[MTD] [NAND] Don't panic if a controller driver does ecc its own way.
[deliverable/linux.git] / drivers / mtd / chips / cfi_cmdset_0002.c
CommitLineData
1da177e4
LT
1/*
2 * Common Flash Interface support:
3 * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4 *
5 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
02b15e34 7 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
1da177e4
LT
8 *
9 * 2_by_8 routines added by Simon Munton
10 *
11 * 4_by_16 work by Carolyn J. Smith
12 *
1f948b43 13 * XIP support hooks by Vitaly Wool (based on code for Intel flash
02b15e34 14 * by Nicolas Pitre)
1f948b43 15 *
1da177e4
LT
16 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
17 *
18 * This code is GPL
19 *
1f948b43 20 * $Id: cfi_cmdset_0002.c,v 1.122 2005/11/07 11:14:22 gleixner Exp $
1da177e4
LT
21 *
22 */
23
1da177e4
LT
24#include <linux/module.h>
25#include <linux/types.h>
26#include <linux/kernel.h>
27#include <linux/sched.h>
28#include <linux/init.h>
29#include <asm/io.h>
30#include <asm/byteorder.h>
31
32#include <linux/errno.h>
33#include <linux/slab.h>
34#include <linux/delay.h>
35#include <linux/interrupt.h>
36#include <linux/mtd/compatmac.h>
37#include <linux/mtd/map.h>
38#include <linux/mtd/mtd.h>
39#include <linux/mtd/cfi.h>
02b15e34 40#include <linux/mtd/xip.h>
1da177e4
LT
41
42#define AMD_BOOTLOC_BUG
43#define FORCE_WORD_WRITE 0
44
45#define MAX_WORD_RETRIES 3
46
47#define MANUFACTURER_AMD 0x0001
0165508c 48#define MANUFACTURER_ATMEL 0x001F
1da177e4
LT
49#define MANUFACTURER_SST 0x00BF
50#define SST49LF004B 0x0060
89072ef9 51#define SST49LF040B 0x0050
fb4a90bf 52#define SST49LF008A 0x005a
0165508c 53#define AT49BV6416 0x00d6
1da177e4
LT
54
55static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
56static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
57static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
58static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
59static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
60static void cfi_amdstd_sync (struct mtd_info *);
61static int cfi_amdstd_suspend (struct mtd_info *);
62static void cfi_amdstd_resume (struct mtd_info *);
63static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
64
65static void cfi_amdstd_destroy(struct mtd_info *);
66
67struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
68static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
69
70static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
71static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
72#include "fwh_lock.h"
73
0165508c
HS
74static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, size_t len);
75static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, size_t len);
76
1da177e4
LT
77static struct mtd_chip_driver cfi_amdstd_chipdrv = {
78 .probe = NULL, /* Not usable directly */
79 .destroy = cfi_amdstd_destroy,
80 .name = "cfi_cmdset_0002",
81 .module = THIS_MODULE
82};
83
84
85/* #define DEBUG_CFI_FEATURES */
86
87
88#ifdef DEBUG_CFI_FEATURES
89static void cfi_tell_features(struct cfi_pri_amdstd *extp)
90{
91 const char* erase_suspend[3] = {
92 "Not supported", "Read only", "Read/write"
93 };
94 const char* top_bottom[6] = {
95 "No WP", "8x8KiB sectors at top & bottom, no WP",
96 "Bottom boot", "Top boot",
97 "Uniform, Bottom WP", "Uniform, Top WP"
98 };
99
100 printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1);
1f948b43 101 printk(" Address sensitive unlock: %s\n",
1da177e4
LT
102 (extp->SiliconRevision & 1) ? "Not required" : "Required");
103
104 if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
105 printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
106 else
107 printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
108
109 if (extp->BlkProt == 0)
110 printk(" Block protection: Not supported\n");
111 else
112 printk(" Block protection: %d sectors per group\n", extp->BlkProt);
113
114
115 printk(" Temporary block unprotect: %s\n",
116 extp->TmpBlkUnprotect ? "Supported" : "Not supported");
117 printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
118 printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps);
119 printk(" Burst mode: %s\n",
120 extp->BurstMode ? "Supported" : "Not supported");
121 if (extp->PageMode == 0)
122 printk(" Page mode: Not supported\n");
123 else
124 printk(" Page mode: %d word page\n", extp->PageMode << 2);
125
1f948b43 126 printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
1da177e4 127 extp->VppMin >> 4, extp->VppMin & 0xf);
1f948b43 128 printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
1da177e4
LT
129 extp->VppMax >> 4, extp->VppMax & 0xf);
130
131 if (extp->TopBottom < ARRAY_SIZE(top_bottom))
132 printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
133 else
134 printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
135}
136#endif
137
138#ifdef AMD_BOOTLOC_BUG
139/* Wheee. Bring me the head of someone at AMD. */
140static void fixup_amd_bootblock(struct mtd_info *mtd, void* param)
141{
142 struct map_info *map = mtd->priv;
143 struct cfi_private *cfi = map->fldrv_priv;
144 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
145 __u8 major = extp->MajorVersion;
146 __u8 minor = extp->MinorVersion;
147
148 if (((major << 8) | minor) < 0x3131) {
149 /* CFI version 1.0 => don't trust bootloc */
150 if (cfi->id & 0x80) {
151 printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
152 extp->TopBottom = 3; /* top boot */
153 } else {
154 extp->TopBottom = 2; /* bottom boot */
155 }
156 }
157}
158#endif
159
160static void fixup_use_write_buffers(struct mtd_info *mtd, void *param)
161{
162 struct map_info *map = mtd->priv;
163 struct cfi_private *cfi = map->fldrv_priv;
164 if (cfi->cfiq->BufWriteTimeoutTyp) {
165 DEBUG(MTD_DEBUG_LEVEL1, "Using buffer write method\n" );
166 mtd->write = cfi_amdstd_write_buffers;
167 }
168}
169
5b0c5c2c
HS
170/* Atmel chips don't use the same PRI format as AMD chips */
171static void fixup_convert_atmel_pri(struct mtd_info *mtd, void *param)
172{
173 struct map_info *map = mtd->priv;
174 struct cfi_private *cfi = map->fldrv_priv;
175 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
176 struct cfi_pri_atmel atmel_pri;
177
178 memcpy(&atmel_pri, extp, sizeof(atmel_pri));
de591dac 179 memset((char *)extp + 5, 0, sizeof(*extp) - 5);
5b0c5c2c
HS
180
181 if (atmel_pri.Features & 0x02)
182 extp->EraseSuspend = 2;
183
184 if (atmel_pri.BottomBoot)
185 extp->TopBottom = 2;
186 else
187 extp->TopBottom = 3;
d10a39d1
HCE
188
189 /* burst write mode not supported */
190 cfi->cfiq->BufWriteTimeoutTyp = 0;
191 cfi->cfiq->BufWriteTimeoutMax = 0;
5b0c5c2c
HS
192}
193
1da177e4
LT
194static void fixup_use_secsi(struct mtd_info *mtd, void *param)
195{
196 /* Setup for chips with a secsi area */
197 mtd->read_user_prot_reg = cfi_amdstd_secsi_read;
198 mtd->read_fact_prot_reg = cfi_amdstd_secsi_read;
199}
200
201static void fixup_use_erase_chip(struct mtd_info *mtd, void *param)
202{
203 struct map_info *map = mtd->priv;
204 struct cfi_private *cfi = map->fldrv_priv;
205 if ((cfi->cfiq->NumEraseRegions == 1) &&
206 ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
207 mtd->erase = cfi_amdstd_erase_chip;
208 }
1f948b43 209
1da177e4
LT
210}
211
0165508c
HS
212/*
213 * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
214 * locked by default.
