mtd: gpmi: fix the compiler warnings
[deliverable/linux.git] / drivers / mtd / devices / docg3.c
CommitLineData
efa2ca73
RJ
1/*
2 * Handles the M-Systems DiskOnChip G3 chip
3 *
4 * Copyright (C) 2011 Robert Jarzmik
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 */
21
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/errno.h>
25#include <linux/platform_device.h>
26#include <linux/string.h>
27#include <linux/slab.h>
28#include <linux/io.h>
29#include <linux/delay.h>
30#include <linux/mtd/mtd.h>
31#include <linux/mtd/partitions.h>
d13d19ec
RJ
32#include <linux/bitmap.h>
33#include <linux/bitrev.h>
34#include <linux/bch.h>
efa2ca73
RJ
35
36#include <linux/debugfs.h>
37#include <linux/seq_file.h>
38
39#define CREATE_TRACE_POINTS
40#include "docg3.h"
41
42/*
43 * This driver handles the DiskOnChip G3 flash memory.
44 *
45 * As no specification is available from M-Systems/Sandisk, this drivers lacks
46 * several functions available on the chip, as :
efa2ca73 47 * - IPL write
efa2ca73
RJ
48 *
49 * The bus data width (8bits versus 16bits) is not handled (if_cfg flag), and
50 * the driver assumes a 16bits data bus.
51 *
52 * DocG3 relies on 2 ECC algorithms, which are handled in hardware :
53 * - a 1 byte Hamming code stored in the OOB for each page
54 * - a 7 bytes BCH code stored in the OOB for each page
d13d19ec 55 * The BCH ECC is :
efa2ca73
RJ
56 * - BCH is in GF(2^14)
57 * - BCH is over data of 520 bytes (512 page + 7 page_info bytes
58 * + 1 hamming byte)
59 * - BCH can correct up to 4 bits (t = 4)
60 * - BCH syndroms are calculated in hardware, and checked in hardware as well
61 *
62 */
63
b604436c 64static unsigned int reliable_mode;
c3de8a8a
RJ
65module_param(reliable_mode, uint, 0);
66MODULE_PARM_DESC(reliable_mode, "Set the docg3 mode (0=normal MLC, 1=fast, "
67 "2=reliable) : MLC normal operations are in normal mode");
68
732b63bd
RJ
69/**
70 * struct docg3_oobinfo - DiskOnChip G3 OOB layout
71 * @eccbytes: 8 bytes are used (1 for Hamming ECC, 7 for BCH ECC)
72 * @eccpos: ecc positions (byte 7 is Hamming ECC, byte 8-14 are BCH ECC)
73 * @oobfree: free pageinfo bytes (byte 0 until byte 6, byte 15
74 * @oobavail: 8 available bytes remaining after ECC toll
75 */
76static struct nand_ecclayout docg3_oobinfo = {
77 .eccbytes = 8,
78 .eccpos = {7, 8, 9, 10, 11, 12, 13, 14},
79 .oobfree = {{0, 7}, {15, 1} },
80 .oobavail = 8,
81};
82
efa2ca73
RJ
83static inline u8 doc_readb(struct docg3 *docg3, u16 reg)
84{
1b15a5f9 85 u8 val = readb(docg3->cascade->base + reg);
efa2ca73
RJ
86
87 trace_docg3_io(0, 8, reg, (int)val);
88 return val;
89}
90
91static inline u16 doc_readw(struct docg3 *docg3, u16 reg)
92{
1b15a5f9 93 u16 val = readw(docg3->cascade->base + reg);
efa2ca73
RJ
94
95 trace_docg3_io(0, 16, reg, (int)val);
96 return val;
97}
98
99static inline void doc_writeb(struct docg3 *docg3, u8 val, u16 reg)
100{
1b15a5f9 101 writeb(val, docg3->cascade->base + reg);
84a93058 102 trace_docg3_io(1, 8, reg, val);
efa2ca73
RJ
103}
104
105static inline void doc_writew(struct docg3 *docg3, u16 val, u16 reg)
106{
1b15a5f9 107 writew(val, docg3->cascade->base + reg);
efa2ca73
RJ
108 trace_docg3_io(1, 16, reg, val);
109}
110
111static inline void doc_flash_command(struct docg3 *docg3, u8 cmd)
112{
113 doc_writeb(docg3, cmd, DOC_FLASHCOMMAND);
114}
115
116static inline void doc_flash_sequence(struct docg3 *docg3, u8 seq)
117{
118 doc_writeb(docg3, seq, DOC_FLASHSEQUENCE);
119}
120
121static inline void doc_flash_address(struct docg3 *docg3, u8 addr)
122{
123 doc_writeb(docg3, addr, DOC_FLASHADDRESS);
124}
125
126static char const *part_probes[] = { "cmdlinepart", "saftlpart", NULL };
127
128static int doc_register_readb(struct docg3 *docg3, int reg)
129{
130 u8 val;
131
132 doc_writew(docg3, reg, DOC_READADDRESS);
133 val = doc_readb(docg3, reg);
134 doc_vdbg("Read register %04x : %02x\n", reg, val);
135 return val;
136}
137
138static int doc_register_readw(struct docg3 *docg3, int reg)
139{
140 u16 val;
141
142 doc_writew(docg3, reg, DOC_READADDRESS);
143 val = doc_readw(docg3, reg);
144 doc_vdbg("Read register %04x : %04x\n", reg, val);
145 return val;
146}
147
148/**
149 * doc_delay - delay docg3 operations
150 * @docg3: the device
151 * @nbNOPs: the number of NOPs to issue
152 *
153 * As no specification is available, the right timings between chip commands are
154 * unknown. The only available piece of information are the observed nops on a
155 * working docg3 chip.
156 * Therefore, doc_delay relies on a busy loop of NOPs, instead of scheduler
157 * friendlier msleep() functions or blocking mdelay().
158 */
159static void doc_delay(struct docg3 *docg3, int nbNOPs)
160{
161 int i;
162
ac48e800 163 doc_vdbg("NOP x %d\n", nbNOPs);
efa2ca73
RJ
164 for (i = 0; i < nbNOPs; i++)
165 doc_writeb(docg3, 0, DOC_NOP);
166}
167
168static int is_prot_seq_error(struct docg3 *docg3)
169{
170 int ctrl;
171
172 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
173 return ctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR);
174}
175
176static int doc_is_ready(struct docg3 *docg3)
177{
178 int ctrl;
179
180 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
181 return ctrl & DOC_CTRL_FLASHREADY;
182}
183
184static int doc_wait_ready(struct docg3 *docg3)
185{
186 int maxWaitCycles = 100;
187
188 do {
189 doc_delay(docg3, 4);
190 cpu_relax();
191 } while (!doc_is_ready(docg3) && maxWaitCycles--);
192 doc_delay(docg3, 2);
193 if (maxWaitCycles > 0)
194 return 0;
195 else
196 return -EIO;
197}
198
199static int doc_reset_seq(struct docg3 *docg3)
200{
201 int ret;
202
203 doc_writeb(docg3, 0x10, DOC_FLASHCONTROL);
204 doc_flash_sequence(docg3, DOC_SEQ_RESET);
205 doc_flash_command(docg3, DOC_CMD_RESET);
206 doc_delay(docg3, 2);
207 ret = doc_wait_ready(docg3);
208
209 doc_dbg("doc_reset_seq() -> isReady=%s\n", ret ? "false" : "true");
210 return ret;
211}
212
213/**
214 * doc_read_data_area - Read data from data area
215 * @docg3: the device
32a50b3a
RJ
216 * @buf: the buffer to fill in (might be NULL is dummy reads)
217 * @len: the length to read
efa2ca73
RJ
218 * @first: first time read, DOC_READADDRESS should be set
219 *
220 * Reads bytes from flash data. Handles the single byte / even bytes reads.
221 */
222static void doc_read_data_area(struct docg3 *docg3, void *buf, int len,
223 int first)
224{
225 int i, cdr, len4;
226 u16 data16, *dst16;
227 u8 data8, *dst8;
228
229 doc_dbg("doc_read_data_area(buf=%p, len=%d)\n", buf, len);
52c2d9aa 230 cdr = len & 0x1;
efa2ca73
RJ
231 len4 = len - cdr;
232
233 if (first)
234 doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
235 dst16 = buf;
236 for (i = 0; i < len4; i += 2) {
237 data16 = doc_readw(docg3, DOC_IOSPACE_DATA);
32a50b3a
RJ
238 if (dst16) {
239 *dst16 = data16;
240 dst16++;
241 }
efa2ca73
RJ
242 }
243
244 if (cdr) {
245 doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
246 DOC_READADDRESS);
247 doc_delay(docg3, 1);
248 dst8 = (u8 *)dst16;
249 for (i = 0; i < cdr; i++) {
250 data8 = doc_readb(docg3, DOC_IOSPACE_DATA);
32a50b3a
RJ
251 if (dst8) {
252 *dst8 = data8;
253 dst8++;
254 }
efa2ca73
RJ
255 }
256 }
257}
258
fb50b58e
RJ
259/**
260 * doc_write_data_area - Write data into data area
261 * @docg3: the device
262 * @buf: the buffer to get input bytes from
263 * @len: the length to write
264 *
265 * Writes bytes into flash data. Handles the single byte / even bytes writes.
266 */
267static void doc_write_data_area(struct docg3 *docg3, const void *buf, int len)
268{
269 int i, cdr, len4;
270 u16 *src16;
271 u8 *src8;
272
273 doc_dbg("doc_write_data_area(buf=%p, len=%d)\n", buf, len);
274 cdr = len & 0x3;
275 len4 = len - cdr;
276
277 doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
278 src16 = (u16 *)buf;
279 for (i = 0; i < len4; i += 2) {
280 doc_writew(docg3, *src16, DOC_IOSPACE_DATA);
281 src16++;
282 }
283
284 src8 = (u8 *)src16;
285 for (i = 0; i < cdr; i++) {
286 doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
287 DOC_READADDRESS);
288 doc_writeb(docg3, *src8, DOC_IOSPACE_DATA);
289 src8++;
290 }
291}
292
efa2ca73 293/**
c3de8a8a 294 * doc_set_data_mode - Sets the flash to normal or reliable data mode
efa2ca73
RJ
295 * @docg3: the device
296 *
297 * The reliable data mode is a bit slower than the fast mode, but less errors
298 * occur. Entering the reliable mode cannot be done without entering the fast
299 * mode first.
c3de8a8a
RJ
300 *
301 * In reliable mode, pages 2*n and 2*n+1 are clones. Writing to page 0 of blocks
302 * (4,5) make the hardware write also to page 1 of blocks blocks(4,5). Reading
303 * from page 0 of blocks (4,5) or from page 1 of blocks (4,5) gives the same
304 * result, which is a logical and between bytes from page 0 and page 1 (which is
305 * consistent with the fact that writing to a page is _clearing_ bits of that
306 * page).
