[MTD] Unlocking all Intel flash that is locked on power up.
[deliverable/linux.git] / drivers / mtd / chips / cfi_cmdset_0002.c
CommitLineData
1da177e4
LT
1/*
2 * Common Flash Interface support:
3 * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4 *
5 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
02b15e34 7 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
1da177e4
LT
8 *
9 * 2_by_8 routines added by Simon Munton
10 *
11 * 4_by_16 work by Carolyn J. Smith
12 *
1f948b43 13 * XIP support hooks by Vitaly Wool (based on code for Intel flash
02b15e34 14 * by Nicolas Pitre)
1f948b43 15 *
1da177e4
LT
16 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
17 *
18 * This code is GPL
19 *
1f948b43 20 * $Id: cfi_cmdset_0002.c,v 1.122 2005/11/07 11:14:22 gleixner Exp $
1da177e4
LT
21 *
22 */
23
1da177e4
LT
24#include <linux/module.h>
25#include <linux/types.h>
26#include <linux/kernel.h>
27#include <linux/sched.h>
28#include <linux/init.h>
29#include <asm/io.h>
30#include <asm/byteorder.h>
31
32#include <linux/errno.h>
33#include <linux/slab.h>
34#include <linux/delay.h>
35#include <linux/interrupt.h>
36#include <linux/mtd/compatmac.h>
37#include <linux/mtd/map.h>
38#include <linux/mtd/mtd.h>
39#include <linux/mtd/cfi.h>
02b15e34 40#include <linux/mtd/xip.h>
1da177e4
LT
41
42#define AMD_BOOTLOC_BUG
43#define FORCE_WORD_WRITE 0
44
45#define MAX_WORD_RETRIES 3
46
47#define MANUFACTURER_AMD 0x0001
0165508c 48#define MANUFACTURER_ATMEL 0x001F
1da177e4
LT
49#define MANUFACTURER_SST 0x00BF
50#define SST49LF004B 0x0060
89072ef9 51#define SST49LF040B 0x0050
fb4a90bf 52#define SST49LF008A 0x005a
0165508c 53#define AT49BV6416 0x00d6
1da177e4
LT
54
55static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
56static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
57static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
58static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
59static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
60static void cfi_amdstd_sync (struct mtd_info *);
61static int cfi_amdstd_suspend (struct mtd_info *);
62static void cfi_amdstd_resume (struct mtd_info *);
63static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
64
65static void cfi_amdstd_destroy(struct mtd_info *);
66
67struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
68static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
69
70static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
71static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
72#include "fwh_lock.h"
73
0165508c
HS
74static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, size_t len);
75static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, size_t len);
76
1da177e4
LT
77static struct mtd_chip_driver cfi_amdstd_chipdrv = {
78 .probe = NULL, /* Not usable directly */
79 .destroy = cfi_amdstd_destroy,
80 .name = "cfi_cmdset_0002",
81 .module = THIS_MODULE
82};
83
84
85/* #define DEBUG_CFI_FEATURES */
86
87
88#ifdef DEBUG_CFI_FEATURES
89static void cfi_tell_features(struct cfi_pri_amdstd *extp)
90{
91 const char* erase_suspend[3] = {
92 "Not supported", "Read only", "Read/write"
93 };
94 const char* top_bottom[6] = {
95 "No WP", "8x8KiB sectors at top & bottom, no WP",
96 "Bottom boot", "Top boot",
97 "Uniform, Bottom WP", "Uniform, Top WP"
98 };
99
100 printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1);
1f948b43 101 printk(" Address sensitive unlock: %s\n",
1da177e4
LT
102 (extp->SiliconRevision & 1) ? "Not required" : "Required");
103
104 if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
105 printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
106 else
107 printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
108
109 if (extp->BlkProt == 0)
110 printk(" Block protection: Not supported\n");
111 else
112 printk(" Block protection: %d sectors per group\n", extp->BlkProt);
113
114
115 printk(" Temporary block unprotect: %s\n",
116 extp->TmpBlkUnprotect ? "Supported" : "Not supported");
117 printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
118 printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps);
119 printk(" Burst mode: %s\n",
120 extp->BurstMode ? "Supported" : "Not supported");
121 if (extp->PageMode == 0)
122 printk(" Page mode: Not supported\n");
123 else
124 printk(" Page mode: %d word page\n", extp->PageMode << 2);
125
1f948b43 126 printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
1da177e4 127 extp->VppMin >> 4, extp->VppMin & 0xf);
1f948b43 128 printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
1da177e4
LT
129 extp->VppMax >> 4, extp->VppMax & 0xf);
130
131 if (extp->TopBottom < ARRAY_SIZE(top_bottom))
132 printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
133 else
134 printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
135}
136#endif
137
138#ifdef AMD_BOOTLOC_BUG
139/* Wheee. Bring me the head of someone at AMD. */
140static void fixup_amd_bootblock(struct mtd_info *mtd, void* param)
141{
142 struct map_info *map = mtd->priv;
143 struct cfi_private *cfi = map->fldrv_priv;
144 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
145 __u8 major = extp->MajorVersion;
146 __u8 minor = extp->MinorVersion;
147
148 if (((major << 8) | minor) < 0x3131) {
149 /* CFI version 1.0 => don't trust bootloc */
150 if (cfi->id & 0x80) {
151 printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
152 extp->TopBottom = 3; /* top boot */
153 } else {
154 extp->TopBottom = 2; /* bottom boot */
155 }
156 }
157}
158#endif
159
160static void fixup_use_write_buffers(struct mtd_info *mtd, void *param)
161{
162 struct map_info *map = mtd->priv;
163 struct cfi_private *cfi = map->fldrv_priv;
164 if (cfi->cfiq->BufWriteTimeoutTyp) {
165 DEBUG(MTD_DEBUG_LEVEL1, "Using buffer write method\n" );
166 mtd->write = cfi_amdstd_write_buffers;
167 }
168}
169
5b0c5c2c
HS
170/* Atmel chips don't use the same PRI format as AMD chips */
171static void fixup_convert_atmel_pri(struct mtd_info *mtd, void *param)
172{
173 struct map_info *map = mtd->priv;
174 struct cfi_private *cfi = map->fldrv_priv;
175 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
176 struct cfi_pri_atmel atmel_pri;
177
178 memcpy(&atmel_pri, extp, sizeof(atmel_pri));
de591dac 179 memset((char *)extp + 5, 0, sizeof(*extp) - 5);
5b0c5c2c
HS
180
181 if (atmel_pri.Features & 0x02)
182 extp->EraseSuspend = 2;
183
184 if (atmel_pri.BottomBoot)
185 extp->TopBottom = 2;
186 else
187 extp->TopBottom = 3;
d10a39d1
HCE
188
189 /* burst write mode not supported */
190 cfi->cfiq->BufWriteTimeoutTyp = 0;
191 cfi->cfiq->BufWriteTimeoutMax = 0;
5b0c5c2c
HS
192}
193
1da177e4
LT
194static void fixup_use_secsi(struct mtd_info *mtd, void *param)
195{
196 /* Setup for chips with a secsi area */
197 mtd->read_user_prot_reg = cfi_amdstd_secsi_read;
198 mtd->read_fact_prot_reg = cfi_amdstd_secsi_read;
199}
200
201static void fixup_use_erase_chip(struct mtd_info *mtd, void *param)
202{
203 struct map_info *map = mtd->priv;
204 struct cfi_private *cfi = map->fldrv_priv;
205 if ((cfi->cfiq->NumEraseRegions == 1) &&
206 ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
207 mtd->erase = cfi_amdstd_erase_chip;
208 }
1f948b43 209
1da177e4
LT
210}
211
0165508c
HS
212/*
213 * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
214 * locked by default.
