mtd: docg4: fix status polling loop
[deliverable/linux.git] / drivers / mtd / devices / docg3.c
CommitLineData
efa2ca73
RJ
1/*
2 * Handles the M-Systems DiskOnChip G3 chip
3 *
4 * Copyright (C) 2011 Robert Jarzmik
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 */
21
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/errno.h>
25#include <linux/platform_device.h>
26#include <linux/string.h>
27#include <linux/slab.h>
28#include <linux/io.h>
29#include <linux/delay.h>
30#include <linux/mtd/mtd.h>
31#include <linux/mtd/partitions.h>
d13d19ec
RJ
32#include <linux/bitmap.h>
33#include <linux/bitrev.h>
34#include <linux/bch.h>
efa2ca73
RJ
35
36#include <linux/debugfs.h>
37#include <linux/seq_file.h>
38
39#define CREATE_TRACE_POINTS
40#include "docg3.h"
41
42/*
43 * This driver handles the DiskOnChip G3 flash memory.
44 *
45 * As no specification is available from M-Systems/Sandisk, this drivers lacks
46 * several functions available on the chip, as :
efa2ca73 47 * - IPL write
efa2ca73
RJ
48 *
49 * The bus data width (8bits versus 16bits) is not handled (if_cfg flag), and
50 * the driver assumes a 16bits data bus.
51 *
52 * DocG3 relies on 2 ECC algorithms, which are handled in hardware :
53 * - a 1 byte Hamming code stored in the OOB for each page
54 * - a 7 bytes BCH code stored in the OOB for each page
d13d19ec 55 * The BCH ECC is :
efa2ca73
RJ
56 * - BCH is in GF(2^14)
57 * - BCH is over data of 520 bytes (512 page + 7 page_info bytes
58 * + 1 hamming byte)
59 * - BCH can correct up to 4 bits (t = 4)
60 * - BCH syndroms are calculated in hardware, and checked in hardware as well
61 *
62 */
63
b604436c 64static unsigned int reliable_mode;
c3de8a8a
RJ
65module_param(reliable_mode, uint, 0);
66MODULE_PARM_DESC(reliable_mode, "Set the docg3 mode (0=normal MLC, 1=fast, "
67 "2=reliable) : MLC normal operations are in normal mode");
68
732b63bd
RJ
69/**
70 * struct docg3_oobinfo - DiskOnChip G3 OOB layout
71 * @eccbytes: 8 bytes are used (1 for Hamming ECC, 7 for BCH ECC)
72 * @eccpos: ecc positions (byte 7 is Hamming ECC, byte 8-14 are BCH ECC)
73 * @oobfree: free pageinfo bytes (byte 0 until byte 6, byte 15
74 * @oobavail: 8 available bytes remaining after ECC toll
75 */
76static struct nand_ecclayout docg3_oobinfo = {
77 .eccbytes = 8,
78 .eccpos = {7, 8, 9, 10, 11, 12, 13, 14},
79 .oobfree = {{0, 7}, {15, 1} },
80 .oobavail = 8,
81};
82
efa2ca73
RJ
83static inline u8 doc_readb(struct docg3 *docg3, u16 reg)
84{
1b15a5f9 85 u8 val = readb(docg3->cascade->base + reg);
efa2ca73
RJ
86
87 trace_docg3_io(0, 8, reg, (int)val);
88 return val;
89}
90
91static inline u16 doc_readw(struct docg3 *docg3, u16 reg)
92{
1b15a5f9 93 u16 val = readw(docg3->cascade->base + reg);
efa2ca73
RJ
94
95 trace_docg3_io(0, 16, reg, (int)val);
96 return val;
97}
98
99static inline void doc_writeb(struct docg3 *docg3, u8 val, u16 reg)
100{
1b15a5f9 101 writeb(val, docg3->cascade->base + reg);
84a93058 102 trace_docg3_io(1, 8, reg, val);
efa2ca73
RJ
103}
104
105static inline void doc_writew(struct docg3 *docg3, u16 val, u16 reg)
106{
1b15a5f9 107 writew(val, docg3->cascade->base + reg);
efa2ca73
RJ
108 trace_docg3_io(1, 16, reg, val);
109}
110
111static inline void doc_flash_command(struct docg3 *docg3, u8 cmd)
112{
113 doc_writeb(docg3, cmd, DOC_FLASHCOMMAND);
114}
115
116static inline void doc_flash_sequence(struct docg3 *docg3, u8 seq)
117{
118 doc_writeb(docg3, seq, DOC_FLASHSEQUENCE);
119}
120
121static inline void doc_flash_address(struct docg3 *docg3, u8 addr)
122{
123 doc_writeb(docg3, addr, DOC_FLASHADDRESS);
124}
125
afffeec9 126static char const * const part_probes[] = { "cmdlinepart", "saftlpart", NULL };
efa2ca73
RJ
127
128static int doc_register_readb(struct docg3 *docg3, int reg)
129{
130 u8 val;
131
132 doc_writew(docg3, reg, DOC_READADDRESS);
133 val = doc_readb(docg3, reg);
134 doc_vdbg("Read register %04x : %02x\n", reg, val);
135 return val;
136}
137
138static int doc_register_readw(struct docg3 *docg3, int reg)
139{
140 u16 val;
141
142 doc_writew(docg3, reg, DOC_READADDRESS);
143 val = doc_readw(docg3, reg);
144 doc_vdbg("Read register %04x : %04x\n", reg, val);
145 return val;
146}
147
148/**
149 * doc_delay - delay docg3 operations
150 * @docg3: the device
151 * @nbNOPs: the number of NOPs to issue
152 *
153 * As no specification is available, the right timings between chip commands are
154 * unknown. The only available piece of information are the observed nops on a
155 * working docg3 chip.
156 * Therefore, doc_delay relies on a busy loop of NOPs, instead of scheduler
157 * friendlier msleep() functions or blocking mdelay().
158 */
159static void doc_delay(struct docg3 *docg3, int nbNOPs)
160{
161 int i;
162
ac48e800 163 doc_vdbg("NOP x %d\n", nbNOPs);
efa2ca73
RJ
164 for (i = 0; i < nbNOPs; i++)
165 doc_writeb(docg3, 0, DOC_NOP);
166}
167
168static int is_prot_seq_error(struct docg3 *docg3)
169{
170 int ctrl;
171
172 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
173 return ctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR);
174}
175
176static int doc_is_ready(struct docg3 *docg3)
177{
178 int ctrl;
179
180 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
181 return ctrl & DOC_CTRL_FLASHREADY;
182}
183
184static int doc_wait_ready(struct docg3 *docg3)
185{
186 int maxWaitCycles = 100;
187
188 do {
189 doc_delay(docg3, 4);
190 cpu_relax();
191 } while (!doc_is_ready(docg3) && maxWaitCycles--);
192 doc_delay(docg3, 2);
193 if (maxWaitCycles > 0)
194 return 0;
195 else
196 return -EIO;
197}
198
199static int doc_reset_seq(struct docg3 *docg3)
200{
201 int ret;
202
203 doc_writeb(docg3, 0x10, DOC_FLASHCONTROL);
204 doc_flash_sequence(docg3, DOC_SEQ_RESET);
205 doc_flash_command(docg3, DOC_CMD_RESET);
206 doc_delay(docg3, 2);
207 ret = doc_wait_ready(docg3);
208
209 doc_dbg("doc_reset_seq() -> isReady=%s\n", ret ? "false" : "true");
210 return ret;
211}
212
213/**
214 * doc_read_data_area - Read data from data area
215 * @docg3: the device
32a50b3a
RJ
216 * @buf: the buffer to fill in (might be NULL is dummy reads)
217 * @len: the length to read
efa2ca73
RJ
218 * @first: first time read, DOC_READADDRESS should be set
219 *
220 * Reads bytes from flash data. Handles the single byte / even bytes reads.
221 */
222static void doc_read_data_area(struct docg3 *docg3, void *buf, int len,
223 int first)
224{
225 int i, cdr, len4;
226 u16 data16, *dst16;
227 u8 data8, *dst8;
228
229 doc_dbg("doc_read_data_area(buf=%p, len=%d)\n", buf, len);
52c2d9aa 230 cdr = len & 0x1;
efa2ca73
RJ
231 len4 = len - cdr;
232
233 if (first)
234 doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
235 dst16 = buf;
236 for (i = 0; i < len4; i += 2) {
237 data16 = doc_readw(docg3, DOC_IOSPACE_DATA);
32a50b3a
RJ
238 if (dst16) {
239 *dst16 = data16;
240 dst16++;
241 }
efa2ca73
RJ
242 }
243
244 if (cdr) {
245 doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
246 DOC_READADDRESS);
247 doc_delay(docg3, 1);
248 dst8 = (u8 *)dst16;
249 for (i = 0; i < cdr; i++) {
250 data8 = doc_readb(docg3, DOC_IOSPACE_DATA);
32a50b3a
RJ
251 if (dst8) {
252 *dst8 = data8;
253 dst8++;
254 }
efa2ca73
RJ
255 }
256 }
257}
258
fb50b58e
RJ
259/**
260 * doc_write_data_area - Write data into data area
261 * @docg3: the device
262 * @buf: the buffer to get input bytes from
263 * @len: the length to write
264 *
265 * Writes bytes into flash data. Handles the single byte / even bytes writes.
266 */
267static void doc_write_data_area(struct docg3 *docg3, const void *buf, int len)
268{
269 int i, cdr, len4;
270 u16 *src16;
271 u8 *src8;
272
273 doc_dbg("doc_write_data_area(buf=%p, len=%d)\n", buf, len);
274 cdr = len & 0x3;
275 len4 = len - cdr;
276
277 doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
278 src16 = (u16 *)buf;
279 for (i = 0; i < len4; i += 2) {
280 doc_writew(docg3, *src16, DOC_IOSPACE_DATA);
281 src16++;
282 }
283
284 src8 = (u8 *)src16;
285 for (i = 0; i < cdr; i++) {
286 doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
287 DOC_READADDRESS);
288 doc_writeb(docg3, *src8, DOC_IOSPACE_DATA);
289 src8++;
290 }
291}
292
efa2ca73 293/**
c3de8a8a 294 * doc_set_data_mode - Sets the flash to normal or reliable data mode
efa2ca73
RJ
295 * @docg3: the device
296 *
297 * The reliable data mode is a bit slower than the fast mode, but less errors
298 * occur. Entering the reliable mode cannot be done without entering the fast
299 * mode first.
c3de8a8a
RJ
300 *
301 * In reliable mode, pages 2*n and 2*n+1 are clones. Writing to page 0 of blocks
302 * (4,5) make the hardware write also to page 1 of blocks blocks(4,5). Reading
303 * from page 0 of blocks (4,5) or from page 1 of blocks (4,5) gives the same
304 * result, which is a logical and between bytes from page 0 and page 1 (which is
305 * consistent with the fact that writing to a page is _clearing_ bits of that
306 * page).