215 */
216static void fixup_use_atmel_lock(struct mtd_info *mtd, void *param)
217{
218 mtd->lock = cfi_atmel_lock;
219 mtd->unlock = cfi_atmel_unlock;
187ef152 220 mtd->flags |= MTD_STUPID_LOCK;
0165508c
HS
221}
222
1da177e4 223static struct cfi_fixup cfi_fixup_table[] = {
d10a39d1 224 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri, NULL },
1da177e4
LT
225#ifdef AMD_BOOTLOC_BUG
226 { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock, NULL },
227#endif
228 { CFI_MFR_AMD, 0x0050, fixup_use_secsi, NULL, },
229 { CFI_MFR_AMD, 0x0053, fixup_use_secsi, NULL, },
230 { CFI_MFR_AMD, 0x0055, fixup_use_secsi, NULL, },
231 { CFI_MFR_AMD, 0x0056, fixup_use_secsi, NULL, },
232 { CFI_MFR_AMD, 0x005C, fixup_use_secsi, NULL, },
233 { CFI_MFR_AMD, 0x005F, fixup_use_secsi, NULL, },
234#if !FORCE_WORD_WRITE
235 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL, },
236#endif
237 { 0, 0, NULL, NULL }
238};
239static struct cfi_fixup jedec_fixup_table[] = {
240 { MANUFACTURER_SST, SST49LF004B, fixup_use_fwh_lock, NULL, },
89072ef9 241 { MANUFACTURER_SST, SST49LF040B, fixup_use_fwh_lock, NULL, },
fb4a90bf 242 { MANUFACTURER_SST, SST49LF008A, fixup_use_fwh_lock, NULL, },
1da177e4
LT
243 { 0, 0, NULL, NULL }
244};
245
246static struct cfi_fixup fixup_table[] = {
247 /* The CFI vendor ids and the JEDEC vendor IDs appear
248 * to be common. It is like the devices id's are as
249 * well. This table is to pick all cases where
250 * we know that is the case.
251 */
252 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip, NULL },
0165508c 253 { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock, NULL },
1da177e4
LT
254 { 0, 0, NULL, NULL }
255};
256
257
258struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
259{
260 struct cfi_private *cfi = map->fldrv_priv;
261 struct mtd_info *mtd;
262 int i;
263
95b93a0c 264 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
1da177e4
LT
265 if (!mtd) {
266 printk(KERN_WARNING "Failed to allocate memory for MTD device\n");
267 return NULL;
268 }
1da177e4
LT
269 mtd->priv = map;
270 mtd->type = MTD_NORFLASH;
271
272 /* Fill in the default mtd operations */
273 mtd->erase = cfi_amdstd_erase_varsize;
274 mtd->write = cfi_amdstd_write_words;
275 mtd->read = cfi_amdstd_read;
276 mtd->sync = cfi_amdstd_sync;
277 mtd->suspend = cfi_amdstd_suspend;
278 mtd->resume = cfi_amdstd_resume;
279 mtd->flags = MTD_CAP_NORFLASH;
280 mtd->name = map->name;
783ed81f 281 mtd->writesize = 1;
1da177e4
LT
282
283 if (cfi->cfi_mode==CFI_MODE_CFI){
284 unsigned char bootloc;
1f948b43 285 /*
1da177e4
LT
286 * It's a real CFI chip, not one for which the probe
287 * routine faked a CFI structure. So we read the feature
288 * table from it.
289 */
290 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
291 struct cfi_pri_amdstd *extp;
292
293 extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
294 if (!extp) {
295 kfree(mtd);
296 return NULL;
297 }
298
d88f977b
TP
299 if (extp->MajorVersion != '1' ||
300 (extp->MinorVersion < '0' || extp->MinorVersion > '4')) {
301 printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query "
302 "version %c.%c.\n", extp->MajorVersion,
303 extp->MinorVersion);
304 kfree(extp);
305 kfree(mtd);
306 return NULL;
307 }
308
1da177e4 309 /* Install our own private info structure */
1f948b43 310 cfi->cmdset_priv = extp;
1da177e4
LT
311
312 /* Apply cfi device specific fixups */
313 cfi_fixup(mtd, cfi_fixup_table);
314
315#ifdef DEBUG_CFI_FEATURES
316 /* Tell the user about it in lots of lovely detail */
317 cfi_tell_features(extp);
1f948b43 318#endif
1da177e4
LT
319
320 bootloc = extp->TopBottom;
321 if ((bootloc != 2) && (bootloc != 3)) {
322 printk(KERN_WARNING "%s: CFI does not contain boot "
323 "bank location. Assuming top.\n", map->name);
324 bootloc = 2;
325 }
326
327 if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
328 printk(KERN_WARNING "%s: Swapping erase regions for broken CFI table.\n", map->name);
1f948b43 329
1da177e4
LT
330 for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
331 int j = (cfi->cfiq->NumEraseRegions-1)-i;
332 __u32 swap;
1f948b43 333
1da177e4
LT
334 swap = cfi->cfiq->EraseRegionInfo[i];
335 cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
336 cfi->cfiq->EraseRegionInfo[j] = swap;
337 }
338 }
339 /* Set the default CFI lock/unlock addresses */
340 cfi->addr_unlock1 = 0x555;
341 cfi->addr_unlock2 = 0x2aa;
342 /* Modify the unlock address if we are in compatibility mode */
343 if ( /* x16 in x8 mode */
1f948b43 344 ((cfi->device_type == CFI_DEVICETYPE_X8) &&
1da177e4
LT
345 (cfi->cfiq->InterfaceDesc == 2)) ||
346 /* x32 in x16 mode */
347 ((cfi->device_type == CFI_DEVICETYPE_X16) &&
1f948b43 348 (cfi->cfiq->InterfaceDesc == 4)))
1da177e4
LT
349 {
350 cfi->addr_unlock1 = 0xaaa;
351 cfi->addr_unlock2 = 0x555;
352 }
353
354 } /* CFI mode */
355 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
356 /* Apply jedec specific fixups */
357 cfi_fixup(mtd, jedec_fixup_table);
358 }
359 /* Apply generic fixups */
360 cfi_fixup(mtd, fixup_table);
361
362 for (i=0; i< cfi->numchips; i++) {
363 cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
364 cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
365 cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
83d48091
VS
366 cfi->chips[i].ref_point_counter = 0;
367 init_waitqueue_head(&(cfi->chips[i].wq));
1f948b43
TG
368 }
369
1da177e4 370 map->fldrv = &cfi_amdstd_chipdrv;
1f948b43 371
1da177e4
LT
372 return cfi_amdstd_setup(mtd);
373}
83ea4ef2 374EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
1da177e4
LT
375
376static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
377{
378 struct map_info *map = mtd->priv;
379 struct cfi_private *cfi = map->fldrv_priv;
380 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
381 unsigned long offset = 0;
382 int i,j;
383
1f948b43 384 printk(KERN_NOTICE "number of %s chips: %d\n",
1da177e4 385 (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
1f948b43 386 /* Select the correct geometry setup */
1da177e4
LT
387 mtd->size = devsize * cfi->numchips;
388
389 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
390 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
391 * mtd->numeraseregions, GFP_KERNEL);
1f948b43 392 if (!mtd->eraseregions) {
1da177e4
LT
393 printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n");
394 goto setup_err;
395 }
1f948b43 396
1da177e4
LT
397 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
398 unsigned long ernum, ersize;
399 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
400 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
1f948b43 401
1da177e4
LT
402 if (mtd->erasesize < ersize) {
403 mtd->erasesize = ersize;
404 }
405 for (j=0; j<cfi->numchips; j++) {
406 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
407 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
408 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
409 }
410 offset += (ersize * ernum);
411 }
412 if (offset != devsize) {
413 /* Argh */
414 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
415 goto setup_err;
416 }
417#if 0
418 // debug
419 for (i=0; i<mtd->numeraseregions;i++){
420 printk("%d: offset=0x%x,size=0x%x,blocks=%d\n",
421 i,mtd->eraseregions[i].offset,
422 mtd->eraseregions[i].erasesize,
423 mtd->eraseregions[i].numblocks);
424 }
425#endif
426
427 /* FIXME: erase-suspend-program is broken. See
428 http://lists.infradead.org/pipermail/linux-mtd/2003-December/009001.html */
429 printk(KERN_NOTICE "cfi_cmdset_0002: Disabling erase-suspend-program due to code brokenness.\n");
430
431 __module_get(THIS_MODULE);
432 return mtd;
433
434 setup_err:
435 if(mtd) {
fa671646 436 kfree(mtd->eraseregions);
1da177e4
LT
437 kfree(mtd);
438 }
439 kfree(cfi->cmdset_priv);
440 kfree(cfi->cfiq);
441 return NULL;
442}
443
444/*
445 * Return true if the chip is ready.