215 */
216static void fixup_use_atmel_lock(struct mtd_info *mtd, void *param)
217{
218 mtd->lock = cfi_atmel_lock;
219 mtd->unlock = cfi_atmel_unlock;
e619a75f 220 mtd->flags |= MTD_POWERUP_LOCK;
0165508c
HS
221}
222
1da177e4 223static struct cfi_fixup cfi_fixup_table[] = {
d10a39d1 224 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri, NULL },
1da177e4
LT
225#ifdef AMD_BOOTLOC_BUG
226 { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock, NULL },
227#endif
228 { CFI_MFR_AMD, 0x0050, fixup_use_secsi, NULL, },
229 { CFI_MFR_AMD, 0x0053, fixup_use_secsi, NULL, },
230 { CFI_MFR_AMD, 0x0055, fixup_use_secsi, NULL, },
231 { CFI_MFR_AMD, 0x0056, fixup_use_secsi, NULL, },
232 { CFI_MFR_AMD, 0x005C, fixup_use_secsi, NULL, },
233 { CFI_MFR_AMD, 0x005F, fixup_use_secsi, NULL, },
234#if !FORCE_WORD_WRITE
235 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL, },
236#endif
237 { 0, 0, NULL, NULL }
238};
239static struct cfi_fixup jedec_fixup_table[] = {
240 { MANUFACTURER_SST, SST49LF004B, fixup_use_fwh_lock, NULL, },
89072ef9 241 { MANUFACTURER_SST, SST49LF040B, fixup_use_fwh_lock, NULL, },
fb4a90bf 242 { MANUFACTURER_SST, SST49LF008A, fixup_use_fwh_lock, NULL, },
1da177e4
LT
243 { 0, 0, NULL, NULL }
244};
245
246static struct cfi_fixup fixup_table[] = {
247 /* The CFI vendor ids and the JEDEC vendor IDs appear
248 * to be common. It is like the devices id's are as
249 * well. This table is to pick all cases where
250 * we know that is the case.
251 */
252 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip, NULL },
0165508c 253 { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock, NULL },
1da177e4
LT
254 { 0, 0, NULL, NULL }
255};
256
257
258struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
259{
260 struct cfi_private *cfi = map->fldrv_priv;
261 struct mtd_info *mtd;
262 int i;
263
95b93a0c 264 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
1da177e4
LT
265 if (!mtd) {
266 printk(KERN_WARNING "Failed to allocate memory for MTD device\n");
267 return NULL;
268 }
1da177e4
LT
269 mtd->priv = map;
270 mtd->type = MTD_NORFLASH;
271
272 /* Fill in the default mtd operations */
273 mtd->erase = cfi_amdstd_erase_varsize;
274 mtd->write = cfi_amdstd_write_words;
275 mtd->read = cfi_amdstd_read;
276 mtd->sync = cfi_amdstd_sync;
277 mtd->suspend = cfi_amdstd_suspend;
278 mtd->resume = cfi_amdstd_resume;
279 mtd->flags = MTD_CAP_NORFLASH;
280 mtd->name = map->name;
783ed81f 281 mtd->writesize = 1;
1da177e4
LT
282
283 if (cfi->cfi_mode==CFI_MODE_CFI){
284 unsigned char bootloc;
1f948b43 285 /*
1da177e4
LT
286 * It's a real CFI chip, not one for which the probe
287 * routine faked a CFI structure. So we read the feature
288 * table from it.
289 */
290 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
291 struct cfi_pri_amdstd *extp;
292
293 extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
294 if (!extp) {
295 kfree(mtd);
296 return NULL;
297 }
298
d88f977b
TP
299 if (extp->MajorVersion != '1' ||
300 (extp->MinorVersion < '0' || extp->MinorVersion > '4')) {
301 printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query "
302 "version %c.%c.\n", extp->MajorVersion,
303 extp->MinorVersion);
304 kfree(extp);
305 kfree(mtd);
306 return NULL;
307 }
308
1da177e4 309 /* Install our own private info structure */
1f948b43 310 cfi->cmdset_priv = extp;
1da177e4
LT
311
312 /* Apply cfi device specific fixups */
313 cfi_fixup(mtd, cfi_fixup_table);
314
315#ifdef DEBUG_CFI_FEATURES
316 /* Tell the user about it in lots of lovely detail */
317 cfi_tell_features(extp);
1f948b43 318#endif
1da177e4
LT
319
320 bootloc = extp->TopBottom;
321 if ((bootloc != 2) && (bootloc != 3)) {
322 printk(KERN_WARNING "%s: CFI does not contain boot "
323 "bank location. Assuming top.\n", map->name);
324 bootloc = 2;
325 }
326
327 if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
328 printk(KERN_WARNING "%s: Swapping erase regions for broken CFI table.\n", map->name);
1f948b43 329
1da177e4
LT
330 for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
331 int j = (cfi->cfiq->NumEraseRegions-1)-i;
332 __u32 swap;
1f948b43 333
1da177e4
LT
334 swap = cfi->cfiq->EraseRegionInfo[i];
335 cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
336 cfi->cfiq->EraseRegionInfo[j] = swap;
337 }
338 }
339 /* Set the default CFI lock/unlock addresses */
340 cfi->addr_unlock1 = 0x555;
341 cfi->addr_unlock2 = 0x2aa;
342 /* Modify the unlock address if we are in compatibility mode */
343 if ( /* x16 in x8 mode */
1f948b43 344 ((cfi->device_type == CFI_DEVICETYPE_X8) &&
de7921f0
BS
345 (cfi->cfiq->InterfaceDesc ==
346 CFI_INTERFACE_X8_BY_X16_ASYNC)) ||
1da177e4
LT
347 /* x32 in x16 mode */
348 ((cfi->device_type == CFI_DEVICETYPE_X16) &&
de7921f0
BS
349 (cfi->cfiq->InterfaceDesc ==
350 CFI_INTERFACE_X16_BY_X32_ASYNC)))
1da177e4
LT
351 {
352 cfi->addr_unlock1 = 0xaaa;
353 cfi->addr_unlock2 = 0x555;
354 }
355
356 } /* CFI mode */
357 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
358 /* Apply jedec specific fixups */
359 cfi_fixup(mtd, jedec_fixup_table);
360 }
361 /* Apply generic fixups */
362 cfi_fixup(mtd, fixup_table);
363
364 for (i=0; i< cfi->numchips; i++) {
365 cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
366 cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
367 cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
83d48091
VS
368 cfi->chips[i].ref_point_counter = 0;
369 init_waitqueue_head(&(cfi->chips[i].wq));
1f948b43
TG
370 }
371
1da177e4 372 map->fldrv = &cfi_amdstd_chipdrv;
1f948b43 373
1da177e4
LT
374 return cfi_amdstd_setup(mtd);
375}
83ea4ef2 376EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
1da177e4
LT
377
378static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
379{
380 struct map_info *map = mtd->priv;
381 struct cfi_private *cfi = map->fldrv_priv;
382 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
383 unsigned long offset = 0;
384 int i,j;
385
1f948b43 386 printk(KERN_NOTICE "number of %s chips: %d\n",
1da177e4 387 (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
1f948b43 388 /* Select the correct geometry setup */
1da177e4
LT
389 mtd->size = devsize * cfi->numchips;
390
391 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
392 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
393 * mtd->numeraseregions, GFP_KERNEL);
1f948b43 394 if (!mtd->eraseregions) {
1da177e4
LT
395 printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n");
396 goto setup_err;
397 }
1f948b43 398
1da177e4
LT
399 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
400 unsigned long ernum, ersize;
401 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
402 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
1f948b43 403
1da177e4
LT
404 if (mtd->erasesize < ersize) {
405 mtd->erasesize = ersize;
406 }
407 for (j=0; j<cfi->numchips; j++) {
408 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
409 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
410 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
411 }
412 offset += (ersize * ernum);
413 }
414 if (offset != devsize) {
415 /* Argh */
416 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
417 goto setup_err;
418 }
419#if 0
420 // debug
421 for (i=0; i<mtd->numeraseregions;i++){
422 printk("%d: offset=0x%x,size=0x%x,blocks=%d\n",
423 i,mtd->eraseregions[i].offset,
424 mtd->eraseregions[i].erasesize,
425 mtd->eraseregions[i].numblocks);
426 }
427#endif
428
429 /* FIXME: erase-suspend-program is broken. See
430 http://lists.infradead.org/pipermail/linux-mtd/2003-December/009001.html */
431 printk(KERN_NOTICE "cfi_cmdset_0002: Disabling erase-suspend-program due to code brokenness.\n");
432
433 __module_get(THIS_MODULE);
434 return mtd;
435
436 setup_err:
437 if(mtd) {
fa671646 438 kfree(mtd->eraseregions);
1da177e4
LT
439 kfree(mtd);
440 }
441 kfree(cfi->cmdset_priv);
442 kfree(cfi->cfiq);
443 return NULL;
444}
445
446/*
447 * Return true if the chip is ready.