efa2ca73
RJ
307 */
308static void doc_set_reliable_mode(struct docg3 *docg3)
309{
c3de8a8a
RJ
310 static char *strmode[] = { "normal", "fast", "reliable", "invalid" };
311
312 doc_dbg("doc_set_reliable_mode(%s)\n", strmode[docg3->reliable]);
313 switch (docg3->reliable) {
314 case 0:
315 break;
316 case 1:
317 doc_flash_sequence(docg3, DOC_SEQ_SET_FASTMODE);
318 doc_flash_command(docg3, DOC_CMD_FAST_MODE);
319 break;
320 case 2:
321 doc_flash_sequence(docg3, DOC_SEQ_SET_RELIABLEMODE);
322 doc_flash_command(docg3, DOC_CMD_FAST_MODE);
323 doc_flash_command(docg3, DOC_CMD_RELIABLE_MODE);
324 break;
325 default:
326 doc_err("doc_set_reliable_mode(): invalid mode\n");
327 break;
328 }
efa2ca73
RJ
329 doc_delay(docg3, 2);
330}
331
332/**
333 * doc_set_asic_mode - Set the ASIC mode
334 * @docg3: the device
335 * @mode: the mode
336 *
337 * The ASIC can work in 3 modes :
338 * - RESET: all registers are zeroed
339 * - NORMAL: receives and handles commands
340 * - POWERDOWN: minimal poweruse, flash parts shut off
341 */
342static void doc_set_asic_mode(struct docg3 *docg3, u8 mode)
343{
344 int i;
345
346 for (i = 0; i < 12; i++)
347 doc_readb(docg3, DOC_IOSPACE_IPL);
348
349 mode |= DOC_ASICMODE_MDWREN;
350 doc_dbg("doc_set_asic_mode(%02x)\n", mode);
351 doc_writeb(docg3, mode, DOC_ASICMODE);
352 doc_writeb(docg3, ~mode, DOC_ASICMODECONFIRM);
353 doc_delay(docg3, 1);
354}
355
356/**
357 * doc_set_device_id - Sets the devices id for cascaded G3 chips
358 * @docg3: the device
359 * @id: the chip to select (amongst 0, 1, 2, 3)
360 *
361 * There can be 4 cascaded G3 chips. This function selects the one which will
362 * should be the active one.
363 */
364static void doc_set_device_id(struct docg3 *docg3, int id)
365{
366 u8 ctrl;
367
368 doc_dbg("doc_set_device_id(%d)\n", id);
369 doc_writeb(docg3, id, DOC_DEVICESELECT);
370 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
371
372 ctrl &= ~DOC_CTRL_VIOLATION;
373 ctrl |= DOC_CTRL_CE;
374 doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
375}
376
377/**
378 * doc_set_extra_page_mode - Change flash page layout
379 * @docg3: the device
380 *
381 * Normally, the flash page is split into the data (512 bytes) and the out of
382 * band data (16 bytes). For each, 4 more bytes can be accessed, where the wear
383 * leveling counters are stored. To access this last area of 4 bytes, a special
384 * mode must be input to the flash ASIC.
385 *
86d2f6fb 386 * Returns 0 if no error occurred, -EIO else.
efa2ca73
RJ
387 */
388static int doc_set_extra_page_mode(struct docg3 *docg3)
389{
390 int fctrl;
391
392 doc_dbg("doc_set_extra_page_mode()\n");
393 doc_flash_sequence(docg3, DOC_SEQ_PAGE_SIZE_532);
394 doc_flash_command(docg3, DOC_CMD_PAGE_SIZE_532);
395 doc_delay(docg3, 2);
396
397 fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
398 if (fctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR))
399 return -EIO;
400 else
401 return 0;
402}
403
fb50b58e
RJ
404/**
405 * doc_setup_addr_sector - Setup blocks/page/ofs address for one plane
406 * @docg3: the device
407 * @sector: the sector
408 */
409static void doc_setup_addr_sector(struct docg3 *docg3, int sector)
410{
411 doc_delay(docg3, 1);
412 doc_flash_address(docg3, sector & 0xff);
413 doc_flash_address(docg3, (sector >> 8) & 0xff);
414 doc_flash_address(docg3, (sector >> 16) & 0xff);
415 doc_delay(docg3, 1);
416}
417
418/**
419 * doc_setup_writeaddr_sector - Setup blocks/page/ofs address for one plane
420 * @docg3: the device
421 * @sector: the sector
422 * @ofs: the offset in the page, between 0 and (512 + 16 + 512)
423 */
424static void doc_setup_writeaddr_sector(struct docg3 *docg3, int sector, int ofs)
425{
426 ofs = ofs >> 2;
427 doc_delay(docg3, 1);
428 doc_flash_address(docg3, ofs & 0xff);
429 doc_flash_address(docg3, sector & 0xff);
430 doc_flash_address(docg3, (sector >> 8) & 0xff);
431 doc_flash_address(docg3, (sector >> 16) & 0xff);
432 doc_delay(docg3, 1);
433}
434
efa2ca73
RJ
435/**
436 * doc_seek - Set both flash planes to the specified block, page for reading
437 * @docg3: the device
438 * @block0: the first plane block index
439 * @block1: the second plane block index
440 * @page: the page index within the block
441 * @wear: if true, read will occur on the 4 extra bytes of the wear area
442 * @ofs: offset in page to read
443 *
444 * Programs the flash even and odd planes to the specific block and page.
445 * Alternatively, programs the flash to the wear area of the specified page.
446 */
447static int doc_read_seek(struct docg3 *docg3, int block0, int block1, int page,
448 int wear, int ofs)
449{
450 int sector, ret = 0;
451
452 doc_dbg("doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n",
453 block0, block1, page, ofs, wear);
454
455 if (!wear && (ofs < 2 * DOC_LAYOUT_PAGE_SIZE)) {
456 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
457 doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
458 doc_delay(docg3, 2);
459 } else {
460 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
461 doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
462 doc_delay(docg3, 2);
463 }
464
465 doc_set_reliable_mode(docg3);
466 if (wear)
467 ret = doc_set_extra_page_mode(docg3);
468 if (ret)
469 goto out;
470
efa2ca73 471 doc_flash_sequence(docg3, DOC_SEQ_READ);
fb50b58e 472 sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
efa2ca73 473 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
fb50b58e 474 doc_setup_addr_sector(docg3, sector);
efa2ca73
RJ
475
476 sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
477 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
fb50b58e 478 doc_setup_addr_sector(docg3, sector);
efa2ca73 479 doc_delay(docg3, 1);
fb50b58e
RJ
480
481out:
482 return ret;
483}
484
485/**
486 * doc_write_seek - Set both flash planes to the specified block, page for writing
487 * @docg3: the device
488 * @block0: the first plane block index
489 * @block1: the second plane block index
490 * @page: the page index within the block
491 * @ofs: offset in page to write
492 *
493 * Programs the flash even and odd planes to the specific block and page.
494 * Alternatively, programs the flash to the wear area of the specified page.
495 */
496static int doc_write_seek(struct docg3 *docg3, int block0, int block1, int page,
497 int ofs)
498{
499 int ret = 0, sector;
500
501 doc_dbg("doc_write_seek(blocks=(%d,%d), page=%d, ofs=%d)\n",
502 block0, block1, page, ofs);
503
504 doc_set_reliable_mode(docg3);
505
506 if (ofs < 2 * DOC_LAYOUT_PAGE_SIZE) {
507 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
508 doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
509 doc_delay(docg3, 2);
510 } else {
511 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
512 doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
513 doc_delay(docg3, 2);
514 }
515
516 doc_flash_sequence(docg3, DOC_SEQ_PAGE_SETUP);
517 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
518
519 sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
520 doc_setup_writeaddr_sector(docg3, sector, ofs);
521
522 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE3);
efa2ca73 523 doc_delay(docg3, 2);
fb50b58e
RJ
524 ret = doc_wait_ready(docg3);
525 if (ret)
526 goto out;
527
528 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
529 sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
530 doc_setup_writeaddr_sector(docg3, sector, ofs);
531 doc_delay(docg3, 1);
efa2ca73
RJ
532
533out:
534 return ret;
535}
536
fb50b58e 537
efa2ca73
RJ
538/**
539 * doc_read_page_ecc_init - Initialize hardware ECC engine
540 * @docg3: the device
541 * @len: the number of bytes covered by the ECC (BCH covered)
542 *
543 * The function does initialize the hardware ECC engine to compute the Hamming
b604436c 544 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
efa2ca73
RJ
545 *
546 * Return 0 if succeeded, -EIO on error
547 */
548static int doc_read_page_ecc_init(struct docg3 *docg3, int len)
549{
550 doc_writew(docg3, DOC_ECCCONF0_READ_MODE
551 | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
552 | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
553 DOC_ECCCONF0);
554 doc_delay(docg3, 4);
555 doc_register_readb(docg3, DOC_FLASHCONTROL);
556 return doc_wait_ready(docg3);
557}
558
fb50b58e
RJ
559/**
560 * doc_write_page_ecc_init - Initialize hardware BCH ECC engine
561 * @docg3: the device
562 * @len: the number of bytes covered by the ECC (BCH covered)
563 *
564 * The function does initialize the hardware ECC engine to compute the Hamming
b604436c 565 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
fb50b58e
RJ
566 *
567 * Return 0 if succeeded, -EIO on error
568 */
569static int doc_write_page_ecc_init(struct docg3 *docg3, int len)
570{
b604436c 571 doc_writew(docg3, DOC_ECCCONF0_WRITE_MODE
fb50b58e
RJ
572 | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
573 | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
574 DOC_ECCCONF0);
575 doc_delay(docg3, 4);
576 doc_register_readb(docg3, DOC_FLASHCONTROL);
577 return doc_wait_ready(docg3);
578}
579
580/**
581 * doc_ecc_disable - Disable Hamming and BCH ECC hardware calculator
582 * @docg3: the device
583 *
584 * Disables the hardware ECC generator and checker, for unchecked reads (as when
585 * reading OOB only or write status byte).
586 */
587static void doc_ecc_disable(struct docg3 *docg3)
588{
589 doc_writew(docg3, DOC_ECCCONF0_READ_MODE, DOC_ECCCONF0);
590 doc_delay(docg3, 4);
591}
592
593/**
594 * doc_hamming_ecc_init - Initialize hardware Hamming ECC engine
595 * @docg3: the device
596 * @nb_bytes: the number of bytes covered by the ECC (Hamming covered)
597 *
598 * This function programs the ECC hardware to compute the hamming code on the
599 * last provided N bytes to the hardware generator.
600 */
601static void doc_hamming_ecc_init(struct docg3 *docg3, int nb_bytes)
602{
603 u8 ecc_conf1;
604
605 ecc_conf1 = doc_register_readb(docg3, DOC_ECCCONF1);
606 ecc_conf1 &= ~DOC_ECCCONF1_HAMMING_BITS_MASK;
607 ecc_conf1 |= (nb_bytes & DOC_ECCCONF1_HAMMING_BITS_MASK);
608 doc_writeb(docg3, ecc_conf1, DOC_ECCCONF1);
609}
610
d13d19ec 611/**
b604436c 612 * doc_ecc_bch_fix_data - Fix if need be read data from flash
d13d19ec
RJ
613 * @docg3: the device
614 * @buf: the buffer of read data (512 + 7 + 1 bytes)
615 * @hwecc: the hardware calculated ECC.
616 * It's in fact recv_ecc ^ calc_ecc, where recv_ecc was read from OOB
617 * area data, and calc_ecc the ECC calculated by the hardware generator.
