if (xip_elapsed_since(suspended) > 100000) {
863 /*
864 * The chip doesn't want to suspend
865 * after waiting for 100 msecs.
866 * This is a critical error but there
867 * is not much we can do here.
868 */
869 return;
870 }
871 status = map_read(map, adr);
872 } while (!map_word_andequal(map, status, OK, OK));
873
874 /* Suspend succeeded */
875 oldstate = chip->state;
876 if (!map_word_bitsset(map, status, CMD(0x40)))
877 break;
878 chip->state = FL_XIP_WHILE_ERASING;
879 chip->erase_suspended = 1;
880 map_write(map, CMD(0xf0), adr);
881 (void) map_read(map, adr);
ca5c23c3 882 xip_iprefetch();
02b15e34 883 local_irq_enable();
c4e77376 884 mutex_unlock(&chip->mutex);
ca5c23c3 885 xip_iprefetch();
02b15e34
TP
886 cond_resched();
887
888 /*
889 * We're back. However someone else might have
890 * decided to go write to the chip if we are in
891 * a suspended erase state. If so let's wait
892 * until it's done.
893 */
c4e77376 894 mutex_lock(&chip->mutex);
02b15e34
TP
895 while (chip->state != FL_XIP_WHILE_ERASING) {
896 DECLARE_WAITQUEUE(wait, current);
897 set_current_state(TASK_UNINTERRUPTIBLE);
898 add_wait_queue(&chip->wq, &wait);
c4e77376 899 mutex_unlock(&chip->mutex);
02b15e34
TP
900 schedule();
901 remove_wait_queue(&chip->wq, &wait);
c4e77376 902 mutex_lock(&chip->mutex);
02b15e34
TP
903 }
904 /* Disallow XIP again */
905 local_irq_disable();
906
907 /* Resume the write or erase operation */
08968041 908 map_write(map, cfi->sector_erase_cmd, adr);
02b15e34
TP
909 chip->state = oldstate;
910 start = xip_currtime();
911 } else if (usec >= 1000000/HZ) {
912 /*
913 * Try to save on CPU power when waiting delay
914 * is at least a system timer tick period.
915 * No need to be extremely accurate here.
916 */
917 xip_cpu_idle();
918 }
919 status = map_read(map, adr);
920 } while (!map_word_andequal(map, status, OK, OK)
921 && xip_elapsed_since(start) < usec);
922}
923
924#define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
925
926/*
927 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
928 * the flash is actively programming or erasing since we have to poll for
929 * the operation to complete anyway. We can't do that in a generic way with
930 * a XIP setup so do it before the actual flash operation in this case
931 * and stub it out from INVALIDATE_CACHE_UDELAY.
932 */
933#define XIP_INVAL_CACHED_RANGE(map, from, size) \
934 INVALIDATE_CACHED_RANGE(map, from, size)
935
936#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
937 UDELAY(map, chip, adr, usec)
938
939/*
940 * Extra notes:
941 *
942 * Activating this XIP support changes the way the code works a bit. For
943 * example the code to suspend the current process when concurrent access
944 * happens is never executed because xip_udelay() will always return with the
945 * same chip state as it was entered with. This is why there is no care for
946 * the presence of add_wait_queue() or schedule() calls from within a couple
947 * xip_disable()'d areas of code, like in do_erase_oneblock for example.
948 * The queueing and scheduling are always happening within xip_udelay().
949 *
950 * Similarly, get_chip() and put_chip() just happen to always be executed
951 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
952 * is in array mode, therefore never executing many cases therein and not
953 * causing any problem with XIP.
954 */
955
956#else
957
958#define xip_disable(map, chip, adr)
959#define xip_enable(map, chip, adr)
960#define XIP_INVAL_CACHED_RANGE(x...)
961
962#define UDELAY(map, chip, adr, usec) \
963do { \
c4e77376 964 mutex_unlock(&chip->mutex); \
02b15e34 965 cfi_udelay(usec); \
c4e77376 966 mutex_lock(&chip->mutex); \
02b15e34
TP
967} while (0)
968
969#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
970do { \
c4e77376 971 mutex_unlock(&chip->mutex); \
02b15e34
TP
972 INVALIDATE_CACHED_RANGE(map, adr, len); \
973 cfi_udelay(usec); \
c4e77376 974 mutex_lock(&chip->mutex); \
02b15e34
TP
975} while (0)
976
977#endif
1da177e4
LT
978
979static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
980{
981 unsigned long cmd_addr;
982 struct cfi_private *cfi = map->fldrv_priv;
983 int ret;
984
985 adr += chip->start;
986
1f948b43
TG
987 /* Ensure cmd read/writes are aligned. */
988 cmd_addr = adr & ~(map_bankwidth(map)-1);
1da177e4 989
c4e77376 990 mutex_lock(&chip->mutex);
1da177e4
LT
991 ret = get_chip(map, chip, cmd_addr, FL_READY);
992 if (ret) {
c4e77376 993 mutex_unlock(&chip->mutex);
1da177e4
LT
994 return ret;
995 }
996
997 if (chip->state != FL_POINT && chip->state != FL_READY) {
998 map_write(map, CMD(0xf0), cmd_addr);
999 chip->state = FL_READY;
1000 }
1001
1002 map_copy_from(map, buf, adr, len);
1003
1004 put_chip(map, chip, cmd_addr);
1005
c4e77376 1006 mutex_unlock(&chip->mutex);
1da177e4
LT
1007 return 0;
1008}
1009
1010
1011static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1012{
1013 struct map_info *map = mtd->priv;
1014 struct cfi_private *cfi = map->fldrv_priv;
1015 unsigned long ofs;
1016 int chipnum;
1017 int ret = 0;
1018
1019 /* ofs: offset within the first chip that the first read should start */