efa2ca73
RJ
307 */
308static void doc_set_reliable_mode(struct docg3 *docg3)
309{
c3de8a8a
RJ
310 static char *strmode[] = { "normal", "fast", "reliable", "invalid" };
311
312 doc_dbg("doc_set_reliable_mode(%s)\n", strmode[docg3->reliable]);
313 switch (docg3->reliable) {
314 case 0:
315 break;
316 case 1:
317 doc_flash_sequence(docg3, DOC_SEQ_SET_FASTMODE);
318 doc_flash_command(docg3, DOC_CMD_FAST_MODE);
319 break;
320 case 2:
321 doc_flash_sequence(docg3, DOC_SEQ_SET_RELIABLEMODE);
322 doc_flash_command(docg3, DOC_CMD_FAST_MODE);
323 doc_flash_command(docg3, DOC_CMD_RELIABLE_MODE);
324 break;
325 default:
326 doc_err("doc_set_reliable_mode(): invalid mode\n");
327 break;
328 }
efa2ca73
RJ
329 doc_delay(docg3, 2);
330}
331
332/**
333 * doc_set_asic_mode - Set the ASIC mode
334 * @docg3: the device
335 * @mode: the mode
336 *
337 * The ASIC can work in 3 modes :
338 * - RESET: all registers are zeroed
339 * - NORMAL: receives and handles commands
340 * - POWERDOWN: minimal poweruse, flash parts shut off
341 */
342static void doc_set_asic_mode(struct docg3 *docg3, u8 mode)
343{
344 int i;
345
346 for (i = 0; i < 12; i++)
347 doc_readb(docg3, DOC_IOSPACE_IPL);
348
349 mode |= DOC_ASICMODE_MDWREN;
350 doc_dbg("doc_set_asic_mode(%02x)\n", mode);
351 doc_writeb(docg3, mode, DOC_ASICMODE);
352 doc_writeb(docg3, ~mode, DOC_ASICMODECONFIRM);
353 doc_delay(docg3, 1);
354}
355
356/**
357 * doc_set_device_id - Sets the devices id for cascaded G3 chips
358 * @docg3: the device
359 * @id: the chip to select (amongst 0, 1, 2, 3)
360 *
361 * There can be 4 cascaded G3 chips. This function selects the one which will
362 * should be the active one.
363 */
364static void doc_set_device_id(struct docg3 *docg3, int id)
365{
366 u8 ctrl;
367
368 doc_dbg("doc_set_device_id(%d)\n", id);
369 doc_writeb(docg3, id, DOC_DEVICESELECT);
370 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
371
372 ctrl &= ~DOC_CTRL_VIOLATION;
373 ctrl |= DOC_CTRL_CE;
374 doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
375}
376
377/**
378 * doc_set_extra_page_mode - Change flash page layout
379 * @docg3: the device
380 *
381 * Normally, the flash page is split into the data (512 bytes) and the out of
382 * band data (16 bytes). For each, 4 more bytes can be accessed, where the wear
383 * leveling counters are stored. To access this last area of 4 bytes, a special
384 * mode must be input to the flash ASIC.
385 *
86d2f6fb 386 * Returns 0 if no error occurred, -EIO else.
efa2ca73
RJ
387 */
388static int doc_set_extra_page_mode(struct docg3 *docg3)
389{
390 int fctrl;
391
392 doc_dbg("doc_set_extra_page_mode()\n");
393 doc_flash_sequence(docg3, DOC_SEQ_PAGE_SIZE_532);
394 doc_flash_command(docg3, DOC_CMD_PAGE_SIZE_532);
395 doc_delay(docg3, 2);
396
397 fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
398 if (fctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR))
399 return -EIO;
400 else
401 return 0;
402}
403
fb50b58e
RJ
404/**
405 * doc_setup_addr_sector - Setup blocks/page/ofs address for one plane
406 * @docg3: the device
407 * @sector: the sector
408 */
409static void doc_setup_addr_sector(struct docg3 *docg3, int sector)
410{
411 doc_delay(docg3, 1);
412 doc_flash_address(docg3, sector & 0xff);
413 doc_flash_address(docg3, (sector >> 8) & 0xff);
414 doc_flash_address(docg3, (sector >> 16) & 0xff);
415 doc_delay(docg3, 1);
416}
417
418/**
419 * doc_setup_writeaddr_sector - Setup blocks/page/ofs address for one plane
420 * @docg3: the device
421 * @sector: the sector
422 * @ofs: the offset in the page, between 0 and (512 + 16 + 512)
423 */
424static void doc_setup_writeaddr_sector(struct docg3 *docg3, int sector, int ofs)
425{
426 ofs = ofs >> 2;
427 doc_delay(docg3, 1);
428 doc_flash_address(docg3, ofs & 0xff);
429 doc_flash_address(docg3, sector & 0xff);
430 doc_flash_address(docg3, (sector >> 8) & 0xff);
431 doc_flash_address(docg3, (sector >> 16) & 0xff);
432 doc_delay(docg3, 1);
433}
434
efa2ca73
RJ
435/**
436 * doc_seek - Set both flash planes to the specified block, page for reading
437 * @docg3: the device
438 * @block0: the first plane block index
439 * @block1: the second plane block index
440 * @page: the page index within the block
441 * @wear: if true, read will occur on the 4 extra bytes of the wear area
442 * @ofs: offset in page to read
443 *
444 * Programs the flash even and odd planes to the specific block and page.
445 * Alternatively, programs the flash to the wear area of the specified page.
446 */
447static int doc_read_seek(struct docg3 *docg3, int block0, int block1, int page,
448 int wear, int ofs)
449{
450 int sector, ret = 0;
451
452 doc_dbg("doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n",
453 block0, block1, page, ofs, wear);
454
455 if (!wear && (ofs < 2 * DOC_LAYOUT_PAGE_SIZE)) {
456 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
457 doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
458 doc_delay(docg3, 2);
459 } else {
460 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
461 doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
462 doc_delay(docg3, 2);
463 }
464
465 doc_set_reliable_mode(docg3);
466 if (wear)
467 ret = doc_set_extra_page_mode(docg3);
468 if (ret)
469 goto out;
470
efa2ca73 471 doc_flash_sequence(docg3, DOC_SEQ_READ);
fb50b58e 472 sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
efa2ca73 473 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
fb50b58e 474 doc_setup_addr_sector(docg3, sector);
efa2ca73
RJ
475
476 sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
477 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
fb50b58e 478 doc_setup_addr_sector(docg3, sector);
efa2ca73 479 doc_delay(docg3, 1);
fb50b58e
RJ
480
481out:
482 return ret;
483}
484
485/**
486 * doc_write_seek - Set both flash planes to the specified block, page for writing
487 * @docg3: the device
488 * @block0: the first plane block index
489 * @block1: the second plane block index
490 * @page: the page index within the block
491 * @ofs: offset in page to write
492 *
493 * Programs the flash even and odd planes to the specific block and page.
494 * Alternatively, programs the flash to the wear area of the specified page.
495 */
496static int doc_write_seek(struct docg3 *docg3, int block0, int block1, int page,
497 int ofs)
498{
499 int ret = 0, sector;
500
501 doc_dbg("doc_write_seek(blocks=(%d,%d), page=%d, ofs=%d)\n",
502 block0, block1, page, ofs);
503
504 doc_set_reliable_mode(docg3);
505
506 if (ofs < 2 * DOC_LAYOUT_PAGE_SIZE) {
507 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
508 doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
509 doc_delay(docg3, 2);
510 } else {
511 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
512 doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
513 doc_delay(docg3, 2);
514 }
515
516 doc_flash_sequence(docg3, DOC_SEQ_PAGE_SETUP);
517 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
518
519 sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
520 doc_setup_writeaddr_sector(docg3, sector, ofs);
521
522 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE3);
efa2ca73 523 doc_delay(docg3, 2);
fb50b58e
RJ
524 ret = doc_wait_ready(docg3);
525 if (ret)
526 goto out;
527
528 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
529 sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
530 doc_setup_writeaddr_sector(docg3, sector, ofs);
531 doc_delay(docg3, 1);
efa2ca73
RJ
532
533out:
534 return ret;
535}
536
fb50b58e 537
efa2ca73
RJ
538/**
539 * doc_read_page_ecc_init - Initialize hardware ECC engine
540 * @docg3: the device
541 * @len: the number of bytes covered by the ECC (BCH covered)
542 *
543 * The function does initialize the hardware ECC engine to compute the Hamming
b604436c 544 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
efa2ca73
RJ
545 *
546 * Return 0 if succeeded, -EIO on error
547 */
548static int doc_read_page_ecc_init(struct docg3 *docg3, int len)
549{
550 doc_writew(docg3, DOC_ECCCONF0_READ_MODE
551 | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
552 | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
553 DOC_ECCCONF0);
554 doc_delay(docg3, 4);
555 doc_register_readb(docg3, DOC_FLASHCONTROL);
556 return doc_wait_ready(docg3);
557}
558
fb50b58e
RJ
559/**
560 * doc_write_page_ecc_init - Initialize hardware BCH ECC engine
561 * @docg3: the device
562 * @len: the number of bytes covered by the ECC (BCH covered)
563 *
564 * The function does initialize the hardware ECC engine to compute the Hamming
b604436c 565 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
fb50b58e
RJ
566 *
567 * Return 0 if succeeded, -EIO on error
568 */
569static int doc_write_page_ecc_init(struct docg3 *docg3, int len)
570{
b604436c 571 doc_writew(docg3, DOC_ECCCONF0_WRITE_MODE
fb50b58e
RJ
572 | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
573 | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
574 DOC_ECCCONF0);
575 doc_delay(docg3, 4);
576 doc_register_readb(docg3, DOC_FLASHCONTROL);
577 return doc_wait_ready(docg3);
578}
579
580/**
581 * doc_ecc_disable - Disable Hamming and BCH ECC hardware calculator
582 * @docg3: the device
583 *
584 * Disables the hardware ECC generator and checker, for unchecked reads (as when
585 * reading OOB only or write status byte).
586 */
587static void doc_ecc_disable(struct docg3 *docg3)
588{
589 doc_writew(docg3, DOC_ECCCONF0_READ_MODE, DOC_ECCCONF0);
590 doc_delay(docg3, 4);
591}
592
593/**
594 * doc_hamming_ecc_init - Initialize hardware Hamming ECC engine
595 * @docg3: the device
596 * @nb_bytes: the number of bytes covered by the ECC (Hamming covered)
597 *
598 * This function programs the ECC hardware to compute the hamming code on the
599 * last provided N bytes to the hardware generator.
600 */
601static void doc_hamming_ecc_init(struct docg3 *docg3, int nb_bytes)
602{
603 u8 ecc_conf1;
604
605 ecc_conf1 = doc_register_readb(docg3, DOC_ECCCONF1);
606 ecc_conf1 &= ~DOC_ECCCONF1_HAMMING_BITS_MASK;
607 ecc_conf1 |= (nb_bytes & DOC_ECCCONF1_HAMMING_BITS_MASK);
608 doc_writeb(docg3, ecc_conf1, DOC_ECCCONF1);
609}
610
d13d19ec 611/**
b604436c 612 * doc_ecc_bch_fix_data - Fix if need be read data from flash
d13d19ec
RJ
613 * @docg3: the device
614 * @buf: the buffer of read data (512 + 7 + 1 bytes)
615 * @hwecc: the hardware calculated ECC.
616 * It's in fact recv_ecc ^ calc_ecc, where recv_ecc was read from OOB
617 * area data, and calc_ecc the ECC calculated by the hardware generator.
618 *
619 * Checks if the received data matches the ECC, and if an error is detected,
620 * tries to fix the bit flips (at most 4) in the buffer buf. As the docg3
621 * understands the (data, ecc, syndroms) in an inverted order in comparison to
622 * the BCH library, the function reverses the order of bits (ie. bit7 and bit0,
623 * bit6 and bit 1, ...) for all ECC data.