448 *
449 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
450 * non-suspended sector) and is indicated by no toggle bits toggling.
451 *
452 * Note that anything more complicated than checking if no bits are toggling
453 * (including checking DQ5 for an error status) is tricky to get working
454 * correctly and is therefore not done (particulary with interleaved chips
455 * as each chip must be checked independantly of the others).
456 */
02b15e34 457static int __xipram chip_ready(struct map_info *map, unsigned long addr)
1da177e4
LT
458{
459 map_word d, t;
460
461 d = map_read(map, addr);
462 t = map_read(map, addr);
463
464 return map_word_equal(map, d, t);
465}
466
fb4a90bf
EB
467/*
468 * Return true if the chip is ready and has the correct value.
469 *
470 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
471 * non-suspended sector) and it is indicated by no bits toggling.
472 *
473 * Error are indicated by toggling bits or bits held with the wrong value,
474 * or with bits toggling.
475 *
476 * Note that anything more complicated than checking if no bits are toggling
477 * (including checking DQ5 for an error status) is tricky to get working
478 * correctly and is therefore not done (particulary with interleaved chips
479 * as each chip must be checked independantly of the others).
480 *
481 */
02b15e34 482static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
fb4a90bf
EB
483{
484 map_word oldd, curd;
485
486 oldd = map_read(map, addr);
487 curd = map_read(map, addr);
488
1f948b43 489 return map_word_equal(map, oldd, curd) &&
fb4a90bf
EB
490 map_word_equal(map, curd, expected);
491}
492
1da177e4
LT
493static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
494{
495 DECLARE_WAITQUEUE(wait, current);
496 struct cfi_private *cfi = map->fldrv_priv;
497 unsigned long timeo;
498 struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
499
500 resettime:
501 timeo = jiffies + HZ;
502 retry:
503 switch (chip->state) {
504
505 case FL_STATUS:
506 for (;;) {
507 if (chip_ready(map, adr))
508 break;
509
510 if (time_after(jiffies, timeo)) {
511 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
02b15e34 512 spin_unlock(chip->mutex);
1da177e4
LT
513 return -EIO;
514 }
02b15e34 515 spin_unlock(chip->mutex);
1da177e4 516 cfi_udelay(1);
02b15e34 517 spin_lock(chip->mutex);
1da177e4
LT
518 /* Someone else might have been playing with it. */
519 goto retry;
520 }
1f948b43 521
1da177e4
LT
522 case FL_READY:
523 case FL_CFI_QUERY:
524 case FL_JEDEC_QUERY:
525 return 0;
526
527 case FL_ERASING:
528 if (mode == FL_WRITING) /* FIXME: Erase-suspend-program appears broken. */
529 goto sleep;
530
89072ef9
RJ
531 if (!( mode == FL_READY
532 || mode == FL_POINT
1da177e4
LT
533 || !cfip
534 || (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))
89072ef9
RJ
535 || (mode == FL_WRITING && (cfip->EraseSuspend & 0x1)
536 )))
1da177e4
LT
537 goto sleep;
538
539 /* We could check to see if we're trying to access the sector
540 * that is currently being erased. However, no user will try
541 * anything like that so we just wait for the timeout. */
542
543 /* Erase suspend */
544 /* It's harmless to issue the Erase-Suspend and Erase-Resume
545 * commands when the erase algorithm isn't in progress. */
546 map_write(map, CMD(0xB0), chip->in_progress_block_addr);
547 chip->oldstate = FL_ERASING;
548 chip->state = FL_ERASE_SUSPENDING;
549 chip->erase_suspended = 1;
550 for (;;) {
551 if (chip_ready(map, adr))
552 break;
553
554 if (time_after(jiffies, timeo)) {
555 /* Should have suspended the erase by now.
556 * Send an Erase-Resume command as either
557 * there was an error (so leave the erase
558 * routine to recover from it) or we trying to
559 * use the erase-in-progress sector. */
560 map_write(map, CMD(0x30), chip->in_progress_block_addr);
561 chip->state = FL_ERASING;
562 chip->oldstate = FL_READY;
563 printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
564 return -EIO;
565 }
1f948b43 566
02b15e34 567 spin_unlock(chip->mutex);
1da177e4 568 cfi_udelay(1);
02b15e34 569 spin_lock(chip->mutex);
1da177e4
LT
570 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
571 So we can just loop here. */
572 }
573 chip->state = FL_READY;
574 return 0;
575
02b15e34
TP
576 case FL_XIP_WHILE_ERASING:
577 if (mode != FL_READY && mode != FL_POINT &&
578 (!cfip || !(cfip->EraseSuspend&2)))
579 goto sleep;
580 chip->oldstate = chip->state;
581 chip->state = FL_READY;
582 return 0;
583
1da177e4
LT
584 case FL_POINT:
585 /* Only if there's no operation suspended... */
586 if (mode == FL_READY && chip->oldstate == FL_READY)
587 return 0;
588
589 default:
590 sleep:
591 set_current_state(TASK_UNINTERRUPTIBLE);
592 add_wait_queue(&chip->wq, &wait);
02b15e34 593 spin_unlock(chip->mutex);
1da177e4
LT
594 schedule();
595 remove_wait_queue(&chip->wq, &wait);
02b15e34 596 spin_lock(chip->mutex);
1da177e4
LT
597 goto resettime;
598 }
599}
600
601
602static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
603{
604 struct cfi_private *cfi = map->fldrv_priv;
605
606 switch(chip->oldstate) {
607 case FL_ERASING:
608 chip->state = chip->oldstate;
609 map_write(map, CMD(0x30), chip->in_progress_block_addr);
610 chip->oldstate = FL_READY;
611 chip->state = FL_ERASING;
612 break;
613
02b15e34
TP
614 case FL_XIP_WHILE_ERASING:
615 chip->state = chip->oldstate;
616 chip->oldstate = FL_READY;
617 break;
618
1da177e4
LT
619 case FL_READY:
620 case FL_STATUS:
621 /* We should really make set_vpp() count, rather than doing this */
622 DISABLE_VPP(map);
623 break;
624 default:
625 printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
626 }
627 wake_up(&chip->wq);
628}
629
02b15e34
TP
630#ifdef CONFIG_MTD_XIP
631
632/*
633 * No interrupt what so ever can be serviced while the flash isn't in array
634 * mode. This is ensured by the xip_disable() and xip_enable() functions
635 * enclosing any code path where the flash is known not to be in array mode.
636 * And within a XIP disabled code path, only functions marked with __xipram
637 * may be called and nothing else (it's a good thing to inspect generated
638 * assembly to make sure inline functions were actually inlined and that gcc
639 * didn't emit calls to its own support functions). Also configuring MTD CFI
640 * support to a single buswidth and a single interleave is also recommended.
641 */
f8eb321b 642
02b15e34
TP
643static void xip_disable(struct map_info *map, struct flchip *chip,
644 unsigned long adr)
645{
646 /* TODO: chips with no XIP use should ignore and return */
647 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
648 local_irq_disable();
649}
650
651static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
652 unsigned long adr)
653{
654 struct cfi_private *cfi = map->fldrv_priv;
655
656 if (chip->state != FL_POINT && chip->state != FL_READY) {
657 map_write(map, CMD(0xf0), adr);
658 chip->state = FL_READY;
659 }
660 (void) map_read(map, adr);
97f927a4 661 xip_iprefetch();
02b15e34
TP
662 local_irq_enable();
663}
664
665/*
666 * When a delay is required for the flash operation to complete, the
667 * xip_udelay() function is polling for both the given timeout and pending
668 * (but still masked) hardware interrupts. Whenever there is an interrupt
1f948b43 669 * pending then the flash erase operation is suspended, array mode restored
02b15e34
TP
670 * and interrupts unmasked. Task scheduling might also happen at that
671 * point. The CPU eventually returns from the interrupt or the call to
672 * schedule() and the suspended flash operation is resumed for the remaining
673 * of the delay period.