1020
1021 chipnum = (from >> cfi->chipshift);
1022 ofs = from - (chipnum << cfi->chipshift);
1023
1024
1025 *retlen = 0;
1026
1027 while (len) {
1028 unsigned long thislen;
1029
1030 if (chipnum >= cfi->numchips)
1031 break;
1032
1033 if ((len + ofs -1) >> cfi->chipshift)
1034 thislen = (1<<cfi->chipshift) - ofs;
1035 else
1036 thislen = len;
1037
1038 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1039 if (ret)
1040 break;
1041
1042 *retlen += thislen;
1043 len -= thislen;
1044 buf += thislen;
1045
1046 ofs = 0;
1047 chipnum++;
1048 }
1049 return ret;
1050}
1051
1052
1053static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1054{
1055 DECLARE_WAITQUEUE(wait, current);
1056 unsigned long timeo = jiffies + HZ;
1057 struct cfi_private *cfi = map->fldrv_priv;
1058
1059 retry:
c4e77376 1060 mutex_lock(&chip->mutex);
1da177e4
LT
1061
1062 if (chip->state != FL_READY){
1da177e4
LT
1063 set_current_state(TASK_UNINTERRUPTIBLE);
1064 add_wait_queue(&chip->wq, &wait);
1f948b43 1065
c4e77376 1066 mutex_unlock(&chip->mutex);
1da177e4
LT
1067
1068 schedule();
1069 remove_wait_queue(&chip->wq, &wait);
1da177e4
LT
1070 timeo = jiffies + HZ;
1071
1072 goto retry;
1f948b43 1073 }
1da177e4
LT
1074
1075 adr += chip->start;
1076
1077 chip->state = FL_READY;
1078
1079 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1080 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1081 cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1f948b43 1082
1da177e4
LT
1083 map_copy_from(map, buf, adr, len);
1084
1085 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1086 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1087 cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1088 cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1f948b43 1089
1da177e4 1090 wake_up(&chip->wq);
c4e77376 1091 mutex_unlock(&chip->mutex);
1da177e4
LT
1092
1093 return 0;
1094}
1095
1096static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1097{
1098 struct map_info *map = mtd->priv;
1099 struct cfi_private *cfi = map->fldrv_priv;
1100 unsigned long ofs;
1101 int chipnum;
1102 int ret = 0;
1103
1104
1105 /* ofs: offset within the first chip that the first read should start */
1106
1107 /* 8 secsi bytes per chip */
1108 chipnum=from>>3;
1109 ofs=from & 7;
1110
1111
1112 *retlen = 0;
1113
1114 while (len) {
1115 unsigned long thislen;
1116
1117 if (chipnum >= cfi->numchips)
1118 break;
1119
1120 if ((len + ofs -1) >> 3)
1121 thislen = (1<<3) - ofs;
1122 else
1123 thislen = len;
1124
1125 ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1126 if (ret)
1127 break;
1128
1129 *retlen += thislen;
1130 len -= thislen;
1131 buf += thislen;
1132
1133 ofs = 0;
1134 chipnum++;
1135 }
1136 return ret;
1137}
1138
1139
02b15e34 1140static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum)
1da177e4
LT
1141{
1142 struct cfi_private *cfi = map->fldrv_priv;
1143 unsigned long timeo = jiffies + HZ;
1144 /*
1145 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1146 * have a max write time of a few hundreds usec). However, we should
1147 * use the maximum timeout value given by the chip at probe time
1148 * instead. Unfortunately, struct flchip does have a field for
1149 * maximum timeout, only for typical which can be far too short
1150 * depending of the conditions. The ' + 1' is to avoid having a
1151 * timeout of 0 jiffies if HZ is smaller than 1000.
1152 */
1153 unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1154 int ret = 0;
1155 map_word oldd;
1156 int retry_cnt = 0;
1157
1158 adr += chip->start;
1159
c4e77376 1160 mutex_lock(&chip->mutex);
1da177e4
LT
1161 ret = get_chip(map, chip, adr, FL_WRITING);
1162 if (ret) {
c4e77376 1163 mutex_unlock(&chip->mutex);
1da177e4
LT
1164 return ret;
1165 }
1166
289c0522 1167 pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1da177e4
LT
1168 __func__, adr, datum.x[0] );
1169
1170 /*
1171 * Check for a NOP for the case when the datum to write is already
1172 * present - it saves time and works around buggy chips that corrupt
1173 * data at other locations when 0xff is written to a location that
1174 * already contains 0xff.
1175 */
1176 oldd = map_read(map, adr);
1177 if (map_word_equal(map, oldd, datum)) {
289c0522 1178 pr_debug("MTD %s(): NOP\n",
1da177e4
LT
1179 __func__);
1180 goto op_done;
1181 }
1182
02b15e34 1183 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1da177e4 1184 ENABLE_VPP(map);
02b15e34 1185 xip_disable(map, chip, adr);
1da177e4
LT
1186 retry:
1187 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1188 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1189 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1190 map_write(map, datum, adr);
1191 chip->state = FL_WRITING;
1192
02b15e34
TP
1193 INVALIDATE_CACHE_UDELAY(map, chip,
1194 adr, map_bankwidth(map),
1195 chip->word_write_time);
1da177e4
LT
1196
1197 /* See comment above for timeout value. */
1f948b43 1198 timeo = jiffies + uWriteTimeout;
1da177e4
LT
1199 for (;;) {
1200 if (chip->state != FL_WRITING) {
1201 /* Someone's suspended the write. Sleep */
