mtd: nand: add sanity check of ecc strength to nand_scan_tail()
[deliverable/linux.git] / drivers / mtd / devices / docg3.c
CommitLineData
efa2ca73
RJ
1/*
2 * Handles the M-Systems DiskOnChip G3 chip
3 *
4 * Copyright (C) 2011 Robert Jarzmik
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 */
21
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/errno.h>
25#include <linux/platform_device.h>
26#include <linux/string.h>
27#include <linux/slab.h>
28#include <linux/io.h>
29#include <linux/delay.h>
30#include <linux/mtd/mtd.h>
31#include <linux/mtd/partitions.h>
d13d19ec
RJ
32#include <linux/bitmap.h>
33#include <linux/bitrev.h>
34#include <linux/bch.h>
efa2ca73
RJ
35
36#include <linux/debugfs.h>
37#include <linux/seq_file.h>
38
39#define CREATE_TRACE_POINTS
40#include "docg3.h"
41
42/*
43 * This driver handles the DiskOnChip G3 flash memory.
44 *
45 * As no specification is available from M-Systems/Sandisk, this drivers lacks
46 * several functions available on the chip, as :
efa2ca73 47 * - IPL write
efa2ca73
RJ
48 *
49 * The bus data width (8bits versus 16bits) is not handled (if_cfg flag), and
50 * the driver assumes a 16bits data bus.
51 *
52 * DocG3 relies on 2 ECC algorithms, which are handled in hardware :
53 * - a 1 byte Hamming code stored in the OOB for each page
54 * - a 7 bytes BCH code stored in the OOB for each page
d13d19ec 55 * The BCH ECC is :
efa2ca73
RJ
56 * - BCH is in GF(2^14)
57 * - BCH is over data of 520 bytes (512 page + 7 page_info bytes
58 * + 1 hamming byte)
59 * - BCH can correct up to 4 bits (t = 4)
60 * - BCH syndroms are calculated in hardware, and checked in hardware as well
61 *
62 */
63
b604436c 64static unsigned int reliable_mode;
c3de8a8a
RJ
65module_param(reliable_mode, uint, 0);
66MODULE_PARM_DESC(reliable_mode, "Set the docg3 mode (0=normal MLC, 1=fast, "
67 "2=reliable) : MLC normal operations are in normal mode");
68
732b63bd
RJ
69/**
70 * struct docg3_oobinfo - DiskOnChip G3 OOB layout
71 * @eccbytes: 8 bytes are used (1 for Hamming ECC, 7 for BCH ECC)
72 * @eccpos: ecc positions (byte 7 is Hamming ECC, byte 8-14 are BCH ECC)
73 * @oobfree: free pageinfo bytes (byte 0 until byte 6, byte 15
74 * @oobavail: 8 available bytes remaining after ECC toll
75 */
76static struct nand_ecclayout docg3_oobinfo = {
77 .eccbytes = 8,
78 .eccpos = {7, 8, 9, 10, 11, 12, 13, 14},
79 .oobfree = {{0, 7}, {15, 1} },
80 .oobavail = 8,
81};
82
efa2ca73
RJ
83static inline u8 doc_readb(struct docg3 *docg3, u16 reg)
84{
1b15a5f9 85 u8 val = readb(docg3->cascade->base + reg);
efa2ca73
RJ
86
87 trace_docg3_io(0, 8, reg, (int)val);
88 return val;
89}
90
91static inline u16 doc_readw(struct docg3 *docg3, u16 reg)
92{
1b15a5f9 93 u16 val = readw(docg3->cascade->base + reg);
efa2ca73
RJ
94
95 trace_docg3_io(0, 16, reg, (int)val);
96 return val;
97}
98
99static inline void doc_writeb(struct docg3 *docg3, u8 val, u16 reg)
100{
1b15a5f9 101 writeb(val, docg3->cascade->base + reg);
84a93058 102 trace_docg3_io(1, 8, reg, val);
efa2ca73
RJ
103}
104
105static inline void doc_writew(struct docg3 *docg3, u16 val, u16 reg)
106{
1b15a5f9 107 writew(val, docg3->cascade->base + reg);
efa2ca73
RJ
108 trace_docg3_io(1, 16, reg, val);
109}
110
111static inline void doc_flash_command(struct docg3 *docg3, u8 cmd)
112{
113 doc_writeb(docg3, cmd, DOC_FLASHCOMMAND);
114}
115
116static inline void doc_flash_sequence(struct docg3 *docg3, u8 seq)
117{
118 doc_writeb(docg3, seq, DOC_FLASHSEQUENCE);
119}
120
121static inline void doc_flash_address(struct docg3 *docg3, u8 addr)
122{
123 doc_writeb(docg3, addr, DOC_FLASHADDRESS);
124}
125
126static char const *part_probes[] = { "cmdlinepart", "saftlpart", NULL };
127
128static int doc_register_readb(struct docg3 *docg3, int reg)
129{
130 u8 val;
131
132 doc_writew(docg3, reg, DOC_READADDRESS);
133 val = doc_readb(docg3, reg);
134 doc_vdbg("Read register %04x : %02x\n", reg, val);
135 return val;
136}
137
138static int doc_register_readw(struct docg3 *docg3, int reg)
139{
140 u16 val;
141
142 doc_writew(docg3, reg, DOC_READADDRESS);
143 val = doc_readw(docg3, reg);
144 doc_vdbg("Read register %04x : %04x\n", reg, val);
145 return val;
146}
147
148/**
149 * doc_delay - delay docg3 operations
150 * @docg3: the device
151 * @nbNOPs: the number of NOPs to issue
152 *
153 * As no specification is available, the right timings between chip commands are
154 * unknown. The only available piece of information are the observed nops on a
155 * working docg3 chip.
156 * Therefore, doc_delay relies on a busy loop of NOPs, instead of scheduler
157 * friendlier msleep() functions or blocking mdelay().