446 *
447 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
448 * non-suspended sector) and is indicated by no toggle bits toggling.
449 *
450 * Note that anything more complicated than checking if no bits are toggling
451 * (including checking DQ5 for an error status) is tricky to get working
452 * correctly and is therefore not done (particulary with interleaved chips
453 * as each chip must be checked independantly of the others).
454 */
02b15e34 455static int __xipram chip_ready(struct map_info *map, unsigned long addr)
1da177e4
LT
456{
457 map_word d, t;
458
459 d = map_read(map, addr);
460 t = map_read(map, addr);
461
462 return map_word_equal(map, d, t);
463}
464
fb4a90bf
EB
465/*
466 * Return true if the chip is ready and has the correct value.
467 *
468 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
469 * non-suspended sector) and it is indicated by no bits toggling.
470 *
471 * Error are indicated by toggling bits or bits held with the wrong value,
472 * or with bits toggling.
473 *
474 * Note that anything more complicated than checking if no bits are toggling
475 * (including checking DQ5 for an error status) is tricky to get working
476 * correctly and is therefore not done (particulary with interleaved chips
477 * as each chip must be checked independantly of the others).
478 *
479 */
02b15e34 480static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
fb4a90bf
EB
481{
482 map_word oldd, curd;
483
484 oldd = map_read(map, addr);
485 curd = map_read(map, addr);
486
1f948b43 487 return map_word_equal(map, oldd, curd) &&
fb4a90bf
EB
488 map_word_equal(map, curd, expected);
489}
490
1da177e4
LT
491static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
492{
493 DECLARE_WAITQUEUE(wait, current);
494 struct cfi_private *cfi = map->fldrv_priv;
495 unsigned long timeo;
496 struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
497
498 resettime:
499 timeo = jiffies + HZ;
500 retry:
501 switch (chip->state) {
502
503 case FL_STATUS:
504 for (;;) {
505 if (chip_ready(map, adr))
506 break;
507
508 if (time_after(jiffies, timeo)) {
509 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
02b15e34 510 spin_unlock(chip->mutex);
1da177e4
LT
511 return -EIO;
512 }
02b15e34 513 spin_unlock(chip->mutex);
1da177e4 514 cfi_udelay(1);
02b15e34 515 spin_lock(chip->mutex);
1da177e4
LT
516 /* Someone else might have been playing with it. */
517 goto retry;
518 }
1f948b43 519
1da177e4
LT
520 case FL_READY:
521 case FL_CFI_QUERY:
522 case FL_JEDEC_QUERY:
523 return 0;
524
525 case FL_ERASING:
526 if (mode == FL_WRITING) /* FIXME: Erase-suspend-program appears broken. */
527 goto sleep;
528
89072ef9
RJ
529 if (!( mode == FL_READY
530 || mode == FL_POINT
1da177e4
LT
531 || !cfip
532 || (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))
89072ef9
RJ
533 || (mode == FL_WRITING && (cfip->EraseSuspend & 0x1)
534 )))
1da177e4
LT
535 goto sleep;
536
537 /* We could check to see if we're trying to access the sector
538 * that is currently being erased. However, no user will try
539 * anything like that so we just wait for the timeout. */
540
541 /* Erase suspend */
542 /* It's harmless to issue the Erase-Suspend and Erase-Resume
543 * commands when the erase algorithm isn't in progress. */
544 map_write(map, CMD(0xB0), chip->in_progress_block_addr);
545 chip->oldstate = FL_ERASING;
546 chip->state = FL_ERASE_SUSPENDING;
547 chip->erase_suspended = 1;
548 for (;;) {
549 if (chip_ready(map, adr))
550 break;
551
552 if (time_after(jiffies, timeo)) {
553 /* Should have suspended the erase by now.
554 * Send an Erase-Resume command as either
555 * there was an error (so leave the erase
556 * routine to recover from it) or we trying to
557 * use the erase-in-progress sector. */
558 map_write(map, CMD(0x30), chip->in_progress_block_addr);
559 chip->state = FL_ERASING;
560 chip->oldstate = FL_READY;
561 printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
562 return -EIO;
563 }
1f948b43 564
02b15e34 565 spin_unlock(chip->mutex);
1da177e4 566 cfi_udelay(1);
02b15e34 567 spin_lock(chip->mutex);
1da177e4
LT
568 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
569 So we can just loop here. */
570 }
571 chip->state = FL_READY;
572 return 0;
573
02b15e34
TP
574 case FL_XIP_WHILE_ERASING:
575 if (mode != FL_READY && mode != FL_POINT &&
576 (!cfip || !(cfip->EraseSuspend&2)))
577 goto sleep;
578 chip->oldstate = chip->state;
579 chip->state = FL_READY;
580 return 0;
581
1da177e4
LT
582 case FL_POINT:
583 /* Only if there's no operation suspended... */
584 if (mode == FL_READY && chip->oldstate == FL_READY)
585 return 0;
586
587 default:
588 sleep:
589 set_current_state(TASK_UNINTERRUPTIBLE);
590 add_wait_queue(&chip->wq, &wait);
02b15e34 591 spin_unlock(chip->mutex);
1da177e4
LT
592 schedule();
593 remove_wait_queue(&chip->wq, &wait);
02b15e34 594 spin_lock(chip->mutex);
1da177e4
LT
595 goto resettime;
596 }
597}
598
599
600static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
601{
602 struct cfi_private *cfi = map->fldrv_priv;
603
604 switch(chip->oldstate) {
605 case FL_ERASING:
606 chip->state = chip->oldstate;
607 map_write(map, CMD(0x30), chip->in_progress_block_addr);
608 chip->oldstate = FL_READY;
609 chip->state = FL_ERASING;
610 break;
611
02b15e34
TP
612 case FL_XIP_WHILE_ERASING:
613 chip->state = chip->oldstate;
614 chip->oldstate = FL_READY;
615 break;
616
1da177e4
LT
617 case FL_READY:
618 case FL_STATUS:
619 /* We should really make set_vpp() count, rather than doing this */
620 DISABLE_VPP(map);
621 break;
622 default:
623 printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
624 }
625 wake_up(&chip->wq);
626}
627
02b15e34
TP
628#ifdef CONFIG_MTD_XIP
629
630/*
631 * No interrupt what so ever can be serviced while the flash isn't in array
632 * mode. This is ensured by the xip_disable() and xip_enable() functions
633 * enclosing any code path where the flash is known not to be in array mode.
634 * And within a XIP disabled code path, only functions marked with __xipram
635 * may be called and nothing else (it's a good thing to inspect generated
636 * assembly to make sure inline functions were actually inlined and that gcc
637 * didn't emit calls to its own support functions). Also configuring MTD CFI
638 * support to a single buswidth and a single interleave is also recommended.
639 */
f8eb321b 640
02b15e34
TP
641static void xip_disable(struct map_info *map, struct flchip *chip,
642 unsigned long adr)
643{
644 /* TODO: chips with no XIP use should ignore and return */
645 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
646 local_irq_disable();
647}
648
649static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
650 unsigned long adr)
651{
652 struct cfi_private *cfi = map->fldrv_priv;
653
654 if (chip->state != FL_POINT && chip->state != FL_READY) {
655 map_write(map, CMD(0xf0), adr);
656 chip->state = FL_READY;
657 }
658 (void) map_read(map, adr);
97f927a4 659 xip_iprefetch();
02b15e34
TP
660 local_irq_enable();
661}
662
663/*
664 * When a delay is required for the flash operation to complete, the
665 * xip_udelay() function is polling for both the given timeout and pending
666 * (but still masked) hardware interrupts. Whenever there is an interrupt
1f948b43 667 * pending then the flash erase operation is suspended, array mode restored
02b15e34
TP
668 * and interrupts unmasked. Task scheduling might also happen at that
669 * point. The CPU eventually returns from the interrupt or the call to
670 * schedule() and the suspended flash operation is resumed for the remaining
671 * of the delay period.