1202 DECLARE_WAITQUEUE(wait, current);
1203
1204 set_current_state(TASK_UNINTERRUPTIBLE);
1205 add_wait_queue(&chip->wq, &wait);
c4e77376 1206 mutex_unlock(&chip->mutex);
1da177e4
LT
1207 schedule();
1208 remove_wait_queue(&chip->wq, &wait);
1209 timeo = jiffies + (HZ / 2); /* FIXME */
c4e77376 1210 mutex_lock(&chip->mutex);
1da177e4
LT
1211 continue;
1212 }
1213
b95f9609 1214 if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
02b15e34 1215 xip_enable(map, chip, adr);
fb4a90bf 1216 printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
02b15e34 1217 xip_disable(map, chip, adr);
b95f9609 1218 break;
fb4a90bf 1219 }
1da177e4 1220
b95f9609
KB
1221 if (chip_ready(map, adr))
1222 break;
1223
1da177e4 1224 /* Latency issues. Drop the lock, wait a while and retry */
02b15e34 1225 UDELAY(map, chip, adr, 1);
1da177e4 1226 }
fb4a90bf
EB
1227 /* Did we succeed? */
1228 if (!chip_good(map, adr, datum)) {
1229 /* reset on all failures. */
1230 map_write( map, CMD(0xF0), chip->start );
1231 /* FIXME - should have reset delay before continuing */
1da177e4 1232
1f948b43 1233 if (++retry_cnt <= MAX_WORD_RETRIES)
fb4a90bf 1234 goto retry;
1da177e4 1235
fb4a90bf
EB
1236 ret = -EIO;
1237 }
02b15e34 1238 xip_enable(map, chip, adr);
1da177e4
LT
1239 op_done:
1240 chip->state = FL_READY;
1241 put_chip(map, chip, adr);
c4e77376 1242 mutex_unlock(&chip->mutex);
1da177e4
LT
1243
1244 return ret;
1245}
1246
1247
1248static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1249 size_t *retlen, const u_char *buf)
1250{
1251 struct map_info *map = mtd->priv;
1252 struct cfi_private *cfi = map->fldrv_priv;
1253 int ret = 0;
1254 int chipnum;
1255 unsigned long ofs, chipstart;
1256 DECLARE_WAITQUEUE(wait, current);
1257
1258 *retlen = 0;
1259 if (!len)
1260 return 0;
1261
1262 chipnum = to >> cfi->chipshift;
1263 ofs = to - (chipnum << cfi->chipshift);
1264 chipstart = cfi->chips[chipnum].start;
1265
1266 /* If it's not bus-aligned, do the first byte write */
1267 if (ofs & (map_bankwidth(map)-1)) {
1268 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1269 int i = ofs - bus_ofs;
1270 int n = 0;
1271 map_word tmp_buf;
1272
1273 retry:
c4e77376 1274 mutex_lock(&cfi->chips[chipnum].mutex);
1da177e4
LT
1275
1276 if (cfi->chips[chipnum].state != FL_READY) {
1da177e4
LT
1277 set_current_state(TASK_UNINTERRUPTIBLE);
1278 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1279
c4e77376 1280 mutex_unlock(&cfi->chips[chipnum].mutex);
1da177e4
LT
1281
1282 schedule();
1283 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1da177e4
LT
1284 goto retry;
1285 }
1286
1287 /* Load 'tmp_buf' with old contents of flash */
1288 tmp_buf = map_read(map, bus_ofs+chipstart);
1289
c4e77376 1290 mutex_unlock(&cfi->chips[chipnum].mutex);
1da177e4
LT
1291
1292 /* Number of bytes to copy from buffer */
1293 n = min_t(int, len, map_bankwidth(map)-i);
1f948b43 1294
1da177e4
LT
1295 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1296
1f948b43 1297 ret = do_write_oneword(map, &cfi->chips[chipnum],
1da177e4 1298 bus_ofs, tmp_buf);
1f948b43 1299 if (ret)
1da177e4 1300 return ret;
1f948b43 1301
1da177e4
LT
1302 ofs += n;
1303 buf += n;
1304 (*retlen) += n;
1305 len -= n;
1306
1307 if (ofs >> cfi->chipshift) {
1f948b43 1308 chipnum ++;
1da177e4
LT
1309 ofs = 0;
1310 if (chipnum == cfi->numchips)
1311 return 0;
1312 }
1313 }
1f948b43 1314
1da177e4
LT
1315 /* We are now aligned, write as much as possible */
1316 while(len >= map_bankwidth(map)) {
1317 map_word datum;
1318
1319 datum = map_word_load(map, buf);
1320
1321 ret = do_write_oneword(map, &cfi->chips[chipnum],
1322 ofs, datum);
1323 if (ret)
1324 return ret;
1325
1326 ofs += map_bankwidth(map);
1327 buf += map_bankwidth(map);
1328 (*retlen) += map_bankwidth(map);
1329 len -= map_bankwidth(map);
1330
1331 if (ofs >> cfi->chipshift) {
1f948b43 1332 chipnum ++;
1da177e4
LT
1333 ofs = 0;
1334 if (chipnum == cfi->numchips)
1335 return 0;
1336 chipstart = cfi->chips[chipnum].start;
1337 }
1338 }
1339
1340 /* Write the trailing bytes if any */
1341 if (len & (map_bankwidth(map)-1)) {
1342 map_word tmp_buf;
1343
1344 retry1:
c4e77376 1345 mutex_lock(&cfi->chips[chipnum].mutex);
1da177e4
LT
1346
1347 if (cfi->chips[chipnum].state != FL_READY) {
1da177e4
LT
1348 set_current_state(TASK_UNINTERRUPTIBLE);
1349 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1350
c4e77376 1351 mutex_unlock(&cfi->chips[chipnum].mutex);
1da177e4
LT
1352
1353 schedule();
1354 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1da177e4
LT
1355 goto retry1;
1356 }
1357
1358 tmp_buf = map_read(map, ofs + chipstart);
1359
c4e77376 1360 mutex_unlock(&cfi->chips[chipnum].mutex);
1da177e4
LT
1361
1362 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1f948b43
TG
1363
1364 ret = do_write_oneword(map, &cfi->chips[chipnum],
1da177e4 1365 ofs, tmp_buf);
1f948b43 1366 if (ret)
1da177e4 1367 return ret;
1f948b43 1368
1da177e4
LT
1369 (*retlen) += len;
1370 }
1371
1372 return 0;
1373}
1374
1375
1376/*
1377 * FIXME: interleaved mode not tested, and probably not supported!