618 *
619 * Checks if the received data matches the ECC, and if an error is detected,
620 * tries to fix the bit flips (at most 4) in the buffer buf. As the docg3
621 * understands the (data, ecc, syndroms) in an inverted order in comparison to
622 * the BCH library, the function reverses the order of bits (ie. bit7 and bit0,
623 * bit6 and bit 1, ...) for all ECC data.
624 *
625 * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch
626 * algorithm is used to decode this. However the hw operates on page
627 * data in a bit order that is the reverse of that of the bch alg,
628 * requiring that the bits be reversed on the result. Thanks to Ivan
629 * Djelic for his analysis.
630 *
631 * Returns number of fixed bits (0, 1, 2, 3, 4) or -EBADMSG if too many bit
632 * errors were detected and cannot be fixed.
633 */
634static int doc_ecc_bch_fix_data(struct docg3 *docg3, void *buf, u8 *hwecc)
635{
636 u8 ecc[DOC_ECC_BCH_SIZE];
637 int errorpos[DOC_ECC_BCH_T], i, numerrs;
638
639 for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
640 ecc[i] = bitrev8(hwecc[i]);
1b15a5f9
RJ
641 numerrs = decode_bch(docg3->cascade->bch, NULL,
642 DOC_ECC_BCH_COVERED_BYTES,
d13d19ec
RJ
643 NULL, ecc, NULL, errorpos);
644 BUG_ON(numerrs == -EINVAL);
645 if (numerrs < 0)
646 goto out;
647
648 for (i = 0; i < numerrs; i++)
649 errorpos[i] = (errorpos[i] & ~7) | (7 - (errorpos[i] & 7));
650 for (i = 0; i < numerrs; i++)
651 if (errorpos[i] < DOC_ECC_BCH_COVERED_BYTES*8)
652 /* error is located in data, correct it */
653 change_bit(errorpos[i], buf);
654out:
655 doc_dbg("doc_ecc_bch_fix_data: flipped %d bits\n", numerrs);
656 return numerrs;
657}
658
659
efa2ca73
RJ
660/**
661 * doc_read_page_prepare - Prepares reading data from a flash page
662 * @docg3: the device
663 * @block0: the first plane block index on flash memory
664 * @block1: the second plane block index on flash memory
665 * @page: the page index in the block
666 * @offset: the offset in the page (must be a multiple of 4)
667 *
668 * Prepares the page to be read in the flash memory :
669 * - tell ASIC to map the flash pages
670 * - tell ASIC to be in read mode
671 *
672 * After a call to this method, a call to doc_read_page_finish is mandatory,
673 * to end the read cycle of the flash.
674 *
675 * Read data from a flash page. The length to be read must be between 0 and
676 * (page_size + oob_size + wear_size), ie. 532, and a multiple of 4 (because
677 * the extra bytes reading is not implemented).
678 *
679 * As pages are grouped by 2 (in 2 planes), reading from a page must be done
680 * in two steps:
681 * - one read of 512 bytes at offset 0
682 * - one read of 512 bytes at offset 512 + 16
683 *
86d2f6fb 684 * Returns 0 if successful, -EIO if a read error occurred.
efa2ca73
RJ
685 */
686static int doc_read_page_prepare(struct docg3 *docg3, int block0, int block1,
687 int page, int offset)
688{
689 int wear_area = 0, ret = 0;
690
691 doc_dbg("doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n",
692 block0, block1, page, offset);
693 if (offset >= DOC_LAYOUT_WEAR_OFFSET)
694 wear_area = 1;
695 if (!wear_area && offset > (DOC_LAYOUT_PAGE_OOB_SIZE * 2))
696 return -EINVAL;
697
698 doc_set_device_id(docg3, docg3->device_id);
699 ret = doc_reset_seq(docg3);
700 if (ret)
701 goto err;
702
703 /* Program the flash address block and page */
704 ret = doc_read_seek(docg3, block0, block1, page, wear_area, offset);
705 if (ret)
706 goto err;
707
708 doc_flash_command(docg3, DOC_CMD_READ_ALL_PLANES);
709 doc_delay(docg3, 2);
710 doc_wait_ready(docg3);
711
712 doc_flash_command(docg3, DOC_CMD_SET_ADDR_READ);
713 doc_delay(docg3, 1);
714 if (offset >= DOC_LAYOUT_PAGE_SIZE * 2)
715 offset -= 2 * DOC_LAYOUT_PAGE_SIZE;
716 doc_flash_address(docg3, offset >> 2);
717 doc_delay(docg3, 1);
718 doc_wait_ready(docg3);
719
720 doc_flash_command(docg3, DOC_CMD_READ_FLASH);
721
722 return 0;
723err:
724 doc_writeb(docg3, 0, DOC_DATAEND);
725 doc_delay(docg3, 2);
726 return -EIO;
727}
728
729/**
730 * doc_read_page_getbytes - Reads bytes from a prepared page
731 * @docg3: the device
732 * @len: the number of bytes to be read (must be a multiple of 4)
d107bc34 733 * @buf: the buffer to be filled in (or NULL is forget bytes)
efa2ca73 734 * @first: 1 if first time read, DOC_READADDRESS should be set
52c2d9aa
RJ
735 * @last_odd: 1 if last read ended up on an odd byte
736 *
737 * Reads bytes from a prepared page. There is a trickery here : if the last read
738 * ended up on an odd offset in the 1024 bytes double page, ie. between the 2
739 * planes, the first byte must be read apart. If a word (16bit) read was used,
740 * the read would return the byte of plane 2 as low *and* high endian, which
741 * will mess the read.
efa2ca73
RJ
742 *
743 */
744static int doc_read_page_getbytes(struct docg3 *docg3, int len, u_char *buf,
52c2d9aa 745 int first, int last_odd)
efa2ca73 746{
52c2d9aa
RJ
747 if (last_odd && len > 0) {
748 doc_read_data_area(docg3, buf, 1, first);
749 doc_read_data_area(docg3, buf ? buf + 1 : buf, len - 1, 0);
750 } else {
751 doc_read_data_area(docg3, buf, len, first);
752 }
efa2ca73
RJ
753 doc_delay(docg3, 2);
754 return len;
755}
756
fb50b58e
RJ
757/**
758 * doc_write_page_putbytes - Writes bytes into a prepared page
759 * @docg3: the device
760 * @len: the number of bytes to be written
761 * @buf: the buffer of input bytes
762 *
763 */
764static void doc_write_page_putbytes(struct docg3 *docg3, int len,
765 const u_char *buf)
766{
767 doc_write_data_area(docg3, buf, len);
768 doc_delay(docg3, 2);
769}
770
efa2ca73 771/**
b604436c 772 * doc_get_bch_hw_ecc - Get hardware calculated BCH ECC
efa2ca73 773 * @docg3: the device
b604436c 774 * @hwecc: the array of 7 integers where the hardware ecc will be stored
efa2ca73 775 */
b604436c 776static void doc_get_bch_hw_ecc(struct docg3 *docg3, u8 *hwecc)
efa2ca73
RJ
777{
778 int i;
779
780 for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
b604436c 781 hwecc[i] = doc_register_readb(docg3, DOC_BCH_HW_ECC(i));
efa2ca73
RJ
782}
783
fb50b58e
RJ
784/**
785 * doc_page_finish - Ends reading/writing of a flash page
786 * @docg3: the device
787 */
788static void doc_page_finish(struct docg3 *docg3)
789{
790 doc_writeb(docg3, 0, DOC_DATAEND);
791 doc_delay(docg3, 2);
792}
793
efa2ca73
RJ
794/**
795 * doc_read_page_finish - Ends reading of a flash page
796 * @docg3: the device
797 *
798 * As a side effect, resets the chip selector to 0. This ensures that after each
799 * read operation, the floor 0 is selected. Therefore, if the systems halts, the
800 * reboot will boot on floor 0, where the IPL is.
801 */
802static void doc_read_page_finish(struct docg3 *docg3)
803{
fb50b58e 804 doc_page_finish(docg3);
efa2ca73
RJ
805 doc_set_device_id(docg3, 0);
806}
807
808/**
809 * calc_block_sector - Calculate blocks, pages and ofs.
810
811 * @from: offset in flash
812 * @block0: first plane block index calculated
813 * @block1: second plane block index calculated
814 * @page: page calculated
815 * @ofs: offset in page
c3de8a8a
RJ
816 * @reliable: 0 if docg3 in normal mode, 1 if docg3 in fast mode, 2 if docg3 in
817 * reliable mode.
818 *
819 * The calculation is based on the reliable/normal mode. In normal mode, the 64
820 * pages of a block are available. In reliable mode, as pages 2*n and 2*n+1 are
821 * clones, only 32 pages per block are available.
efa2ca73
RJ
822 */
823static void calc_block_sector(loff_t from, int *block0, int *block1, int *page,
c3de8a8a 824 int *ofs, int reliable)
efa2ca73 825{
c3de8a8a
RJ
826 uint sector, pages_biblock;
827
828 pages_biblock = DOC_LAYOUT_PAGES_PER_BLOCK * DOC_LAYOUT_NBPLANES;
829 if (reliable == 1 || reliable == 2)
830 pages_biblock /= 2;
efa2ca73
RJ
831
832 sector = from / DOC_LAYOUT_PAGE_SIZE;
c3de8a8a 833 *block0 = sector / pages_biblock * DOC_LAYOUT_NBPLANES;
efa2ca73 834 *block1 = *block0 + 1;
c3de8a8a 835 *page = sector % pages_biblock;
efa2ca73 836 *page /= DOC_LAYOUT_NBPLANES;
c3de8a8a
RJ
837 if (reliable == 1 || reliable == 2)
838 *page *= 2;
efa2ca73
RJ
839 if (sector % 2)
840 *ofs = DOC_LAYOUT_PAGE_OOB_SIZE;
841 else
842 *ofs = 0;
843}
844
845/**
32a50b3a 846 * doc_read_oob - Read out of band bytes from flash
efa2ca73
RJ
847 * @mtd: the device
848 * @from: the offset from first block and first page, in bytes, aligned on page
849 * size
32a50b3a 850 * @ops: the mtd oob structure
efa2ca73 851 *
32a50b3a 852 * Reads flash memory OOB area of pages.