674 *
675 * Warning: this function _will_ fool interrupt latency tracing tools.
676 */
677
678static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
679 unsigned long adr, int usec)
680{
681 struct cfi_private *cfi = map->fldrv_priv;
682 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
683 map_word status, OK = CMD(0x80);
684 unsigned long suspended, start = xip_currtime();
685 flstate_t oldstate;
686
687 do {
688 cpu_relax();
689 if (xip_irqpending() && extp &&
690 ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
691 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
692 /*
1f948b43
TG
693 * Let's suspend the erase operation when supported.
694 * Note that we currently don't try to suspend
695 * interleaved chips if there is already another
02b15e34
TP
696 * operation suspended (imagine what happens
697 * when one chip was already done with the current
698 * operation while another chip suspended it, then
699 * we resume the whole thing at once). Yes, it
700 * can happen!
701 */
702 map_write(map, CMD(0xb0), adr);
703 usec -= xip_elapsed_since(start);
704 suspended = xip_currtime();
705 do {
706 if (xip_elapsed_since(suspended) > 100000) {
707 /*
708 * The chip doesn't want to suspend
709 * after waiting for 100 msecs.
710 * This is a critical error but there
711 * is not much we can do here.
712 */
713 return;
714 }
715 status = map_read(map, adr);
716 } while (!map_word_andequal(map, status, OK, OK));
717
718 /* Suspend succeeded */
719 oldstate = chip->state;
720 if (!map_word_bitsset(map, status, CMD(0x40)))
721 break;
722 chip->state = FL_XIP_WHILE_ERASING;
723 chip->erase_suspended = 1;
724 map_write(map, CMD(0xf0), adr);
725 (void) map_read(map, adr);
726 asm volatile (".rep 8; nop; .endr");
727 local_irq_enable();
728 spin_unlock(chip->mutex);
729 asm volatile (".rep 8; nop; .endr");
730 cond_resched();
731
732 /*
733 * We're back. However someone else might have
734 * decided to go write to the chip if we are in
735 * a suspended erase state. If so let's wait
736 * until it's done.
737 */
738 spin_lock(chip->mutex);
739 while (chip->state != FL_XIP_WHILE_ERASING) {
740 DECLARE_WAITQUEUE(wait, current);
741 set_current_state(TASK_UNINTERRUPTIBLE);
742 add_wait_queue(&chip->wq, &wait);
743 spin_unlock(chip->mutex);
744 schedule();
745 remove_wait_queue(&chip->wq, &wait);
746 spin_lock(chip->mutex);
747 }
748 /* Disallow XIP again */
749 local_irq_disable();
750
751 /* Resume the write or erase operation */
752 map_write(map, CMD(0x30), adr);
753 chip->state = oldstate;
754 start = xip_currtime();
755 } else if (usec >= 1000000/HZ) {
756 /*
757 * Try to save on CPU power when waiting delay
758 * is at least a system timer tick period.
759 * No need to be extremely accurate here.
760 */
761 xip_cpu_idle();
762 }
763 status = map_read(map, adr);
764 } while (!map_word_andequal(map, status, OK, OK)
765 && xip_elapsed_since(start) < usec);
766}
767
768#define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
769
770/*
771 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
772 * the flash is actively programming or erasing since we have to poll for
773 * the operation to complete anyway. We can't do that in a generic way with
774 * a XIP setup so do it before the actual flash operation in this case
775 * and stub it out from INVALIDATE_CACHE_UDELAY.
776 */
777#define XIP_INVAL_CACHED_RANGE(map, from, size) \
778 INVALIDATE_CACHED_RANGE(map, from, size)
779
780#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
781 UDELAY(map, chip, adr, usec)
782
783/*
784 * Extra notes:
785 *
786 * Activating this XIP support changes the way the code works a bit. For
787 * example the code to suspend the current process when concurrent access
788 * happens is never executed because xip_udelay() will always return with the
789 * same chip state as it was entered with. This is why there is no care for
790 * the presence of add_wait_queue() or schedule() calls from within a couple
791 * xip_disable()'d areas of code, like in do_erase_oneblock for example.
792 * The queueing and scheduling are always happening within xip_udelay().
793 *
794 * Similarly, get_chip() and put_chip() just happen to always be executed
795 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
796 * is in array mode, therefore never executing many cases therein and not
797 * causing any problem with XIP.
798 */
799
800#else
801
802#define xip_disable(map, chip, adr)
803#define xip_enable(map, chip, adr)
804#define XIP_INVAL_CACHED_RANGE(x...)
805
806#define UDELAY(map, chip, adr, usec) \
807do { \
808 spin_unlock(chip->mutex); \
809 cfi_udelay(usec); \
810 spin_lock(chip->mutex); \
811} while (0)
812
813#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
814do { \
815 spin_unlock(chip->mutex); \
816 INVALIDATE_CACHED_RANGE(map, adr, len); \
817 cfi_udelay(usec); \
818 spin_lock(chip->mutex); \
819} while (0)
820
821#endif
1da177e4
LT
822
823static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
824{
825 unsigned long cmd_addr;
826 struct cfi_private *cfi = map->fldrv_priv;
827 int ret;
828
829 adr += chip->start;
830
1f948b43
TG
831 /* Ensure cmd read/writes are aligned. */
832 cmd_addr = adr & ~(map_bankwidth(map)-1);
1da177e4 833
02b15e34 834 spin_lock(chip->mutex);
1da177e4
LT
835 ret = get_chip(map, chip, cmd_addr, FL_READY);
836 if (ret) {
02b15e34 837 spin_unlock(chip->mutex);
1da177e4
LT
838 return ret;
839 }
840
841 if (chip->state != FL_POINT && chip->state != FL_READY) {
842 map_write(map, CMD(0xf0), cmd_addr);
843 chip->state = FL_READY;
844 }
845
846 map_copy_from(map, buf, adr, len);
847
848 put_chip(map, chip, cmd_addr);
849
02b15e34 850 spin_unlock(chip->mutex);
1da177e4
LT
851 return 0;
852}
853
854
855static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
856{
857 struct map_info *map = mtd->priv;
858 struct cfi_private *cfi = map->fldrv_priv;
859 unsigned long ofs;
860 int chipnum;
861 int ret = 0;
862
863 /* ofs: offset within the first chip that the first read should start */
864
865 chipnum = (from >> cfi->chipshift);
866 ofs = from - (chipnum << cfi->chipshift);
867
868
869 *retlen = 0;
870
871 while (len) {
872 unsigned long thislen;
873
874 if (chipnum >= cfi->numchips)
875 break;
876
877 if ((len + ofs -1) >> cfi->chipshift)
878 thislen = (1<<cfi->chipshift) - ofs;
879 else
880 thislen = len;
881
882 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
883 if (ret)
884 break;
885
886 *retlen += thislen;
887 len -= thislen;
888 buf += thislen;
889
890 ofs = 0;
891 chipnum++;
892 }
893 return ret;
894}
895
896
897static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
898{
899 DECLARE_WAITQUEUE(wait, current);
900 unsigned long timeo = jiffies + HZ;
901 struct cfi_private *cfi = map->fldrv_priv;
902
903 retry:
02b15e34 904 spin_lock(chip->mutex);
1da177e4
LT
905
906 if (chip->state != FL_READY){
907#if 0
908 printk(KERN_DEBUG "Waiting for chip to read, status = %d\n", chip->state);
909#endif
910 set_current_state(TASK_UNINTERRUPTIBLE);
911 add_wait_queue(&chip->wq, &wait);
1f948b43 912
02b15e34 913 spin_unlock(chip->mutex);
1da177e4
LT
914
915 schedule();
916 remove_wait_queue(&chip->wq, &wait);
917#if 0
918 if(signal_pending(current))
919 return -EINTR;
920#endif
921 timeo = jiffies + HZ;
922
923 goto retry;
1f948b43 924 }
1da177e4
LT
925
926 adr += chip->start;
927
928 chip->state = FL_READY;
929
930 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
931 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
932 cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1f948b43 933
1da177e4
LT
934 map_copy_from(map, buf, adr, len);
935
936 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
937 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
938 cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
939 cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1f948b43 940
1da177e4 941 wake_up(&chip->wq);
02b15e34 942 spin_unlock(chip->mutex);
1da177e4
LT
943
944 return 0;
945}
946
947static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
948{
949 struct map_info *map = mtd->priv;
950 struct cfi_private *cfi = map->fldrv_priv;
951 unsigned long ofs;
952 int chipnum;
953 int ret = 0;
954
955
956 /* ofs: offset within the first chip that the first read should start */
957
958 /* 8 secsi bytes per chip */
959 chipnum=from>>3;
960 ofs=from & 7;
961
962
963 *retlen = 0;
964
965 while (len) {
966 unsigned long thislen;
967
968 if (chipnum >= cfi->numchips)
969 break;
970
971 if ((len + ofs -1) >> 3)
972 thislen = (1<<3) - ofs;
973 else
974 thislen = len;
975
976 ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
977 if (ret)
978 break;
979
980 *retlen += thislen;
981 len -= thislen;
982 buf += thislen;
983
984 ofs = 0;
985 chipnum++;
986 }
987 return ret;
988}
989
990
02b15e34 991static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum)
1da177e4
LT
992{
993 struct cfi_private *cfi = map->fldrv_priv;
994 unsigned long timeo = jiffies + HZ;
995 /*
996 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
997 * have a max write time of a few hundreds usec). However, we should
998 * use the maximum timeout value given by the chip at probe time
999 * instead. Unfortunately, struct flchip does have a field for
1000 * maximum timeout, only for typical which can be far too short
1001 * depending of the conditions. The ' + 1' is to avoid having a
1002 * timeout of 0 jiffies if HZ is smaller than 1000.