1378 */
02b15e34 1379static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1f948b43 1380 unsigned long adr, const u_char *buf,
02b15e34 1381 int len)
1da177e4
LT
1382{
1383 struct cfi_private *cfi = map->fldrv_priv;
1384 unsigned long timeo = jiffies + HZ;
1385 /* see comments in do_write_oneword() regarding uWriteTimeo. */
1386 unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1387 int ret = -EIO;
1388 unsigned long cmd_adr;
1389 int z, words;
1390 map_word datum;
1391
1392 adr += chip->start;
1393 cmd_adr = adr;
1394
c4e77376 1395 mutex_lock(&chip->mutex);
1da177e4
LT
1396 ret = get_chip(map, chip, adr, FL_WRITING);
1397 if (ret) {
c4e77376 1398 mutex_unlock(&chip->mutex);
1da177e4
LT
1399 return ret;
1400 }
1401
1402 datum = map_word_load(map, buf);
1403
289c0522 1404 pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1da177e4
LT
1405 __func__, adr, datum.x[0] );
1406
02b15e34 1407 XIP_INVAL_CACHED_RANGE(map, adr, len);
1da177e4 1408 ENABLE_VPP(map);
02b15e34 1409 xip_disable(map, chip, cmd_adr);
1f948b43 1410
1da177e4
LT
1411 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1412 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1da177e4
LT
1413
1414 /* Write Buffer Load */
1415 map_write(map, CMD(0x25), cmd_adr);
1416
1417 chip->state = FL_WRITING_TO_BUFFER;
1418
1419 /* Write length of data to come */
1420 words = len / map_bankwidth(map);
1421 map_write(map, CMD(words - 1), cmd_adr);
1422 /* Write data */
1423 z = 0;
1424 while(z < words * map_bankwidth(map)) {
1425 datum = map_word_load(map, buf);
1426 map_write(map, datum, adr + z);
1427
1428 z += map_bankwidth(map);
1429 buf += map_bankwidth(map);
1430 }
1431 z -= map_bankwidth(map);
1432
1433 adr += z;
1434
1435 /* Write Buffer Program Confirm: GO GO GO */
1436 map_write(map, CMD(0x29), cmd_adr);
1437 chip->state = FL_WRITING;
1438
02b15e34
TP
1439 INVALIDATE_CACHE_UDELAY(map, chip,
1440 adr, map_bankwidth(map),
1441 chip->word_write_time);
1da177e4 1442
1f948b43
TG
1443 timeo = jiffies + uWriteTimeout;
1444
1da177e4
LT
1445 for (;;) {
1446 if (chip->state != FL_WRITING) {
1447 /* Someone's suspended the write. Sleep */
1448 DECLARE_WAITQUEUE(wait, current);
1449
1450 set_current_state(TASK_UNINTERRUPTIBLE);
1451 add_wait_queue(&chip->wq, &wait);
c4e77376 1452 mutex_unlock(&chip->mutex);
1da177e4
LT
1453 schedule();
1454 remove_wait_queue(&chip->wq, &wait);
1455 timeo = jiffies + (HZ / 2); /* FIXME */
c4e77376 1456 mutex_lock(&chip->mutex);
1da177e4
LT
1457 continue;
1458 }
1459
b95f9609
KB
1460 if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1461 break;
1462
02b15e34
TP
1463 if (chip_ready(map, adr)) {
1464 xip_enable(map, chip, adr);
1da177e4 1465 goto op_done;
02b15e34 1466 }
1da177e4
LT
1467
1468 /* Latency issues. Drop the lock, wait a while and retry */
02b15e34 1469 UDELAY(map, chip, adr, 1);
1da177e4
LT
1470 }
1471
1da177e4
LT
1472 /* reset on all failures. */
1473 map_write( map, CMD(0xF0), chip->start );
02b15e34 1474 xip_enable(map, chip, adr);
1da177e4
LT
1475 /* FIXME - should have reset delay before continuing */
1476
02b15e34
TP
1477 printk(KERN_WARNING "MTD %s(): software timeout\n",
1478 __func__ );
1479
1da177e4
LT
1480 ret = -EIO;
1481 op_done:
1482 chip->state = FL_READY;
1483 put_chip(map, chip, adr);
c4e77376 1484 mutex_unlock(&chip->mutex);
1da177e4
LT
1485
1486 return ret;
1487}
1488
1489
1490static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1491 size_t *retlen, const u_char *buf)
1492{
1493 struct map_info *map = mtd->priv;
1494 struct cfi_private *cfi = map->fldrv_priv;
1495 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1496 int ret = 0;
1497 int chipnum;
1498 unsigned long ofs;
1499
1500 *retlen = 0;
1501 if (!len)
1502 return 0;
1503
1504 chipnum = to >> cfi->chipshift;
1505 ofs = to - (chipnum << cfi->chipshift);
1506
1507 /* If it's not bus-aligned, do the first word write */
1508 if (ofs & (map_bankwidth(map)-1)) {
1509 size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1510 if (local_len > len)
1511 local_len = len;
1512 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1513 local_len, retlen, buf);
1514 if (ret)
1515 return ret;
1516 ofs += local_len;
1517 buf += local_len;
1518 len -= local_len;
1519
1520 if (ofs >> cfi->chipshift) {
1521 chipnum ++;
1522 ofs = 0;
1523 if (chipnum == cfi->numchips)
1524 return 0;
1525 }
1526 }
1527
1528 /* Write buffer is worth it only if more than one word to write... */
1529 while (len >= map_bankwidth(map) * 2) {
1530 /* We must not cross write block boundaries */
1531 int size = wbufsize - (ofs & (wbufsize-1));
1532
1533 if (size > len)
1534 size = len;
1535 if (size % map_bankwidth(map))
1536 size -= size % map_bankwidth(map);
1537
1f948b43 1538 ret = do_write_buffer(map, &cfi->chips[chipnum],
1da177e4
LT
1539 ofs, buf, size);
1540 if (ret)
1541 return ret;
1542
1543 ofs += size;
1544 buf += size;
1545 (*retlen) += size;
1546 len -= size;
1547
1548 if (ofs >> cfi->chipshift) {
1f948b43 1549 chipnum ++;
1da177e4
LT
1550 ofs = 0;
1551 if (chipnum == cfi->numchips)
1552 return 0;
1553 }
1554 }
1555
1556 if (len) {
1557 size_t retlen_dregs = 0;
1558
1559 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1560 len, &retlen_dregs, buf);
1561
1562 *retlen += retlen_dregs;
1563 return ret;
1564 }
1565
1566 return 0;
1567}
1568
30ec5a2c
IS
1569/*
1570 * Wait for the flash chip to become ready to write data
1571 *
1572 * This is only called during the panic_write() path. When panic_write()
1573 * is called, the kernel is in the process of a panic, and will soon be
1574 * dead. Therefore we don't take any locks, and attempt to get access
1575 * to the chip as soon as possible.