158 */
159static void doc_delay(struct docg3 *docg3, int nbNOPs)
160{
161 int i;
162
ac48e800 163 doc_vdbg("NOP x %d\n", nbNOPs);
efa2ca73
RJ
164 for (i = 0; i < nbNOPs; i++)
165 doc_writeb(docg3, 0, DOC_NOP);
166}
167
168static int is_prot_seq_error(struct docg3 *docg3)
169{
170 int ctrl;
171
172 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
173 return ctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR);
174}
175
176static int doc_is_ready(struct docg3 *docg3)
177{
178 int ctrl;
179
180 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
181 return ctrl & DOC_CTRL_FLASHREADY;
182}
183
184static int doc_wait_ready(struct docg3 *docg3)
185{
186 int maxWaitCycles = 100;
187
188 do {
189 doc_delay(docg3, 4);
190 cpu_relax();
191 } while (!doc_is_ready(docg3) && maxWaitCycles--);
192 doc_delay(docg3, 2);
193 if (maxWaitCycles > 0)
194 return 0;
195 else
196 return -EIO;
197}
198
199static int doc_reset_seq(struct docg3 *docg3)
200{
201 int ret;
202
203 doc_writeb(docg3, 0x10, DOC_FLASHCONTROL);
204 doc_flash_sequence(docg3, DOC_SEQ_RESET);
205 doc_flash_command(docg3, DOC_CMD_RESET);
206 doc_delay(docg3, 2);
207 ret = doc_wait_ready(docg3);
208
209 doc_dbg("doc_reset_seq() -> isReady=%s\n", ret ? "false" : "true");
210 return ret;
211}
212
213/**
214 * doc_read_data_area - Read data from data area
215 * @docg3: the device
32a50b3a
RJ
216 * @buf: the buffer to fill in (might be NULL is dummy reads)
217 * @len: the length to read
efa2ca73
RJ
218 * @first: first time read, DOC_READADDRESS should be set
219 *
220 * Reads bytes from flash data. Handles the single byte / even bytes reads.
221 */
222static void doc_read_data_area(struct docg3 *docg3, void *buf, int len,
223 int first)
224{
225 int i, cdr, len4;
226 u16 data16, *dst16;
227 u8 data8, *dst8;
228
229 doc_dbg("doc_read_data_area(buf=%p, len=%d)\n", buf, len);
230 cdr = len & 0x3;
231 len4 = len - cdr;
232
233 if (first)
234 doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
235 dst16 = buf;
236 for (i = 0; i < len4; i += 2) {
237 data16 = doc_readw(docg3, DOC_IOSPACE_DATA);
32a50b3a
RJ
238 if (dst16) {
239 *dst16 = data16;
240 dst16++;
241 }
efa2ca73
RJ
242 }
243
244 if (cdr) {
245 doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
246 DOC_READADDRESS);
247 doc_delay(docg3, 1);
248 dst8 = (u8 *)dst16;
249 for (i = 0; i < cdr; i++) {
250 data8 = doc_readb(docg3, DOC_IOSPACE_DATA);
32a50b3a
RJ
251 if (dst8) {
252 *dst8 = data8;
253 dst8++;
254 }
efa2ca73
RJ
255 }
256 }
257}
258
fb50b58e
RJ
259/**
260 * doc_write_data_area - Write data into data area
261 * @docg3: the device
262 * @buf: the buffer to get input bytes from
263 * @len: the length to write
264 *
265 * Writes bytes into flash data. Handles the single byte / even bytes writes.
266 */
267static void doc_write_data_area(struct docg3 *docg3, const void *buf, int len)
268{
269 int i, cdr, len4;
270 u16 *src16;
271 u8 *src8;
272
273 doc_dbg("doc_write_data_area(buf=%p, len=%d)\n", buf, len);
274 cdr = len & 0x3;
275 len4 = len - cdr;
276
277 doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
278 src16 = (u16 *)buf;
279 for (i = 0; i < len4; i += 2) {
280 doc_writew(docg3, *src16, DOC_IOSPACE_DATA);
281 src16++;
282 }
283
284 src8 = (u8 *)src16;
285 for (i = 0; i < cdr; i++) {
286 doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
287 DOC_READADDRESS);
288 doc_writeb(docg3, *src8, DOC_IOSPACE_DATA);
289 src8++;
290 }
291}
292
efa2ca73 293/**
c3de8a8a 294 * doc_set_data_mode - Sets the flash to normal or reliable data mode
efa2ca73
RJ
295 * @docg3: the device
296 *
297 * The reliable data mode is a bit slower than the fast mode, but less errors
298 * occur. Entering the reliable mode cannot be done without entering the fast
299 * mode first.
c3de8a8a
RJ
300 *
301 * In reliable mode, pages 2*n and 2*n+1 are clones. Writing to page 0 of blocks
302 * (4,5) make the hardware write also to page 1 of blocks blocks(4,5). Reading
303 * from page 0 of blocks (4,5) or from page 1 of blocks (4,5) gives the same
304 * result, which is a logical and between bytes from page 0 and page 1 (which is
305 * consistent with the fact that writing to a page is _clearing_ bits of that
306 * page).
efa2ca73
RJ
307 */
308static void doc_set_reliable_mode(struct docg3 *docg3)
309{
c3de8a8a
RJ
310 static char *strmode[] = { "normal", "fast", "reliable", "invalid" };
311
312 doc_dbg("doc_set_reliable_mode(%s)\n", strmode[docg3->reliable]);
313 switch (docg3->reliable) {
314 case 0:
315 break;
316 case 1:
317 doc_flash_sequence(docg3, DOC_SEQ_SET_FASTMODE);
318 doc_flash_command(docg3, DOC_CMD_FAST_MODE);
319 break;
320 case 2:
321 doc_flash_sequence(docg3, DOC_SEQ_SET_RELIABLEMODE);
322 doc_flash_command(docg3, DOC_CMD_FAST_MODE);
323 doc_flash_command(docg3, DOC_CMD_RELIABLE_MODE);
324 break;
325 default:
326 doc_err("doc_set_reliable_mode(): invalid mode\n");
327 break;
328 }
efa2ca73
RJ
329 doc_delay(docg3, 2);
330}
331
332/**
333 * doc_set_asic_mode - Set the ASIC mode
334 * @docg3: the device
335 * @mode: the mode
336 *
337 * The ASIC can work in 3 modes :
338 * - RESET: all registers are zeroed
339 * - NORMAL: receives and handles commands
340 * - POWERDOWN: minimal poweruse, flash parts shut off
341 */
342static void doc_set_asic_mode(struct docg3 *docg3, u8 mode)
343{
344 int i;
345
346 for (i = 0; i < 12; i++)
347 doc_readb(docg3, DOC_IOSPACE_IPL);
348
349 mode |= DOC_ASICMODE_MDWREN;
350 doc_dbg("doc_set_asic_mode(%02x)\n", mode);
351 doc_writeb(docg3, mode, DOC_ASICMODE);
352 doc_writeb(docg3, ~mode, DOC_ASICMODECONFIRM);
353 doc_delay(docg3, 1);
354}
355
356/**
357 * doc_set_device_id - Sets the devices id for cascaded G3 chips
358 * @docg3: the device
359 * @id: the chip to select (amongst 0, 1, 2, 3)
360 *
361 * There can be 4 cascaded G3 chips. This function selects the one which will
362 * should be the active one.