624 *
625 * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch
626 * algorithm is used to decode this. However the hw operates on page
627 * data in a bit order that is the reverse of that of the bch alg,
628 * requiring that the bits be reversed on the result. Thanks to Ivan
629 * Djelic for his analysis.
630 *
631 * Returns number of fixed bits (0, 1, 2, 3, 4) or -EBADMSG if too many bit
632 * errors were detected and cannot be fixed.
633 */
634static int doc_ecc_bch_fix_data(struct docg3 *docg3, void *buf, u8 *hwecc)
635{
636 u8 ecc[DOC_ECC_BCH_SIZE];
637 int errorpos[DOC_ECC_BCH_T], i, numerrs;
638
639 for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
640 ecc[i] = bitrev8(hwecc[i]);
1b15a5f9
RJ
641 numerrs = decode_bch(docg3->cascade->bch, NULL,
642 DOC_ECC_BCH_COVERED_BYTES,
d13d19ec
RJ
643 NULL, ecc, NULL, errorpos);
644 BUG_ON(numerrs == -EINVAL);
645 if (numerrs < 0)
646 goto out;
647
648 for (i = 0; i < numerrs; i++)
649 errorpos[i] = (errorpos[i] & ~7) | (7 - (errorpos[i] & 7));
650 for (i = 0; i < numerrs; i++)
651 if (errorpos[i] < DOC_ECC_BCH_COVERED_BYTES*8)
652 /* error is located in data, correct it */
653 change_bit(errorpos[i], buf);
654out:
655 doc_dbg("doc_ecc_bch_fix_data: flipped %d bits\n", numerrs);
656 return numerrs;
657}
658
659
efa2ca73
RJ
660/**
661 * doc_read_page_prepare - Prepares reading data from a flash page
662 * @docg3: the device
663 * @block0: the first plane block index on flash memory
664 * @block1: the second plane block index on flash memory
665 * @page: the page index in the block
666 * @offset: the offset in the page (must be a multiple of 4)
667 *
668 * Prepares the page to be read in the flash memory :
669 * - tell ASIC to map the flash pages
670 * - tell ASIC to be in read mode
671 *
672 * After a call to this method, a call to doc_read_page_finish is mandatory,
673 * to end the read cycle of the flash.
674 *
675 * Read data from a flash page. The length to be read must be between 0 and
676 * (page_size + oob_size + wear_size), ie. 532, and a multiple of 4 (because
677 * the extra bytes reading is not implemented).
678 *
679 * As pages are grouped by 2 (in 2 planes), reading from a page must be done
680 * in two steps:
681 * - one read of 512 bytes at offset 0
682 * - one read of 512 bytes at offset 512 + 16
683 *
86d2f6fb 684 * Returns 0 if successful, -EIO if a read error occurred.
efa2ca73
RJ
685 */
686static int doc_read_page_prepare(struct docg3 *docg3, int block0, int block1,
687 int page, int offset)
688{
689 int wear_area = 0, ret = 0;
690
691 doc_dbg("doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n",
692 block0, block1, page, offset);
693 if (offset >= DOC_LAYOUT_WEAR_OFFSET)
694 wear_area = 1;
695 if (!wear_area && offset > (DOC_LAYOUT_PAGE_OOB_SIZE * 2))
696 return -EINVAL;
697
698 doc_set_device_id(docg3, docg3->device_id);
699 ret = doc_reset_seq(docg3);
700 if (ret)
701 goto err;
702
703 /* Program the flash address block and page */
704 ret = doc_read_seek(docg3, block0, block1, page, wear_area, offset);
705 if (ret)
706 goto err;
707
708 doc_flash_command(docg3, DOC_CMD_READ_ALL_PLANES);
709 doc_delay(docg3, 2);
710 doc_wait_ready(docg3);
711
712 doc_flash_command(docg3, DOC_CMD_SET_ADDR_READ);
713 doc_delay(docg3, 1);
714 if (offset >= DOC_LAYOUT_PAGE_SIZE * 2)
715 offset -= 2 * DOC_LAYOUT_PAGE_SIZE;
716 doc_flash_address(docg3, offset >> 2);
717 doc_delay(docg3, 1);
718 doc_wait_ready(docg3);
719
720 doc_flash_command(docg3, DOC_CMD_READ_FLASH);
721
722 return 0;
723err:
724 doc_writeb(docg3, 0, DOC_DATAEND);
725 doc_delay(docg3, 2);
726 return -EIO;
727}
728
729/**
730 * doc_read_page_getbytes - Reads bytes from a prepared page
731 * @docg3: the device
732 * @len: the number of bytes to be read (must be a multiple of 4)
d107bc34 733 * @buf: the buffer to be filled in (or NULL is forget bytes)
efa2ca73 734 * @first: 1 if first time read, DOC_READADDRESS should be set
52c2d9aa
RJ
735 * @last_odd: 1 if last read ended up on an odd byte
736 *
737 * Reads bytes from a prepared page. There is a trickery here : if the last read
738 * ended up on an odd offset in the 1024 bytes double page, ie. between the 2
739 * planes, the first byte must be read apart. If a word (16bit) read was used,
740 * the read would return the byte of plane 2 as low *and* high endian, which
741 * will mess the read.
efa2ca73
RJ
742 *
743 */
744static int doc_read_page_getbytes(struct docg3 *docg3, int len, u_char *buf,
52c2d9aa 745 int first, int last_odd)
efa2ca73 746{
52c2d9aa
RJ
747 if (last_odd && len > 0) {
748 doc_read_data_area(docg3, buf, 1, first);
749 doc_read_data_area(docg3, buf ? buf + 1 : buf, len - 1, 0);
750 } else {
751 doc_read_data_area(docg3, buf, len, first);
752 }
efa2ca73
RJ
753 doc_delay(docg3, 2);
754 return len;
755}
756
fb50b58e
RJ
757/**
758 * doc_write_page_putbytes - Writes bytes into a prepared page
759 * @docg3: the device
760 * @len: the number of bytes to be written
761 * @buf: the buffer of input bytes
762 *
763 */
764static void doc_write_page_putbytes(struct docg3 *docg3, int len,
765 const u_char *buf)
766{
767 doc_write_data_area(docg3, buf, len);
768 doc_delay(docg3, 2);
769}
770
efa2ca73 771/**
b604436c 772 * doc_get_bch_hw_ecc - Get hardware calculated BCH ECC
efa2ca73 773 * @docg3: the device
b604436c 774 * @hwecc: the array of 7 integers where the hardware ecc will be stored
efa2ca73 775 */
b604436c 776static void doc_get_bch_hw_ecc(struct docg3 *docg3, u8 *hwecc)
efa2ca73
RJ
777{
778 int i;
779
780 for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
b604436c 781 hwecc[i] = doc_register_readb(docg3, DOC_BCH_HW_ECC(i));
efa2ca73
RJ
782}
783
fb50b58e
RJ
784/**
785 * doc_page_finish - Ends reading/writing of a flash page
786 * @docg3: the device
787 */
788static void doc_page_finish(struct docg3 *docg3)
789{
790 doc_writeb(docg3, 0, DOC_DATAEND);
791 doc_delay(docg3, 2);
792}
793
efa2ca73
RJ
794/**
795 * doc_read_page_finish - Ends reading of a flash page
796 * @docg3: the device
797 *
798 * As a side effect, resets the chip selector to 0. This ensures that after each
799 * read operation, the floor 0 is selected. Therefore, if the systems halts, the
800 * reboot will boot on floor 0, where the IPL is.
801 */
802static void doc_read_page_finish(struct docg3 *docg3)
803{
fb50b58e 804 doc_page_finish(docg3);
efa2ca73
RJ
805 doc_set_device_id(docg3, 0);
806}
807
808/**
809 * calc_block_sector - Calculate blocks, pages and ofs.
810
811 * @from: offset in flash
812 * @block0: first plane block index calculated
813 * @block1: second plane block index calculated
814 * @page: page calculated
815 * @ofs: offset in page
c3de8a8a
RJ
816 * @reliable: 0 if docg3 in normal mode, 1 if docg3 in fast mode, 2 if docg3 in
817 * reliable mode.
818 *
819 * The calculation is based on the reliable/normal mode. In normal mode, the 64
820 * pages of a block are available. In reliable mode, as pages 2*n and 2*n+1 are
821 * clones, only 32 pages per block are available.
efa2ca73
RJ
822 */
823static void calc_block_sector(loff_t from, int *block0, int *block1, int *page,
c3de8a8a 824 int *ofs, int reliable)
efa2ca73 825{
c3de8a8a
RJ
826 uint sector, pages_biblock;
827
828 pages_biblock = DOC_LAYOUT_PAGES_PER_BLOCK * DOC_LAYOUT_NBPLANES;
829 if (reliable == 1 || reliable == 2)
830 pages_biblock /= 2;
efa2ca73
RJ
831
832 sector = from / DOC_LAYOUT_PAGE_SIZE;
c3de8a8a 833 *block0 = sector / pages_biblock * DOC_LAYOUT_NBPLANES;
efa2ca73 834 *block1 = *block0 + 1;
c3de8a8a 835 *page = sector % pages_biblock;
efa2ca73 836 *page /= DOC_LAYOUT_NBPLANES;
c3de8a8a
RJ
837 if (reliable == 1 || reliable == 2)
838 *page *= 2;
efa2ca73
RJ
839 if (sector % 2)
840 *ofs = DOC_LAYOUT_PAGE_OOB_SIZE;
841 else
842 *ofs = 0;
843}
844
845/**
32a50b3a 846 * doc_read_oob - Read out of band bytes from flash
efa2ca73
RJ
847 * @mtd: the device
848 * @from: the offset from first block and first page, in bytes, aligned on page
849 * size
32a50b3a 850 * @ops: the mtd oob structure
efa2ca73 851 *
32a50b3a 852 * Reads flash memory OOB area of pages.