1576 */
1577static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
1578 unsigned long adr)
1579{
1580 struct cfi_private *cfi = map->fldrv_priv;
1581 int retries = 10;
1582 int i;
1583
1584 /*
1585 * If the driver thinks the chip is idle, and no toggle bits
1586 * are changing, then the chip is actually idle for sure.
1587 */
1588 if (chip->state == FL_READY && chip_ready(map, adr))
1589 return 0;
1590
1591 /*
1592 * Try several times to reset the chip and then wait for it
1593 * to become idle. The upper limit of a few milliseconds of
1594 * delay isn't a big problem: the kernel is dying anyway. It
1595 * is more important to save the messages.
1596 */
1597 while (retries > 0) {
1598 const unsigned long timeo = (HZ / 1000) + 1;
1599
1600 /* send the reset command */
1601 map_write(map, CMD(0xF0), chip->start);
1602
1603 /* wait for the chip to become ready */
1604 for (i = 0; i < jiffies_to_usecs(timeo); i++) {
1605 if (chip_ready(map, adr))
1606 return 0;
1607
1608 udelay(1);
1609 }
1610 }
1611
1612 /* the chip never became ready */
1613 return -EBUSY;
1614}
1615
1616/*
1617 * Write out one word of data to a single flash chip during a kernel panic
1618 *
1619 * This is only called during the panic_write() path. When panic_write()
1620 * is called, the kernel is in the process of a panic, and will soon be
1621 * dead. Therefore we don't take any locks, and attempt to get access
1622 * to the chip as soon as possible.
1623 *
1624 * The implementation of this routine is intentionally similar to
1625 * do_write_oneword(), in order to ease code maintenance.
1626 */
1627static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
1628 unsigned long adr, map_word datum)
1629{
1630 const unsigned long uWriteTimeout = (HZ / 1000) + 1;
1631 struct cfi_private *cfi = map->fldrv_priv;
1632 int retry_cnt = 0;
1633 map_word oldd;
1634 int ret = 0;
1635 int i;
1636
1637 adr += chip->start;
1638
1639 ret = cfi_amdstd_panic_wait(map, chip, adr);
1640 if (ret)
1641 return ret;
1642
1643 pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
1644 __func__, adr, datum.x[0]);
1645
1646 /*
1647 * Check for a NOP for the case when the datum to write is already
1648 * present - it saves time and works around buggy chips that corrupt
1649 * data at other locations when 0xff is written to a location that
1650 * already contains 0xff.
1651 */
1652 oldd = map_read(map, adr);
1653 if (map_word_equal(map, oldd, datum)) {
1654 pr_debug("MTD %s(): NOP\n", __func__);
1655 goto op_done;
1656 }
1657
1658 ENABLE_VPP(map);
1659
1660retry:
1661 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1662 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1663 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1664 map_write(map, datum, adr);
1665
1666 for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
1667 if (chip_ready(map, adr))
1668 break;
1669
1670 udelay(1);
1671 }
1672
1673 if (!chip_good(map, adr, datum)) {
1674 /* reset on all failures. */
1675 map_write(map, CMD(0xF0), chip->start);
1676 /* FIXME - should have reset delay before continuing */
1677
1678 if (++retry_cnt <= MAX_WORD_RETRIES)
1679 goto retry;
1680
1681 ret = -EIO;
1682 }
1683
1684op_done:
1685 DISABLE_VPP(map);
1686 return ret;
1687}
1688
1689/*
1690 * Write out some data during a kernel panic
1691 *
1692 * This is used by the mtdoops driver to save the dying messages from a
1693 * kernel which has panic'd.
1694 *
1695 * This routine ignores all of the locking used throughout the rest of the
1696 * driver, in order to ensure that the data gets written out no matter what
1697 * state this driver (and the flash chip itself) was in when the kernel crashed.
1698 *
1699 * The implementation of this routine is intentionally similar to
1700 * cfi_amdstd_write_words(), in order to ease code maintenance.
1701 */
1702static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1703 size_t *retlen, const u_char *buf)
1704{
1705 struct map_info *map = mtd->priv;
1706 struct cfi_private *cfi = map->fldrv_priv;
1707 unsigned long ofs, chipstart;
1708 int ret = 0;
1709 int chipnum;
1710
1711 *retlen = 0;
1712 if (!len)
1713 return 0;
1714
1715 chipnum = to >> cfi->chipshift;
1716 ofs = to - (chipnum << cfi->chipshift);
1717 chipstart = cfi->chips[chipnum].start;
1718
1719 /* If it's not bus aligned, do the first byte write */
1720 if (ofs & (map_bankwidth(map) - 1)) {
1721 unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1);
1722 int i = ofs - bus_ofs;
1723 int n = 0;
1724 map_word tmp_buf;
1725
1726 ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs);
1727 if (ret)
1728 return ret;
1729
1730 /* Load 'tmp_buf' with old contents of flash */
1731 tmp_buf = map_read(map, bus_ofs + chipstart);
1732
1733 /* Number of bytes to copy from buffer */
1734 n = min_t(int, len, map_bankwidth(map) - i);
1735
1736 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1737
1738 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
1739 bus_ofs, tmp_buf);
1740 if (ret)
1741 return ret;
1742
1743 ofs += n;
1744 buf += n;
1745 (*retlen) += n;
1746 len -= n;
1747
1748 if (ofs >> cfi->chipshift) {
1749 chipnum++;
1750 ofs = 0;
1751 if (chipnum == cfi->numchips)
1752 return 0;
1753 }
1754 }
1755
1756 /* We are now aligned, write as much as possible */
1757 while (len >= map_bankwidth(map)) {
1758 map_word datum;
1759
1760 datum = map_word_load(map, buf);
1761
1762 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
1763 ofs, datum);
1764 if (ret)
1765 return ret;
1766
1767 ofs += map_bankwidth(map);
1768 buf += map_bankwidth(map);
1769 (*retlen) += map_bankwidth(map);
1770 len -= map_bankwidth(map);
1771
1772 if (ofs >> cfi->chipshift) {
1773 chipnum++;
1774 ofs = 0;
1775 if (chipnum == cfi->numchips)
1776 return 0;
1777
1778 chipstart = cfi->chips[chipnum].start;
1779 }
1780 }
1781
1782 /* Write the trailing bytes if any */
1783 if (len & (map_bankwidth(map) - 1)) {
1784 map_word tmp_buf;
1785
1786 ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs);
1787 if (ret)
1788 return ret;
1789
1790 tmp_buf = map_read(map, ofs + chipstart);
1791
1792 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1793
1794 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
1795 ofs, tmp_buf);
1796 if (ret)
1797 return ret;
1798
1799 (*retlen) += len;
1800 }
1801
1802 return 0;
1803}
1804
1da177e4
LT
1805
1806/*
1807 * Handle devices with one erase region, that only implement
1808 * the chip erase command.