363 */
364static void doc_set_device_id(struct docg3 *docg3, int id)
365{
366 u8 ctrl;
367
368 doc_dbg("doc_set_device_id(%d)\n", id);
369 doc_writeb(docg3, id, DOC_DEVICESELECT);
370 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
371
372 ctrl &= ~DOC_CTRL_VIOLATION;
373 ctrl |= DOC_CTRL_CE;
374 doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
375}
376
377/**
378 * doc_set_extra_page_mode - Change flash page layout
379 * @docg3: the device
380 *
381 * Normally, the flash page is split into the data (512 bytes) and the out of
382 * band data (16 bytes). For each, 4 more bytes can be accessed, where the wear
383 * leveling counters are stored. To access this last area of 4 bytes, a special
384 * mode must be input to the flash ASIC.
385 *
386 * Returns 0 if no error occured, -EIO else.
387 */
388static int doc_set_extra_page_mode(struct docg3 *docg3)
389{
390 int fctrl;
391
392 doc_dbg("doc_set_extra_page_mode()\n");
393 doc_flash_sequence(docg3, DOC_SEQ_PAGE_SIZE_532);
394 doc_flash_command(docg3, DOC_CMD_PAGE_SIZE_532);
395 doc_delay(docg3, 2);
396
397 fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
398 if (fctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR))
399 return -EIO;
400 else
401 return 0;
402}
403
fb50b58e
RJ
404/**
405 * doc_setup_addr_sector - Setup blocks/page/ofs address for one plane
406 * @docg3: the device
407 * @sector: the sector
408 */
409static void doc_setup_addr_sector(struct docg3 *docg3, int sector)
410{
411 doc_delay(docg3, 1);
412 doc_flash_address(docg3, sector & 0xff);
413 doc_flash_address(docg3, (sector >> 8) & 0xff);
414 doc_flash_address(docg3, (sector >> 16) & 0xff);
415 doc_delay(docg3, 1);
416}
417
418/**
419 * doc_setup_writeaddr_sector - Setup blocks/page/ofs address for one plane
420 * @docg3: the device
421 * @sector: the sector
422 * @ofs: the offset in the page, between 0 and (512 + 16 + 512)
423 */
424static void doc_setup_writeaddr_sector(struct docg3 *docg3, int sector, int ofs)
425{
426 ofs = ofs >> 2;
427 doc_delay(docg3, 1);
428 doc_flash_address(docg3, ofs & 0xff);
429 doc_flash_address(docg3, sector & 0xff);
430 doc_flash_address(docg3, (sector >> 8) & 0xff);
431 doc_flash_address(docg3, (sector >> 16) & 0xff);
432 doc_delay(docg3, 1);
433}
434
efa2ca73
RJ
435/**
436 * doc_seek - Set both flash planes to the specified block, page for reading
437 * @docg3: the device
438 * @block0: the first plane block index
439 * @block1: the second plane block index
440 * @page: the page index within the block
441 * @wear: if true, read will occur on the 4 extra bytes of the wear area
442 * @ofs: offset in page to read
443 *
444 * Programs the flash even and odd planes to the specific block and page.
445 * Alternatively, programs the flash to the wear area of the specified page.
446 */
447static int doc_read_seek(struct docg3 *docg3, int block0, int block1, int page,
448 int wear, int ofs)
449{
450 int sector, ret = 0;
451
452 doc_dbg("doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n",
453 block0, block1, page, ofs, wear);
454
455 if (!wear && (ofs < 2 * DOC_LAYOUT_PAGE_SIZE)) {
456 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
457 doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
458 doc_delay(docg3, 2);
459 } else {
460 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
461 doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
462 doc_delay(docg3, 2);
463 }
464
465 doc_set_reliable_mode(docg3);
466 if (wear)
467 ret = doc_set_extra_page_mode(docg3);
468 if (ret)
469 goto out;
470
efa2ca73 471 doc_flash_sequence(docg3, DOC_SEQ_READ);
fb50b58e 472 sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
efa2ca73 473 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
fb50b58e 474 doc_setup_addr_sector(docg3, sector);
efa2ca73
RJ
475
476 sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
477 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
fb50b58e 478 doc_setup_addr_sector(docg3, sector);
efa2ca73 479 doc_delay(docg3, 1);
fb50b58e
RJ
480
481out:
482 return ret;
483}
484
485/**
486 * doc_write_seek - Set both flash planes to the specified block, page for writing
487 * @docg3: the device
488 * @block0: the first plane block index
489 * @block1: the second plane block index
490 * @page: the page index within the block
491 * @ofs: offset in page to write
492 *
493 * Programs the flash even and odd planes to the specific block and page.
494 * Alternatively, programs the flash to the wear area of the specified page.