672 *
673 * Warning: this function _will_ fool interrupt latency tracing tools.
674 */
675
676static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
677 unsigned long adr, int usec)
678{
679 struct cfi_private *cfi = map->fldrv_priv;
680 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
681 map_word status, OK = CMD(0x80);
682 unsigned long suspended, start = xip_currtime();
683 flstate_t oldstate;
684
685 do {
686 cpu_relax();
687 if (xip_irqpending() && extp &&
688 ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
689 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
690 /*
1f948b43
TG
691 * Let's suspend the erase operation when supported.
692 * Note that we currently don't try to suspend
693 * interleaved chips if there is already another
02b15e34
TP
694 * operation suspended (imagine what happens
695 * when one chip was already done with the current
696 * operation while another chip suspended it, then
697 * we resume the whole thing at once). Yes, it
698 * can happen!
699 */
700 map_write(map, CMD(0xb0), adr);
701 usec -= xip_elapsed_since(start);
702 suspended = xip_currtime();
703 do {
704 if (xip_elapsed_since(suspended) > 100000) {
705 /*
706 * The chip doesn't want to suspend
707 * after waiting for 100 msecs.
708 * This is a critical error but there
709 * is not much we can do here.
710 */
711 return;
712 }
713 status = map_read(map, adr);
714 } while (!map_word_andequal(map, status, OK, OK));
715
716 /* Suspend succeeded */
717 oldstate = chip->state;
718 if (!map_word_bitsset(map, status, CMD(0x40)))
719 break;
720 chip->state = FL_XIP_WHILE_ERASING;
721 chip->erase_suspended = 1;
722 map_write(map, CMD(0xf0), adr);
723 (void) map_read(map, adr);
724 asm volatile (".rep 8; nop; .endr");
725 local_irq_enable();
726 spin_unlock(chip->mutex);
727 asm volatile (".rep 8; nop; .endr");
728 cond_resched();
729
730 /*
731 * We're back. However someone else might have
732 * decided to go write to the chip if we are in
733 * a suspended erase state. If so let's wait
734 * until it's done.
735 */
736 spin_lock(chip->mutex);
737 while (chip->state != FL_XIP_WHILE_ERASING) {
738 DECLARE_WAITQUEUE(wait, current);
739 set_current_state(TASK_UNINTERRUPTIBLE);
740 add_wait_queue(&chip->wq, &wait);
741 spin_unlock(chip->mutex);
742 schedule();
743 remove_wait_queue(&chip->wq, &wait);
744 spin_lock(chip->mutex);
745 }
746 /* Disallow XIP again */
747 local_irq_disable();
748
749 /* Resume the write or erase operation */
750 map_write(map, CMD(0x30), adr);
751 chip->state = oldstate;
752 start = xip_currtime();
753 } else if (usec >= 1000000/HZ) {
754 /*
755 * Try to save on CPU power when waiting delay
756 * is at least a system timer tick period.
757 * No need to be extremely accurate here.
758 */
759 xip_cpu_idle();
760 }
761 status = map_read(map, adr);
762 } while (!map_word_andequal(map, status, OK, OK)
763 && xip_elapsed_since(start) < usec);
764}
765
766#define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
767
768/*
769 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
770 * the flash is actively programming or erasing since we have to poll for
771 * the operation to complete anyway. We can't do that in a generic way with
772 * a XIP setup so do it before the actual flash operation in this case
773 * and stub it out from INVALIDATE_CACHE_UDELAY.
774 */
775#define XIP_INVAL_CACHED_RANGE(map, from, size) \
776 INVALIDATE_CACHED_RANGE(map, from, size)
777
778#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
779 UDELAY(map, chip, adr, usec)
780
781/*
782 * Extra notes:
783 *
784 * Activating this XIP support changes the way the code works a bit. For
785 * example the code to suspend the current process when concurrent access
786 * happens is never executed because xip_udelay() will always return with the
787 * same chip state as it was entered with. This is why there is no care for
788 * the presence of add_wait_queue() or schedule() calls from within a couple
789 * xip_disable()'d areas of code, like in do_erase_oneblock for example.
790 * The queueing and scheduling are always happening within xip_udelay().
791 *
792 * Similarly, get_chip() and put_chip() just happen to always be executed
793 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
794 * is in array mode, therefore never executing many cases therein and not
795 * causing any problem with XIP.
796 */
797
798#else
799
800#define xip_disable(map, chip, adr)
801#define xip_enable(map, chip, adr)
802#define XIP_INVAL_CACHED_RANGE(x...)
803
804#define UDELAY(map, chip, adr, usec) \
805do { \
806 spin_unlock(chip->mutex); \
807 cfi_udelay(usec); \
808 spin_lock(chip->mutex); \
809} while (0)
810
811#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
812do { \
813 spin_unlock(chip->mutex); \
814 INVALIDATE_CACHED_RANGE(map, adr, len); \
815 cfi_udelay(usec); \
816 spin_lock(chip->mutex); \
817} while (0)
818
819#endif
1da177e4
LT
820
821static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
822{
823 unsigned long cmd_addr;
824 struct cfi_private *cfi = map->fldrv_priv;
825 int ret;
826
827 adr += chip->start;
828
1f948b43
TG
829 /* Ensure cmd read/writes are aligned. */
830 cmd_addr = adr & ~(map_bankwidth(map)-1);
1da177e4 831
02b15e34 832 spin_lock(chip->mutex);
1da177e4
LT
833 ret = get_chip(map, chip, cmd_addr, FL_READY);
834 if (ret) {
02b15e34 835 spin_unlock(chip->mutex);
1da177e4
LT
836 return ret;
837 }
838
839 if (chip->state != FL_POINT && chip->state != FL_READY) {
840 map_write(map, CMD(0xf0), cmd_addr);
841 chip->state = FL_READY;
842 }
843
844 map_copy_from(map, buf, adr, len);
845
846 put_chip(map, chip, cmd_addr);
847
02b15e34 848 spin_unlock(chip->mutex);
1da177e4
LT
849 return 0;
850}
851
852
853static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
854{
855 struct map_info *map = mtd->priv;
856 struct cfi_private *cfi = map->fldrv_priv;
857 unsigned long ofs;
858 int chipnum;
859 int ret = 0;
860
861 /* ofs: offset within the first chip that the first read should start */
862
863 chipnum = (from >> cfi->chipshift);
864 ofs = from - (chipnum << cfi->chipshift);
865
866
867 *retlen = 0;
868
869 while (len) {
870 unsigned long thislen;
871
872 if (chipnum >= cfi->numchips)
873 break;
874
875 if ((len + ofs -1) >> cfi->chipshift)
876 thislen = (1<<cfi->chipshift) - ofs;
877 else
878 thislen = len;
879
880 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
881 if (ret)
882 break;
883
884 *retlen += thislen;
885 len -= thislen;
886 buf += thislen;
887
888 ofs = 0;
889 chipnum++;
890 }
891 return ret;
892}
893
894
895static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
896{
897 DECLARE_WAITQUEUE(wait, current);
898 unsigned long timeo = jiffies + HZ;
899 struct cfi_private *cfi = map->fldrv_priv;
900
901 retry:
02b15e34 902 spin_lock(chip->mutex);
1da177e4
LT
903
904 if (chip->state != FL_READY){
905#if 0
906 printk(KERN_DEBUG "Waiting for chip to read, status = %d\n", chip->state);
907#endif
908 set_current_state(TASK_UNINTERRUPTIBLE);
909 add_wait_queue(&chip->wq, &wait);
1f948b43 910
02b15e34 911 spin_unlock(chip->mutex);
1da177e4
LT
912
913 schedule();
914 remove_wait_queue(&chip->wq, &wait);
915#if 0
916 if(signal_pending(current))
917 return -EINTR;
918#endif
919 timeo = jiffies + HZ;
920
921 goto retry;
1f948b43 922 }
1da177e4
LT
923
924 adr += chip->start;
925
926 chip->state = FL_READY;
927
928 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
929 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
930 cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1f948b43 931
1da177e4
LT
932 map_copy_from(map, buf, adr, len);
933
934 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
935 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
936 cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
937 cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1f948b43 938
1da177e4 939 wake_up(&chip->wq);
02b15e34 940 spin_unlock(chip->mutex);
1da177e4
LT
941
942 return 0;
943}
944
945static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
946{
947 struct map_info *map = mtd->priv;
948 struct cfi_private *cfi = map->fldrv_priv;
949 unsigned long ofs;
950 int chipnum;
951 int ret = 0;
952
953
954 /* ofs: offset within the first chip that the first read should start */
955
956 /* 8 secsi bytes per chip */
957 chipnum=from>>3;
958 ofs=from & 7;
959
960
961 *retlen = 0;
962
963 while (len) {
964 unsigned long thislen;
965
966 if (chipnum >= cfi->numchips)
967 break;
968
969 if ((len + ofs -1) >> 3)
970 thislen = (1<<3) - ofs;
971 else
972 thislen = len;
973
974 ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
975 if (ret)
976 break;
977
978 *retlen += thislen;
979 len -= thislen;
980 buf += thislen;
981
982 ofs = 0;
983 chipnum++;
984 }
985 return ret;
986}
987
988
02b15e34 989static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum)
1da177e4
LT
990{
991 struct cfi_private *cfi = map->fldrv_priv;
992 unsigned long timeo = jiffies + HZ;
993 /*
994 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
995 * have a max write time of a few hundreds usec). However, we should
996 * use the maximum timeout value given by the chip at probe time
997 * instead. Unfortunately, struct flchip does have a field for
998 * maximum timeout, only for typical which can be far too short
999 * depending of the conditions. The ' + 1' is to avoid having a
1000 * timeout of 0 jiffies if HZ is smaller than 1000.