1809 */
02b15e34 1810static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
1da177e4
LT
1811{
1812 struct cfi_private *cfi = map->fldrv_priv;
1813 unsigned long timeo = jiffies + HZ;
1814 unsigned long int adr;
1815 DECLARE_WAITQUEUE(wait, current);
1816 int ret = 0;
1817
1818 adr = cfi->addr_unlock1;
1819
c4e77376 1820 mutex_lock(&chip->mutex);
1da177e4
LT
1821 ret = get_chip(map, chip, adr, FL_WRITING);
1822 if (ret) {
c4e77376 1823 mutex_unlock(&chip->mutex);
1da177e4
LT
1824 return ret;
1825 }
1826
289c0522 1827 pr_debug("MTD %s(): ERASE 0x%.8lx\n",
1da177e4
LT
1828 __func__, chip->start );
1829
02b15e34 1830 XIP_INVAL_CACHED_RANGE(map, adr, map->size);
1da177e4 1831 ENABLE_VPP(map);
02b15e34
TP
1832 xip_disable(map, chip, adr);
1833
1da177e4
LT
1834 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1835 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1836 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1837 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1838 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1839 cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1840
1841 chip->state = FL_ERASING;
1842 chip->erase_suspended = 0;
1843 chip->in_progress_block_addr = adr;
1844
02b15e34
TP
1845 INVALIDATE_CACHE_UDELAY(map, chip,
1846 adr, map->size,
1847 chip->erase_time*500);
1da177e4
LT
1848
1849 timeo = jiffies + (HZ*20);
1850
1851 for (;;) {
1852 if (chip->state != FL_ERASING) {
1853 /* Someone's suspended the erase. Sleep */
1854 set_current_state(TASK_UNINTERRUPTIBLE);
1855 add_wait_queue(&chip->wq, &wait);
c4e77376 1856 mutex_unlock(&chip->mutex);
1da177e4
LT
1857 schedule();
1858 remove_wait_queue(&chip->wq, &wait);
c4e77376 1859 mutex_lock(&chip->mutex);
1da177e4
LT
1860 continue;
1861 }
1862 if (chip->erase_suspended) {
1863 /* This erase was suspended and resumed.
1864 Adjust the timeout */
1865 timeo = jiffies + (HZ*20); /* FIXME */
1866 chip->erase_suspended = 0;
1867 }
1868
1869 if (chip_ready(map, adr))
fb4a90bf 1870 break;
1da177e4 1871
fb4a90bf
EB
1872 if (time_after(jiffies, timeo)) {
1873 printk(KERN_WARNING "MTD %s(): software timeout\n",
1874 __func__ );
1da177e4 1875 break;
fb4a90bf 1876 }
1da177e4
LT
1877
1878 /* Latency issues. Drop the lock, wait a while and retry */
02b15e34 1879 UDELAY(map, chip, adr, 1000000/HZ);
1da177e4 1880 }
fb4a90bf
EB
1881 /* Did we succeed? */
1882 if (!chip_good(map, adr, map_word_ff(map))) {
1883 /* reset on all failures. */
1884 map_write( map, CMD(0xF0), chip->start );
1885 /* FIXME - should have reset delay before continuing */
1da177e4 1886
fb4a90bf
EB
1887 ret = -EIO;
1888 }
1da177e4 1889
1da177e4 1890 chip->state = FL_READY;
02b15e34 1891 xip_enable(map, chip, adr);
1da177e4 1892 put_chip(map, chip, adr);
c4e77376 1893 mutex_unlock(&chip->mutex);
1da177e4
LT
1894
1895 return ret;
1896}
1897
1898
02b15e34 1899static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
1da177e4
LT
1900{
1901 struct cfi_private *cfi = map->fldrv_priv;
1902 unsigned long timeo = jiffies + HZ;
1903 DECLARE_WAITQUEUE(wait, current);
1904 int ret = 0;
1905
1906 adr += chip->start;
1907
c4e77376 1908 mutex_lock(&chip->mutex);
1da177e4
LT
1909 ret = get_chip(map, chip, adr, FL_ERASING);
1910 if (ret) {
c4e77376 1911 mutex_unlock(&chip->mutex);
1da177e4
LT
1912 return ret;
1913 }
1914
289c0522 1915 pr_debug("MTD %s(): ERASE 0x%.8lx\n",
1da177e4
LT
1916 __func__, adr );
1917
02b15e34 1918 XIP_INVAL_CACHED_RANGE(map, adr, len);
1da177e4 1919 ENABLE_VPP(map);
02b15e34
TP
1920 xip_disable(map, chip, adr);
1921
1da177e4
LT
1922 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1923 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1924 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1925 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1926 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
08968041 1927 map_write(map, cfi->sector_erase_cmd, adr);
1da177e4
LT
1928
1929 chip->state = FL_ERASING;
1930 chip->erase_suspended = 0;
1931 chip->in_progress_block_addr = adr;
02b15e34
TP
1932
1933 INVALIDATE_CACHE_UDELAY(map, chip,
1934 adr, len,
1935 chip->erase_time*500);
1da177e4
LT
1936
1937 timeo = jiffies + (HZ*20);
1938
1939 for (;;) {
1940 if (chip->state != FL_ERASING) {
1941 /* Someone's suspended the erase. Sleep */
1942 set_current_state(TASK_UNINTERRUPTIBLE);
1943 add_wait_queue(&chip->wq, &wait);
c4e77376 1944 mutex_unlock(&chip->mutex);
1da177e4
LT
1945 schedule();
1946 remove_wait_queue(&chip->wq, &wait);
c4e77376 1947 mutex_lock(&chip->mutex);
1da177e4
LT
1948 continue;
1949 }
1950 if (chip->erase_suspended) {
1951 /* This erase was suspended and resumed.