1003 */
1004 unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1005 int ret = 0;
1006 map_word oldd;
1007 int retry_cnt = 0;
1008
1009 adr += chip->start;
1010
02b15e34 1011 spin_lock(chip->mutex);
1da177e4
LT
1012 ret = get_chip(map, chip, adr, FL_WRITING);
1013 if (ret) {
02b15e34 1014 spin_unlock(chip->mutex);
1da177e4
LT
1015 return ret;
1016 }
1017
1018 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1019 __func__, adr, datum.x[0] );
1020
1021 /*
1022 * Check for a NOP for the case when the datum to write is already
1023 * present - it saves time and works around buggy chips that corrupt
1024 * data at other locations when 0xff is written to a location that
1025 * already contains 0xff.
1026 */
1027 oldd = map_read(map, adr);
1028 if (map_word_equal(map, oldd, datum)) {
1029 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): NOP\n",
1030 __func__);
1031 goto op_done;
1032 }
1033
02b15e34 1034 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1da177e4 1035 ENABLE_VPP(map);
02b15e34 1036 xip_disable(map, chip, adr);
1da177e4
LT
1037 retry:
1038 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1039 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1040 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1041 map_write(map, datum, adr);
1042 chip->state = FL_WRITING;
1043
02b15e34
TP
1044 INVALIDATE_CACHE_UDELAY(map, chip,
1045 adr, map_bankwidth(map),
1046 chip->word_write_time);
1da177e4
LT
1047
1048 /* See comment above for timeout value. */
1f948b43 1049 timeo = jiffies + uWriteTimeout;
1da177e4
LT
1050 for (;;) {
1051 if (chip->state != FL_WRITING) {
1052 /* Someone's suspended the write. Sleep */
1053 DECLARE_WAITQUEUE(wait, current);
1054
1055 set_current_state(TASK_UNINTERRUPTIBLE);
1056 add_wait_queue(&chip->wq, &wait);
02b15e34 1057 spin_unlock(chip->mutex);
1da177e4
LT
1058 schedule();
1059 remove_wait_queue(&chip->wq, &wait);
1060 timeo = jiffies + (HZ / 2); /* FIXME */
02b15e34 1061 spin_lock(chip->mutex);
1da177e4
LT
1062 continue;
1063 }
1064
b95f9609 1065 if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
02b15e34 1066 xip_enable(map, chip, adr);
fb4a90bf 1067 printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
02b15e34 1068 xip_disable(map, chip, adr);
b95f9609 1069 break;
fb4a90bf 1070 }
1da177e4 1071
b95f9609
KB
1072 if (chip_ready(map, adr))
1073 break;
1074
1da177e4 1075 /* Latency issues. Drop the lock, wait a while and retry */
02b15e34 1076 UDELAY(map, chip, adr, 1);
1da177e4 1077 }
fb4a90bf
EB
1078 /* Did we succeed? */
1079 if (!chip_good(map, adr, datum)) {
1080 /* reset on all failures. */
1081 map_write( map, CMD(0xF0), chip->start );
1082 /* FIXME - should have reset delay before continuing */
1da177e4 1083
1f948b43 1084 if (++retry_cnt <= MAX_WORD_RETRIES)
fb4a90bf 1085 goto retry;
1da177e4 1086
fb4a90bf
EB
1087 ret = -EIO;
1088 }
02b15e34 1089 xip_enable(map, chip, adr);
1da177e4
LT
1090 op_done:
1091 chip->state = FL_READY;
1092 put_chip(map, chip, adr);
02b15e34 1093 spin_unlock(chip->mutex);
1da177e4
LT
1094
1095 return ret;
1096}
1097
1098
1099static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1100 size_t *retlen, const u_char *buf)
1101{
1102 struct map_info *map = mtd->priv;
1103 struct cfi_private *cfi = map->fldrv_priv;
1104 int ret = 0;
1105 int chipnum;
1106 unsigned long ofs, chipstart;
1107 DECLARE_WAITQUEUE(wait, current);
1108
1109 *retlen = 0;
1110 if (!len)
1111 return 0;
1112
1113 chipnum = to >> cfi->chipshift;
1114 ofs = to - (chipnum << cfi->chipshift);
1115 chipstart = cfi->chips[chipnum].start;
1116
1117 /* If it's not bus-aligned, do the first byte write */
1118 if (ofs & (map_bankwidth(map)-1)) {
1119 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1120 int i = ofs - bus_ofs;
1121 int n = 0;
1122 map_word tmp_buf;
1123
1124 retry:
02b15e34 1125 spin_lock(cfi->chips[chipnum].mutex);
1da177e4
LT
1126
1127 if (cfi->chips[chipnum].state != FL_READY) {
1128#if 0
1129 printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state);
1130#endif
1131 set_current_state(TASK_UNINTERRUPTIBLE);
1132 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1133
02b15e34 1134 spin_unlock(cfi->chips[chipnum].mutex);
1da177e4
LT
1135
1136 schedule();
1137 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1138#if 0
1139 if(signal_pending(current))
1140 return -EINTR;
1141#endif
1142 goto retry;
1143 }
1144
1145 /* Load 'tmp_buf' with old contents of flash */
1146 tmp_buf = map_read(map, bus_ofs+chipstart);
1147
02b15e34 1148 spin_unlock(cfi->chips[chipnum].mutex);
1da177e4
LT
1149
1150 /* Number of bytes to copy from buffer */
1151 n = min_t(int, len, map_bankwidth(map)-i);
1f948b43 1152
1da177e4
LT
1153 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1154
1f948b43 1155 ret = do_write_oneword(map, &cfi->chips[chipnum],
1da177e4 1156 bus_ofs, tmp_buf);
1f948b43 1157 if (ret)
1da177e4 1158 return ret;
1f948b43 1159
1da177e4
LT
1160 ofs += n;
1161 buf += n;
1162 (*retlen) += n;
1163 len -= n;
1164
1165 if (ofs >> cfi->chipshift) {
1f948b43 1166 chipnum ++;
1da177e4
LT
1167 ofs = 0;
1168 if (chipnum == cfi->numchips)
1169 return 0;
1170 }
1171 }
1f948b43 1172
1da177e4
LT
1173 /* We are now aligned, write as much as possible */
1174 while(len >= map_bankwidth(map)) {
1175 map_word datum;
1176
1177 datum = map_word_load(map, buf);
1178
1179 ret = do_write_oneword(map, &cfi->chips[chipnum],
1180 ofs, datum);
1181 if (ret)
1182 return ret;
1183
1184 ofs += map_bankwidth(map);
1185 buf += map_bankwidth(map);
1186 (*retlen) += map_bankwidth(map);
1187 len -= map_bankwidth(map);
1188
1189 if (ofs >> cfi->chipshift) {
1f948b43 1190 chipnum ++;
1da177e4
LT
1191 ofs = 0;
1192 if (chipnum == cfi->numchips)
1193 return 0;
1194 chipstart = cfi->chips[chipnum].start;
1195 }
1196 }
1197
1198 /* Write the trailing bytes if any */
1199 if (len & (map_bankwidth(map)-1)) {
1200 map_word tmp_buf;
1201
1202 retry1:
02b15e34 1203 spin_lock(cfi->chips[chipnum].mutex);
1da177e4
LT
1204
1205 if (cfi->chips[chipnum].state != FL_READY) {
1206#if 0
1207 printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state);
1208#endif
1209 set_current_state(TASK_UNINTERRUPTIBLE);
1210 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1211