efa2ca73 853 *
86d2f6fb 854 * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred
efa2ca73 855 */
32a50b3a
RJ
856static int doc_read_oob(struct mtd_info *mtd, loff_t from,
857 struct mtd_oob_ops *ops)
efa2ca73
RJ
858{
859 struct docg3 *docg3 = mtd->priv;
d107bc34 860 int block0, block1, page, ret, skip, ofs = 0;
32a50b3a
RJ
861 u8 *oobbuf = ops->oobbuf;
862 u8 *buf = ops->datbuf;
863 size_t len, ooblen, nbdata, nboob;
d13d19ec 864 u8 hwecc[DOC_ECC_BCH_SIZE], eccconf1;
edbc4540 865 int max_bitflips = 0;
32a50b3a
RJ
866
867 if (buf)
868 len = ops->len;
869 else
870 len = 0;
871 if (oobbuf)
872 ooblen = ops->ooblen;
873 else
874 ooblen = 0;
875
876 if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
877 oobbuf += ops->ooboffs;
878
879 doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
880 from, ops->mode, buf, len, oobbuf, ooblen);
d107bc34 881 if (ooblen % DOC_LAYOUT_OOB_SIZE)
32a50b3a 882 return -EINVAL;
efa2ca73 883
a7baef12
RJ
884 if (from + len > mtd->size)
885 return -EINVAL;
efa2ca73 886
32a50b3a
RJ
887 ops->oobretlen = 0;
888 ops->retlen = 0;
efa2ca73 889 ret = 0;
d107bc34 890 skip = from % DOC_LAYOUT_PAGE_SIZE;
7b0e67f6 891 mutex_lock(&docg3->cascade->lock);
edbc4540 892 while (ret >= 0 && (len > 0 || ooblen > 0)) {
d107bc34 893 calc_block_sector(from - skip, &block0, &block1, &page, &ofs,
c3de8a8a 894 docg3->reliable);
d107bc34 895 nbdata = min_t(size_t, len, DOC_LAYOUT_PAGE_SIZE - skip);
32a50b3a 896 nboob = min_t(size_t, ooblen, (size_t)DOC_LAYOUT_OOB_SIZE);
efa2ca73
RJ
897 ret = doc_read_page_prepare(docg3, block0, block1, page, ofs);
898 if (ret < 0)
7b0e67f6 899 goto out;
d13d19ec 900 ret = doc_read_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
efa2ca73
RJ
901 if (ret < 0)
902 goto err_in_read;
52c2d9aa 903 ret = doc_read_page_getbytes(docg3, skip, NULL, 1, 0);
d107bc34
RJ
904 if (ret < skip)
905 goto err_in_read;
52c2d9aa 906 ret = doc_read_page_getbytes(docg3, nbdata, buf, 0, skip % 2);
32a50b3a 907 if (ret < nbdata)
efa2ca73 908 goto err_in_read;
d107bc34
RJ
909 doc_read_page_getbytes(docg3,
910 DOC_LAYOUT_PAGE_SIZE - nbdata - skip,
52c2d9aa
RJ
911 NULL, 0, (skip + nbdata) % 2);
912 ret = doc_read_page_getbytes(docg3, nboob, oobbuf, 0, 0);
32a50b3a 913 if (ret < nboob)
efa2ca73 914 goto err_in_read;
32a50b3a 915 doc_read_page_getbytes(docg3, DOC_LAYOUT_OOB_SIZE - nboob,
52c2d9aa 916 NULL, 0, nboob % 2);
efa2ca73 917
b604436c 918 doc_get_bch_hw_ecc(docg3, hwecc);
efa2ca73
RJ
919 eccconf1 = doc_register_readb(docg3, DOC_ECCCONF1);
920
32a50b3a 921 if (nboob >= DOC_LAYOUT_OOB_SIZE) {
13e85974 922 doc_dbg("OOB - INFO: %*phC\n", 7, oobbuf);
32a50b3a 923 doc_dbg("OOB - HAMMING: %02x\n", oobbuf[7]);
13e85974 924 doc_dbg("OOB - BCH_ECC: %*phC\n", 7, oobbuf + 8);
32a50b3a
RJ
925 doc_dbg("OOB - UNUSED: %02x\n", oobbuf[15]);
926 }
efa2ca73 927 doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1);
13e85974 928 doc_dbg("ECC HW_ECC: %*phC\n", 7, hwecc);
d13d19ec
RJ
929
930 ret = -EIO;
931 if (is_prot_seq_error(docg3))
932 goto err_in_read;
933 ret = 0;
934 if ((block0 >= DOC_LAYOUT_BLOCK_FIRST_DATA) &&
935 (eccconf1 & DOC_ECCCONF1_BCH_SYNDROM_ERR) &&
936 (eccconf1 & DOC_ECCCONF1_PAGE_IS_WRITTEN) &&
937 (ops->mode != MTD_OPS_RAW) &&
938 (nbdata == DOC_LAYOUT_PAGE_SIZE)) {
939 ret = doc_ecc_bch_fix_data(docg3, buf, hwecc);
940 if (ret < 0) {
941 mtd->ecc_stats.failed++;
942 ret = -EBADMSG;
943 }
944 if (ret > 0) {
945 mtd->ecc_stats.corrected += ret;
edbc4540
MD
946 max_bitflips = max(max_bitflips, ret);
947 ret = max_bitflips;
d13d19ec 948 }
efa2ca73 949 }
32a50b3a 950
efa2ca73 951 doc_read_page_finish(docg3);
32a50b3a
RJ
952 ops->retlen += nbdata;
953 ops->oobretlen += nboob;
954 buf += nbdata;
955 oobbuf += nboob;
956 len -= nbdata;
957 ooblen -= nboob;
958 from += DOC_LAYOUT_PAGE_SIZE;
d107bc34 959 skip = 0;
efa2ca73
RJ
960 }
961
7b0e67f6
RJ
962out:
963 mutex_unlock(&docg3->cascade->lock);
d13d19ec 964 return ret;
efa2ca73
RJ
965err_in_read:
966 doc_read_page_finish(docg3);
7b0e67f6 967 goto out;
efa2ca73
RJ
968}
969
970/**
32a50b3a 971 * doc_read - Read bytes from flash
efa2ca73
RJ
972 * @mtd: the device
973 * @from: the offset from first block and first page, in bytes, aligned on page
974 * size
32a50b3a
RJ
975 * @len: the number of bytes to read (must be a multiple of 4)
976 * @retlen: the number of bytes actually read
977 * @buf: the filled in buffer
efa2ca73 978 *
32a50b3a
RJ
979 * Reads flash memory pages. This function does not read the OOB chunk, but only
980 * the page data.
efa2ca73 981 *
86d2f6fb 982 * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred
efa2ca73 983 */
32a50b3a
RJ
984static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
985 size_t *retlen, u_char *buf)
efa2ca73 986{
32a50b3a
RJ
987 struct mtd_oob_ops ops;
988 size_t ret;
efa2ca73 989
32a50b3a
RJ
990 memset(&ops, 0, sizeof(ops));
991 ops.datbuf = buf;
992 ops.len = len;
993 ops.mode = MTD_OPS_AUTO_OOB;
efa2ca73 994
32a50b3a
RJ
995 ret = doc_read_oob(mtd, from, &ops);
996 *retlen = ops.retlen;
997 return ret;
efa2ca73
RJ
998}
999
1000static int doc_reload_bbt(struct docg3 *docg3)
1001{
1002 int block = DOC_LAYOUT_BLOCK_BBT;
1003 int ret = 0, nbpages, page;
1004 u_char *buf = docg3->bbt;
1005
1006 nbpages = DIV_ROUND_UP(docg3->max_block + 1, 8 * DOC_LAYOUT_PAGE_SIZE);
1007 for (page = 0; !ret && (page < nbpages); page++) {
1008 ret = doc_read_page_prepare(docg3, block, block + 1,
1009 page + DOC_LAYOUT_PAGE_BBT, 0);
1010 if (!ret)
1011 ret = doc_read_page_ecc_init(docg3,
1012 DOC_LAYOUT_PAGE_SIZE);
1013 if (!ret)
1014 doc_read_page_getbytes(docg3, DOC_LAYOUT_PAGE_SIZE,
52c2d9aa 1015 buf, 1, 0);
efa2ca73
RJ
1016 buf += DOC_LAYOUT_PAGE_SIZE;
1017 }
1018 doc_read_page_finish(docg3);
1019 return ret;
1020}
1021
1022/**
1023 * doc_block_isbad - Checks whether a block is good or not
1024 * @mtd: the device
1025 * @from: the offset to find the correct block
1026 *
1027 * Returns 1 if block is bad, 0 if block is good
1028 */
1029static int doc_block_isbad(struct mtd_info *mtd, loff_t from)
1030{
1031 struct docg3 *docg3 = mtd->priv;
1032 int block0, block1, page, ofs, is_good;
1033
c3de8a8a
RJ
1034 calc_block_sector(from, &block0, &block1, &page, &ofs,
1035 docg3->reliable);
efa2ca73
RJ
1036 doc_dbg("doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n",
1037 from, block0, block1, page, ofs);
1038
1039 if (block0 < DOC_LAYOUT_BLOCK_FIRST_DATA)
1040 return 0;
1041 if (block1 > docg3->max_block)
1042 return -EINVAL;
1043
1044 is_good = docg3->bbt[block0 >> 3] & (1 << (block0 & 0x7));
1045 return !is_good;
1046}
1047
e10019bc 1048#if 0
efa2ca73
RJ
1049/**
1050 * doc_get_erase_count - Get block erase count
1051 * @docg3: the device
1052 * @from: the offset in which the block is.
1053 *
1054 * Get the number of times a block was erased. The number is the maximum of
1055 * erase times between first and second plane (which should be equal normally).
1056 *
1057 * Returns The number of erases, or -EINVAL or -EIO on error.
1058 */
1059static int doc_get_erase_count(struct docg3 *docg3, loff_t from)
1060{
1061 u8 buf[DOC_LAYOUT_WEAR_SIZE];
1062 int ret, plane1_erase_count, plane2_erase_count;
1063 int block0, block1, page, ofs;
1064
1065 doc_dbg("doc_get_erase_count(from=%lld, buf=%p)\n", from, buf);
1066 if (from % DOC_LAYOUT_PAGE_SIZE)
1067 return -EINVAL;
c3de8a8a 1068 calc_block_sector(from, &block0, &block1, &page, &ofs, docg3->reliable);
efa2ca73
RJ
1069 if (block1 > docg3->max_block)
1070 return -EINVAL;
1071
1072 ret = doc_reset_seq(docg3);
1073 if (!ret)
1074 ret = doc_read_page_prepare(docg3, block0, block1, page,
52c2d9aa 1075 ofs + DOC_LAYOUT_WEAR_OFFSET, 0);
efa2ca73
RJ
1076 if (!ret)
1077 ret = doc_read_page_getbytes(docg3, DOC_LAYOUT_WEAR_SIZE,
52c2d9aa 1078 buf, 1, 0);
efa2ca73
RJ
1079 doc_read_page_finish(docg3);
1080
1081 if (ret || (buf[0] != DOC_ERASE_MARK) || (buf[2] != DOC_ERASE_MARK))
1082 return -EIO;
1083 plane1_erase_count = (u8)(~buf[1]) | ((u8)(~buf[4]) << 8)
1084 | ((u8)(~buf[5]) << 16);
1085 plane2_erase_count = (u8)(~buf[3]) | ((u8)(~buf[6]) << 8)
1086 | ((u8)(~buf[7]) << 16);
1087
1088 return max(plane1_erase_count, plane2_erase_count);
1089}
e10019bc 1090#endif
efa2ca73 1091
fb50b58e
RJ
1092/**
1093 * doc_get_op_status - get erase/write operation status
1094 * @docg3: the device
1095 *
1096 * Queries the status from the chip, and returns it
1097 *
1098 * Returns the status (bits DOC_PLANES_STATUS_*)
1099 */
1100static int doc_get_op_status(struct docg3 *docg3)
1101{
1102 u8 status;
1103
1104 doc_flash_sequence(docg3, DOC_SEQ_PLANES_STATUS);
1105 doc_flash_command(docg3, DOC_CMD_PLANES_STATUS);
1106 doc_delay(docg3, 5);
1107
1108 doc_ecc_disable(docg3);
1109 doc_read_data_area(docg3, &status, 1, 1);
1110 return status;
1111}
1112
1113/**
1114 * doc_write_erase_wait_status - wait for write or erase completion
1115 * @docg3: the device
1116 *
1117 * Wait for the chip to be ready again after erase or write operation, and check
1118 * erase/write status.