efa2ca73 853 *
86d2f6fb 854 * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred
efa2ca73 855 */
32a50b3a
RJ
856static int doc_read_oob(struct mtd_info *mtd, loff_t from,
857 struct mtd_oob_ops *ops)
efa2ca73
RJ
858{
859 struct docg3 *docg3 = mtd->priv;
d107bc34 860 int block0, block1, page, ret, skip, ofs = 0;
32a50b3a
RJ
861 u8 *oobbuf = ops->oobbuf;
862 u8 *buf = ops->datbuf;
863 size_t len, ooblen, nbdata, nboob;
d13d19ec 864 u8 hwecc[DOC_ECC_BCH_SIZE], eccconf1;
edbc4540 865 int max_bitflips = 0;
32a50b3a
RJ
866
867 if (buf)
868 len = ops->len;
869 else
870 len = 0;
871 if (oobbuf)
872 ooblen = ops->ooblen;
873 else
874 ooblen = 0;
875
876 if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
877 oobbuf += ops->ooboffs;
878
879 doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
880 from, ops->mode, buf, len, oobbuf, ooblen);
d107bc34 881 if (ooblen % DOC_LAYOUT_OOB_SIZE)
32a50b3a 882 return -EINVAL;
efa2ca73 883
a7baef12
RJ
884 if (from + len > mtd->size)
885 return -EINVAL;
efa2ca73 886
32a50b3a
RJ
887 ops->oobretlen = 0;
888 ops->retlen = 0;
efa2ca73 889 ret = 0;
d107bc34 890 skip = from % DOC_LAYOUT_PAGE_SIZE;
7b0e67f6 891 mutex_lock(&docg3->cascade->lock);
edbc4540 892 while (ret >= 0 && (len > 0 || ooblen > 0)) {
d107bc34 893 calc_block_sector(from - skip, &block0, &block1, &page, &ofs,
c3de8a8a 894 docg3->reliable);
d107bc34 895 nbdata = min_t(size_t, len, DOC_LAYOUT_PAGE_SIZE - skip);
32a50b3a 896 nboob = min_t(size_t, ooblen, (size_t)DOC_LAYOUT_OOB_SIZE);
efa2ca73
RJ
897 ret = doc_read_page_prepare(docg3, block0, block1, page, ofs);
898 if (ret < 0)
7b0e67f6 899 goto out;
d13d19ec 900 ret = doc_read_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
efa2ca73
RJ
901 if (ret < 0)
902 goto err_in_read;
52c2d9aa 903 ret = doc_read_page_getbytes(docg3, skip, NULL, 1, 0);
d107bc34
RJ
904 if (ret < skip)
905 goto err_in_read;
52c2d9aa 906 ret = doc_read_page_getbytes(docg3, nbdata, buf, 0, skip % 2);
32a50b3a 907 if (ret < nbdata)
efa2ca73 908 goto err_in_read;
d107bc34
RJ
909 doc_read_page_getbytes(docg3,
910 DOC_LAYOUT_PAGE_SIZE - nbdata - skip,
52c2d9aa
RJ
911 NULL, 0, (skip + nbdata) % 2);
912 ret = doc_read_page_getbytes(docg3, nboob, oobbuf, 0, 0);
32a50b3a 913 if (ret < nboob)
efa2ca73 914 goto err_in_read;
32a50b3a 915 doc_read_page_getbytes(docg3, DOC_LAYOUT_OOB_SIZE - nboob,
52c2d9aa 916 NULL, 0, nboob % 2);
efa2ca73 917
b604436c 918 doc_get_bch_hw_ecc(docg3, hwecc);
efa2ca73
RJ
919 eccconf1 = doc_register_readb(docg3, DOC_ECCCONF1);
920
32a50b3a
RJ
921 if (nboob >= DOC_LAYOUT_OOB_SIZE) {
922 doc_dbg("OOB - INFO: %02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
923 oobbuf[0], oobbuf[1], oobbuf[2], oobbuf[3],
924 oobbuf[4], oobbuf[5], oobbuf[6]);
925 doc_dbg("OOB - HAMMING: %02x\n", oobbuf[7]);
926 doc_dbg("OOB - BCH_ECC: %02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
927 oobbuf[8], oobbuf[9], oobbuf[10], oobbuf[11],
928 oobbuf[12], oobbuf[13], oobbuf[14]);
929 doc_dbg("OOB - UNUSED: %02x\n", oobbuf[15]);
930 }
efa2ca73 931 doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1);
d13d19ec
RJ
932 doc_dbg("ECC HW_ECC: %02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
933 hwecc[0], hwecc[1], hwecc[2], hwecc[3], hwecc[4],
934 hwecc[5], hwecc[6]);
935
936 ret = -EIO;
937 if (is_prot_seq_error(docg3))
938 goto err_in_read;
939 ret = 0;
940 if ((block0 >= DOC_LAYOUT_BLOCK_FIRST_DATA) &&
941 (eccconf1 & DOC_ECCCONF1_BCH_SYNDROM_ERR) &&
942 (eccconf1 & DOC_ECCCONF1_PAGE_IS_WRITTEN) &&
943 (ops->mode != MTD_OPS_RAW) &&
944 (nbdata == DOC_LAYOUT_PAGE_SIZE)) {
945 ret = doc_ecc_bch_fix_data(docg3, buf, hwecc);
946 if (ret < 0) {
947 mtd->ecc_stats.failed++;
948 ret = -EBADMSG;
949 }
950 if (ret > 0) {
951 mtd->ecc_stats.corrected += ret;
edbc4540
MD
952 max_bitflips = max(max_bitflips, ret);
953 ret = max_bitflips;
d13d19ec 954 }
efa2ca73 955 }
32a50b3a 956
efa2ca73 957 doc_read_page_finish(docg3);
32a50b3a
RJ
958 ops->retlen += nbdata;
959 ops->oobretlen += nboob;
960 buf += nbdata;
961 oobbuf += nboob;
962 len -= nbdata;
963 ooblen -= nboob;
964 from += DOC_LAYOUT_PAGE_SIZE;
d107bc34 965 skip = 0;
efa2ca73
RJ
966 }
967
7b0e67f6
RJ
968out:
969 mutex_unlock(&docg3->cascade->lock);
d13d19ec 970 return ret;
efa2ca73
RJ
971err_in_read:
972 doc_read_page_finish(docg3);
7b0e67f6 973 goto out;
efa2ca73
RJ
974}
975
976/**
32a50b3a 977 * doc_read - Read bytes from flash
efa2ca73
RJ
978 * @mtd: the device
979 * @from: the offset from first block and first page, in bytes, aligned on page
980 * size
32a50b3a
RJ
981 * @len: the number of bytes to read (must be a multiple of 4)
982 * @retlen: the number of bytes actually read
983 * @buf: the filled in buffer
efa2ca73 984 *
32a50b3a
RJ
985 * Reads flash memory pages. This function does not read the OOB chunk, but only
986 * the page data.
efa2ca73 987 *
86d2f6fb 988 * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred
efa2ca73 989 */
32a50b3a
RJ
990static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
991 size_t *retlen, u_char *buf)
efa2ca73 992{
32a50b3a
RJ
993 struct mtd_oob_ops ops;
994 size_t ret;
efa2ca73 995
32a50b3a
RJ
996 memset(&ops, 0, sizeof(ops));
997 ops.datbuf = buf;
998 ops.len = len;
999 ops.mode = MTD_OPS_AUTO_OOB;
efa2ca73 1000
32a50b3a
RJ
1001 ret = doc_read_oob(mtd, from, &ops);
1002 *retlen = ops.retlen;
1003 return ret;
efa2ca73
RJ
1004}
1005
1006static int doc_reload_bbt(struct docg3 *docg3)
1007{
1008 int block = DOC_LAYOUT_BLOCK_BBT;
1009 int ret = 0, nbpages, page;
1010 u_char *buf = docg3->bbt;
1011
1012 nbpages = DIV_ROUND_UP(docg3->max_block + 1, 8 * DOC_LAYOUT_PAGE_SIZE);
1013 for (page = 0; !ret && (page < nbpages); page++) {
1014 ret = doc_read_page_prepare(docg3, block, block + 1,
1015 page + DOC_LAYOUT_PAGE_BBT, 0);
1016 if (!ret)
1017 ret = doc_read_page_ecc_init(docg3,
1018 DOC_LAYOUT_PAGE_SIZE);
1019 if (!ret)
1020 doc_read_page_getbytes(docg3, DOC_LAYOUT_PAGE_SIZE,
52c2d9aa 1021 buf, 1, 0);
efa2ca73
RJ
1022 buf += DOC_LAYOUT_PAGE_SIZE;
1023 }
1024 doc_read_page_finish(docg3);
1025 return ret;
1026}
1027
1028/**
1029 * doc_block_isbad - Checks whether a block is good or not
1030 * @mtd: the device
1031 * @from: the offset to find the correct block
1032 *
1033 * Returns 1 if block is bad, 0 if block is good
1034 */
1035static int doc_block_isbad(struct mtd_info *mtd, loff_t from)
1036{
1037 struct docg3 *docg3 = mtd->priv;
1038 int block0, block1, page, ofs, is_good;
1039
c3de8a8a
RJ
1040 calc_block_sector(from, &block0, &block1, &page, &ofs,
1041 docg3->reliable);
efa2ca73
RJ
1042 doc_dbg("doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n",
1043 from, block0, block1, page, ofs);
1044
1045 if (block0 < DOC_LAYOUT_BLOCK_FIRST_DATA)
1046 return 0;
1047 if (block1 > docg3->max_block)
1048 return -EINVAL;
1049
1050 is_good = docg3->bbt[block0 >> 3] & (1 << (block0 & 0x7));
1051 return !is_good;
1052}
1053
e10019bc 1054#if 0
efa2ca73
RJ
1055/**
1056 * doc_get_erase_count - Get block erase count
1057 * @docg3: the device
1058 * @from: the offset in which the block is.
1059 *
1060 * Get the number of times a block was erased. The number is the maximum of
1061 * erase times between first and second plane (which should be equal normally).
1062 *
1063 * Returns The number of erases, or -EINVAL or -EIO on error.
1064 */
1065static int doc_get_erase_count(struct docg3 *docg3, loff_t from)
1066{
1067 u8 buf[DOC_LAYOUT_WEAR_SIZE];
1068 int ret, plane1_erase_count, plane2_erase_count;
1069 int block0, block1, page, ofs;
1070
1071 doc_dbg("doc_get_erase_count(from=%lld, buf=%p)\n", from, buf);
1072 if (from % DOC_LAYOUT_PAGE_SIZE)
1073 return -EINVAL;
c3de8a8a 1074 calc_block_sector(from, &block0, &block1, &page, &ofs, docg3->reliable);
efa2ca73
RJ
1075 if (block1 > docg3->max_block)
1076 return -EINVAL;
1077
1078 ret = doc_reset_seq(docg3);
1079 if (!ret)
1080 ret = doc_read_page_prepare(docg3, block0, block1, page,
52c2d9aa 1081 ofs + DOC_LAYOUT_WEAR_OFFSET, 0);
efa2ca73
RJ
1082 if (!ret)
1083 ret = doc_read_page_getbytes(docg3, DOC_LAYOUT_WEAR_SIZE,
52c2d9aa 1084 buf, 1, 0);
efa2ca73
RJ
1085 doc_read_page_finish(docg3);
1086
1087 if (ret || (buf[0] != DOC_ERASE_MARK) || (buf[2] != DOC_ERASE_MARK))
1088 return -EIO;
1089 plane1_erase_count = (u8)(~buf[1]) | ((u8)(~buf[4]) << 8)
1090 | ((u8)(~buf[5]) << 16);
1091 plane2_erase_count = (u8)(~buf[3]) | ((u8)(~buf[6]) << 8)
1092 | ((u8)(~buf[7]) << 16);
1093
1094 return max(plane1_erase_count, plane2_erase_count);
1095}
e10019bc 1096#endif
efa2ca73 1097
fb50b58e
RJ
1098/**
1099 * doc_get_op_status - get erase/write operation status
1100 * @docg3: the device
1101 *
1102 * Queries the status from the chip, and returns it
1103 *
1104 * Returns the status (bits DOC_PLANES_STATUS_*)
1105 */
1106static int doc_get_op_status(struct docg3 *docg3)
1107{
1108 u8 status;
1109
1110 doc_flash_sequence(docg3, DOC_SEQ_PLANES_STATUS);
1111 doc_flash_command(docg3, DOC_CMD_PLANES_STATUS);
1112 doc_delay(docg3, 5);
1113
1114 doc_ecc_disable(docg3);
1115 doc_read_data_area(docg3, &status, 1, 1);
1116 return status;
1117}
1118
1119/**
1120 * doc_write_erase_wait_status - wait for write or erase completion
1121 * @docg3: the device
1122 *
1123 * Wait for the chip to be ready again after erase or write operation, and check
1124 * erase/write status.