02b15e34 1212 spin_unlock(cfi->chips[chipnum].mutex);
1da177e4
LT
1213
1214 schedule();
1215 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1216#if 0
1217 if(signal_pending(current))
1218 return -EINTR;
1219#endif
1220 goto retry1;
1221 }
1222
1223 tmp_buf = map_read(map, ofs + chipstart);
1224
02b15e34 1225 spin_unlock(cfi->chips[chipnum].mutex);
1da177e4
LT
1226
1227 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1f948b43
TG
1228
1229 ret = do_write_oneword(map, &cfi->chips[chipnum],
1da177e4 1230 ofs, tmp_buf);
1f948b43 1231 if (ret)
1da177e4 1232 return ret;
1f948b43 1233
1da177e4
LT
1234 (*retlen) += len;
1235 }
1236
1237 return 0;
1238}
1239
1240
1241/*
1242 * FIXME: interleaved mode not tested, and probably not supported!
1243 */
02b15e34 1244static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1f948b43 1245 unsigned long adr, const u_char *buf,
02b15e34 1246 int len)
1da177e4
LT
1247{
1248 struct cfi_private *cfi = map->fldrv_priv;
1249 unsigned long timeo = jiffies + HZ;
1250 /* see comments in do_write_oneword() regarding uWriteTimeo. */
1251 unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1252 int ret = -EIO;
1253 unsigned long cmd_adr;
1254 int z, words;
1255 map_word datum;
1256
1257 adr += chip->start;
1258 cmd_adr = adr;
1259
02b15e34 1260 spin_lock(chip->mutex);
1da177e4
LT
1261 ret = get_chip(map, chip, adr, FL_WRITING);
1262 if (ret) {
02b15e34 1263 spin_unlock(chip->mutex);
1da177e4
LT
1264 return ret;
1265 }
1266
1267 datum = map_word_load(map, buf);
1268
1269 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1270 __func__, adr, datum.x[0] );
1271
02b15e34 1272 XIP_INVAL_CACHED_RANGE(map, adr, len);
1da177e4 1273 ENABLE_VPP(map);
02b15e34 1274 xip_disable(map, chip, cmd_adr);
1f948b43 1275
1da177e4
LT
1276 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1277 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1278 //cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1279
1280 /* Write Buffer Load */
1281 map_write(map, CMD(0x25), cmd_adr);
1282
1283 chip->state = FL_WRITING_TO_BUFFER;
1284
1285 /* Write length of data to come */
1286 words = len / map_bankwidth(map);
1287 map_write(map, CMD(words - 1), cmd_adr);
1288 /* Write data */
1289 z = 0;
1290 while(z < words * map_bankwidth(map)) {
1291 datum = map_word_load(map, buf);
1292 map_write(map, datum, adr + z);
1293
1294 z += map_bankwidth(map);
1295 buf += map_bankwidth(map);
1296 }
1297 z -= map_bankwidth(map);
1298
1299 adr += z;
1300
1301 /* Write Buffer Program Confirm: GO GO GO */
1302 map_write(map, CMD(0x29), cmd_adr);
1303 chip->state = FL_WRITING;
1304
02b15e34
TP
1305 INVALIDATE_CACHE_UDELAY(map, chip,
1306 adr, map_bankwidth(map),
1307 chip->word_write_time);
1da177e4 1308
1f948b43
TG
1309 timeo = jiffies + uWriteTimeout;
1310
1da177e4
LT
1311 for (;;) {
1312 if (chip->state != FL_WRITING) {
1313 /* Someone's suspended the write. Sleep */
1314 DECLARE_WAITQUEUE(wait, current);
1315
1316 set_current_state(TASK_UNINTERRUPTIBLE);
1317 add_wait_queue(&chip->wq, &wait);
02b15e34 1318 spin_unlock(chip->mutex);
1da177e4
LT
1319 schedule();
1320 remove_wait_queue(&chip->wq, &wait);
1321 timeo = jiffies + (HZ / 2); /* FIXME */
02b15e34 1322 spin_lock(chip->mutex);
1da177e4
LT
1323 continue;
1324 }
1325
b95f9609
KB
1326 if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1327 break;
1328
02b15e34
TP
1329 if (chip_ready(map, adr)) {
1330 xip_enable(map, chip, adr);
1da177e4 1331 goto op_done;
02b15e34 1332 }
1da177e4
LT
1333
1334 /* Latency issues. Drop the lock, wait a while and retry */
02b15e34 1335 UDELAY(map, chip, adr, 1);
1da177e4
LT
1336 }
1337
1da177e4
LT
1338 /* reset on all failures. */
1339 map_write( map, CMD(0xF0), chip->start );
02b15e34 1340 xip_enable(map, chip, adr);
1da177e4
LT
1341 /* FIXME - should have reset delay before continuing */
1342
02b15e34
TP
1343 printk(KERN_WARNING "MTD %s(): software timeout\n",
1344 __func__ );
1345
1da177e4
LT
1346 ret = -EIO;
1347 op_done:
1348 chip->state = FL_READY;
1349 put_chip(map, chip, adr);
02b15e34 1350 spin_unlock(chip->mutex);
1da177e4
LT
1351
1352 return ret;
1353}
1354
1355
1356static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1357 size_t *retlen, const u_char *buf)
1358{
1359 struct map_info *map = mtd->priv;
1360 struct cfi_private *cfi = map->fldrv_priv;
1361 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1362 int ret = 0;
1363 int chipnum;
1364 unsigned long ofs;
1365
1366 *retlen = 0;
1367 if (!len)
1368 return 0;
1369
1370 chipnum = to >> cfi->chipshift;
1371 ofs = to - (chipnum << cfi->chipshift);
1372
1373 /* If it's not bus-aligned, do the first word write */
1374 if (ofs & (map_bankwidth(map)-1)) {
1375 size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1376 if (local_len > len)
1377 local_len = len;
1378 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1379 local_len, retlen, buf);
1380 if (ret)
1381 return ret;
1382 ofs += local_len;
1383 buf += local_len;
1384 len -= local_len;
1385
1386 if (ofs >> cfi->chipshift) {
1387 chipnum ++;
1388 ofs = 0;
1389 if (chipnum == cfi->numchips)
1390 return 0;
1391 }
1392 }
1393
1394 /* Write buffer is worth it only if more than one word to write... */
1395 while (len >= map_bankwidth(map) * 2) {
1396 /* We must not cross write block boundaries */
1397 int size = wbufsize - (ofs & (wbufsize-1));
1398
1399 if (size > len)
1400 size = len;
1401 if (size % map_bankwidth(map))
1402 size -= size % map_bankwidth(map);
1403
1f948b43 1404 ret = do_write_buffer(map, &cfi->chips[chipnum],
1da177e4
LT
1405 ofs, buf, size);
1406 if (ret)
1407 return ret;
1408
1409 ofs += size;
1410 buf += size;
1411 (*retlen) += size;
1412 len -= size;
1413
1414 if (ofs >> cfi->chipshift) {
1f948b43 1415 chipnum ++;
1da177e4
LT
1416 ofs = 0;
1417 if (chipnum == cfi->numchips)
1418 return 0;
1419 }
1420 }
1421
1422 if (len) {
1423 size_t retlen_dregs = 0;
1424
1425 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1426 len, &retlen_dregs, buf);
1427
1428 *retlen += retlen_dregs;
1429 return ret;
1430 }
1431
1432 return 0;
1433}
1434
1435
1436/*
1437 * Handle devices with one erase region, that only implement
1438 * the chip erase command.