1119 *
86d2f6fb 1120 * Returns 0 if erase successful, -EIO if erase/write issue, -ETIMEOUT if
fb50b58e
RJ
1121 * timeout
1122 */
1123static int doc_write_erase_wait_status(struct docg3 *docg3)
1124{
a2b3d284 1125 int i, status, ret = 0;
fb50b58e 1126
a2b3d284
RJ
1127 for (i = 0; !doc_is_ready(docg3) && i < 5; i++)
1128 msleep(20);
fb50b58e
RJ
1129 if (!doc_is_ready(docg3)) {
1130 doc_dbg("Timeout reached and the chip is still not ready\n");
1131 ret = -EAGAIN;
1132 goto out;
1133 }
1134
1135 status = doc_get_op_status(docg3);
1136 if (status & DOC_PLANES_STATUS_FAIL) {
1137 doc_dbg("Erase/Write failed on (a) plane(s), status = %x\n",
1138 status);
1139 ret = -EIO;
1140 }
1141
1142out:
1143 doc_page_finish(docg3);
1144 return ret;
1145}
1146
de03cd71
RJ
1147/**
1148 * doc_erase_block - Erase a couple of blocks
1149 * @docg3: the device
1150 * @block0: the first block to erase (leftmost plane)
1151 * @block1: the second block to erase (rightmost plane)
1152 *
1153 * Erase both blocks, and return operation status
1154 *
1155 * Returns 0 if erase successful, -EIO if erase issue, -ETIMEOUT if chip not
1156 * ready for too long
1157 */
1158static int doc_erase_block(struct docg3 *docg3, int block0, int block1)
1159{
1160 int ret, sector;
1161
1162 doc_dbg("doc_erase_block(blocks=(%d,%d))\n", block0, block1);
1163 ret = doc_reset_seq(docg3);
1164 if (ret)
1165 return -EIO;
1166
1167 doc_set_reliable_mode(docg3);
1168 doc_flash_sequence(docg3, DOC_SEQ_ERASE);
1169
1170 sector = block0 << DOC_ADDR_BLOCK_SHIFT;
1171 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1172 doc_setup_addr_sector(docg3, sector);
1173 sector = block1 << DOC_ADDR_BLOCK_SHIFT;
1174 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1175 doc_setup_addr_sector(docg3, sector);
1176 doc_delay(docg3, 1);
1177
1178 doc_flash_command(docg3, DOC_CMD_ERASECYCLE2);
1179 doc_delay(docg3, 2);
1180
1181 if (is_prot_seq_error(docg3)) {
1182 doc_err("Erase blocks %d,%d error\n", block0, block1);
1183 return -EIO;
1184 }
1185
1186 return doc_write_erase_wait_status(docg3);
1187}
1188
1189/**
1190 * doc_erase - Erase a portion of the chip
1191 * @mtd: the device
1192 * @info: the erase info
1193 *
1194 * Erase a bunch of contiguous blocks, by pairs, as a "mtd" page of 1024 is
1195 * split into 2 pages of 512 bytes on 2 contiguous blocks.
1196 *
86d2f6fb 1197 * Returns 0 if erase successful, -EINVAL if addressing error, -EIO if erase
de03cd71
RJ
1198 * issue
1199 */
1200static int doc_erase(struct mtd_info *mtd, struct erase_info *info)
1201{
1202 struct docg3 *docg3 = mtd->priv;
1203 uint64_t len;
1204 int block0, block1, page, ret, ofs = 0;
1205
1206 doc_dbg("doc_erase(from=%lld, len=%lld\n", info->addr, info->len);
de03cd71
RJ
1207
1208 info->state = MTD_ERASE_PENDING;
c3de8a8a
RJ
1209 calc_block_sector(info->addr + info->len, &block0, &block1, &page,
1210 &ofs, docg3->reliable);
de03cd71 1211 ret = -EINVAL;
a7baef12 1212 if (info->addr + info->len > mtd->size || page || ofs)
de03cd71
RJ
1213 goto reset_err;
1214
1215 ret = 0;
c3de8a8a
RJ
1216 calc_block_sector(info->addr, &block0, &block1, &page, &ofs,
1217 docg3->reliable);
7b0e67f6
RJ
1218 mutex_lock(&docg3->cascade->lock);
1219 doc_set_device_id(docg3, docg3->device_id);
de03cd71
RJ
1220 doc_set_reliable_mode(docg3);
1221 for (len = info->len; !ret && len > 0; len -= mtd->erasesize) {
1222 info->state = MTD_ERASING;
1223 ret = doc_erase_block(docg3, block0, block1);
1224 block0 += 2;
1225 block1 += 2;
1226 }
7b0e67f6 1227 mutex_unlock(&docg3->cascade->lock);
de03cd71
RJ
1228
1229 if (ret)
1230 goto reset_err;
1231
1232 info->state = MTD_ERASE_DONE;
1233 return 0;
1234
1235reset_err:
1236 info->state = MTD_ERASE_FAILED;
1237 return ret;
1238}
1239
fb50b58e
RJ
1240/**
1241 * doc_write_page - Write a single page to the chip
1242 * @docg3: the device
1243 * @to: the offset from first block and first page, in bytes, aligned on page
1244 * size
1245 * @buf: buffer to get bytes from
1246 * @oob: buffer to get out of band bytes from (can be NULL if no OOB should be
1247 * written)
1248 * @autoecc: if 0, all 16 bytes from OOB are taken, regardless of HW Hamming or
1249 * BCH computations. If 1, only bytes 0-7 and byte 15 are taken,
1250 * remaining ones are filled with hardware Hamming and BCH
1251 * computations. Its value is not meaningfull is oob == NULL.
1252 *
1253 * Write one full page (ie. 1 page split on two planes), of 512 bytes, with the
1254 * OOB data. The OOB ECC is automatically computed by the hardware Hamming and
1255 * BCH generator if autoecc is not null.
1256 *
1257 * Returns 0 if write successful, -EIO if write error, -EAGAIN if timeout
1258 */
1259static int doc_write_page(struct docg3 *docg3, loff_t to, const u_char *buf,
1260 const u_char *oob, int autoecc)
1261{
1262 int block0, block1, page, ret, ofs = 0;
b604436c 1263 u8 hwecc[DOC_ECC_BCH_SIZE], hamming;
fb50b58e
RJ
1264
1265 doc_dbg("doc_write_page(to=%lld)\n", to);
c3de8a8a 1266 calc_block_sector(to, &block0, &block1, &page, &ofs, docg3->reliable);
fb50b58e
RJ
1267
1268 doc_set_device_id(docg3, docg3->device_id);
1269 ret = doc_reset_seq(docg3);
1270 if (ret)
1271 goto err;
1272
1273 /* Program the flash address block and page */
1274 ret = doc_write_seek(docg3, block0, block1, page, ofs);
1275 if (ret)
1276 goto err;
1277
d13d19ec 1278 doc_write_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
fb50b58e
RJ
1279 doc_delay(docg3, 2);
1280 doc_write_page_putbytes(docg3, DOC_LAYOUT_PAGE_SIZE, buf);
1281
1282 if (oob && autoecc) {
1283 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ, oob);
1284 doc_delay(docg3, 2);
1285 oob += DOC_LAYOUT_OOB_UNUSED_OFS;
1286
1287 hamming = doc_register_readb(docg3, DOC_HAMMINGPARITY);
1288 doc_delay(docg3, 2);
1289 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_HAMMING_SZ,
1290 &hamming);
1291 doc_delay(docg3, 2);
1292
b604436c
RJ
1293 doc_get_bch_hw_ecc(docg3, hwecc);
1294 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_BCH_SZ, hwecc);
fb50b58e
RJ
1295 doc_delay(docg3, 2);
1296
1297 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_UNUSED_SZ, oob);
1298 }
1299 if (oob && !autoecc)
1300 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_SIZE, oob);
1301
1302 doc_delay(docg3, 2);
1303 doc_page_finish(docg3);
1304 doc_delay(docg3, 2);
1305 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE2);
1306 doc_delay(docg3, 2);
1307
1308 /*
1309 * The wait status will perform another doc_page_finish() call, but that
1310 * seems to please the docg3, so leave it.
1311 */
1312 ret = doc_write_erase_wait_status(docg3);
1313 return ret;
1314err:
1315 doc_read_page_finish(docg3);
1316 return ret;
1317}
1318
1319/**
1320 * doc_guess_autoecc - Guess autoecc mode from mbd_oob_ops
1321 * @ops: the oob operations
1322 *
1323 * Returns 0 or 1 if success, -EINVAL if invalid oob mode
1324 */
1325static int doc_guess_autoecc(struct mtd_oob_ops *ops)
1326{
1327 int autoecc;
1328
1329 switch (ops->mode) {
1330 case MTD_OPS_PLACE_OOB:
1331 case MTD_OPS_AUTO_OOB:
1332 autoecc = 1;
1333 break;
1334 case MTD_OPS_RAW:
1335 autoecc = 0;
1336 break;
1337 default:
1338 autoecc = -EINVAL;
1339 }
1340 return autoecc;
1341}
1342
1343/**
1344 * doc_fill_autooob - Fill a 16 bytes OOB from 8 non-ECC bytes
1345 * @dst: the target 16 bytes OOB buffer
1346 * @oobsrc: the source 8 bytes non-ECC OOB buffer
1347 *
1348 */
1349static void doc_fill_autooob(u8 *dst, u8 *oobsrc)
1350{
1351 memcpy(dst, oobsrc, DOC_LAYOUT_OOB_PAGEINFO_SZ);
1352 dst[DOC_LAYOUT_OOB_UNUSED_OFS] = oobsrc[DOC_LAYOUT_OOB_PAGEINFO_SZ];
1353}
1354
1355/**
1356 * doc_backup_oob - Backup OOB into docg3 structure
1357 * @docg3: the device
1358 * @to: the page offset in the chip
1359 * @ops: the OOB size and buffer
1360 *
1361 * As the docg3 should write a page with its OOB in one pass, and some userland
1362 * applications do write_oob() to setup the OOB and then write(), store the OOB
1363 * into a temporary storage. This is very dangerous, as 2 concurrent
1364 * applications could store an OOB, and then write their pages (which will
1365 * result into one having its OOB corrupted).
1366 *
1367 * The only reliable way would be for userland to call doc_write_oob() with both
1368 * the page data _and_ the OOB area.
1369 *
1370 * Returns 0 if success, -EINVAL if ops content invalid
1371 */
1372static int doc_backup_oob(struct docg3 *docg3, loff_t to,
1373 struct mtd_oob_ops *ops)
1374{
1375 int ooblen = ops->ooblen, autoecc;
1376
1377 if (ooblen != DOC_LAYOUT_OOB_SIZE)
1378 return -EINVAL;
1379 autoecc = doc_guess_autoecc(ops);
1380 if (autoecc < 0)
1381 return autoecc;
1382
1383 docg3->oob_write_ofs = to;
1384 docg3->oob_autoecc = autoecc;
1385 if (ops->mode == MTD_OPS_AUTO_OOB) {
1386 doc_fill_autooob(docg3->oob_write_buf, ops->oobbuf);
1387 ops->oobretlen = 8;
1388 } else {
1389 memcpy(docg3->oob_write_buf, ops->oobbuf, DOC_LAYOUT_OOB_SIZE);
1390 ops->oobretlen = DOC_LAYOUT_OOB_SIZE;
1391 }
1392 return 0;
1393}
1394
1395/**
1396 * doc_write_oob - Write out of band bytes to flash
1397 * @mtd: the device
1398 * @ofs: the offset from first block and first page, in bytes, aligned on page
1399 * size
1400 * @ops: the mtd oob structure
1401 *
1402 * Either write OOB data into a temporary buffer, for the subsequent write
1403 * page. The provided OOB should be 16 bytes long. If a data buffer is provided
1404 * as well, issue the page write.