1001 */
1002 unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1003 int ret = 0;
1004 map_word oldd;
1005 int retry_cnt = 0;
1006
1007 adr += chip->start;
1008
02b15e34 1009 spin_lock(chip->mutex);
1da177e4
LT
1010 ret = get_chip(map, chip, adr, FL_WRITING);
1011 if (ret) {
02b15e34 1012 spin_unlock(chip->mutex);
1da177e4
LT
1013 return ret;
1014 }
1015
1016 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1017 __func__, adr, datum.x[0] );
1018
1019 /*
1020 * Check for a NOP for the case when the datum to write is already
1021 * present - it saves time and works around buggy chips that corrupt
1022 * data at other locations when 0xff is written to a location that
1023 * already contains 0xff.
1024 */
1025 oldd = map_read(map, adr);
1026 if (map_word_equal(map, oldd, datum)) {
1027 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): NOP\n",
1028 __func__);
1029 goto op_done;
1030 }
1031
02b15e34 1032 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1da177e4 1033 ENABLE_VPP(map);
02b15e34 1034 xip_disable(map, chip, adr);
1da177e4
LT
1035 retry:
1036 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1037 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1038 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1039 map_write(map, datum, adr);
1040 chip->state = FL_WRITING;
1041
02b15e34
TP
1042 INVALIDATE_CACHE_UDELAY(map, chip,
1043 adr, map_bankwidth(map),
1044 chip->word_write_time);
1da177e4
LT
1045
1046 /* See comment above for timeout value. */
1f948b43 1047 timeo = jiffies + uWriteTimeout;
1da177e4
LT
1048 for (;;) {
1049 if (chip->state != FL_WRITING) {
1050 /* Someone's suspended the write. Sleep */
1051 DECLARE_WAITQUEUE(wait, current);
1052
1053 set_current_state(TASK_UNINTERRUPTIBLE);
1054 add_wait_queue(&chip->wq, &wait);
02b15e34 1055 spin_unlock(chip->mutex);
1da177e4
LT
1056 schedule();
1057 remove_wait_queue(&chip->wq, &wait);
1058 timeo = jiffies + (HZ / 2); /* FIXME */
02b15e34 1059 spin_lock(chip->mutex);
1da177e4
LT
1060 continue;
1061 }
1062
b95f9609 1063 if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
02b15e34 1064 xip_enable(map, chip, adr);
fb4a90bf 1065 printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
02b15e34 1066 xip_disable(map, chip, adr);
b95f9609 1067 break;
fb4a90bf 1068 }
1da177e4 1069
b95f9609
KB
1070 if (chip_ready(map, adr))
1071 break;
1072
1da177e4 1073 /* Latency issues. Drop the lock, wait a while and retry */
02b15e34 1074 UDELAY(map, chip, adr, 1);
1da177e4 1075 }
fb4a90bf
EB
1076 /* Did we succeed? */
1077 if (!chip_good(map, adr, datum)) {
1078 /* reset on all failures. */
1079 map_write( map, CMD(0xF0), chip->start );
1080 /* FIXME - should have reset delay before continuing */
1da177e4 1081
1f948b43 1082 if (++retry_cnt <= MAX_WORD_RETRIES)
fb4a90bf 1083 goto retry;
1da177e4 1084
fb4a90bf
EB
1085 ret = -EIO;
1086 }
02b15e34 1087 xip_enable(map, chip, adr);
1da177e4
LT
1088 op_done:
1089 chip->state = FL_READY;
1090 put_chip(map, chip, adr);
02b15e34 1091 spin_unlock(chip->mutex);
1da177e4
LT
1092
1093 return ret;
1094}
1095
1096
1097static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1098 size_t *retlen, const u_char *buf)
1099{
1100 struct map_info *map = mtd->priv;
1101 struct cfi_private *cfi = map->fldrv_priv;
1102 int ret = 0;
1103 int chipnum;
1104 unsigned long ofs, chipstart;
1105 DECLARE_WAITQUEUE(wait, current);
1106
1107 *retlen = 0;
1108 if (!len)
1109 return 0;
1110
1111 chipnum = to >> cfi->chipshift;
1112 ofs = to - (chipnum << cfi->chipshift);
1113 chipstart = cfi->chips[chipnum].start;
1114
1115 /* If it's not bus-aligned, do the first byte write */
1116 if (ofs & (map_bankwidth(map)-1)) {
1117 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1118 int i = ofs - bus_ofs;
1119 int n = 0;
1120 map_word tmp_buf;
1121
1122 retry:
02b15e34 1123 spin_lock(cfi->chips[chipnum].mutex);
1da177e4
LT
1124
1125 if (cfi->chips[chipnum].state != FL_READY) {
1126#if 0
1127 printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state);
1128#endif
1129 set_current_state(TASK_UNINTERRUPTIBLE);
1130 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1131
02b15e34 1132 spin_unlock(cfi->chips[chipnum].mutex);
1da177e4
LT
1133
1134 schedule();
1135 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1136#if 0
1137 if(signal_pending(current))
1138 return -EINTR;
1139#endif
1140 goto retry;
1141 }
1142
1143 /* Load 'tmp_buf' with old contents of flash */
1144 tmp_buf = map_read(map, bus_ofs+chipstart);
1145
02b15e34 1146 spin_unlock(cfi->chips[chipnum].mutex);
1da177e4
LT
1147
1148 /* Number of bytes to copy from buffer */
1149 n = min_t(int, len, map_bankwidth(map)-i);
1f948b43 1150
1da177e4
LT
1151 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1152
1f948b43 1153 ret = do_write_oneword(map, &cfi->chips[chipnum],
1da177e4 1154 bus_ofs, tmp_buf);
1f948b43 1155 if (ret)
1da177e4 1156 return ret;
1f948b43 1157
1da177e4
LT
1158 ofs += n;
1159 buf += n;
1160 (*retlen) += n;
1161 len -= n;
1162
1163 if (ofs >> cfi->chipshift) {
1f948b43 1164 chipnum ++;
1da177e4
LT
1165 ofs = 0;
1166 if (chipnum == cfi->numchips)
1167 return 0;
1168 }
1169 }
1f948b43 1170
1da177e4
LT
1171 /* We are now aligned, write as much as possible */
1172 while(len >= map_bankwidth(map)) {
1173 map_word datum;
1174
1175 datum = map_word_load(map, buf);
1176
1177 ret = do_write_oneword(map, &cfi->chips[chipnum],
1178 ofs, datum);
1179 if (ret)
1180 return ret;
1181
1182 ofs += map_bankwidth(map);
1183 buf += map_bankwidth(map);
1184 (*retlen) += map_bankwidth(map);
1185 len -= map_bankwidth(map);
1186
1187 if (ofs >> cfi->chipshift) {
1f948b43 1188 chipnum ++;
1da177e4
LT
1189 ofs = 0;
1190 if (chipnum == cfi->numchips)
1191 return 0;
1192 chipstart = cfi->chips[chipnum].start;
1193 }
1194 }
1195
1196 /* Write the trailing bytes if any */
1197 if (len & (map_bankwidth(map)-1)) {
1198 map_word tmp_buf;
1199
1200 retry1:
02b15e34 1201 spin_lock(cfi->chips[chipnum].mutex);
1da177e4
LT
1202
1203 if (cfi->chips[chipnum].state != FL_READY) {
1204#if 0
1205 printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state);
1206#endif
1207 set_current_state(TASK_UNINTERRUPTIBLE);
1208 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1209
02b15e34 1210 spin_unlock(cfi->chips[chipnum].mutex);
1da177e4
LT
1211
1212 schedule();
1213 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1214#if 0
1215 if(signal_pending(current))
1216 return -EINTR;
1217#endif
1218 goto retry1;
1219 }
1220
1221 tmp_buf = map_read(map, ofs + chipstart);
1222
02b15e34 1223 spin_unlock(cfi->chips[chipnum].mutex);
1da177e4
LT
1224
1225 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1f948b43
TG
1226
1227 ret = do_write_oneword(map, &cfi->chips[chipnum],
1da177e4 1228 ofs, tmp_buf);
1f948b43 1229 if (ret)
1da177e4 1230 return ret;
1f948b43 1231
1da177e4
LT
1232 (*retlen) += len;
1233 }
1234
1235 return 0;
1236}
1237
1238
1239/*
1240 * FIXME: interleaved mode not tested, and probably not supported!