1439 */
02b15e34 1440static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
1da177e4
LT
1441{
1442 struct cfi_private *cfi = map->fldrv_priv;
1443 unsigned long timeo = jiffies + HZ;
1444 unsigned long int adr;
1445 DECLARE_WAITQUEUE(wait, current);
1446 int ret = 0;
1447
1448 adr = cfi->addr_unlock1;
1449
02b15e34 1450 spin_lock(chip->mutex);
1da177e4
LT
1451 ret = get_chip(map, chip, adr, FL_WRITING);
1452 if (ret) {
02b15e34 1453 spin_unlock(chip->mutex);
1da177e4
LT
1454 return ret;
1455 }
1456
1457 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1458 __func__, chip->start );
1459
02b15e34 1460 XIP_INVAL_CACHED_RANGE(map, adr, map->size);
1da177e4 1461 ENABLE_VPP(map);
02b15e34
TP
1462 xip_disable(map, chip, adr);
1463
1da177e4
LT
1464 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1465 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1466 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1467 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1468 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1469 cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1470
1471 chip->state = FL_ERASING;
1472 chip->erase_suspended = 0;
1473 chip->in_progress_block_addr = adr;
1474
02b15e34
TP
1475 INVALIDATE_CACHE_UDELAY(map, chip,
1476 adr, map->size,
1477 chip->erase_time*500);
1da177e4
LT
1478
1479 timeo = jiffies + (HZ*20);
1480
1481 for (;;) {
1482 if (chip->state != FL_ERASING) {
1483 /* Someone's suspended the erase. Sleep */
1484 set_current_state(TASK_UNINTERRUPTIBLE);
1485 add_wait_queue(&chip->wq, &wait);
02b15e34 1486 spin_unlock(chip->mutex);
1da177e4
LT
1487 schedule();
1488 remove_wait_queue(&chip->wq, &wait);
02b15e34 1489 spin_lock(chip->mutex);
1da177e4
LT
1490 continue;
1491 }
1492 if (chip->erase_suspended) {
1493 /* This erase was suspended and resumed.
1494 Adjust the timeout */
1495 timeo = jiffies + (HZ*20); /* FIXME */
1496 chip->erase_suspended = 0;
1497 }
1498
1499 if (chip_ready(map, adr))
fb4a90bf 1500 break;
1da177e4 1501
fb4a90bf
EB
1502 if (time_after(jiffies, timeo)) {
1503 printk(KERN_WARNING "MTD %s(): software timeout\n",
1504 __func__ );
1da177e4 1505 break;
fb4a90bf 1506 }
1da177e4
LT
1507
1508 /* Latency issues. Drop the lock, wait a while and retry */
02b15e34 1509 UDELAY(map, chip, adr, 1000000/HZ);
1da177e4 1510 }
fb4a90bf
EB
1511 /* Did we succeed? */
1512 if (!chip_good(map, adr, map_word_ff(map))) {
1513 /* reset on all failures. */
1514 map_write( map, CMD(0xF0), chip->start );
1515 /* FIXME - should have reset delay before continuing */
1da177e4 1516
fb4a90bf
EB
1517 ret = -EIO;
1518 }
1da177e4 1519
1da177e4 1520 chip->state = FL_READY;
02b15e34 1521 xip_enable(map, chip, adr);
1da177e4 1522 put_chip(map, chip, adr);
02b15e34 1523 spin_unlock(chip->mutex);
1da177e4
LT
1524
1525 return ret;
1526}
1527
1528
02b15e34 1529static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
1da177e4
LT
1530{
1531 struct cfi_private *cfi = map->fldrv_priv;
1532 unsigned long timeo = jiffies + HZ;
1533 DECLARE_WAITQUEUE(wait, current);
1534 int ret = 0;
1535
1536 adr += chip->start;
1537
02b15e34 1538 spin_lock(chip->mutex);
1da177e4
LT
1539 ret = get_chip(map, chip, adr, FL_ERASING);
1540 if (ret) {
02b15e34 1541 spin_unlock(chip->mutex);
1da177e4
LT
1542 return ret;
1543 }
1544
1545 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1546 __func__, adr );
1547
02b15e34 1548 XIP_INVAL_CACHED_RANGE(map, adr, len);
1da177e4 1549 ENABLE_VPP(map);
02b15e34
TP
1550 xip_disable(map, chip, adr);
1551
1da177e4
LT
1552 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1553 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1554 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1555 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1556 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1557 map_write(map, CMD(0x30), adr);
1558
1559 chip->state = FL_ERASING;
1560 chip->erase_suspended = 0;
1561 chip->in_progress_block_addr = adr;
02b15e34
TP
1562
1563 INVALIDATE_CACHE_UDELAY(map, chip,
1564 adr, len,
1565 chip->erase_time*500);
1da177e4
LT
1566
1567 timeo = jiffies + (HZ*20);
1568
1569 for (;;) {
1570 if (chip->state != FL_ERASING) {
1571 /* Someone's suspended the erase. Sleep */
1572 set_current_state(TASK_UNINTERRUPTIBLE);
1573 add_wait_queue(&chip->wq, &wait);
02b15e34 1574 spin_unlock(chip->mutex);
1da177e4
LT
1575 schedule();
1576 remove_wait_queue(&chip->wq, &wait);
02b15e34 1577 spin_lock(chip->mutex);
1da177e4
LT
1578 continue;
1579 }
1580 if (chip->erase_suspended) {
1581 /* This erase was suspended and resumed.