1125 *
86d2f6fb 1126 * Returns 0 if erase successful, -EIO if erase/write issue, -ETIMEOUT if
fb50b58e
RJ
1127 * timeout
1128 */
1129static int doc_write_erase_wait_status(struct docg3 *docg3)
1130{
a2b3d284 1131 int i, status, ret = 0;
fb50b58e 1132
a2b3d284
RJ
1133 for (i = 0; !doc_is_ready(docg3) && i < 5; i++)
1134 msleep(20);
fb50b58e
RJ
1135 if (!doc_is_ready(docg3)) {
1136 doc_dbg("Timeout reached and the chip is still not ready\n");
1137 ret = -EAGAIN;
1138 goto out;
1139 }
1140
1141 status = doc_get_op_status(docg3);
1142 if (status & DOC_PLANES_STATUS_FAIL) {
1143 doc_dbg("Erase/Write failed on (a) plane(s), status = %x\n",
1144 status);
1145 ret = -EIO;
1146 }
1147
1148out:
1149 doc_page_finish(docg3);
1150 return ret;
1151}
1152
de03cd71
RJ
1153/**
1154 * doc_erase_block - Erase a couple of blocks
1155 * @docg3: the device
1156 * @block0: the first block to erase (leftmost plane)
1157 * @block1: the second block to erase (rightmost plane)
1158 *
1159 * Erase both blocks, and return operation status
1160 *
1161 * Returns 0 if erase successful, -EIO if erase issue, -ETIMEOUT if chip not
1162 * ready for too long
1163 */
1164static int doc_erase_block(struct docg3 *docg3, int block0, int block1)
1165{
1166 int ret, sector;
1167
1168 doc_dbg("doc_erase_block(blocks=(%d,%d))\n", block0, block1);
1169 ret = doc_reset_seq(docg3);
1170 if (ret)
1171 return -EIO;
1172
1173 doc_set_reliable_mode(docg3);
1174 doc_flash_sequence(docg3, DOC_SEQ_ERASE);
1175
1176 sector = block0 << DOC_ADDR_BLOCK_SHIFT;
1177 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1178 doc_setup_addr_sector(docg3, sector);
1179 sector = block1 << DOC_ADDR_BLOCK_SHIFT;
1180 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1181 doc_setup_addr_sector(docg3, sector);
1182 doc_delay(docg3, 1);
1183
1184 doc_flash_command(docg3, DOC_CMD_ERASECYCLE2);
1185 doc_delay(docg3, 2);
1186
1187 if (is_prot_seq_error(docg3)) {
1188 doc_err("Erase blocks %d,%d error\n", block0, block1);
1189 return -EIO;
1190 }
1191
1192 return doc_write_erase_wait_status(docg3);
1193}
1194
1195/**
1196 * doc_erase - Erase a portion of the chip
1197 * @mtd: the device
1198 * @info: the erase info
1199 *
1200 * Erase a bunch of contiguous blocks, by pairs, as a "mtd" page of 1024 is
1201 * split into 2 pages of 512 bytes on 2 contiguous blocks.
1202 *
86d2f6fb 1203 * Returns 0 if erase successful, -EINVAL if addressing error, -EIO if erase
de03cd71
RJ
1204 * issue
1205 */
1206static int doc_erase(struct mtd_info *mtd, struct erase_info *info)
1207{
1208 struct docg3 *docg3 = mtd->priv;
1209 uint64_t len;
1210 int block0, block1, page, ret, ofs = 0;
1211
1212 doc_dbg("doc_erase(from=%lld, len=%lld\n", info->addr, info->len);
de03cd71
RJ
1213
1214 info->state = MTD_ERASE_PENDING;
c3de8a8a
RJ
1215 calc_block_sector(info->addr + info->len, &block0, &block1, &page,
1216 &ofs, docg3->reliable);
de03cd71 1217 ret = -EINVAL;
a7baef12 1218 if (info->addr + info->len > mtd->size || page || ofs)
de03cd71
RJ
1219 goto reset_err;
1220
1221 ret = 0;
c3de8a8a
RJ
1222 calc_block_sector(info->addr, &block0, &block1, &page, &ofs,
1223 docg3->reliable);
7b0e67f6
RJ
1224 mutex_lock(&docg3->cascade->lock);
1225 doc_set_device_id(docg3, docg3->device_id);
de03cd71
RJ
1226 doc_set_reliable_mode(docg3);
1227 for (len = info->len; !ret && len > 0; len -= mtd->erasesize) {
1228 info->state = MTD_ERASING;
1229 ret = doc_erase_block(docg3, block0, block1);
1230 block0 += 2;
1231 block1 += 2;
1232 }
7b0e67f6 1233 mutex_unlock(&docg3->cascade->lock);
de03cd71
RJ
1234
1235 if (ret)
1236 goto reset_err;
1237
1238 info->state = MTD_ERASE_DONE;
1239 return 0;
1240
1241reset_err:
1242 info->state = MTD_ERASE_FAILED;
1243 return ret;
1244}
1245
fb50b58e
RJ
1246/**
1247 * doc_write_page - Write a single page to the chip
1248 * @docg3: the device
1249 * @to: the offset from first block and first page, in bytes, aligned on page
1250 * size
1251 * @buf: buffer to get bytes from
1252 * @oob: buffer to get out of band bytes from (can be NULL if no OOB should be
1253 * written)
1254 * @autoecc: if 0, all 16 bytes from OOB are taken, regardless of HW Hamming or
1255 * BCH computations. If 1, only bytes 0-7 and byte 15 are taken,
1256 * remaining ones are filled with hardware Hamming and BCH
1257 * computations. Its value is not meaningfull is oob == NULL.
1258 *
1259 * Write one full page (ie. 1 page split on two planes), of 512 bytes, with the
1260 * OOB data. The OOB ECC is automatically computed by the hardware Hamming and
1261 * BCH generator if autoecc is not null.
1262 *
1263 * Returns 0 if write successful, -EIO if write error, -EAGAIN if timeout
1264 */
1265static int doc_write_page(struct docg3 *docg3, loff_t to, const u_char *buf,
1266 const u_char *oob, int autoecc)
1267{
1268 int block0, block1, page, ret, ofs = 0;
b604436c 1269 u8 hwecc[DOC_ECC_BCH_SIZE], hamming;
fb50b58e
RJ
1270
1271 doc_dbg("doc_write_page(to=%lld)\n", to);
c3de8a8a 1272 calc_block_sector(to, &block0, &block1, &page, &ofs, docg3->reliable);
fb50b58e
RJ
1273
1274 doc_set_device_id(docg3, docg3->device_id);
1275 ret = doc_reset_seq(docg3);
1276 if (ret)
1277 goto err;
1278
1279 /* Program the flash address block and page */
1280 ret = doc_write_seek(docg3, block0, block1, page, ofs);
1281 if (ret)
1282 goto err;
1283
d13d19ec 1284 doc_write_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
fb50b58e
RJ
1285 doc_delay(docg3, 2);
1286 doc_write_page_putbytes(docg3, DOC_LAYOUT_PAGE_SIZE, buf);
1287
1288 if (oob && autoecc) {
1289 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ, oob);
1290 doc_delay(docg3, 2);
1291 oob += DOC_LAYOUT_OOB_UNUSED_OFS;
1292
1293 hamming = doc_register_readb(docg3, DOC_HAMMINGPARITY);
1294 doc_delay(docg3, 2);
1295 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_HAMMING_SZ,
1296 &hamming);
1297 doc_delay(docg3, 2);
1298
b604436c
RJ
1299 doc_get_bch_hw_ecc(docg3, hwecc);
1300 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_BCH_SZ, hwecc);
fb50b58e
RJ
1301 doc_delay(docg3, 2);
1302
1303 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_UNUSED_SZ, oob);
1304 }
1305 if (oob && !autoecc)
1306 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_SIZE, oob);
1307
1308 doc_delay(docg3, 2);
1309 doc_page_finish(docg3);
1310 doc_delay(docg3, 2);
1311 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE2);
1312 doc_delay(docg3, 2);
1313
1314 /*
1315 * The wait status will perform another doc_page_finish() call, but that
1316 * seems to please the docg3, so leave it.
1317 */
1318 ret = doc_write_erase_wait_status(docg3);
1319 return ret;
1320err:
1321 doc_read_page_finish(docg3);
1322 return ret;
1323}
1324
1325/**
1326 * doc_guess_autoecc - Guess autoecc mode from mbd_oob_ops
1327 * @ops: the oob operations
1328 *
1329 * Returns 0 or 1 if success, -EINVAL if invalid oob mode
1330 */
1331static int doc_guess_autoecc(struct mtd_oob_ops *ops)
1332{
1333 int autoecc;
1334
1335 switch (ops->mode) {
1336 case MTD_OPS_PLACE_OOB:
1337 case MTD_OPS_AUTO_OOB:
1338 autoecc = 1;
1339 break;
1340 case MTD_OPS_RAW:
1341 autoecc = 0;
1342 break;
1343 default:
1344 autoecc = -EINVAL;
1345 }
1346 return autoecc;
1347}
1348
1349/**
1350 * doc_fill_autooob - Fill a 16 bytes OOB from 8 non-ECC bytes
1351 * @dst: the target 16 bytes OOB buffer
1352 * @oobsrc: the source 8 bytes non-ECC OOB buffer
1353 *
1354 */
1355static void doc_fill_autooob(u8 *dst, u8 *oobsrc)
1356{
1357 memcpy(dst, oobsrc, DOC_LAYOUT_OOB_PAGEINFO_SZ);
1358 dst[DOC_LAYOUT_OOB_UNUSED_OFS] = oobsrc[DOC_LAYOUT_OOB_PAGEINFO_SZ];
1359}
1360
1361/**
1362 * doc_backup_oob - Backup OOB into docg3 structure
1363 * @docg3: the device
1364 * @to: the page offset in the chip
1365 * @ops: the OOB size and buffer
1366 *
1367 * As the docg3 should write a page with its OOB in one pass, and some userland
1368 * applications do write_oob() to setup the OOB and then write(), store the OOB
1369 * into a temporary storage. This is very dangerous, as 2 concurrent
1370 * applications could store an OOB, and then write their pages (which will
1371 * result into one having its OOB corrupted).
1372 *
1373 * The only reliable way would be for userland to call doc_write_oob() with both
1374 * the page data _and_ the OOB area.
1375 *
1376 * Returns 0 if success, -EINVAL if ops content invalid
1377 */
1378static int doc_backup_oob(struct docg3 *docg3, loff_t to,
1379 struct mtd_oob_ops *ops)
1380{
1381 int ooblen = ops->ooblen, autoecc;
1382
1383 if (ooblen != DOC_LAYOUT_OOB_SIZE)
1384 return -EINVAL;
1385 autoecc = doc_guess_autoecc(ops);
1386 if (autoecc < 0)
1387 return autoecc;
1388
1389 docg3->oob_write_ofs = to;
1390 docg3->oob_autoecc = autoecc;
1391 if (ops->mode == MTD_OPS_AUTO_OOB) {
1392 doc_fill_autooob(docg3->oob_write_buf, ops->oobbuf);
1393 ops->oobretlen = 8;
1394 } else {
1395 memcpy(docg3->oob_write_buf, ops->oobbuf, DOC_LAYOUT_OOB_SIZE);
1396 ops->oobretlen = DOC_LAYOUT_OOB_SIZE;
1397 }
1398 return 0;
1399}
1400
1401/**
1402 * doc_write_oob - Write out of band bytes to flash
1403 * @mtd: the device
1404 * @ofs: the offset from first block and first page, in bytes, aligned on page
1405 * size
1406 * @ops: the mtd oob structure
1407 *
1408 * Either write OOB data into a temporary buffer, for the subsequent write
1409 * page. The provided OOB should be 16 bytes long. If a data buffer is provided
1410 * as well, issue the page write.