1241 */
02b15e34 1242static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1f948b43 1243 unsigned long adr, const u_char *buf,
02b15e34 1244 int len)
1da177e4
LT
1245{
1246 struct cfi_private *cfi = map->fldrv_priv;
1247 unsigned long timeo = jiffies + HZ;
1248 /* see comments in do_write_oneword() regarding uWriteTimeo. */
1249 unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1250 int ret = -EIO;
1251 unsigned long cmd_adr;
1252 int z, words;
1253 map_word datum;
1254
1255 adr += chip->start;
1256 cmd_adr = adr;
1257
02b15e34 1258 spin_lock(chip->mutex);
1da177e4
LT
1259 ret = get_chip(map, chip, adr, FL_WRITING);
1260 if (ret) {
02b15e34 1261 spin_unlock(chip->mutex);
1da177e4
LT
1262 return ret;
1263 }
1264
1265 datum = map_word_load(map, buf);
1266
1267 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1268 __func__, adr, datum.x[0] );
1269
02b15e34 1270 XIP_INVAL_CACHED_RANGE(map, adr, len);
1da177e4 1271 ENABLE_VPP(map);
02b15e34 1272 xip_disable(map, chip, cmd_adr);
1f948b43 1273
1da177e4
LT
1274 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1275 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1276 //cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1277
1278 /* Write Buffer Load */
1279 map_write(map, CMD(0x25), cmd_adr);
1280
1281 chip->state = FL_WRITING_TO_BUFFER;
1282
1283 /* Write length of data to come */
1284 words = len / map_bankwidth(map);
1285 map_write(map, CMD(words - 1), cmd_adr);
1286 /* Write data */
1287 z = 0;
1288 while(z < words * map_bankwidth(map)) {
1289 datum = map_word_load(map, buf);
1290 map_write(map, datum, adr + z);
1291
1292 z += map_bankwidth(map);
1293 buf += map_bankwidth(map);
1294 }
1295 z -= map_bankwidth(map);
1296
1297 adr += z;
1298
1299 /* Write Buffer Program Confirm: GO GO GO */
1300 map_write(map, CMD(0x29), cmd_adr);
1301 chip->state = FL_WRITING;
1302
02b15e34
TP
1303 INVALIDATE_CACHE_UDELAY(map, chip,
1304 adr, map_bankwidth(map),
1305 chip->word_write_time);
1da177e4 1306
1f948b43
TG
1307 timeo = jiffies + uWriteTimeout;
1308
1da177e4
LT
1309 for (;;) {
1310 if (chip->state != FL_WRITING) {
1311 /* Someone's suspended the write. Sleep */
1312 DECLARE_WAITQUEUE(wait, current);
1313
1314 set_current_state(TASK_UNINTERRUPTIBLE);
1315 add_wait_queue(&chip->wq, &wait);
02b15e34 1316 spin_unlock(chip->mutex);
1da177e4
LT
1317 schedule();
1318 remove_wait_queue(&chip->wq, &wait);
1319 timeo = jiffies + (HZ / 2); /* FIXME */
02b15e34 1320 spin_lock(chip->mutex);
1da177e4
LT
1321 continue;
1322 }
1323
b95f9609
KB
1324 if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1325 break;
1326
02b15e34
TP
1327 if (chip_ready(map, adr)) {
1328 xip_enable(map, chip, adr);
1da177e4 1329 goto op_done;
02b15e34 1330 }
1da177e4
LT
1331
1332 /* Latency issues. Drop the lock, wait a while and retry */
02b15e34 1333 UDELAY(map, chip, adr, 1);
1da177e4
LT
1334 }
1335
1da177e4
LT
1336 /* reset on all failures. */
1337 map_write( map, CMD(0xF0), chip->start );
02b15e34 1338 xip_enable(map, chip, adr);
1da177e4
LT
1339 /* FIXME - should have reset delay before continuing */
1340
02b15e34
TP
1341 printk(KERN_WARNING "MTD %s(): software timeout\n",
1342 __func__ );
1343
1da177e4
LT
1344 ret = -EIO;
1345 op_done:
1346 chip->state = FL_READY;
1347 put_chip(map, chip, adr);
02b15e34 1348 spin_unlock(chip->mutex);
1da177e4
LT
1349
1350 return ret;
1351}
1352
1353
1354static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1355 size_t *retlen, const u_char *buf)
1356{
1357 struct map_info *map = mtd->priv;
1358 struct cfi_private *cfi = map->fldrv_priv;
1359 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1360 int ret = 0;
1361 int chipnum;
1362 unsigned long ofs;
1363
1364 *retlen = 0;
1365 if (!len)
1366 return 0;
1367
1368 chipnum = to >> cfi->chipshift;
1369 ofs = to - (chipnum << cfi->chipshift);
1370
1371 /* If it's not bus-aligned, do the first word write */
1372 if (ofs & (map_bankwidth(map)-1)) {
1373 size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1374 if (local_len > len)
1375 local_len = len;
1376 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1377 local_len, retlen, buf);
1378 if (ret)
1379 return ret;
1380 ofs += local_len;
1381 buf += local_len;
1382 len -= local_len;
1383
1384 if (ofs >> cfi->chipshift) {
1385 chipnum ++;
1386 ofs = 0;
1387 if (chipnum == cfi->numchips)
1388 return 0;
1389 }
1390 }
1391
1392 /* Write buffer is worth it only if more than one word to write... */
1393 while (len >= map_bankwidth(map) * 2) {
1394 /* We must not cross write block boundaries */
1395 int size = wbufsize - (ofs & (wbufsize-1));
1396
1397 if (size > len)
1398 size = len;
1399 if (size % map_bankwidth(map))
1400 size -= size % map_bankwidth(map);
1401
1f948b43 1402 ret = do_write_buffer(map, &cfi->chips[chipnum],
1da177e4
LT
1403 ofs, buf, size);
1404 if (ret)
1405 return ret;
1406
1407 ofs += size;
1408 buf += size;
1409 (*retlen) += size;
1410 len -= size;
1411
1412 if (ofs >> cfi->chipshift) {
1f948b43 1413 chipnum ++;
1da177e4
LT
1414 ofs = 0;
1415 if (chipnum == cfi->numchips)
1416 return 0;
1417 }
1418 }
1419
1420 if (len) {
1421 size_t retlen_dregs = 0;
1422
1423 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1424 len, &retlen_dregs, buf);
1425
1426 *retlen += retlen_dregs;
1427 return ret;
1428 }
1429
1430 return 0;
1431}
1432
1433
1434/*
1435 * Handle devices with one erase region, that only implement
1436 * the chip erase command.