1405 * Or provide data without OOB, and then a all zeroed OOB will be used (ECC will
1406 * still be filled in if asked for).
1407 *
86d2f6fb 1408 * Returns 0 is successful, EINVAL if length is not 14 bytes
fb50b58e
RJ
1409 */
1410static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
1411 struct mtd_oob_ops *ops)
1412{
1413 struct docg3 *docg3 = mtd->priv;
7b0e67f6 1414 int ret, autoecc, oobdelta;
fb50b58e
RJ
1415 u8 *oobbuf = ops->oobbuf;
1416 u8 *buf = ops->datbuf;
1417 size_t len, ooblen;
1418 u8 oob[DOC_LAYOUT_OOB_SIZE];
1419
1420 if (buf)
1421 len = ops->len;
1422 else
1423 len = 0;
1424 if (oobbuf)
1425 ooblen = ops->ooblen;
1426 else
1427 ooblen = 0;
1428
1429 if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
1430 oobbuf += ops->ooboffs;
1431
1432 doc_dbg("doc_write_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
1433 ofs, ops->mode, buf, len, oobbuf, ooblen);
1434 switch (ops->mode) {
1435 case MTD_OPS_PLACE_OOB:
1436 case MTD_OPS_RAW:
1437 oobdelta = mtd->oobsize;
1438 break;
1439 case MTD_OPS_AUTO_OOB:
1440 oobdelta = mtd->ecclayout->oobavail;
1441 break;
1442 default:
6c810f90 1443 return -EINVAL;
fb50b58e
RJ
1444 }
1445 if ((len % DOC_LAYOUT_PAGE_SIZE) || (ooblen % oobdelta) ||
1446 (ofs % DOC_LAYOUT_PAGE_SIZE))
1447 return -EINVAL;
1448 if (len && ooblen &&
1449 (len / DOC_LAYOUT_PAGE_SIZE) != (ooblen / oobdelta))
1450 return -EINVAL;
a7baef12
RJ
1451 if (ofs + len > mtd->size)
1452 return -EINVAL;
fb50b58e
RJ
1453
1454 ops->oobretlen = 0;
1455 ops->retlen = 0;
1456 ret = 0;
1457 if (len == 0 && ooblen == 0)
1458 return -EINVAL;
1459 if (len == 0 && ooblen > 0)
1460 return doc_backup_oob(docg3, ofs, ops);
1461
1462 autoecc = doc_guess_autoecc(ops);
1463 if (autoecc < 0)
1464 return autoecc;
1465
7b0e67f6 1466 mutex_lock(&docg3->cascade->lock);
fb50b58e
RJ
1467 while (!ret && len > 0) {
1468 memset(oob, 0, sizeof(oob));
1469 if (ofs == docg3->oob_write_ofs)
1470 memcpy(oob, docg3->oob_write_buf, DOC_LAYOUT_OOB_SIZE);
1471 else if (ooblen > 0 && ops->mode == MTD_OPS_AUTO_OOB)
1472 doc_fill_autooob(oob, oobbuf);
1473 else if (ooblen > 0)
1474 memcpy(oob, oobbuf, DOC_LAYOUT_OOB_SIZE);
1475 ret = doc_write_page(docg3, ofs, buf, oob, autoecc);
1476
1477 ofs += DOC_LAYOUT_PAGE_SIZE;
1478 len -= DOC_LAYOUT_PAGE_SIZE;
1479 buf += DOC_LAYOUT_PAGE_SIZE;
1480 if (ooblen) {
1481 oobbuf += oobdelta;
1482 ooblen -= oobdelta;
1483 ops->oobretlen += oobdelta;
1484 }
1485 ops->retlen += DOC_LAYOUT_PAGE_SIZE;
1486 }
7b0e67f6 1487
fb50b58e 1488 doc_set_device_id(docg3, 0);
7b0e67f6 1489 mutex_unlock(&docg3->cascade->lock);
fb50b58e
RJ
1490 return ret;
1491}
1492
1493/**
1494 * doc_write - Write a buffer to the chip
1495 * @mtd: the device
1496 * @to: the offset from first block and first page, in bytes, aligned on page
1497 * size
1498 * @len: the number of bytes to write (must be a full page size, ie. 512)
1499 * @retlen: the number of bytes actually written (0 or 512)
1500 * @buf: the buffer to get bytes from
1501 *
1502 * Writes data to the chip.
1503 *
1504 * Returns 0 if write successful, -EIO if write error
1505 */
1506static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
1507 size_t *retlen, const u_char *buf)
1508{
1509 struct docg3 *docg3 = mtd->priv;
1510 int ret;
1511 struct mtd_oob_ops ops;
1512
1513 doc_dbg("doc_write(to=%lld, len=%zu)\n", to, len);
1514 ops.datbuf = (char *)buf;
1515 ops.len = len;
1516 ops.mode = MTD_OPS_PLACE_OOB;
1517 ops.oobbuf = NULL;
1518 ops.ooblen = 0;
1519 ops.ooboffs = 0;
1520
1521 ret = doc_write_oob(mtd, to, &ops);
1522 *retlen = ops.retlen;
1523 return ret;
1524}
1525
0f769d3f
RJ
1526static struct docg3 *sysfs_dev2docg3(struct device *dev,
1527 struct device_attribute *attr)
1528{
1529 int floor;
1530 struct platform_device *pdev = to_platform_device(dev);
1531 struct mtd_info **docg3_floors = platform_get_drvdata(pdev);
1532
1533 floor = attr->attr.name[1] - '0';
1534 if (floor < 0 || floor >= DOC_MAX_NBFLOORS)
1535 return NULL;
1536 else
1537 return docg3_floors[floor]->priv;
1538}
1539
1540static ssize_t dps0_is_key_locked(struct device *dev,
1541 struct device_attribute *attr, char *buf)
1542{
1543 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1544 int dps0;
1545
7b0e67f6 1546 mutex_lock(&docg3->cascade->lock);
0f769d3f
RJ
1547 doc_set_device_id(docg3, docg3->device_id);
1548 dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1549 doc_set_device_id(docg3, 0);
7b0e67f6 1550 mutex_unlock(&docg3->cascade->lock);
0f769d3f
RJ
1551
1552 return sprintf(buf, "%d\n", !(dps0 & DOC_DPS_KEY_OK));
1553}
1554
1555static ssize_t dps1_is_key_locked(struct device *dev,
1556 struct device_attribute *attr, char *buf)
1557{
1558 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1559 int dps1;
1560
7b0e67f6 1561 mutex_lock(&docg3->cascade->lock);
0f769d3f
RJ
1562 doc_set_device_id(docg3, docg3->device_id);
1563 dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1564 doc_set_device_id(docg3, 0);
7b0e67f6 1565 mutex_unlock(&docg3->cascade->lock);
0f769d3f
RJ
1566
1567 return sprintf(buf, "%d\n", !(dps1 & DOC_DPS_KEY_OK));
1568}
1569
1570static ssize_t dps0_insert_key(struct device *dev,
1571 struct device_attribute *attr,
1572 const char *buf, size_t count)
1573{
1574 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1575 int i;
1576
1577 if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1578 return -EINVAL;
1579
7b0e67f6 1580 mutex_lock(&docg3->cascade->lock);
0f769d3f
RJ
1581 doc_set_device_id(docg3, docg3->device_id);
1582 for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1583 doc_writeb(docg3, buf[i], DOC_DPS0_KEY);
1584 doc_set_device_id(docg3, 0);
7b0e67f6 1585 mutex_unlock(&docg3->cascade->lock);
0f769d3f
RJ
1586 return count;
1587}
1588
1589static ssize_t dps1_insert_key(struct device *dev,
1590 struct device_attribute *attr,
1591 const char *buf, size_t count)
1592{
1593 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1594 int i;
1595
1596 if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1597 return -EINVAL;
1598
7b0e67f6 1599 mutex_lock(&docg3->cascade->lock);
0f769d3f
RJ
1600 doc_set_device_id(docg3, docg3->device_id);
1601 for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1602 doc_writeb(docg3, buf[i], DOC_DPS1_KEY);
1603 doc_set_device_id(docg3, 0);
7b0e67f6 1604 mutex_unlock(&docg3->cascade->lock);
0f769d3f
RJ
1605 return count;
1606}
1607
1608#define FLOOR_SYSFS(id) { \
1609 __ATTR(f##id##_dps0_is_keylocked, S_IRUGO, dps0_is_key_locked, NULL), \
1610 __ATTR(f##id##_dps1_is_keylocked, S_IRUGO, dps1_is_key_locked, NULL), \
1611 __ATTR(f##id##_dps0_protection_key, S_IWUGO, NULL, dps0_insert_key), \
1612 __ATTR(f##id##_dps1_protection_key, S_IWUGO, NULL, dps1_insert_key), \
1613}
1614
1615static struct device_attribute doc_sys_attrs[DOC_MAX_NBFLOORS][4] = {
1616 FLOOR_SYSFS(0), FLOOR_SYSFS(1), FLOOR_SYSFS(2), FLOOR_SYSFS(3)
1617};
1618
1619static int doc_register_sysfs(struct platform_device *pdev,
1b15a5f9 1620 struct docg3_cascade *cascade)
0f769d3f
RJ
1621{
1622 int ret = 0, floor, i = 0;
1623 struct device *dev = &pdev->dev;
1624
1b15a5f9
RJ
1625 for (floor = 0; !ret && floor < DOC_MAX_NBFLOORS &&
1626 cascade->floors[floor]; floor++)
0f769d3f
RJ
1627 for (i = 0; !ret && i < 4; i++)
1628 ret = device_create_file(dev, &doc_sys_attrs[floor][i]);
1629 if (!ret)
1630 return 0;
1631 do {
1632 while (--i >= 0)
1633 device_remove_file(dev, &doc_sys_attrs[floor][i]);
1634 i = 4;
1635 } while (--floor >= 0);
1636 return ret;
1637}
1638
1639static void doc_unregister_sysfs(struct platform_device *pdev,
1b15a5f9 1640 struct docg3_cascade *cascade)
0f769d3f
RJ
1641{
1642 struct device *dev = &pdev->dev;
1643 int floor, i;
1644
1b15a5f9 1645 for (floor = 0; floor < DOC_MAX_NBFLOORS && cascade->floors[floor];
0f769d3f
RJ
1646 floor++)
1647 for (i = 0; i < 4; i++)
1648 device_remove_file(dev, &doc_sys_attrs[floor][i]);
1649}
1650
efa2ca73
RJ
1651/*