1952 Adjust the timeout */
1953 timeo = jiffies + (HZ*20); /* FIXME */
1954 chip->erase_suspended = 0;
1955 }
1956
02b15e34
TP
1957 if (chip_ready(map, adr)) {
1958 xip_enable(map, chip, adr);
fb4a90bf 1959 break;
02b15e34 1960 }
1da177e4 1961
fb4a90bf 1962 if (time_after(jiffies, timeo)) {
02b15e34 1963 xip_enable(map, chip, adr);
fb4a90bf
EB
1964 printk(KERN_WARNING "MTD %s(): software timeout\n",
1965 __func__ );
1da177e4 1966 break;
fb4a90bf 1967 }
1da177e4
LT
1968
1969 /* Latency issues. Drop the lock, wait a while and retry */
02b15e34 1970 UDELAY(map, chip, adr, 1000000/HZ);
1da177e4 1971 }
fb4a90bf 1972 /* Did we succeed? */
22fd9a87 1973 if (!chip_good(map, adr, map_word_ff(map))) {
fb4a90bf
EB
1974 /* reset on all failures. */
1975 map_write( map, CMD(0xF0), chip->start );
1976 /* FIXME - should have reset delay before continuing */
1977
1978 ret = -EIO;
1979 }
1da177e4 1980
1da177e4
LT
1981 chip->state = FL_READY;
1982 put_chip(map, chip, adr);
c4e77376 1983 mutex_unlock(&chip->mutex);
1da177e4
LT
1984 return ret;
1985}
1986
1987
ce0f33ad 1988static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1da177e4
LT
1989{
1990 unsigned long ofs, len;
1991 int ret;
1992
1993 ofs = instr->addr;
1994 len = instr->len;
1995
1996 ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1997 if (ret)
1998 return ret;
1999
2000 instr->state = MTD_ERASE_DONE;
2001 mtd_erase_callback(instr);
1f948b43 2002
1da177e4
LT
2003 return 0;
2004}
2005
2006
2007static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
2008{
2009 struct map_info *map = mtd->priv;
2010 struct cfi_private *cfi = map->fldrv_priv;
2011 int ret = 0;
2012
2013 if (instr->addr != 0)
2014 return -EINVAL;
2015
2016 if (instr->len != mtd->size)
2017 return -EINVAL;
2018
2019 ret = do_erase_chip(map, &cfi->chips[0]);
2020 if (ret)
2021 return ret;
2022
2023 instr->state = MTD_ERASE_DONE;
2024 mtd_erase_callback(instr);
1f948b43 2025
1da177e4
LT
2026 return 0;
2027}
2028
0165508c
HS
2029static int do_atmel_lock(struct map_info *map, struct flchip *chip,
2030 unsigned long adr, int len, void *thunk)
2031{
2032 struct cfi_private *cfi = map->fldrv_priv;
2033 int ret;
2034
c4e77376 2035 mutex_lock(&chip->mutex);
0165508c
HS
2036 ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
2037 if (ret)
2038 goto out_unlock;
2039 chip->state = FL_LOCKING;
2040
0a32a102 2041 pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
0165508c
HS
2042
2043 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2044 cfi->device_type, NULL);
2045 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2046 cfi->device_type, NULL);
2047 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
2048 cfi->device_type, NULL);
2049 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2050 cfi->device_type, NULL);
2051 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2052 cfi->device_type, NULL);
2053 map_write(map, CMD(0x40), chip->start + adr);
2054
2055 chip->state = FL_READY;
2056 put_chip(map, chip, adr + chip->start);
2057 ret = 0;
2058
2059out_unlock:
c4e77376 2060 mutex_unlock(&chip->mutex);
0165508c
HS
2061 return ret;
2062}
2063
2064static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
2065 unsigned long adr, int len, void *thunk)
2066{
2067 struct cfi_private *cfi = map->fldrv_priv;
2068 int ret;
2069
c4e77376 2070 mutex_lock(&chip->mutex);
0165508c
HS
2071 ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
2072 if (ret)
2073 goto out_unlock;
2074 chip->state = FL_UNLOCKING;
2075
0a32a102 2076 pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
0165508c
HS
2077
2078 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2079 cfi->device_type, NULL);
2080 map_write(map, CMD(0x70), adr);
2081
2082 chip->state = FL_READY;
2083 put_chip(map, chip, adr + chip->start);
2084 ret = 0;
2085
2086out_unlock:
c4e77376 2087 mutex_unlock(&chip->mutex);
0165508c
HS
2088 return ret;
2089}
2090
69423d99 2091static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
0165508c
HS
2092{
2093 return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
2094}
2095
69423d99 2096static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
0165508c
HS
2097{
2098 return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
2099}
2100
1da177e4
LT
2101
2102static void cfi_amdstd_sync (struct mtd_info *mtd)
2103{
2104 struct map_info *map = mtd->priv;
2105 struct cfi_private *cfi = map->fldrv_priv;
2106 int i;
2107 struct flchip *chip;
2108 int ret = 0;
2109 DECLARE_WAITQUEUE(wait, current);
2110
2111 for (i=0; !ret && i<cfi->numchips; i++) {
2112 chip = &cfi->chips[i];
2113
2114 retry:
c4e77376 2115 mutex_lock(&chip->mutex);
1da177e4
LT
2116
2117 switch(chip->state) {
2118 case FL_READY:
2119 case FL_STATUS:
2120 case FL_CFI_QUERY:
2121 case FL_JEDEC_QUERY:
2122 chip->oldstate = chip->state;
2123 chip->state = FL_SYNCING;
1f948b43 2124 /* No need to wake_up() on this state change -
1da177e4
LT
2125 * as the whole point is that nobody can do anything
2126 * with the chip now anyway.