1411 * Or provide data without OOB, and then a all zeroed OOB will be used (ECC will
1412 * still be filled in if asked for).
1413 *
86d2f6fb 1414 * Returns 0 is successful, EINVAL if length is not 14 bytes
fb50b58e
RJ
1415 */
1416static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
1417 struct mtd_oob_ops *ops)
1418{
1419 struct docg3 *docg3 = mtd->priv;
7b0e67f6 1420 int ret, autoecc, oobdelta;
fb50b58e
RJ
1421 u8 *oobbuf = ops->oobbuf;
1422 u8 *buf = ops->datbuf;
1423 size_t len, ooblen;
1424 u8 oob[DOC_LAYOUT_OOB_SIZE];
1425
1426 if (buf)
1427 len = ops->len;
1428 else
1429 len = 0;
1430 if (oobbuf)
1431 ooblen = ops->ooblen;
1432 else
1433 ooblen = 0;
1434
1435 if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
1436 oobbuf += ops->ooboffs;
1437
1438 doc_dbg("doc_write_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
1439 ofs, ops->mode, buf, len, oobbuf, ooblen);
1440 switch (ops->mode) {
1441 case MTD_OPS_PLACE_OOB:
1442 case MTD_OPS_RAW:
1443 oobdelta = mtd->oobsize;
1444 break;
1445 case MTD_OPS_AUTO_OOB:
1446 oobdelta = mtd->ecclayout->oobavail;
1447 break;
1448 default:
1449 oobdelta = 0;
1450 }
1451 if ((len % DOC_LAYOUT_PAGE_SIZE) || (ooblen % oobdelta) ||
1452 (ofs % DOC_LAYOUT_PAGE_SIZE))
1453 return -EINVAL;
1454 if (len && ooblen &&
1455 (len / DOC_LAYOUT_PAGE_SIZE) != (ooblen / oobdelta))
1456 return -EINVAL;
a7baef12
RJ
1457 if (ofs + len > mtd->size)
1458 return -EINVAL;
fb50b58e
RJ
1459
1460 ops->oobretlen = 0;
1461 ops->retlen = 0;
1462 ret = 0;
1463 if (len == 0 && ooblen == 0)
1464 return -EINVAL;
1465 if (len == 0 && ooblen > 0)
1466 return doc_backup_oob(docg3, ofs, ops);
1467
1468 autoecc = doc_guess_autoecc(ops);
1469 if (autoecc < 0)
1470 return autoecc;
1471
7b0e67f6 1472 mutex_lock(&docg3->cascade->lock);
fb50b58e
RJ
1473 while (!ret && len > 0) {
1474 memset(oob, 0, sizeof(oob));
1475 if (ofs == docg3->oob_write_ofs)
1476 memcpy(oob, docg3->oob_write_buf, DOC_LAYOUT_OOB_SIZE);
1477 else if (ooblen > 0 && ops->mode == MTD_OPS_AUTO_OOB)
1478 doc_fill_autooob(oob, oobbuf);
1479 else if (ooblen > 0)
1480 memcpy(oob, oobbuf, DOC_LAYOUT_OOB_SIZE);
1481 ret = doc_write_page(docg3, ofs, buf, oob, autoecc);
1482
1483 ofs += DOC_LAYOUT_PAGE_SIZE;
1484 len -= DOC_LAYOUT_PAGE_SIZE;
1485 buf += DOC_LAYOUT_PAGE_SIZE;
1486 if (ooblen) {
1487 oobbuf += oobdelta;
1488 ooblen -= oobdelta;
1489 ops->oobretlen += oobdelta;
1490 }
1491 ops->retlen += DOC_LAYOUT_PAGE_SIZE;
1492 }
7b0e67f6 1493
fb50b58e 1494 doc_set_device_id(docg3, 0);
7b0e67f6 1495 mutex_unlock(&docg3->cascade->lock);
fb50b58e
RJ
1496 return ret;
1497}
1498
1499/**
1500 * doc_write - Write a buffer to the chip
1501 * @mtd: the device
1502 * @to: the offset from first block and first page, in bytes, aligned on page
1503 * size
1504 * @len: the number of bytes to write (must be a full page size, ie. 512)
1505 * @retlen: the number of bytes actually written (0 or 512)
1506 * @buf: the buffer to get bytes from
1507 *
1508 * Writes data to the chip.
1509 *
1510 * Returns 0 if write successful, -EIO if write error
1511 */
1512static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
1513 size_t *retlen, const u_char *buf)
1514{
1515 struct docg3 *docg3 = mtd->priv;
1516 int ret;
1517 struct mtd_oob_ops ops;
1518
1519 doc_dbg("doc_write(to=%lld, len=%zu)\n", to, len);
1520 ops.datbuf = (char *)buf;
1521 ops.len = len;
1522 ops.mode = MTD_OPS_PLACE_OOB;
1523 ops.oobbuf = NULL;
1524 ops.ooblen = 0;
1525 ops.ooboffs = 0;
1526
1527 ret = doc_write_oob(mtd, to, &ops);
1528 *retlen = ops.retlen;
1529 return ret;
1530}
1531
0f769d3f
RJ
1532static struct docg3 *sysfs_dev2docg3(struct device *dev,
1533 struct device_attribute *attr)
1534{
1535 int floor;
1536 struct platform_device *pdev = to_platform_device(dev);
1537 struct mtd_info **docg3_floors = platform_get_drvdata(pdev);
1538
1539 floor = attr->attr.name[1] - '0';
1540 if (floor < 0 || floor >= DOC_MAX_NBFLOORS)
1541 return NULL;
1542 else
1543 return docg3_floors[floor]->priv;
1544}
1545
1546static ssize_t dps0_is_key_locked(struct device *dev,
1547 struct device_attribute *attr, char *buf)
1548{
1549 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1550 int dps0;
1551
7b0e67f6 1552 mutex_lock(&docg3->cascade->lock);
0f769d3f
RJ
1553 doc_set_device_id(docg3, docg3->device_id);
1554 dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1555 doc_set_device_id(docg3, 0);
7b0e67f6 1556 mutex_unlock(&docg3->cascade->lock);
0f769d3f
RJ
1557
1558 return sprintf(buf, "%d\n", !(dps0 & DOC_DPS_KEY_OK));
1559}
1560
1561static ssize_t dps1_is_key_locked(struct device *dev,
1562 struct device_attribute *attr, char *buf)
1563{
1564 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1565 int dps1;
1566
7b0e67f6 1567 mutex_lock(&docg3->cascade->lock);
0f769d3f
RJ
1568 doc_set_device_id(docg3, docg3->device_id);
1569 dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1570 doc_set_device_id(docg3, 0);
7b0e67f6 1571 mutex_unlock(&docg3->cascade->lock);
0f769d3f
RJ
1572
1573 return sprintf(buf, "%d\n", !(dps1 & DOC_DPS_KEY_OK));
1574}
1575
1576static ssize_t dps0_insert_key(struct device *dev,
1577 struct device_attribute *attr,
1578 const char *buf, size_t count)
1579{
1580 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1581 int i;
1582
1583 if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1584 return -EINVAL;
1585
7b0e67f6 1586 mutex_lock(&docg3->cascade->lock);
0f769d3f
RJ
1587 doc_set_device_id(docg3, docg3->device_id);
1588 for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1589 doc_writeb(docg3, buf[i], DOC_DPS0_KEY);
1590 doc_set_device_id(docg3, 0);
7b0e67f6 1591 mutex_unlock(&docg3->cascade->lock);
0f769d3f
RJ
1592 return count;
1593}
1594
1595static ssize_t dps1_insert_key(struct device *dev,
1596 struct device_attribute *attr,
1597 const char *buf, size_t count)
1598{
1599 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1600 int i;
1601
1602 if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1603 return -EINVAL;
1604
7b0e67f6 1605 mutex_lock(&docg3->cascade->lock);
0f769d3f
RJ
1606 doc_set_device_id(docg3, docg3->device_id);
1607 for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1608 doc_writeb(docg3, buf[i], DOC_DPS1_KEY);
1609 doc_set_device_id(docg3, 0);
7b0e67f6 1610 mutex_unlock(&docg3->cascade->lock);
0f769d3f
RJ
1611 return count;
1612}
1613
1614#define FLOOR_SYSFS(id) { \
1615 __ATTR(f##id##_dps0_is_keylocked, S_IRUGO, dps0_is_key_locked, NULL), \
1616 __ATTR(f##id##_dps1_is_keylocked, S_IRUGO, dps1_is_key_locked, NULL), \
1617 __ATTR(f##id##_dps0_protection_key, S_IWUGO, NULL, dps0_insert_key), \
1618 __ATTR(f##id##_dps1_protection_key, S_IWUGO, NULL, dps1_insert_key), \
1619}
1620
1621static struct device_attribute doc_sys_attrs[DOC_MAX_NBFLOORS][4] = {
1622 FLOOR_SYSFS(0), FLOOR_SYSFS(1), FLOOR_SYSFS(2), FLOOR_SYSFS(3)
1623};
1624
1625static int doc_register_sysfs(struct platform_device *pdev,
1b15a5f9 1626 struct docg3_cascade *cascade)
0f769d3f
RJ
1627{
1628 int ret = 0, floor, i = 0;
1629 struct device *dev = &pdev->dev;
1630
1b15a5f9
RJ
1631 for (floor = 0; !ret && floor < DOC_MAX_NBFLOORS &&
1632 cascade->floors[floor]; floor++)
0f769d3f
RJ
1633 for (i = 0; !ret && i < 4; i++)
1634 ret = device_create_file(dev, &doc_sys_attrs[floor][i]);
1635 if (!ret)
1636 return 0;
1637 do {
1638 while (--i >= 0)
1639 device_remove_file(dev, &doc_sys_attrs[floor][i]);
1640 i = 4;
1641 } while (--floor >= 0);
1642 return ret;
1643}
1644
1645static void doc_unregister_sysfs(struct platform_device *pdev,
1b15a5f9 1646 struct docg3_cascade *cascade)
0f769d3f
RJ
1647{
1648 struct device *dev = &pdev->dev;
1649 int floor, i;
1650
1b15a5f9 1651 for (floor = 0; floor < DOC_MAX_NBFLOORS && cascade->floors[floor];
0f769d3f
RJ
1652 floor++)
1653 for (i = 0; i < 4; i++)
1654 device_remove_file(dev, &doc_sys_attrs[floor][i]);
1655}
1656
efa2ca73
RJ
1657/*
1658 * Debug sysfs entries