495 */
496static int doc_write_seek(struct docg3 *docg3, int block0, int block1, int page,
497 int ofs)
498{
499 int ret = 0, sector;
500
501 doc_dbg("doc_write_seek(blocks=(%d,%d), page=%d, ofs=%d)\n",
502 block0, block1, page, ofs);
503
504 doc_set_reliable_mode(docg3);
505
506 if (ofs < 2 * DOC_LAYOUT_PAGE_SIZE) {
507 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
508 doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
509 doc_delay(docg3, 2);
510 } else {
511 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
512 doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
513 doc_delay(docg3, 2);
514 }
515
516 doc_flash_sequence(docg3, DOC_SEQ_PAGE_SETUP);
517 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
518
519 sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
520 doc_setup_writeaddr_sector(docg3, sector, ofs);
521
522 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE3);
efa2ca73 523 doc_delay(docg3, 2);
fb50b58e
RJ
524 ret = doc_wait_ready(docg3);
525 if (ret)
526 goto out;
527
528 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
529 sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
530 doc_setup_writeaddr_sector(docg3, sector, ofs);
531 doc_delay(docg3, 1);
efa2ca73
RJ
532
533out:
534 return ret;
535}
536
fb50b58e 537
efa2ca73
RJ
538/**
539 * doc_read_page_ecc_init - Initialize hardware ECC engine
540 * @docg3: the device
541 * @len: the number of bytes covered by the ECC (BCH covered)
542 *
543 * The function does initialize the hardware ECC engine to compute the Hamming
b604436c 544 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
efa2ca73
RJ
545 *
546 * Return 0 if succeeded, -EIO on error
547 */
548static int doc_read_page_ecc_init(struct docg3 *docg3, int len)
549{
550 doc_writew(docg3, DOC_ECCCONF0_READ_MODE
551 | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
552 | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
553 DOC_ECCCONF0);
554 doc_delay(docg3, 4);
555 doc_register_readb(docg3, DOC_FLASHCONTROL);
556 return doc_wait_ready(docg3);
557}
558
fb50b58e
RJ
559/**
560 * doc_write_page_ecc_init - Initialize hardware BCH ECC engine
561 * @docg3: the device
562 * @len: the number of bytes covered by the ECC (BCH covered)
563 *
564 * The function does initialize the hardware ECC engine to compute the Hamming
b604436c 565 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
fb50b58e
RJ
566 *
567 * Return 0 if succeeded, -EIO on error
568 */
569static int doc_write_page_ecc_init(struct docg3 *docg3, int len)
570{
b604436c 571 doc_writew(docg3, DOC_ECCCONF0_WRITE_MODE
fb50b58e
RJ
572 | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
573 | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
574 DOC_ECCCONF0);
575 doc_delay(docg3, 4);
576 doc_register_readb(docg3, DOC_FLASHCONTROL);
577 return doc_wait_ready(docg3);
578}
579
580/**
581 * doc_ecc_disable - Disable Hamming and BCH ECC hardware calculator
582 * @docg3: the device
583 *
584 * Disables the hardware ECC generator and checker, for unchecked reads (as when
585 * reading OOB only or write status byte).
586 */
587static void doc_ecc_disable(struct docg3 *docg3)
588{
589 doc_writew(docg3, DOC_ECCCONF0_READ_MODE, DOC_ECCCONF0);
590 doc_delay(docg3, 4);
591}
592
593/**
594 * doc_hamming_ecc_init - Initialize hardware Hamming ECC engine
595 * @docg3: the device
596 * @nb_bytes: the number of bytes covered by the ECC (Hamming covered)
597 *
598 * This function programs the ECC hardware to compute the hamming code on the
599 * last provided N bytes to the hardware generator.
600 */
601static void doc_hamming_ecc_init(struct docg3 *docg3, int nb_bytes)
602{
603 u8 ecc_conf1;
604
605 ecc_conf1 = doc_register_readb(docg3, DOC_ECCCONF1);
606 ecc_conf1 &= ~DOC_ECCCONF1_HAMMING_BITS_MASK;
607 ecc_conf1 |= (nb_bytes & DOC_ECCCONF1_HAMMING_BITS_MASK);
608 doc_writeb(docg3, ecc_conf1, DOC_ECCCONF1);
609}
610
d13d19ec 611/**
b604436c 612 * doc_ecc_bch_fix_data - Fix if need be read data from flash
d13d19ec
RJ
613 * @docg3: the device
614 * @buf: the buffer of read data (512 + 7 + 1 bytes)
615 * @hwecc: the hardware calculated ECC.
616 * It's in fact recv_ecc ^ calc_ecc, where recv_ecc was read from OOB
617 * area data, and calc_ecc the ECC calculated by the hardware generator.
618 *
619 * Checks if the received data matches the ECC, and if an error is detected,
620 * tries to fix the bit flips (at most 4) in the buffer buf. As the docg3
621 * understands the (data, ecc, syndroms) in an inverted order in comparison to
622 * the BCH library, the function reverses the order of bits (ie. bit7 and bit0,
623 * bit6 and bit 1, ...) for all ECC data.
624 *
625 * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch
626 * algorithm is used to decode this. However the hw operates on page
627 * data in a bit order that is the reverse of that of the bch alg,
628 * requiring that the bits be reversed on the result. Thanks to Ivan
629 * Djelic for his analysis.
630 *
631 * Returns number of fixed bits (0, 1, 2, 3, 4) or -EBADMSG if too many bit
632 * errors were detected and cannot be fixed.
633 */
634static int doc_ecc_bch_fix_data(struct docg3 *docg3, void *buf, u8 *hwecc)
635{
636 u8 ecc[DOC_ECC_BCH_SIZE];
637 int errorpos[DOC_ECC_BCH_T], i, numerrs;
638
639 for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
640 ecc[i] = bitrev8(hwecc[i]);
1b15a5f9
RJ
641 numerrs = decode_bch(docg3->cascade->bch, NULL,
642 DOC_ECC_BCH_COVERED_BYTES,
d13d19ec
RJ
643 NULL, ecc, NULL, errorpos);
644 BUG_ON(numerrs == -EINVAL);
645 if (numerrs < 0)
646 goto out;
647
648 for (i = 0; i < numerrs; i++)
649 errorpos[i] = (errorpos[i] & ~7) | (7 - (errorpos[i] & 7));
650 for (i = 0; i < numerrs; i++)
651 if (errorpos[i] < DOC_ECC_BCH_COVERED_BYTES*8)
652 /* error is located in data, correct it */
653 change_bit(errorpos[i], buf);
654out:
655 doc_dbg("doc_ecc_bch_fix_data: flipped %d bits\n", numerrs);
656 return numerrs;
657}
658
659
efa2ca73
RJ
660/**
661 * doc_read_page_prepare - Prepares reading data from a flash page
662 * @docg3: the device
663 * @block0: the first plane block index on flash memory
664 * @block1: the second plane block index on flash memory
665 * @page: the page index in the block
666 * @offset: the offset in the page (must be a multiple of 4)
667 *
668 * Prepares the page to be read in the flash memory :
669 * - tell ASIC to map the flash pages
670 * - tell ASIC to be in read mode
671 *
672 * After a call to this method, a call to doc_read_page_finish is mandatory,
673 * to end the read cycle of the flash.