1582 Adjust the timeout */
1583 timeo = jiffies + (HZ*20); /* FIXME */
1584 chip->erase_suspended = 0;
1585 }
1586
02b15e34
TP
1587 if (chip_ready(map, adr)) {
1588 xip_enable(map, chip, adr);
fb4a90bf 1589 break;
02b15e34 1590 }
1da177e4 1591
fb4a90bf 1592 if (time_after(jiffies, timeo)) {
02b15e34 1593 xip_enable(map, chip, adr);
fb4a90bf
EB
1594 printk(KERN_WARNING "MTD %s(): software timeout\n",
1595 __func__ );
1da177e4 1596 break;
fb4a90bf 1597 }
1da177e4
LT
1598
1599 /* Latency issues. Drop the lock, wait a while and retry */
02b15e34 1600 UDELAY(map, chip, adr, 1000000/HZ);
1da177e4 1601 }
fb4a90bf 1602 /* Did we succeed? */
22fd9a87 1603 if (!chip_good(map, adr, map_word_ff(map))) {
fb4a90bf
EB
1604 /* reset on all failures. */
1605 map_write( map, CMD(0xF0), chip->start );
1606 /* FIXME - should have reset delay before continuing */
1607
1608 ret = -EIO;
1609 }
1da177e4 1610
1da177e4
LT
1611 chip->state = FL_READY;
1612 put_chip(map, chip, adr);
02b15e34 1613 spin_unlock(chip->mutex);
1da177e4
LT
1614 return ret;
1615}
1616
1617
ce0f33ad 1618static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1da177e4
LT
1619{
1620 unsigned long ofs, len;
1621 int ret;
1622
1623 ofs = instr->addr;
1624 len = instr->len;
1625
1626 ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1627 if (ret)
1628 return ret;
1629
1630 instr->state = MTD_ERASE_DONE;
1631 mtd_erase_callback(instr);
1f948b43 1632
1da177e4
LT
1633 return 0;
1634}
1635
1636
1637static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
1638{
1639 struct map_info *map = mtd->priv;
1640 struct cfi_private *cfi = map->fldrv_priv;
1641 int ret = 0;
1642
1643 if (instr->addr != 0)
1644 return -EINVAL;
1645
1646 if (instr->len != mtd->size)
1647 return -EINVAL;
1648
1649 ret = do_erase_chip(map, &cfi->chips[0]);
1650 if (ret)
1651 return ret;
1652
1653 instr->state = MTD_ERASE_DONE;
1654 mtd_erase_callback(instr);
1f948b43 1655
1da177e4
LT
1656 return 0;
1657}
1658
0165508c
HS
1659static int do_atmel_lock(struct map_info *map, struct flchip *chip,
1660 unsigned long adr, int len, void *thunk)
1661{
1662 struct cfi_private *cfi = map->fldrv_priv;
1663 int ret;
1664
1665 spin_lock(chip->mutex);
1666 ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
1667 if (ret)
1668 goto out_unlock;
1669 chip->state = FL_LOCKING;
1670
1671 DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1672 __func__, adr, len);
1673
1674 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1675 cfi->device_type, NULL);
1676 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1677 cfi->device_type, NULL);
1678 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
1679 cfi->device_type, NULL);
1680 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1681 cfi->device_type, NULL);
1682 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1683 cfi->device_type, NULL);
1684 map_write(map, CMD(0x40), chip->start + adr);
1685
1686 chip->state = FL_READY;
1687 put_chip(map, chip, adr + chip->start);
1688 ret = 0;
1689
1690out_unlock:
1691 spin_unlock(chip->mutex);
1692 return ret;
1693}
1694
1695static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
1696 unsigned long adr, int len, void *thunk)
1697{
1698 struct cfi_private *cfi = map->fldrv_priv;
1699 int ret;
1700
1701 spin_lock(chip->mutex);
1702 ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
1703 if (ret)
1704 goto out_unlock;
1705 chip->state = FL_UNLOCKING;
1706
1707 DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1708 __func__, adr, len);
1709
1710 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1711 cfi->device_type, NULL);
1712 map_write(map, CMD(0x70), adr);
1713
1714 chip->state = FL_READY;
1715 put_chip(map, chip, adr + chip->start);
1716 ret = 0;
1717
1718out_unlock:
1719 spin_unlock(chip->mutex);
1720 return ret;
1721}
1722
1723static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
1724{
1725 return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
1726}
1727
1728static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
1729{
1730 return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
1731}
1732
1da177e4
LT
1733
1734static void cfi_amdstd_sync (struct mtd_info *mtd)
1735{
1736 struct map_info *map = mtd->priv;
1737 struct cfi_private *cfi = map->fldrv_priv;
1738 int i;
1739 struct flchip *chip;
1740 int ret = 0;
1741 DECLARE_WAITQUEUE(wait, current);
1742
1743 for (i=0; !ret && i<cfi->numchips; i++) {
1744 chip = &cfi->chips[i];
1745
1746 retry:
02b15e34 1747 spin_lock(chip->mutex);
1da177e4
LT
1748
1749 switch(chip->state) {
1750 case FL_READY:
1751 case FL_STATUS:
1752 case FL_CFI_QUERY:
1753 case FL_JEDEC_QUERY:
1754 chip->oldstate = chip->state;
1755 chip->state = FL_SYNCING;
1f948b43 1756 /* No need to wake_up() on this state change -
1da177e4
LT
1757 * as the whole point is that nobody can do anything
1758 * with the chip now anyway.
1759 */
1760 case FL_SYNCING:
02b15e34 1761 spin_unlock(chip->mutex);
1da177e4
LT
1762 break;
1763
1764 default:
1765 /* Not an idle state */
1766 add_wait_queue(&chip->wq, &wait);
1f948b43 1767
02b15e34 1768 spin_unlock(chip->mutex);
1da177e4
LT
1769
1770 schedule();
1771
1772 remove_wait_queue(&chip->wq, &wait);
1f948b43 1773
1da177e4
LT
1774 goto retry;
1775 }
1776 }
1777
1778 /* Unlock the chips again */
1779
1780 for (i--; i >=0; i--) {
1781 chip = &cfi->chips[i];
1782
02b15e34 1783 spin_lock(chip->mutex);
1f948b43 1784
1da177e4
LT
1785 if (chip->state == FL_SYNCING) {
1786 chip->state = chip->oldstate;
1787 wake_up(&chip->wq);
1788 }
02b15e34 1789 spin_unlock(chip->mutex);
1da177e4
LT
1790 }
1791}
1792
1793
1794static int cfi_amdstd_suspend(struct mtd_info *mtd)
1795{
1796 struct map_info *map = mtd->priv;
1797 struct cfi_private *cfi = map->fldrv_priv;
1798 int i;
1799 struct flchip *chip;
1800 int ret = 0;
1801
1802 for (i=0; !ret && i<cfi->numchips; i++) {
1803 chip = &cfi->chips[i];
1804
02b15e34 1805 spin_lock(chip->mutex);
1da177e4
LT
1806
1807 switch(chip->state) {
1808 case FL_READY:
1809 case FL_STATUS:
1810 case FL_CFI_QUERY:
1811 case FL_JEDEC_QUERY:
1812 chip->oldstate = chip->state;
1813 chip->state = FL_PM_SUSPENDED;
1f948b43 1814 /* No need to wake_up() on this state change -
1da177e4
LT
1815 * as the whole point is that nobody can do anything
1816 * with the chip now anyway.
1817 */
1818 case FL_PM_SUSPENDED:
1819 break;
1820
1821 default:
1822 ret = -EAGAIN;
1823 break;
1824 }
02b15e34 1825 spin_unlock(chip->mutex);
1da177e4
LT
1826 }
1827
1828 /* Unlock the chips again */
1829
1830 if (ret) {
1831 for (i--; i >=0; i--) {
1832 chip = &cfi->chips[i];
1833
02b15e34 1834 spin_lock(chip->mutex);
1f948b43 1835
1da177e4
LT
1836 if (chip->state == FL_PM_SUSPENDED) {
1837 chip->state = chip->oldstate;
1838 wake_up(&chip->wq);
1839 }
02b15e34 1840 spin_unlock(chip->mutex);
1da177e4
LT
1841 }
1842 }
1f948b43 1843
1da177e4
LT
1844 return ret;
1845}
1846
1847
1848static void cfi_amdstd_resume(struct mtd_info *mtd)
1849{
1850 struct map_info *map = mtd->priv;
1851 struct cfi_private *cfi = map->fldrv_priv;
1852 int i;
1853 struct flchip *chip;
1854
1855 for (i=0; i<cfi->numchips; i++) {
1f948b43 1856
1da177e4
LT
1857 chip = &cfi->chips[i];
1858
02b15e34 1859 spin_lock(chip->mutex);
1f948b43 1860
1da177e4
LT
1861 if (chip->state == FL_PM_SUSPENDED) {
1862 chip->state = FL_READY;
1863 map_write(map, CMD(0xF0), chip->start);
1864 wake_up(&chip->wq);
1865 }
1866 else
1867 printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
1868
02b15e34 1869 spin_unlock(chip->mutex);
1da177e4
LT
1870 }
1871}
1872
1873static void cfi_amdstd_destroy(struct mtd_info *mtd)
1874{
1875 struct map_info *map = mtd->priv;
1876 struct cfi_private *cfi = map->fldrv_priv;
fa671646 1877
1da177e4
LT
1878 kfree(cfi->cmdset_priv);
1879 kfree(cfi->cfiq);
1880 kfree(cfi);
1881 kfree(mtd->eraseregions);
1882}
1883
1da177e4
LT
1884MODULE_LICENSE("GPL");
1885MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
1886MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
This page took 0.292352 seconds and 5 git commands to generate.