1437 */
02b15e34 1438static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
1da177e4
LT
1439{
1440 struct cfi_private *cfi = map->fldrv_priv;
1441 unsigned long timeo = jiffies + HZ;
1442 unsigned long int adr;
1443 DECLARE_WAITQUEUE(wait, current);
1444 int ret = 0;
1445
1446 adr = cfi->addr_unlock1;
1447
02b15e34 1448 spin_lock(chip->mutex);
1da177e4
LT
1449 ret = get_chip(map, chip, adr, FL_WRITING);
1450 if (ret) {
02b15e34 1451 spin_unlock(chip->mutex);
1da177e4
LT
1452 return ret;
1453 }
1454
1455 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1456 __func__, chip->start );
1457
02b15e34 1458 XIP_INVAL_CACHED_RANGE(map, adr, map->size);
1da177e4 1459 ENABLE_VPP(map);
02b15e34
TP
1460 xip_disable(map, chip, adr);
1461
1da177e4
LT
1462 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1463 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1464 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1465 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1466 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1467 cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1468
1469 chip->state = FL_ERASING;
1470 chip->erase_suspended = 0;
1471 chip->in_progress_block_addr = adr;
1472
02b15e34
TP
1473 INVALIDATE_CACHE_UDELAY(map, chip,
1474 adr, map->size,
1475 chip->erase_time*500);
1da177e4
LT
1476
1477 timeo = jiffies + (HZ*20);
1478
1479 for (;;) {
1480 if (chip->state != FL_ERASING) {
1481 /* Someone's suspended the erase. Sleep */
1482 set_current_state(TASK_UNINTERRUPTIBLE);
1483 add_wait_queue(&chip->wq, &wait);
02b15e34 1484 spin_unlock(chip->mutex);
1da177e4
LT
1485 schedule();
1486 remove_wait_queue(&chip->wq, &wait);
02b15e34 1487 spin_lock(chip->mutex);
1da177e4
LT
1488 continue;
1489 }
1490 if (chip->erase_suspended) {
1491 /* This erase was suspended and resumed.
1492 Adjust the timeout */
1493 timeo = jiffies + (HZ*20); /* FIXME */
1494 chip->erase_suspended = 0;
1495 }
1496
1497 if (chip_ready(map, adr))
fb4a90bf 1498 break;
1da177e4 1499
fb4a90bf
EB
1500 if (time_after(jiffies, timeo)) {
1501 printk(KERN_WARNING "MTD %s(): software timeout\n",
1502 __func__ );
1da177e4 1503 break;
fb4a90bf 1504 }
1da177e4
LT
1505
1506 /* Latency issues. Drop the lock, wait a while and retry */
02b15e34 1507 UDELAY(map, chip, adr, 1000000/HZ);
1da177e4 1508 }
fb4a90bf
EB
1509 /* Did we succeed? */
1510 if (!chip_good(map, adr, map_word_ff(map))) {
1511 /* reset on all failures. */
1512 map_write( map, CMD(0xF0), chip->start );
1513 /* FIXME - should have reset delay before continuing */
1da177e4 1514
fb4a90bf
EB
1515 ret = -EIO;
1516 }
1da177e4 1517
1da177e4 1518 chip->state = FL_READY;
02b15e34 1519 xip_enable(map, chip, adr);
1da177e4 1520 put_chip(map, chip, adr);
02b15e34 1521 spin_unlock(chip->mutex);
1da177e4
LT
1522
1523 return ret;
1524}
1525
1526
02b15e34 1527static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
1da177e4
LT
1528{
1529 struct cfi_private *cfi = map->fldrv_priv;
1530 unsigned long timeo = jiffies + HZ;
1531 DECLARE_WAITQUEUE(wait, current);
1532 int ret = 0;
1533
1534 adr += chip->start;
1535
02b15e34 1536 spin_lock(chip->mutex);
1da177e4
LT
1537 ret = get_chip(map, chip, adr, FL_ERASING);
1538 if (ret) {
02b15e34 1539 spin_unlock(chip->mutex);
1da177e4
LT
1540 return ret;
1541 }
1542
1543 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1544 __func__, adr );
1545
02b15e34 1546 XIP_INVAL_CACHED_RANGE(map, adr, len);
1da177e4 1547 ENABLE_VPP(map);
02b15e34
TP
1548 xip_disable(map, chip, adr);
1549
1da177e4
LT
1550 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1551 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1552 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1553 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1554 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1555 map_write(map, CMD(0x30), adr);
1556
1557 chip->state = FL_ERASING;
1558 chip->erase_suspended = 0;
1559 chip->in_progress_block_addr = adr;
02b15e34
TP
1560
1561 INVALIDATE_CACHE_UDELAY(map, chip,
1562 adr, len,
1563 chip->erase_time*500);
1da177e4
LT
1564
1565 timeo = jiffies + (HZ*20);
1566
1567 for (;;) {
1568 if (chip->state != FL_ERASING) {
1569 /* Someone's suspended the erase. Sleep */
1570 set_current_state(TASK_UNINTERRUPTIBLE);
1571 add_wait_queue(&chip->wq, &wait);
02b15e34 1572 spin_unlock(chip->mutex);
1da177e4
LT
1573 schedule();
1574 remove_wait_queue(&chip->wq, &wait);
02b15e34 1575 spin_lock(chip->mutex);
1da177e4
LT
1576 continue;
1577 }
1578 if (chip->erase_suspended) {
1579 /* This erase was suspended and resumed.