1652 * Debug sysfs entries
1653 */
1654static int dbg_flashctrl_show(struct seq_file *s, void *p)
1655{
1656 struct docg3 *docg3 = (struct docg3 *)s->private;
1657
1658 int pos = 0;
7b0e67f6
RJ
1659 u8 fctrl;
1660
1661 mutex_lock(&docg3->cascade->lock);
1662 fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
1663 mutex_unlock(&docg3->cascade->lock);
efa2ca73
RJ
1664
1665 pos += seq_printf(s,
1666 "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n",
1667 fctrl,
1668 fctrl & DOC_CTRL_VIOLATION ? "protocol violation" : "-",
1669 fctrl & DOC_CTRL_CE ? "active" : "inactive",
1670 fctrl & DOC_CTRL_PROTECTION_ERROR ? "protection error" : "-",
1671 fctrl & DOC_CTRL_SEQUENCE_ERROR ? "sequence error" : "-",
1672 fctrl & DOC_CTRL_FLASHREADY ? "ready" : "not ready");
1673 return pos;
1674}
1675DEBUGFS_RO_ATTR(flashcontrol, dbg_flashctrl_show);
1676
1677static int dbg_asicmode_show(struct seq_file *s, void *p)
1678{
1679 struct docg3 *docg3 = (struct docg3 *)s->private;
1680
7b0e67f6
RJ
1681 int pos = 0, pctrl, mode;
1682
1683 mutex_lock(&docg3->cascade->lock);
1684 pctrl = doc_register_readb(docg3, DOC_ASICMODE);
1685 mode = pctrl & 0x03;
1686 mutex_unlock(&docg3->cascade->lock);
efa2ca73
RJ
1687
1688 pos += seq_printf(s,
1689 "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (",
1690 pctrl,
1691 pctrl & DOC_ASICMODE_RAM_WE ? 1 : 0,
1692 pctrl & DOC_ASICMODE_RSTIN_RESET ? 1 : 0,
1693 pctrl & DOC_ASICMODE_BDETCT_RESET ? 1 : 0,
1694 pctrl & DOC_ASICMODE_MDWREN ? 1 : 0,
1695 pctrl & DOC_ASICMODE_POWERDOWN ? 1 : 0,
1696 mode >> 1, mode & 0x1);
1697
1698 switch (mode) {
1699 case DOC_ASICMODE_RESET:
1700 pos += seq_printf(s, "reset");
1701 break;
1702 case DOC_ASICMODE_NORMAL:
1703 pos += seq_printf(s, "normal");
1704 break;
1705 case DOC_ASICMODE_POWERDOWN:
1706 pos += seq_printf(s, "powerdown");
1707 break;
1708 }
1709 pos += seq_printf(s, ")\n");
1710 return pos;
1711}
1712DEBUGFS_RO_ATTR(asic_mode, dbg_asicmode_show);
1713
1714static int dbg_device_id_show(struct seq_file *s, void *p)
1715{
1716 struct docg3 *docg3 = (struct docg3 *)s->private;
1717 int pos = 0;
7b0e67f6
RJ
1718 int id;
1719
1720 mutex_lock(&docg3->cascade->lock);
1721 id = doc_register_readb(docg3, DOC_DEVICESELECT);
1722 mutex_unlock(&docg3->cascade->lock);
efa2ca73
RJ
1723
1724 pos += seq_printf(s, "DeviceId = %d\n", id);
1725 return pos;
1726}
1727DEBUGFS_RO_ATTR(device_id, dbg_device_id_show);
1728
1729static int dbg_protection_show(struct seq_file *s, void *p)
1730{
1731 struct docg3 *docg3 = (struct docg3 *)s->private;
1732 int pos = 0;
dbc26d98
RJ
1733 int protect, dps0, dps0_low, dps0_high, dps1, dps1_low, dps1_high;
1734
7b0e67f6 1735 mutex_lock(&docg3->cascade->lock);
dbc26d98
RJ
1736 protect = doc_register_readb(docg3, DOC_PROTECTION);
1737 dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1738 dps0_low = doc_register_readw(docg3, DOC_DPS0_ADDRLOW);
1739 dps0_high = doc_register_readw(docg3, DOC_DPS0_ADDRHIGH);
1740 dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1741 dps1_low = doc_register_readw(docg3, DOC_DPS1_ADDRLOW);
1742 dps1_high = doc_register_readw(docg3, DOC_DPS1_ADDRHIGH);
7b0e67f6 1743 mutex_unlock(&docg3->cascade->lock);
efa2ca73
RJ
1744
1745 pos += seq_printf(s, "Protection = 0x%02x (",
1746 protect);
1747 if (protect & DOC_PROTECT_FOUNDRY_OTP_LOCK)
1748 pos += seq_printf(s, "FOUNDRY_OTP_LOCK,");
1749 if (protect & DOC_PROTECT_CUSTOMER_OTP_LOCK)
1750 pos += seq_printf(s, "CUSTOMER_OTP_LOCK,");
1751 if (protect & DOC_PROTECT_LOCK_INPUT)
1752 pos += seq_printf(s, "LOCK_INPUT,");
1753 if (protect & DOC_PROTECT_STICKY_LOCK)
1754 pos += seq_printf(s, "STICKY_LOCK,");
1755 if (protect & DOC_PROTECT_PROTECTION_ENABLED)
1756 pos += seq_printf(s, "PROTECTION ON,");
1757 if (protect & DOC_PROTECT_IPL_DOWNLOAD_LOCK)
1758 pos += seq_printf(s, "IPL_DOWNLOAD_LOCK,");
1759 if (protect & DOC_PROTECT_PROTECTION_ERROR)
1760 pos += seq_printf(s, "PROTECT_ERR,");
1761 else
1762 pos += seq_printf(s, "NO_PROTECT_ERR");
1763 pos += seq_printf(s, ")\n");
1764
1765 pos += seq_printf(s, "DPS0 = 0x%02x : "
1766 "Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, "
1767 "WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1768 dps0, dps0_low, dps0_high,
1769 !!(dps0 & DOC_DPS_OTP_PROTECTED),
1770 !!(dps0 & DOC_DPS_READ_PROTECTED),
1771 !!(dps0 & DOC_DPS_WRITE_PROTECTED),
1772 !!(dps0 & DOC_DPS_HW_LOCK_ENABLED),
1773 !!(dps0 & DOC_DPS_KEY_OK));
1774 pos += seq_printf(s, "DPS1 = 0x%02x : "
1775 "Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, "
1776 "WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1777 dps1, dps1_low, dps1_high,
1778 !!(dps1 & DOC_DPS_OTP_PROTECTED),
1779 !!(dps1 & DOC_DPS_READ_PROTECTED),
1780 !!(dps1 & DOC_DPS_WRITE_PROTECTED),
1781 !!(dps1 & DOC_DPS_HW_LOCK_ENABLED),
1782 !!(dps1 & DOC_DPS_KEY_OK));
1783 return pos;
1784}
1785DEBUGFS_RO_ATTR(protection, dbg_protection_show);
1786
1787static int __init doc_dbg_register(struct docg3 *docg3)
1788{
1789 struct dentry *root, *entry;
1790
1791 root = debugfs_create_dir("docg3", NULL);
1792 if (!root)
1793 return -ENOMEM;
1794
1795 entry = debugfs_create_file("flashcontrol", S_IRUSR, root, docg3,
1796 &flashcontrol_fops);
1797 if (entry)
1798 entry = debugfs_create_file("asic_mode", S_IRUSR, root,
1799 docg3, &asic_mode_fops);
1800 if (entry)
1801 entry = debugfs_create_file("device_id", S_IRUSR, root,
1802 docg3, &device_id_fops);
1803 if (entry)
1804 entry = debugfs_create_file("protection", S_IRUSR, root,
1805 docg3, &protection_fops);
1806 if (entry) {
1807 docg3->debugfs_root = root;
1808 return 0;
1809 } else {
1810 debugfs_remove_recursive(root);
1811 return -ENOMEM;
1812 }
1813}
1814
1815static void __exit doc_dbg_unregister(struct docg3 *docg3)
1816{
1817 debugfs_remove_recursive(docg3->debugfs_root);
1818}
1819
1820/**
1821 * doc_set_driver_info - Fill the mtd_info structure and docg3 structure
1822 * @chip_id: The chip ID of the supported chip
1823 * @mtd: The structure to fill
1824 */
1825static void __init doc_set_driver_info(int chip_id, struct mtd_info *mtd)
1826{
1827 struct docg3 *docg3 = mtd->priv;
1828 int cfg;
1829
1830 cfg = doc_register_readb(docg3, DOC_CONFIGURATION);
1831 docg3->if_cfg = (cfg & DOC_CONF_IF_CFG ? 1 : 0);
c3de8a8a 1832 docg3->reliable = reliable_mode;
efa2ca73
RJ
1833
1834 switch (chip_id) {
1835 case DOC_CHIPID_G3:
31716a5a 1836 mtd->name = kasprintf(GFP_KERNEL, "docg3.%d",
ae9d4934 1837 docg3->device_id);
efa2ca73
RJ
1838 docg3->max_block = 2047;
1839 break;
1840 }
1841 mtd->type = MTD_NANDFLASH;
7a7fcf14 1842 mtd->flags = MTD_CAP_NANDFLASH;
efa2ca73 1843 mtd->size = (docg3->max_block + 1) * DOC_LAYOUT_BLOCK_SIZE;
c3de8a8a
RJ
1844 if (docg3->reliable == 2)
1845 mtd->size /= 2;
efa2ca73 1846 mtd->erasesize = DOC_LAYOUT_BLOCK_SIZE * DOC_LAYOUT_NBPLANES;
c3de8a8a
RJ
1847 if (docg3->reliable == 2)
1848 mtd->erasesize /= 2;
82c4c58d 1849 mtd->writebufsize = mtd->writesize = DOC_LAYOUT_PAGE_SIZE;
efa2ca73
RJ
1850 mtd->oobsize = DOC_LAYOUT_OOB_SIZE;
1851 mtd->owner = THIS_MODULE;
3c3c10bb
AB
1852 mtd->_erase = doc_erase;
1853 mtd->_read = doc_read;
1854 mtd->_write = doc_write;
1855 mtd->_read_oob = doc_read_oob;
1856 mtd->_write_oob = doc_write_oob;
1857 mtd->_block_isbad = doc_block_isbad;
732b63bd 1858 mtd->ecclayout = &docg3_oobinfo;
6a918bad 1859 mtd->ecc_strength = DOC_ECC_BCH_T;
efa2ca73
RJ
1860}
1861
1862/**
ae9d4934
RJ
1863 * doc_probe_device - Check if a device is available
1864 * @base: the io space where the device is probed
1865 * @floor: the floor of the probed device
1866 * @dev: the device
1b15a5f9 1867 * @cascade: the cascade of chips this devices will belong to
efa2ca73 1868 *
ae9d4934 1869 * Checks whether a device at the specified IO range, and floor is available.
efa2ca73 1870 *
ae9d4934
RJ
1871 * Returns a mtd_info struct if there is a device, ENODEV if none found, ENOMEM
1872 * if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is
1873 * launched.