1659 */
1660static int dbg_flashctrl_show(struct seq_file *s, void *p)
1661{
1662 struct docg3 *docg3 = (struct docg3 *)s->private;
1663
1664 int pos = 0;
7b0e67f6
RJ
1665 u8 fctrl;
1666
1667 mutex_lock(&docg3->cascade->lock);
1668 fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
1669 mutex_unlock(&docg3->cascade->lock);
efa2ca73
RJ
1670
1671 pos += seq_printf(s,
1672 "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n",
1673 fctrl,
1674 fctrl & DOC_CTRL_VIOLATION ? "protocol violation" : "-",
1675 fctrl & DOC_CTRL_CE ? "active" : "inactive",
1676 fctrl & DOC_CTRL_PROTECTION_ERROR ? "protection error" : "-",
1677 fctrl & DOC_CTRL_SEQUENCE_ERROR ? "sequence error" : "-",
1678 fctrl & DOC_CTRL_FLASHREADY ? "ready" : "not ready");
1679 return pos;
1680}
1681DEBUGFS_RO_ATTR(flashcontrol, dbg_flashctrl_show);
1682
1683static int dbg_asicmode_show(struct seq_file *s, void *p)
1684{
1685 struct docg3 *docg3 = (struct docg3 *)s->private;
1686
7b0e67f6
RJ
1687 int pos = 0, pctrl, mode;
1688
1689 mutex_lock(&docg3->cascade->lock);
1690 pctrl = doc_register_readb(docg3, DOC_ASICMODE);
1691 mode = pctrl & 0x03;
1692 mutex_unlock(&docg3->cascade->lock);
efa2ca73
RJ
1693
1694 pos += seq_printf(s,
1695 "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (",
1696 pctrl,
1697 pctrl & DOC_ASICMODE_RAM_WE ? 1 : 0,
1698 pctrl & DOC_ASICMODE_RSTIN_RESET ? 1 : 0,
1699 pctrl & DOC_ASICMODE_BDETCT_RESET ? 1 : 0,
1700 pctrl & DOC_ASICMODE_MDWREN ? 1 : 0,
1701 pctrl & DOC_ASICMODE_POWERDOWN ? 1 : 0,
1702 mode >> 1, mode & 0x1);
1703
1704 switch (mode) {
1705 case DOC_ASICMODE_RESET:
1706 pos += seq_printf(s, "reset");
1707 break;
1708 case DOC_ASICMODE_NORMAL:
1709 pos += seq_printf(s, "normal");
1710 break;
1711 case DOC_ASICMODE_POWERDOWN:
1712 pos += seq_printf(s, "powerdown");
1713 break;
1714 }
1715 pos += seq_printf(s, ")\n");
1716 return pos;
1717}
1718DEBUGFS_RO_ATTR(asic_mode, dbg_asicmode_show);
1719
1720static int dbg_device_id_show(struct seq_file *s, void *p)
1721{
1722 struct docg3 *docg3 = (struct docg3 *)s->private;
1723 int pos = 0;
7b0e67f6
RJ
1724 int id;
1725
1726 mutex_lock(&docg3->cascade->lock);
1727 id = doc_register_readb(docg3, DOC_DEVICESELECT);
1728 mutex_unlock(&docg3->cascade->lock);
efa2ca73
RJ
1729
1730 pos += seq_printf(s, "DeviceId = %d\n", id);
1731 return pos;
1732}
1733DEBUGFS_RO_ATTR(device_id, dbg_device_id_show);
1734
1735static int dbg_protection_show(struct seq_file *s, void *p)
1736{
1737 struct docg3 *docg3 = (struct docg3 *)s->private;
1738 int pos = 0;
dbc26d98
RJ
1739 int protect, dps0, dps0_low, dps0_high, dps1, dps1_low, dps1_high;
1740
7b0e67f6 1741 mutex_lock(&docg3->cascade->lock);
dbc26d98
RJ
1742 protect = doc_register_readb(docg3, DOC_PROTECTION);
1743 dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1744 dps0_low = doc_register_readw(docg3, DOC_DPS0_ADDRLOW);
1745 dps0_high = doc_register_readw(docg3, DOC_DPS0_ADDRHIGH);
1746 dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1747 dps1_low = doc_register_readw(docg3, DOC_DPS1_ADDRLOW);
1748 dps1_high = doc_register_readw(docg3, DOC_DPS1_ADDRHIGH);
7b0e67f6 1749 mutex_unlock(&docg3->cascade->lock);
efa2ca73
RJ
1750
1751 pos += seq_printf(s, "Protection = 0x%02x (",
1752 protect);
1753 if (protect & DOC_PROTECT_FOUNDRY_OTP_LOCK)
1754 pos += seq_printf(s, "FOUNDRY_OTP_LOCK,");
1755 if (protect & DOC_PROTECT_CUSTOMER_OTP_LOCK)
1756 pos += seq_printf(s, "CUSTOMER_OTP_LOCK,");
1757 if (protect & DOC_PROTECT_LOCK_INPUT)
1758 pos += seq_printf(s, "LOCK_INPUT,");
1759 if (protect & DOC_PROTECT_STICKY_LOCK)
1760 pos += seq_printf(s, "STICKY_LOCK,");
1761 if (protect & DOC_PROTECT_PROTECTION_ENABLED)
1762 pos += seq_printf(s, "PROTECTION ON,");
1763 if (protect & DOC_PROTECT_IPL_DOWNLOAD_LOCK)
1764 pos += seq_printf(s, "IPL_DOWNLOAD_LOCK,");
1765 if (protect & DOC_PROTECT_PROTECTION_ERROR)
1766 pos += seq_printf(s, "PROTECT_ERR,");
1767 else
1768 pos += seq_printf(s, "NO_PROTECT_ERR");
1769 pos += seq_printf(s, ")\n");
1770
1771 pos += seq_printf(s, "DPS0 = 0x%02x : "
1772 "Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, "
1773 "WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1774 dps0, dps0_low, dps0_high,
1775 !!(dps0 & DOC_DPS_OTP_PROTECTED),
1776 !!(dps0 & DOC_DPS_READ_PROTECTED),
1777 !!(dps0 & DOC_DPS_WRITE_PROTECTED),
1778 !!(dps0 & DOC_DPS_HW_LOCK_ENABLED),
1779 !!(dps0 & DOC_DPS_KEY_OK));
1780 pos += seq_printf(s, "DPS1 = 0x%02x : "
1781 "Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, "
1782 "WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1783 dps1, dps1_low, dps1_high,
1784 !!(dps1 & DOC_DPS_OTP_PROTECTED),
1785 !!(dps1 & DOC_DPS_READ_PROTECTED),
1786 !!(dps1 & DOC_DPS_WRITE_PROTECTED),
1787 !!(dps1 & DOC_DPS_HW_LOCK_ENABLED),
1788 !!(dps1 & DOC_DPS_KEY_OK));
1789 return pos;
1790}
1791DEBUGFS_RO_ATTR(protection, dbg_protection_show);
1792
1793static int __init doc_dbg_register(struct docg3 *docg3)
1794{
1795 struct dentry *root, *entry;
1796
1797 root = debugfs_create_dir("docg3", NULL);
1798 if (!root)
1799 return -ENOMEM;
1800
1801 entry = debugfs_create_file("flashcontrol", S_IRUSR, root, docg3,
1802 &flashcontrol_fops);
1803 if (entry)
1804 entry = debugfs_create_file("asic_mode", S_IRUSR, root,
1805 docg3, &asic_mode_fops);
1806 if (entry)
1807 entry = debugfs_create_file("device_id", S_IRUSR, root,
1808 docg3, &device_id_fops);
1809 if (entry)
1810 entry = debugfs_create_file("protection", S_IRUSR, root,
1811 docg3, &protection_fops);
1812 if (entry) {
1813 docg3->debugfs_root = root;
1814 return 0;
1815 } else {
1816 debugfs_remove_recursive(root);
1817 return -ENOMEM;
1818 }
1819}
1820
1821static void __exit doc_dbg_unregister(struct docg3 *docg3)
1822{
1823 debugfs_remove_recursive(docg3->debugfs_root);
1824}
1825
1826/**
1827 * doc_set_driver_info - Fill the mtd_info structure and docg3 structure
1828 * @chip_id: The chip ID of the supported chip
1829 * @mtd: The structure to fill
1830 */
1831static void __init doc_set_driver_info(int chip_id, struct mtd_info *mtd)
1832{
1833 struct docg3 *docg3 = mtd->priv;
1834 int cfg;
1835
1836 cfg = doc_register_readb(docg3, DOC_CONFIGURATION);
1837 docg3->if_cfg = (cfg & DOC_CONF_IF_CFG ? 1 : 0);
c3de8a8a 1838 docg3->reliable = reliable_mode;
efa2ca73
RJ
1839
1840 switch (chip_id) {
1841 case DOC_CHIPID_G3:
31716a5a 1842 mtd->name = kasprintf(GFP_KERNEL, "docg3.%d",
ae9d4934 1843 docg3->device_id);
efa2ca73
RJ
1844 docg3->max_block = 2047;
1845 break;
1846 }
1847 mtd->type = MTD_NANDFLASH;
7a7fcf14 1848 mtd->flags = MTD_CAP_NANDFLASH;
efa2ca73 1849 mtd->size = (docg3->max_block + 1) * DOC_LAYOUT_BLOCK_SIZE;
c3de8a8a
RJ
1850 if (docg3->reliable == 2)
1851 mtd->size /= 2;
efa2ca73 1852 mtd->erasesize = DOC_LAYOUT_BLOCK_SIZE * DOC_LAYOUT_NBPLANES;
c3de8a8a
RJ
1853 if (docg3->reliable == 2)
1854 mtd->erasesize /= 2;
82c4c58d 1855 mtd->writebufsize = mtd->writesize = DOC_LAYOUT_PAGE_SIZE;
efa2ca73
RJ
1856 mtd->oobsize = DOC_LAYOUT_OOB_SIZE;
1857 mtd->owner = THIS_MODULE;
3c3c10bb
AB
1858 mtd->_erase = doc_erase;
1859 mtd->_read = doc_read;
1860 mtd->_write = doc_write;
1861 mtd->_read_oob = doc_read_oob;
1862 mtd->_write_oob = doc_write_oob;
1863 mtd->_block_isbad = doc_block_isbad;
732b63bd 1864 mtd->ecclayout = &docg3_oobinfo;
6a918bad 1865 mtd->ecc_strength = DOC_ECC_BCH_T;
efa2ca73
RJ
1866}
1867
1868/**
ae9d4934
RJ
1869 * doc_probe_device - Check if a device is available
1870 * @base: the io space where the device is probed
1871 * @floor: the floor of the probed device
1872 * @dev: the device
1b15a5f9 1873 * @cascade: the cascade of chips this devices will belong to
efa2ca73 1874 *
ae9d4934 1875 * Checks whether a device at the specified IO range, and floor is available.
efa2ca73 1876 *
ae9d4934
RJ
1877 * Returns a mtd_info struct if there is a device, ENODEV if none found, ENOMEM
1878 * if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is
1879 * launched.