1580 Adjust the timeout */
1581 timeo = jiffies + (HZ*20); /* FIXME */
1582 chip->erase_suspended = 0;
1583 }
1584
02b15e34
TP
1585 if (chip_ready(map, adr)) {
1586 xip_enable(map, chip, adr);
fb4a90bf 1587 break;
02b15e34 1588 }
1da177e4 1589
fb4a90bf 1590 if (time_after(jiffies, timeo)) {
02b15e34 1591 xip_enable(map, chip, adr);
fb4a90bf
EB
1592 printk(KERN_WARNING "MTD %s(): software timeout\n",
1593 __func__ );
1da177e4 1594 break;
fb4a90bf 1595 }
1da177e4
LT
1596
1597 /* Latency issues. Drop the lock, wait a while and retry */
02b15e34 1598 UDELAY(map, chip, adr, 1000000/HZ);
1da177e4 1599 }
fb4a90bf 1600 /* Did we succeed? */
22fd9a87 1601 if (!chip_good(map, adr, map_word_ff(map))) {
fb4a90bf
EB
1602 /* reset on all failures. */
1603 map_write( map, CMD(0xF0), chip->start );
1604 /* FIXME - should have reset delay before continuing */
1605
1606 ret = -EIO;
1607 }
1da177e4 1608
1da177e4
LT
1609 chip->state = FL_READY;
1610 put_chip(map, chip, adr);
02b15e34 1611 spin_unlock(chip->mutex);
1da177e4
LT
1612 return ret;
1613}
1614
1615
ce0f33ad 1616static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1da177e4
LT
1617{
1618 unsigned long ofs, len;
1619 int ret;
1620
1621 ofs = instr->addr;
1622 len = instr->len;
1623
1624 ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1625 if (ret)
1626 return ret;
1627
1628 instr->state = MTD_ERASE_DONE;
1629 mtd_erase_callback(instr);
1f948b43 1630
1da177e4
LT
1631 return 0;
1632}
1633
1634
1635static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
1636{
1637 struct map_info *map = mtd->priv;
1638 struct cfi_private *cfi = map->fldrv_priv;
1639 int ret = 0;
1640
1641 if (instr->addr != 0)
1642 return -EINVAL;
1643
1644 if (instr->len != mtd->size)
1645 return -EINVAL;
1646
1647 ret = do_erase_chip(map, &cfi->chips[0]);
1648 if (ret)
1649 return ret;
1650
1651 instr->state = MTD_ERASE_DONE;
1652 mtd_erase_callback(instr);
1f948b43 1653
1da177e4
LT
1654 return 0;
1655}
1656
0165508c
HS
1657static int do_atmel_lock(struct map_info *map, struct flchip *chip,
1658 unsigned long adr, int len, void *thunk)
1659{
1660 struct cfi_private *cfi = map->fldrv_priv;
1661 int ret;
1662
1663 spin_lock(chip->mutex);
1664 ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
1665 if (ret)
1666 goto out_unlock;
1667 chip->state = FL_LOCKING;
1668
1669 DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1670 __func__, adr, len);
1671
1672 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1673 cfi->device_type, NULL);
1674 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1675 cfi->device_type, NULL);
1676 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
1677 cfi->device_type, NULL);
1678 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1679 cfi->device_type, NULL);
1680 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1681 cfi->device_type, NULL);
1682 map_write(map, CMD(0x40), chip->start + adr);
1683
1684 chip->state = FL_READY;
1685 put_chip(map, chip, adr + chip->start);
1686 ret = 0;
1687
1688out_unlock:
1689 spin_unlock(chip->mutex);
1690 return ret;
1691}
1692
1693static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
1694 unsigned long adr, int len, void *thunk)
1695{
1696 struct cfi_private *cfi = map->fldrv_priv;
1697 int ret;
1698
1699 spin_lock(chip->mutex);
1700 ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
1701 if (ret)
1702 goto out_unlock;
1703 chip->state = FL_UNLOCKING;
1704
1705 DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1706 __func__, adr, len);
1707
1708 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1709 cfi->device_type, NULL);
1710 map_write(map, CMD(0x70), adr);
1711
1712 chip->state = FL_READY;
1713 put_chip(map, chip, adr + chip->start);
1714 ret = 0;
1715
1716out_unlock:
1717 spin_unlock(chip->mutex);
1718 return ret;
1719}
1720
1721static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
1722{
1723 return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
1724}
1725
1726static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
1727{
1728 return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
1729}
1730
1da177e4
LT
1731
1732static void cfi_amdstd_sync (struct mtd_info *mtd)
1733{
1734 struct map_info *map = mtd->priv;
1735 struct cfi_private *cfi = map->fldrv_priv;
1736 int i;
1737 struct flchip *chip;
1738 int ret = 0;
1739 DECLARE_WAITQUEUE(wait, current);
1740
1741 for (i=0; !ret && i<cfi->numchips; i++) {
1742 chip = &cfi->chips[i];
1743
1744 retry:
02b15e34 1745 spin_lock(chip->mutex);
1da177e4
LT
1746
1747 switch(chip->state) {
1748 case FL_READY:
1749 case FL_STATUS:
1750 case FL_CFI_QUERY:
1751 case FL_JEDEC_QUERY:
1752 chip->oldstate = chip->state;
1753 chip->state = FL_SYNCING;
1f948b43 1754 /* No need to wake_up() on this state change -
1da177e4
LT
1755 * as the whole point is that nobody can do anything
1756 * with the chip now anyway.
1757 */
1758 case FL_SYNCING:
02b15e34 1759 spin_unlock(chip->mutex);
1da177e4
LT
1760 break;
1761
1762 default:
1763 /* Not an idle state */
1764 add_wait_queue(&chip->wq, &wait);
1f948b43 1765
02b15e34 1766 spin_unlock(chip->mutex);
1da177e4
LT
1767
1768 schedule();
1769
1770 remove_wait_queue(&chip->wq, &wait);
1f948b43 1771
1da177e4
LT
1772 goto retry;
1773 }
1774 }
1775
1776 /* Unlock the chips again */
1777
1778 for (i--; i >=0; i--) {
1779 chip = &cfi->chips[i];
1780
02b15e34 1781 spin_lock(chip->mutex);
1f948b43 1782
1da177e4
LT
1783 if (chip->state == FL_SYNCING) {
1784 chip->state = chip->oldstate;
1785 wake_up(&chip->wq);
1786 }
02b15e34 1787 spin_unlock(chip->mutex);
1da177e4
LT
1788 }
1789}
1790
1791
1792static int cfi_amdstd_suspend(struct mtd_info *mtd)
1793{
1794 struct map_info *map = mtd->priv;
1795 struct cfi_private *cfi = map->fldrv_priv;
1796 int i;
1797 struct flchip *chip;
1798 int ret = 0;
1799
1800 for (i=0; !ret && i<cfi->numchips; i++) {
1801 chip = &cfi->chips[i];
1802
02b15e34 1803 spin_lock(chip->mutex);
1da177e4
LT
1804
1805 switch(chip->state) {
1806 case FL_READY:
1807 case FL_STATUS:
1808 case FL_CFI_QUERY:
1809 case FL_JEDEC_QUERY:
1810 chip->oldstate = chip->state;
1811 chip->state = FL_PM_SUSPENDED;
1f948b43 1812 /* No need to wake_up() on this state change -
1da177e4
LT
1813 * as the whole point is that nobody can do anything
1814 * with the chip now anyway.
1815 */
1816 case FL_PM_SUSPENDED:
1817 break;
1818
1819 default:
1820 ret = -EAGAIN;
1821 break;
1822 }
02b15e34 1823 spin_unlock(chip->mutex);
1da177e4
LT
1824 }
1825
1826 /* Unlock the chips again */
1827
1828 if (ret) {
1829 for (i--; i >=0; i--) {
1830 chip = &cfi->chips[i];
1831
02b15e34 1832 spin_lock(chip->mutex);
1f948b43 1833
1da177e4
LT
1834 if (chip->state == FL_PM_SUSPENDED) {
1835 chip->state = chip->oldstate;
1836 wake_up(&chip->wq);
1837 }
02b15e34 1838 spin_unlock(chip->mutex);
1da177e4
LT
1839 }
1840 }
1f948b43 1841
1da177e4
LT
1842 return ret;
1843}
1844
1845
1846static void cfi_amdstd_resume(struct mtd_info *mtd)
1847{
1848 struct map_info *map = mtd->priv;
1849 struct cfi_private *cfi = map->fldrv_priv;
1850 int i;
1851 struct flchip *chip;
1852
1853 for (i=0; i<cfi->numchips; i++) {
1f948b43 1854
1da177e4
LT
1855 chip = &cfi->chips[i];
1856
02b15e34 1857 spin_lock(chip->mutex);
1f948b43 1858
1da177e4
LT
1859 if (chip->state == FL_PM_SUSPENDED) {
1860 chip->state = FL_READY;
1861 map_write(map, CMD(0xF0), chip->start);
1862 wake_up(&chip->wq);
1863 }
1864 else
1865 printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
1866
02b15e34 1867 spin_unlock(chip->mutex);
1da177e4
LT
1868 }
1869}
1870
1871static void cfi_amdstd_destroy(struct mtd_info *mtd)
1872{
1873 struct map_info *map = mtd->priv;
1874 struct cfi_private *cfi = map->fldrv_priv;
fa671646 1875
1da177e4
LT
1876 kfree(cfi->cmdset_priv);
1877 kfree(cfi->cfiq);
1878 kfree(cfi);
1879 kfree(mtd->eraseregions);
1880}
1881
1da177e4
LT
1882MODULE_LICENSE("GPL");
1883MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
1884MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
This page took 0.307027 seconds and 5 git commands to generate.