674 *
675 * Read data from a flash page. The length to be read must be between 0 and
676 * (page_size + oob_size + wear_size), ie. 532, and a multiple of 4 (because
677 * the extra bytes reading is not implemented).
678 *
679 * As pages are grouped by 2 (in 2 planes), reading from a page must be done
680 * in two steps:
681 * - one read of 512 bytes at offset 0
682 * - one read of 512 bytes at offset 512 + 16
683 *
684 * Returns 0 if successful, -EIO if a read error occured.
685 */
686static int doc_read_page_prepare(struct docg3 *docg3, int block0, int block1,
687 int page, int offset)
688{
689 int wear_area = 0, ret = 0;
690
691 doc_dbg("doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n",
692 block0, block1, page, offset);
693 if (offset >= DOC_LAYOUT_WEAR_OFFSET)
694 wear_area = 1;
695 if (!wear_area && offset > (DOC_LAYOUT_PAGE_OOB_SIZE * 2))
696 return -EINVAL;
697
698 doc_set_device_id(docg3, docg3->device_id);
699 ret = doc_reset_seq(docg3);
700 if (ret)
701 goto err;
702
703 /* Program the flash address block and page */
704 ret = doc_read_seek(docg3, block0, block1, page, wear_area, offset);
705 if (ret)
706 goto err;
707
708 doc_flash_command(docg3, DOC_CMD_READ_ALL_PLANES);
709 doc_delay(docg3, 2);
710 doc_wait_ready(docg3);
711
712 doc_flash_command(docg3, DOC_CMD_SET_ADDR_READ);
713 doc_delay(docg3, 1);
714 if (offset >= DOC_LAYOUT_PAGE_SIZE * 2)
715 offset -= 2 * DOC_LAYOUT_PAGE_SIZE;
716 doc_flash_address(docg3, offset >> 2);
717 doc_delay(docg3, 1);
718 doc_wait_ready(docg3);
719
720 doc_flash_command(docg3, DOC_CMD_READ_FLASH);
721
722 return 0;
723err:
724 doc_writeb(docg3, 0, DOC_DATAEND);
725 doc_delay(docg3, 2);
726 return -EIO;
727}
728
729/**
730 * doc_read_page_getbytes - Reads bytes from a prepared page
731 * @docg3: the device
732 * @len: the number of bytes to be read (must be a multiple of 4)
d107bc34 733 * @buf: the buffer to be filled in (or NULL is forget bytes)
efa2ca73
RJ
734 * @first: 1 if first time read, DOC_READADDRESS should be set
735 *
736 */
737static int doc_read_page_getbytes(struct docg3 *docg3, int len, u_char *buf,
738 int first)
739{
740 doc_read_data_area(docg3, buf, len, first);
741 doc_delay(docg3, 2);
742 return len;
743}
744
fb50b58e
RJ
745/**
746 * doc_write_page_putbytes - Writes bytes into a prepared page
747 * @docg3: the device
748 * @len: the number of bytes to be written
749 * @buf: the buffer of input bytes
750 *
751 */
752static void doc_write_page_putbytes(struct docg3 *docg3, int len,
753 const u_char *buf)
754{
755 doc_write_data_area(docg3, buf, len);
756 doc_delay(docg3, 2);
757}
758
efa2ca73 759/**
b604436c 760 * doc_get_bch_hw_ecc - Get hardware calculated BCH ECC
efa2ca73 761 * @docg3: the device
b604436c 762 * @hwecc: the array of 7 integers where the hardware ecc will be stored
efa2ca73 763 */
b604436c 764static void doc_get_bch_hw_ecc(struct docg3 *docg3, u8 *hwecc)
efa2ca73
RJ
765{
766 int i;
767
768 for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
b604436c 769 hwecc[i] = doc_register_readb(docg3, DOC_BCH_HW_ECC(i));
efa2ca73
RJ
770}
771
fb50b58e
RJ
772/**
773 * doc_page_finish - Ends reading/writing of a flash page
774 * @docg3: the device
775 */
776static void doc_page_finish(struct docg3 *docg3)
777{
778 doc_writeb(docg3, 0, DOC_DATAEND);
779 doc_delay(docg3, 2);
780}
781
efa2ca73
RJ
782/**
783 * doc_read_page_finish - Ends reading of a flash page
784 * @docg3: the device
785 *
786 * As a side effect, resets the chip selector to 0. This ensures that after each
787 * read operation, the floor 0 is selected. Therefore, if the systems halts, the
788 * reboot will boot on floor 0, where the IPL is.
789 */
790static void doc_read_page_finish(struct docg3 *docg3)
791{
fb50b58e 792 doc_page_finish(docg3);
efa2ca73
RJ
793 doc_set_device_id(docg3, 0);
794}
795
796/**
797 * calc_block_sector - Calculate blocks, pages and ofs.
798
799 * @from: offset in flash
800 * @block0: first plane block index calculated
801 * @block1: second plane block index calculated
802 * @page: page calculated
803 * @ofs: offset in page
c3de8a8a
RJ
804 * @reliable: 0 if docg3 in normal mode, 1 if docg3 in fast mode, 2 if docg3 in
805 * reliable mode.