efa2ca73 1874 */
30053b87 1875static struct mtd_info * __init
1b15a5f9 1876doc_probe_device(struct docg3_cascade *cascade, int floor, struct device *dev)
efa2ca73 1877{
efa2ca73
RJ
1878 int ret, bbt_nbpages;
1879 u16 chip_id, chip_id_inv;
ae9d4934
RJ
1880 struct docg3 *docg3;
1881 struct mtd_info *mtd;
efa2ca73
RJ
1882
1883 ret = -ENOMEM;
1884 docg3 = kzalloc(sizeof(struct docg3), GFP_KERNEL);
1885 if (!docg3)
1886 goto nomem1;
1887 mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL);
1888 if (!mtd)
1889 goto nomem2;
1890 mtd->priv = docg3;
ae9d4934
RJ
1891 bbt_nbpages = DIV_ROUND_UP(docg3->max_block + 1,
1892 8 * DOC_LAYOUT_PAGE_SIZE);
1893 docg3->bbt = kzalloc(bbt_nbpages * DOC_LAYOUT_PAGE_SIZE, GFP_KERNEL);
1894 if (!docg3->bbt)
1895 goto nomem3;
efa2ca73 1896
ae9d4934
RJ
1897 docg3->dev = dev;
1898 docg3->device_id = floor;
1b15a5f9 1899 docg3->cascade = cascade;
efa2ca73 1900 doc_set_device_id(docg3, docg3->device_id);
ae9d4934
RJ
1901 if (!floor)
1902 doc_set_asic_mode(docg3, DOC_ASICMODE_RESET);
efa2ca73
RJ
1903 doc_set_asic_mode(docg3, DOC_ASICMODE_NORMAL);
1904
1905 chip_id = doc_register_readw(docg3, DOC_CHIPID);
1906 chip_id_inv = doc_register_readw(docg3, DOC_CHIPID_INV);
1907
ae9d4934 1908 ret = 0;
efa2ca73 1909 if (chip_id != (u16)(~chip_id_inv)) {
ae9d4934 1910 goto nomem3;
efa2ca73
RJ
1911 }
1912
1913 switch (chip_id) {
1914 case DOC_CHIPID_G3:
ae9d4934 1915 doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n",
1b15a5f9 1916 docg3->cascade->base, floor);
efa2ca73
RJ
1917 break;
1918 default:
1919 doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id);
ae9d4934 1920 goto nomem3;
efa2ca73
RJ
1921 }
1922
1923 doc_set_driver_info(chip_id, mtd);
efa2ca73 1924
fb50b58e 1925 doc_hamming_ecc_init(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ);
efa2ca73 1926 doc_reload_bbt(docg3);
ae9d4934 1927 return mtd;
efa2ca73 1928
ae9d4934 1929nomem3:
efa2ca73
RJ
1930 kfree(mtd);
1931nomem2:
1932 kfree(docg3);
1933nomem1:
ae9d4934
RJ
1934 return ERR_PTR(ret);
1935}
1936
1937/**
1938 * doc_release_device - Release a docg3 floor
1939 * @mtd: the device
1940 */
1941static void doc_release_device(struct mtd_info *mtd)
1942{
1943 struct docg3 *docg3 = mtd->priv;
1944
1945 mtd_device_unregister(mtd);
1946 kfree(docg3->bbt);
1947 kfree(docg3);
1948 kfree(mtd->name);
1949 kfree(mtd);
1950}
1951
e4b2a96a
RJ
1952/**
1953 * docg3_resume - Awakens docg3 floor
1954 * @pdev: platfrom device
1955 *
86d2f6fb 1956 * Returns 0 (always successful)
e4b2a96a
RJ
1957 */
1958static int docg3_resume(struct platform_device *pdev)
1959{
1960 int i;
1b15a5f9 1961 struct docg3_cascade *cascade;
e4b2a96a
RJ
1962 struct mtd_info **docg3_floors, *mtd;
1963 struct docg3 *docg3;
1964
1b15a5f9
RJ
1965 cascade = platform_get_drvdata(pdev);
1966 docg3_floors = cascade->floors;
e4b2a96a
RJ
1967 mtd = docg3_floors[0];
1968 docg3 = mtd->priv;
1969
1970 doc_dbg("docg3_resume()\n");
1971 for (i = 0; i < 12; i++)
1972 doc_readb(docg3, DOC_IOSPACE_IPL);
1973 return 0;
1974}
1975
1976/**
1977 * docg3_suspend - Put in low power mode the docg3 floor
1978 * @pdev: platform device
1979 * @state: power state
1980 *
1981 * Shuts off most of docg3 circuitery to lower power consumption.
1982 *
1983 * Returns 0 if suspend succeeded, -EIO if chip refused suspend
1984 */
1985static int docg3_suspend(struct platform_device *pdev, pm_message_t state)
1986{
1987 int floor, i;
1b15a5f9 1988 struct docg3_cascade *cascade;
e4b2a96a
RJ
1989 struct mtd_info **docg3_floors, *mtd;
1990 struct docg3 *docg3;
1991 u8 ctrl, pwr_down;
1992
1b15a5f9
RJ
1993 cascade = platform_get_drvdata(pdev);
1994 docg3_floors = cascade->floors;
e4b2a96a
RJ
1995 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
1996 mtd = docg3_floors[floor];
1997 if (!mtd)
1998 continue;
1999 docg3 = mtd->priv;
2000
2001 doc_writeb(docg3, floor, DOC_DEVICESELECT);
2002 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
2003 ctrl &= ~DOC_CTRL_VIOLATION & ~DOC_CTRL_CE;
2004 doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
2005
2006 for (i = 0; i < 10; i++) {
2007 usleep_range(3000, 4000);
2008 pwr_down = doc_register_readb(docg3, DOC_POWERMODE);
2009 if (pwr_down & DOC_POWERDOWN_READY)
2010 break;
2011 }
2012 if (pwr_down & DOC_POWERDOWN_READY) {
2013 doc_dbg("docg3_suspend(): floor %d powerdown ok\n",
2014 floor);
2015 } else {
2016 doc_err("docg3_suspend(): floor %d powerdown failed\n",
2017 floor);
2018 return -EIO;
2019 }
2020 }
2021
2022 mtd = docg3_floors[0];
2023 docg3 = mtd->priv;
2024 doc_set_asic_mode(docg3, DOC_ASICMODE_POWERDOWN);
2025 return 0;
2026}
2027
ae9d4934
RJ
2028/**
2029 * doc_probe - Probe the IO space for a DiskOnChip G3 chip
2030 * @pdev: platform device
2031 *
2032 * Probes for a G3 chip at the specified IO space in the platform data
2033 * ressources. The floor 0 must be available.
2034 *
2035 * Returns 0 on success, -ENOMEM, -ENXIO on error
2036 */
2037static int __init docg3_probe(struct platform_device *pdev)
2038{
2039 struct device *dev = &pdev->dev;
2040 struct mtd_info *mtd;
2041 struct resource *ress;
2042 void __iomem *base;
2043 int ret, floor, found = 0;
1b15a5f9 2044 struct docg3_cascade *cascade;
ae9d4934
RJ
2045
2046 ret = -ENXIO;
2047 ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2048 if (!ress) {
2049 dev_err(dev, "No I/O memory resource defined\n");
2050 goto noress;
2051 }
2052 base = ioremap(ress->start, DOC_IOSPACE_SIZE);
2053
2054 ret = -ENOMEM;
1b15a5f9
RJ
2055 cascade = kzalloc(sizeof(*cascade) * DOC_MAX_NBFLOORS,
2056 GFP_KERNEL);
2057 if (!cascade)
d13d19ec 2058 goto nomem1;
1b15a5f9 2059 cascade->base = base;
7b0e67f6 2060 mutex_init(&cascade->lock);
1b15a5f9 2061 cascade->bch = init_bch(DOC_ECC_BCH_M, DOC_ECC_BCH_T,
d13d19ec 2062 DOC_ECC_BCH_PRIMPOLY);
1b15a5f9 2063 if (!cascade->bch)
d13d19ec 2064 goto nomem2;
ae9d4934 2065
ae9d4934 2066 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
1b15a5f9 2067 mtd = doc_probe_device(cascade, floor, dev);
b49e345e 2068 if (IS_ERR(mtd)) {
ae9d4934 2069 ret = PTR_ERR(mtd);
b49e345e
DC
2070 goto err_probe;
2071 }
2072 if (!mtd) {
2073 if (floor == 0)
2074 goto notfound;
2075 else
2076 continue;
2077 }
1b15a5f9 2078 cascade->floors[floor] = mtd;
b49e345e
DC
2079 ret = mtd_device_parse_register(mtd, part_probes, NULL, NULL,
2080 0);
ae9d4934
RJ
2081 if (ret)
2082 goto err_probe;
b49e345e 2083 found++;
ae9d4934
RJ
2084 }
2085
1b15a5f9 2086 ret = doc_register_sysfs(pdev, cascade);
0f769d3f
RJ
2087 if (ret)
2088 goto err_probe;
ae9d4934
RJ
2089 if (!found)
2090 goto notfound;
2091
1b15a5f9
RJ
2092 platform_set_drvdata(pdev, cascade);
2093 doc_dbg_register(cascade->floors[0]->priv);
ae9d4934
RJ
2094 return 0;
2095
2096notfound:
2097 ret = -ENODEV;
2098 dev_info(dev, "No supported DiskOnChip found\n");
2099err_probe:
1b15a5f9 2100 kfree(cascade->bch);
ae9d4934 2101 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
1b15a5f9
RJ
2102 if (cascade->floors[floor])
2103 doc_release_device(cascade->floors[floor]);
d13d19ec 2104nomem2:
1b15a5f9 2105 kfree(cascade);
d13d19ec 2106nomem1:
ae9d4934
RJ
2107 iounmap(base);
2108noress:
efa2ca73
RJ
2109 return ret;
2110}
2111
2112/**
2113 * docg3_release - Release the driver
2114 * @pdev: the platform device
2115 *
2116 * Returns 0
2117 */
2118static int __exit docg3_release(struct platform_device *pdev)
2119{
1b15a5f9
RJ
2120 struct docg3_cascade *cascade = platform_get_drvdata(pdev);
2121 struct docg3 *docg3 = cascade->floors[0]->priv;
2122 void __iomem *base = cascade->base;
ae9d4934 2123 int floor;
efa2ca73 2124
1b15a5f9 2125 doc_unregister_sysfs(pdev, cascade);
efa2ca73 2126 doc_dbg_unregister(docg3);
ae9d4934 2127 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
1b15a5f9
RJ
2128 if (cascade->floors[floor])
2129 doc_release_device(cascade->floors[floor]);
ae9d4934 2130
1b15a5f9
RJ
2131 free_bch(docg3->cascade->bch);
2132 kfree(cascade);
ae9d4934 2133 iounmap(base);
efa2ca73
RJ
2134 return 0;
2135}
2136
2137static struct platform_driver g3_driver = {
2138 .driver = {
2139 .name = "docg3",
2140 .owner = THIS_MODULE,
2141 },
e4b2a96a
RJ
2142 .suspend = docg3_suspend,
2143 .resume = docg3_resume,
efa2ca73
RJ
2144 .remove = __exit_p(docg3_release),
2145};
2146
725a2277 2147module_platform_driver_probe(g3_driver, docg3_probe);
efa2ca73
RJ
2148
2149MODULE_LICENSE("GPL");
2150MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>");
2151MODULE_DESCRIPTION("MTD driver for DiskOnChip G3");
This page took 0.249895 seconds and 5 git commands to generate.