2127 */
2128 case FL_SYNCING:
c4e77376 2129 mutex_unlock(&chip->mutex);
1da177e4
LT
2130 break;
2131
2132 default:
2133 /* Not an idle state */
f8e30e44 2134 set_current_state(TASK_UNINTERRUPTIBLE);
1da177e4 2135 add_wait_queue(&chip->wq, &wait);
1f948b43 2136
c4e77376 2137 mutex_unlock(&chip->mutex);
1da177e4
LT
2138
2139 schedule();
2140
2141 remove_wait_queue(&chip->wq, &wait);
1f948b43 2142
1da177e4
LT
2143 goto retry;
2144 }
2145 }
2146
2147 /* Unlock the chips again */
2148
2149 for (i--; i >=0; i--) {
2150 chip = &cfi->chips[i];
2151
c4e77376 2152 mutex_lock(&chip->mutex);
1f948b43 2153
1da177e4
LT
2154 if (chip->state == FL_SYNCING) {
2155 chip->state = chip->oldstate;
2156 wake_up(&chip->wq);
2157 }
c4e77376 2158 mutex_unlock(&chip->mutex);
1da177e4
LT
2159 }
2160}
2161
2162
2163static int cfi_amdstd_suspend(struct mtd_info *mtd)
2164{
2165 struct map_info *map = mtd->priv;
2166 struct cfi_private *cfi = map->fldrv_priv;
2167 int i;
2168 struct flchip *chip;
2169 int ret = 0;
2170
2171 for (i=0; !ret && i<cfi->numchips; i++) {
2172 chip = &cfi->chips[i];
2173
c4e77376 2174 mutex_lock(&chip->mutex);
1da177e4
LT
2175
2176 switch(chip->state) {
2177 case FL_READY:
2178 case FL_STATUS:
2179 case FL_CFI_QUERY:
2180 case FL_JEDEC_QUERY:
2181 chip->oldstate = chip->state;
2182 chip->state = FL_PM_SUSPENDED;
1f948b43 2183 /* No need to wake_up() on this state change -
1da177e4
LT
2184 * as the whole point is that nobody can do anything
2185 * with the chip now anyway.
2186 */
2187 case FL_PM_SUSPENDED:
2188 break;
2189
2190 default:
2191 ret = -EAGAIN;
2192 break;
2193 }
c4e77376 2194 mutex_unlock(&chip->mutex);
1da177e4
LT
2195 }
2196
2197 /* Unlock the chips again */
2198
2199 if (ret) {
2200 for (i--; i >=0; i--) {
2201 chip = &cfi->chips[i];
2202
c4e77376 2203 mutex_lock(&chip->mutex);
1f948b43 2204
1da177e4
LT
2205 if (chip->state == FL_PM_SUSPENDED) {
2206 chip->state = chip->oldstate;
2207 wake_up(&chip->wq);
2208 }
c4e77376 2209 mutex_unlock(&chip->mutex);
1da177e4
LT
2210 }
2211 }
1f948b43 2212
1da177e4
LT
2213 return ret;
2214}
2215
2216
2217static void cfi_amdstd_resume(struct mtd_info *mtd)
2218{
2219 struct map_info *map = mtd->priv;
2220 struct cfi_private *cfi = map->fldrv_priv;
2221 int i;
2222 struct flchip *chip;
2223
2224 for (i=0; i<cfi->numchips; i++) {
1f948b43 2225
1da177e4
LT
2226 chip = &cfi->chips[i];
2227
c4e77376 2228 mutex_lock(&chip->mutex);
1f948b43 2229
1da177e4
LT
2230 if (chip->state == FL_PM_SUSPENDED) {
2231 chip->state = FL_READY;
2232 map_write(map, CMD(0xF0), chip->start);
2233 wake_up(&chip->wq);
2234 }
2235 else
2236 printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
2237
c4e77376 2238 mutex_unlock(&chip->mutex);
1da177e4
LT
2239 }
2240}
2241
eafe1311
KC
2242
2243/*
2244 * Ensure that the flash device is put back into read array mode before
2245 * unloading the driver or rebooting. On some systems, rebooting while
2246 * the flash is in query/program/erase mode will prevent the CPU from
2247 * fetching the bootloader code, requiring a hard reset or power cycle.
2248 */
2249static int cfi_amdstd_reset(struct mtd_info *mtd)
2250{
2251 struct map_info *map = mtd->priv;
2252 struct cfi_private *cfi = map->fldrv_priv;
2253 int i, ret;
2254 struct flchip *chip;
2255
2256 for (i = 0; i < cfi->numchips; i++) {
2257
2258 chip = &cfi->chips[i];
2259
2260 mutex_lock(&chip->mutex);
2261
2262 ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2263 if (!ret) {
2264 map_write(map, CMD(0xF0), chip->start);
2265 chip->state = FL_SHUTDOWN;
2266 put_chip(map, chip, chip->start);
2267 }
2268
2269 mutex_unlock(&chip->mutex);
2270 }
2271
2272 return 0;
2273}
2274
2275
2276static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
2277 void *v)
2278{
2279 struct mtd_info *mtd;
2280
2281 mtd = container_of(nb, struct mtd_info, reboot_notifier);
2282 cfi_amdstd_reset(mtd);
2283 return NOTIFY_DONE;
2284}
2285
2286
1da177e4
LT
2287static void cfi_amdstd_destroy(struct mtd_info *mtd)
2288{
2289 struct map_info *map = mtd->priv;
2290 struct cfi_private *cfi = map->fldrv_priv;
fa671646 2291
eafe1311
KC
2292 cfi_amdstd_reset(mtd);
2293 unregister_reboot_notifier(&mtd->reboot_notifier);
1da177e4
LT
2294 kfree(cfi->cmdset_priv);
2295 kfree(cfi->cfiq);
2296 kfree(cfi);
2297 kfree(mtd->eraseregions);
2298}
2299
1da177e4
LT
2300MODULE_LICENSE("GPL");
2301MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
2302MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
80461128 2303MODULE_ALIAS("cfi_cmdset_0006");
1e804cec 2304MODULE_ALIAS("cfi_cmdset_0701");
This page took 0.515978 seconds and 5 git commands to generate.