806 *
807 * The calculation is based on the reliable/normal mode. In normal mode, the 64
808 * pages of a block are available. In reliable mode, as pages 2*n and 2*n+1 are
809 * clones, only 32 pages per block are available.
efa2ca73
RJ
810 */
811static void calc_block_sector(loff_t from, int *block0, int *block1, int *page,
c3de8a8a 812 int *ofs, int reliable)
efa2ca73 813{
c3de8a8a
RJ
814 uint sector, pages_biblock;
815
816 pages_biblock = DOC_LAYOUT_PAGES_PER_BLOCK * DOC_LAYOUT_NBPLANES;
817 if (reliable == 1 || reliable == 2)
818 pages_biblock /= 2;
efa2ca73
RJ
819
820 sector = from / DOC_LAYOUT_PAGE_SIZE;
c3de8a8a 821 *block0 = sector / pages_biblock * DOC_LAYOUT_NBPLANES;
efa2ca73 822 *block1 = *block0 + 1;
c3de8a8a 823 *page = sector % pages_biblock;
efa2ca73 824 *page /= DOC_LAYOUT_NBPLANES;
c3de8a8a
RJ
825 if (reliable == 1 || reliable == 2)
826 *page *= 2;
efa2ca73
RJ
827 if (sector % 2)
828 *ofs = DOC_LAYOUT_PAGE_OOB_SIZE;
829 else
830 *ofs = 0;
831}
832
833/**
32a50b3a 834 * doc_read_oob - Read out of band bytes from flash
efa2ca73
RJ
835 * @mtd: the device
836 * @from: the offset from first block and first page, in bytes, aligned on page
837 * size
32a50b3a 838 * @ops: the mtd oob structure
efa2ca73 839 *
32a50b3a 840 * Reads flash memory OOB area of pages.
efa2ca73
RJ
841 *
842 * Returns 0 if read successfull, of -EIO, -EINVAL if an error occured
843 */
32a50b3a
RJ
844static int doc_read_oob(struct mtd_info *mtd, loff_t from,
845 struct mtd_oob_ops *ops)
efa2ca73
RJ
846{
847 struct docg3 *docg3 = mtd->priv;
d107bc34 848 int block0, block1, page, ret, skip, ofs = 0;
32a50b3a
RJ
849 u8 *oobbuf = ops->oobbuf;
850 u8 *buf = ops->datbuf;
851 size_t len, ooblen, nbdata, nboob;
d13d19ec 852 u8 hwecc[DOC_ECC_BCH_SIZE], eccconf1;
32a50b3a
RJ
853
854 if (buf)
855 len = ops->len;
856 else
857 len = 0;
858 if (oobbuf)
859 ooblen = ops->ooblen;
860 else
861 ooblen = 0;
862
863 if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
864 oobbuf += ops->ooboffs;
865
866 doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
867 from, ops->mode, buf, len, oobbuf, ooblen);
d107bc34 868 if (ooblen % DOC_LAYOUT_OOB_SIZE)
32a50b3a 869 return -EINVAL;
efa2ca73 870
a7baef12
RJ
871 if (from + len > mtd->size)
872 return -EINVAL;
efa2ca73 873
32a50b3a
RJ
874 ops->oobretlen = 0;
875 ops->retlen = 0;
efa2ca73 876 ret = 0;
d107bc34 877 skip = from % DOC_LAYOUT_PAGE_SIZE;
7b0e67f6 878 mutex_lock(&docg3->cascade->lock);
32a50b3a 879 while (!ret && (len > 0 || ooblen > 0)) {
d107bc34 880 calc_block_sector(from - skip, &block0, &block1, &page, &ofs,
c3de8a8a 881 docg3->reliable);
d107bc34 882 nbdata = min_t(size_t, len, DOC_LAYOUT_PAGE_SIZE - skip);
32a50b3a 883 nboob = min_t(size_t, ooblen, (size_t)DOC_LAYOUT_OOB_SIZE);
efa2ca73
RJ
884 ret = doc_read_page_prepare(docg3, block0, block1, page, ofs);
885 if (ret < 0)
7b0e67f6 886 goto out;
d13d19ec 887 ret = doc_read_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
efa2ca73
RJ
888 if (ret < 0)
889 goto err_in_read;
d107bc34
RJ
890 ret = doc_read_page_getbytes(docg3, skip, NULL, 1);
891 if (ret < skip)
892 goto err_in_read;
893 ret = doc_read_page_getbytes(docg3, nbdata, buf, 0);
32a50b3a 894 if (ret < nbdata)
efa2ca73 895 goto err_in_read;
d107bc34
RJ
896 doc_read_page_getbytes(docg3,
897 DOC_LAYOUT_PAGE_SIZE - nbdata - skip,
32a50b3a
RJ
898 NULL, 0);
899 ret = doc_read_page_getbytes(docg3, nboob, oobbuf, 0);
900 if (ret < nboob)
efa2ca73 901 goto err_in_read;
32a50b3a
RJ
902 doc_read_page_getbytes(docg3, DOC_LAYOUT_OOB_SIZE - nboob,
903 NULL, 0);
efa2ca73 904
b604436c 905 doc_get_bch_hw_ecc(docg3, hwecc);
efa2ca73
RJ
906 eccconf1 = doc_register_readb(docg3, DOC_ECCCONF1);
907
32a50b3a
RJ
908 if (nboob >= DOC_LAYOUT_OOB_SIZE) {
909 doc_dbg("OOB - INFO: %02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
910 oobbuf[0], oobbuf[1], oobbuf[2], oobbuf[3],
911 oobbuf[4], oobbuf[5], oobbuf[6]);
912 doc_dbg("OOB - HAMMING: %02x\n", oobbuf[7]);
913 doc_dbg("OOB - BCH_ECC: %02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
914 oobbuf[8], oobbuf[9], oobbuf[10], oobbuf[11],
915 oobbuf[12], oobbuf[13], oobbuf[14]);
916 doc_dbg("OOB - UNUSED: %02x\n", oobbuf[15]);
917 }
efa2ca73 918 doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1);
d13d19ec
RJ
919 doc_dbg("ECC HW_ECC: %02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
920 hwecc[0], hwecc[1], hwecc[2], hwecc[3], hwecc[4],
921 hwecc[5], hwecc[6]);
922
923 ret = -EIO;
924 if (is_prot_seq_error(docg3))
925 goto err_in_read;
926 ret = 0;
927 if ((block0 >= DOC_LAYOUT_BLOCK_FIRST_DATA) &&
928 (eccconf1 & DOC_ECCCONF1_BCH_SYNDROM_ERR) &&
929 (eccconf1 & DOC_ECCCONF1_PAGE_IS_WRITTEN) &&
930 (ops->mode != MTD_OPS_RAW) &&
931 (nbdata == DOC_LAYOUT_PAGE_SIZE)) {
932 ret = doc_ecc_bch_fix_data(docg3, buf, hwecc);
933 if (ret < 0) {
934 mtd->ecc_stats.failed++;
935 ret = -EBADMSG;
936 }
937 if (ret > 0) {
938 mtd->ecc_stats.corrected += ret;
939 ret = -EUCLEAN;
940 }
efa2ca73 941 }
32a50b3a 942
efa2ca73 943 doc_read_page_finish(docg3);
32a50b3a
RJ
944 ops->retlen += nbdata;
945 ops->oobretlen += nboob;
946 buf += nbdata;
947 oobbuf += nboob;
948 len -= nbdata;
949 ooblen -= nboob;
950 from += DOC_LAYOUT_PAGE_SIZE;
d107bc34 951 skip = 0;
efa2ca73
RJ
952 }
953
7b0e67f6
RJ
954out:
955 mutex_unlock(&docg3->cascade->lock);
d13d19ec 956 return ret;
efa2ca73
RJ
957err_in_read:
958 doc_read_page_finish(docg3);
7b0e67f6 959 goto out;
efa2ca73
RJ
960}
961
962/**
32a50b3a 963 * doc_read - Read bytes from flash
efa2ca73
RJ
964 * @mtd: the device
965 * @from: the offset from first block and first page, in bytes, aligned on page
966 * size
32a50b3a
RJ
967 * @len: the number of bytes to read (must be a multiple of 4)
968 * @retlen: the number of bytes actually read
969 * @buf: the filled in buffer
efa2ca73 970 *
32a50b3a
RJ
971 * Reads flash memory pages. This function does not read the OOB chunk, but only
972 * the page data.