efa2ca73 1880 */
30053b87 1881static struct mtd_info * __init
1b15a5f9 1882doc_probe_device(struct docg3_cascade *cascade, int floor, struct device *dev)
efa2ca73 1883{
efa2ca73
RJ
1884 int ret, bbt_nbpages;
1885 u16 chip_id, chip_id_inv;
ae9d4934
RJ
1886 struct docg3 *docg3;
1887 struct mtd_info *mtd;
efa2ca73
RJ
1888
1889 ret = -ENOMEM;
1890 docg3 = kzalloc(sizeof(struct docg3), GFP_KERNEL);
1891 if (!docg3)
1892 goto nomem1;
1893 mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL);
1894 if (!mtd)
1895 goto nomem2;
1896 mtd->priv = docg3;
ae9d4934
RJ
1897 bbt_nbpages = DIV_ROUND_UP(docg3->max_block + 1,
1898 8 * DOC_LAYOUT_PAGE_SIZE);
1899 docg3->bbt = kzalloc(bbt_nbpages * DOC_LAYOUT_PAGE_SIZE, GFP_KERNEL);
1900 if (!docg3->bbt)
1901 goto nomem3;
efa2ca73 1902
ae9d4934
RJ
1903 docg3->dev = dev;
1904 docg3->device_id = floor;
1b15a5f9 1905 docg3->cascade = cascade;
efa2ca73 1906 doc_set_device_id(docg3, docg3->device_id);
ae9d4934
RJ
1907 if (!floor)
1908 doc_set_asic_mode(docg3, DOC_ASICMODE_RESET);
efa2ca73
RJ
1909 doc_set_asic_mode(docg3, DOC_ASICMODE_NORMAL);
1910
1911 chip_id = doc_register_readw(docg3, DOC_CHIPID);
1912 chip_id_inv = doc_register_readw(docg3, DOC_CHIPID_INV);
1913
ae9d4934 1914 ret = 0;
efa2ca73 1915 if (chip_id != (u16)(~chip_id_inv)) {
ae9d4934 1916 goto nomem3;
efa2ca73
RJ
1917 }
1918
1919 switch (chip_id) {
1920 case DOC_CHIPID_G3:
ae9d4934 1921 doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n",
1b15a5f9 1922 docg3->cascade->base, floor);
efa2ca73
RJ
1923 break;
1924 default:
1925 doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id);
ae9d4934 1926 goto nomem3;
efa2ca73
RJ
1927 }
1928
1929 doc_set_driver_info(chip_id, mtd);
efa2ca73 1930
fb50b58e 1931 doc_hamming_ecc_init(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ);
efa2ca73 1932 doc_reload_bbt(docg3);
ae9d4934 1933 return mtd;
efa2ca73 1934
ae9d4934 1935nomem3:
efa2ca73
RJ
1936 kfree(mtd);
1937nomem2:
1938 kfree(docg3);
1939nomem1:
ae9d4934
RJ
1940 return ERR_PTR(ret);
1941}
1942
1943/**
1944 * doc_release_device - Release a docg3 floor
1945 * @mtd: the device
1946 */
1947static void doc_release_device(struct mtd_info *mtd)
1948{
1949 struct docg3 *docg3 = mtd->priv;
1950
1951 mtd_device_unregister(mtd);
1952 kfree(docg3->bbt);
1953 kfree(docg3);
1954 kfree(mtd->name);
1955 kfree(mtd);
1956}
1957
e4b2a96a
RJ
1958/**
1959 * docg3_resume - Awakens docg3 floor
1960 * @pdev: platfrom device
1961 *
86d2f6fb 1962 * Returns 0 (always successful)
e4b2a96a
RJ
1963 */
1964static int docg3_resume(struct platform_device *pdev)
1965{
1966 int i;
1b15a5f9 1967 struct docg3_cascade *cascade;
e4b2a96a
RJ
1968 struct mtd_info **docg3_floors, *mtd;
1969 struct docg3 *docg3;
1970
1b15a5f9
RJ
1971 cascade = platform_get_drvdata(pdev);
1972 docg3_floors = cascade->floors;
e4b2a96a
RJ
1973 mtd = docg3_floors[0];
1974 docg3 = mtd->priv;
1975
1976 doc_dbg("docg3_resume()\n");
1977 for (i = 0; i < 12; i++)
1978 doc_readb(docg3, DOC_IOSPACE_IPL);
1979 return 0;
1980}
1981
1982/**
1983 * docg3_suspend - Put in low power mode the docg3 floor
1984 * @pdev: platform device
1985 * @state: power state
1986 *
1987 * Shuts off most of docg3 circuitery to lower power consumption.
1988 *
1989 * Returns 0 if suspend succeeded, -EIO if chip refused suspend
1990 */
1991static int docg3_suspend(struct platform_device *pdev, pm_message_t state)
1992{
1993 int floor, i;
1b15a5f9 1994 struct docg3_cascade *cascade;
e4b2a96a
RJ
1995 struct mtd_info **docg3_floors, *mtd;
1996 struct docg3 *docg3;
1997 u8 ctrl, pwr_down;
1998
1b15a5f9
RJ
1999 cascade = platform_get_drvdata(pdev);
2000 docg3_floors = cascade->floors;
e4b2a96a
RJ
2001 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
2002 mtd = docg3_floors[floor];
2003 if (!mtd)
2004 continue;
2005 docg3 = mtd->priv;
2006
2007 doc_writeb(docg3, floor, DOC_DEVICESELECT);
2008 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
2009 ctrl &= ~DOC_CTRL_VIOLATION & ~DOC_CTRL_CE;
2010 doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
2011
2012 for (i = 0; i < 10; i++) {
2013 usleep_range(3000, 4000);
2014 pwr_down = doc_register_readb(docg3, DOC_POWERMODE);
2015 if (pwr_down & DOC_POWERDOWN_READY)
2016 break;
2017 }
2018 if (pwr_down & DOC_POWERDOWN_READY) {
2019 doc_dbg("docg3_suspend(): floor %d powerdown ok\n",
2020 floor);
2021 } else {
2022 doc_err("docg3_suspend(): floor %d powerdown failed\n",
2023 floor);
2024 return -EIO;
2025 }
2026 }
2027
2028 mtd = docg3_floors[0];
2029 docg3 = mtd->priv;
2030 doc_set_asic_mode(docg3, DOC_ASICMODE_POWERDOWN);
2031 return 0;
2032}
2033
ae9d4934
RJ
2034/**
2035 * doc_probe - Probe the IO space for a DiskOnChip G3 chip
2036 * @pdev: platform device
2037 *
2038 * Probes for a G3 chip at the specified IO space in the platform data
2039 * ressources. The floor 0 must be available.
2040 *
2041 * Returns 0 on success, -ENOMEM, -ENXIO on error
2042 */
2043static int __init docg3_probe(struct platform_device *pdev)
2044{
2045 struct device *dev = &pdev->dev;
2046 struct mtd_info *mtd;
2047 struct resource *ress;
2048 void __iomem *base;
2049 int ret, floor, found = 0;
1b15a5f9 2050 struct docg3_cascade *cascade;
ae9d4934
RJ
2051
2052 ret = -ENXIO;
2053 ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2054 if (!ress) {
2055 dev_err(dev, "No I/O memory resource defined\n");
2056 goto noress;
2057 }
2058 base = ioremap(ress->start, DOC_IOSPACE_SIZE);
2059
2060 ret = -ENOMEM;
1b15a5f9
RJ
2061 cascade = kzalloc(sizeof(*cascade) * DOC_MAX_NBFLOORS,
2062 GFP_KERNEL);
2063 if (!cascade)
d13d19ec 2064 goto nomem1;
1b15a5f9 2065 cascade->base = base;
7b0e67f6 2066 mutex_init(&cascade->lock);
1b15a5f9 2067 cascade->bch = init_bch(DOC_ECC_BCH_M, DOC_ECC_BCH_T,
d13d19ec 2068 DOC_ECC_BCH_PRIMPOLY);
1b15a5f9 2069 if (!cascade->bch)
d13d19ec 2070 goto nomem2;
ae9d4934 2071
ae9d4934 2072 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
1b15a5f9 2073 mtd = doc_probe_device(cascade, floor, dev);
b49e345e 2074 if (IS_ERR(mtd)) {
ae9d4934 2075 ret = PTR_ERR(mtd);
b49e345e
DC
2076 goto err_probe;
2077 }
2078 if (!mtd) {
2079 if (floor == 0)
2080 goto notfound;
2081 else
2082 continue;
2083 }
1b15a5f9 2084 cascade->floors[floor] = mtd;
b49e345e
DC
2085 ret = mtd_device_parse_register(mtd, part_probes, NULL, NULL,
2086 0);
ae9d4934
RJ
2087 if (ret)
2088 goto err_probe;
b49e345e 2089 found++;
ae9d4934
RJ
2090 }
2091
1b15a5f9 2092 ret = doc_register_sysfs(pdev, cascade);
0f769d3f
RJ
2093 if (ret)
2094 goto err_probe;
ae9d4934
RJ
2095 if (!found)
2096 goto notfound;
2097
1b15a5f9
RJ
2098 platform_set_drvdata(pdev, cascade);
2099 doc_dbg_register(cascade->floors[0]->priv);
ae9d4934
RJ
2100 return 0;
2101
2102notfound:
2103 ret = -ENODEV;
2104 dev_info(dev, "No supported DiskOnChip found\n");
2105err_probe:
1b15a5f9 2106 kfree(cascade->bch);
ae9d4934 2107 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
1b15a5f9
RJ
2108 if (cascade->floors[floor])
2109 doc_release_device(cascade->floors[floor]);
d13d19ec 2110nomem2:
1b15a5f9 2111 kfree(cascade);
d13d19ec 2112nomem1:
ae9d4934
RJ
2113 iounmap(base);
2114noress:
efa2ca73
RJ
2115 return ret;
2116}
2117
2118/**
2119 * docg3_release - Release the driver
2120 * @pdev: the platform device
2121 *
2122 * Returns 0
2123 */
2124static int __exit docg3_release(struct platform_device *pdev)
2125{
1b15a5f9
RJ
2126 struct docg3_cascade *cascade = platform_get_drvdata(pdev);
2127 struct docg3 *docg3 = cascade->floors[0]->priv;
2128 void __iomem *base = cascade->base;
ae9d4934 2129 int floor;
efa2ca73 2130
1b15a5f9 2131 doc_unregister_sysfs(pdev, cascade);
efa2ca73 2132 doc_dbg_unregister(docg3);
ae9d4934 2133 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
1b15a5f9
RJ
2134 if (cascade->floors[floor])
2135 doc_release_device(cascade->floors[floor]);
ae9d4934 2136
1b15a5f9
RJ
2137 free_bch(docg3->cascade->bch);
2138 kfree(cascade);
ae9d4934 2139 iounmap(base);
efa2ca73
RJ
2140 return 0;
2141}
2142
2143static struct platform_driver g3_driver = {
2144 .driver = {
2145 .name = "docg3",
2146 .owner = THIS_MODULE,
2147 },
e4b2a96a
RJ
2148 .suspend = docg3_suspend,
2149 .resume = docg3_resume,
efa2ca73
RJ
2150 .remove = __exit_p(docg3_release),
2151};
2152
2153static int __init docg3_init(void)
2154{
2155 return platform_driver_probe(&g3_driver, docg3_probe);
2156}
2157module_init(docg3_init);
2158
2159
2160static void __exit docg3_exit(void)
2161{
2162 platform_driver_unregister(&g3_driver);
2163}
2164module_exit(docg3_exit);
2165
2166MODULE_LICENSE("GPL");
2167MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>");
2168MODULE_DESCRIPTION("MTD driver for DiskOnChip G3");
This page took 0.174116 seconds and 5 git commands to generate.