efa2ca73
RJ
973 *
974 * Returns 0 if read successfull, of -EIO, -EINVAL if an error occured
975 */
32a50b3a
RJ
976static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
977 size_t *retlen, u_char *buf)
efa2ca73 978{
32a50b3a
RJ
979 struct mtd_oob_ops ops;
980 size_t ret;
efa2ca73 981
32a50b3a
RJ
982 memset(&ops, 0, sizeof(ops));
983 ops.datbuf = buf;
984 ops.len = len;
985 ops.mode = MTD_OPS_AUTO_OOB;
efa2ca73 986
32a50b3a
RJ
987 ret = doc_read_oob(mtd, from, &ops);
988 *retlen = ops.retlen;
989 return ret;
efa2ca73
RJ
990}
991
992static int doc_reload_bbt(struct docg3 *docg3)
993{
994 int block = DOC_LAYOUT_BLOCK_BBT;
995 int ret = 0, nbpages, page;
996 u_char *buf = docg3->bbt;
997
998 nbpages = DIV_ROUND_UP(docg3->max_block + 1, 8 * DOC_LAYOUT_PAGE_SIZE);
999 for (page = 0; !ret && (page < nbpages); page++) {
1000 ret = doc_read_page_prepare(docg3, block, block + 1,
1001 page + DOC_LAYOUT_PAGE_BBT, 0);
1002 if (!ret)
1003 ret = doc_read_page_ecc_init(docg3,
1004 DOC_LAYOUT_PAGE_SIZE);
1005 if (!ret)
1006 doc_read_page_getbytes(docg3, DOC_LAYOUT_PAGE_SIZE,
1007 buf, 1);
1008 buf += DOC_LAYOUT_PAGE_SIZE;
1009 }
1010 doc_read_page_finish(docg3);
1011 return ret;
1012}
1013
1014/**
1015 * doc_block_isbad - Checks whether a block is good or not
1016 * @mtd: the device
1017 * @from: the offset to find the correct block
1018 *
1019 * Returns 1 if block is bad, 0 if block is good
1020 */
1021static int doc_block_isbad(struct mtd_info *mtd, loff_t from)
1022{
1023 struct docg3 *docg3 = mtd->priv;
1024 int block0, block1, page, ofs, is_good;
1025
c3de8a8a
RJ
1026 calc_block_sector(from, &block0, &block1, &page, &ofs,
1027 docg3->reliable);
efa2ca73
RJ
1028 doc_dbg("doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n",
1029 from, block0, block1, page, ofs);
1030
1031 if (block0 < DOC_LAYOUT_BLOCK_FIRST_DATA)
1032 return 0;
1033 if (block1 > docg3->max_block)
1034 return -EINVAL;
1035
1036 is_good = docg3->bbt[block0 >> 3] & (1 << (block0 & 0x7));
1037 return !is_good;
1038}
1039
e10019bc 1040#if 0
efa2ca73
RJ
1041/**
1042 * doc_get_erase_count - Get block erase count
1043 * @docg3: the device
1044 * @from: the offset in which the block is.
1045 *
1046 * Get the number of times a block was erased. The number is the maximum of
1047 * erase times between first and second plane (which should be equal normally).
1048 *
1049 * Returns The number of erases, or -EINVAL or -EIO on error.
1050 */
1051static int doc_get_erase_count(struct docg3 *docg3, loff_t from)
1052{
1053 u8 buf[DOC_LAYOUT_WEAR_SIZE];
1054 int ret, plane1_erase_count, plane2_erase_count;
1055 int block0, block1, page, ofs;
1056
1057 doc_dbg("doc_get_erase_count(from=%lld, buf=%p)\n", from, buf);
1058 if (from % DOC_LAYOUT_PAGE_SIZE)
1059 return -EINVAL;
c3de8a8a 1060 calc_block_sector(from, &block0, &block1, &page, &ofs, docg3->reliable);
efa2ca73
RJ
1061 if (block1 > docg3->max_block)
1062 return -EINVAL;
1063
1064 ret = doc_reset_seq(docg3);
1065 if (!ret)
1066 ret = doc_read_page_prepare(docg3, block0, block1, page,
1067 ofs + DOC_LAYOUT_WEAR_OFFSET);
1068 if (!ret)
1069 ret = doc_read_page_getbytes(docg3, DOC_LAYOUT_WEAR_SIZE,
1070 buf, 1);
1071 doc_read_page_finish(docg3);
1072
1073 if (ret || (buf[0] != DOC_ERASE_MARK) || (buf[2] != DOC_ERASE_MARK))
1074 return -EIO;
1075 plane1_erase_count = (u8)(~buf[1]) | ((u8)(~buf[4]) << 8)
1076 | ((u8)(~buf[5]) << 16);
1077 plane2_erase_count = (u8)(~buf[3]) | ((u8)(~buf[6]) << 8)
1078 | ((u8)(~buf[7]) << 16);
1079
1080 return max(plane1_erase_count, plane2_erase_count);
1081}
e10019bc 1082#endif
efa2ca73 1083
fb50b58e
RJ
1084/**
1085 * doc_get_op_status - get erase/write operation status
1086 * @docg3: the device
1087 *
1088 * Queries the status from the chip, and returns it
1089 *
1090 * Returns the status (bits DOC_PLANES_STATUS_*)
1091 */
1092static int doc_get_op_status(struct docg3 *docg3)
1093{
1094 u8 status;
1095
1096 doc_flash_sequence(docg3, DOC_SEQ_PLANES_STATUS);
1097 doc_flash_command(docg3, DOC_CMD_PLANES_STATUS);
1098 doc_delay(docg3, 5);
1099
1100 doc_ecc_disable(docg3);
1101 doc_read_data_area(docg3, &status, 1, 1);
1102 return status;
1103}
1104
1105/**
1106 * doc_write_erase_wait_status - wait for write or erase completion
1107 * @docg3: the device
1108 *
1109 * Wait for the chip to be ready again after erase or write operation, and check
1110 * erase/write status.
1111 *
1112 * Returns 0 if erase successfull, -EIO if erase/write issue, -ETIMEOUT if
1113 * timeout
1114 */
1115static int doc_write_erase_wait_status(struct docg3 *docg3)
1116{
a2b3d284 1117 int i, status, ret = 0;
fb50b58e 1118
a2b3d284
RJ
1119 for (i = 0; !doc_is_ready(docg3) && i < 5; i++)
1120 msleep(20);
fb50b58e
RJ
1121 if (!doc_is_ready(docg3)) {
1122 doc_dbg("Timeout reached and the chip is still not ready\n");
1123 ret = -EAGAIN;
1124 goto out;
1125 }
1126
1127 status = doc_get_op_status(docg3);
1128 if (status & DOC_PLANES_STATUS_FAIL) {
1129 doc_dbg("Erase/Write failed on (a) plane(s), status = %x\n",
1130 status);
1131 ret = -EIO;
1132 }
1133
1134out:
1135 doc_page_finish(docg3);
1136 return ret;
1137}
1138
de03cd71
RJ
1139/**
1140 * doc_erase_block - Erase a couple of blocks
1141 * @docg3: the device
1142 * @block0: the first block to erase (leftmost plane)
1143 * @block1: the second block to erase (rightmost plane)
1144 *
1145 * Erase both blocks, and return operation status
1146 *
1147 * Returns 0 if erase successful, -EIO if erase issue, -ETIMEOUT if chip not
1148 * ready for too long
1149 */
1150static int doc_erase_block(struct docg3 *docg3, int block0, int block1)
1151{
1152 int ret, sector;
1153
1154 doc_dbg("doc_erase_block(blocks=(%d,%d))\n", block0, block1);
1155 ret = doc_reset_seq(docg3);
1156 if (ret)
1157 return -EIO;
1158
1159 doc_set_reliable_mode(docg3);
1160 doc_flash_sequence(docg3, DOC_SEQ_ERASE);
1161
1162 sector = block0 << DOC_ADDR_BLOCK_SHIFT;
1163 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1164 doc_setup_addr_sector(docg3, sector);
1165 sector = block1 << DOC_ADDR_BLOCK_SHIFT;
1166 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1167 doc_setup_addr_sector(docg3, sector);
1168 doc_delay(docg3, 1);
1169
1170 doc_flash_command(docg3, DOC_CMD_ERASECYCLE2);
1171 doc_delay(docg3, 2);
1172
1173 if (is_prot_seq_error(docg3)) {
1174 doc_err("Erase blocks %d,%d error\n", block0, block1);
1175 return -EIO;
1176 }
1177
1178 return doc_write_erase_wait_status(docg3);
1179}
1180
1181/**
1182 * doc_erase - Erase a portion of the chip
1183 * @mtd: the device
1184 * @info: the erase info
1185 *
1186 * Erase a bunch of contiguous blocks, by pairs, as a "mtd" page of 1024 is
1187 * split into 2 pages of 512 bytes on 2 contiguous blocks.
1188 *
1189 * Returns 0 if erase successful, -EINVAL if adressing error, -EIO if erase
1190 * issue
1191 */
1192static int doc_erase(struct mtd_info *mtd, struct erase_info *info)
1193{
1194 struct docg3 *docg3 = mtd->priv;
1195 uint64_t len;
1196 int block0, block1, page, ret, ofs = 0;
1197
1198 doc_dbg("doc_erase(from=%lld, len=%lld\n", info->addr, info->len);
de03cd71
RJ
1199
1200 info->state = MTD_ERASE_PENDING;
c3de8a8a
RJ
1201 calc_block_sector(info->addr + info->len, &block0, &block1, &page,
1202 &ofs, docg3->reliable);
de03cd71 1203 ret = -EINVAL;
a7baef12 1204 if (info->addr + info->len > mtd->size || page || ofs)
de03cd71
RJ
1205 goto reset_err;
1206
1207 ret = 0;
c3de8a8a
RJ
1208 calc_block_sector(info->addr, &block0, &block1, &page, &ofs,
1209 docg3->reliable);
7b0e67f6
RJ
1210 mutex_lock(&docg3->cascade->lock);
1211 doc_set_device_id(docg3, docg3->device_id);
de03cd71
RJ
1212 doc_set_reliable_mode(docg3);
1213 for (len = info->len; !ret && len > 0; len -= mtd->erasesize) {
1214 info->state = MTD_ERASING;
1215 ret = doc_erase_block(docg3, block0, block1);
1216 block0 += 2;
1217 block1 += 2;
1218 }
7b0e67f6 1219 mutex_unlock(&docg3->cascade->lock);
de03cd71
RJ
1220
1221 if (ret)
1222 goto reset_err;
1223
1224 info->state = MTD_ERASE_DONE;
1225 return 0;
1226
1227reset_err:
1228 info->state = MTD_ERASE_FAILED;
1229 return ret;
1230}
1231
fb50b58e
RJ
1232/**
1233 * doc_write_page - Write a single page to the chip
1234 * @docg3: the device
1235 * @to: the offset from first block and first page, in bytes, aligned on page
1236 * size
1237 * @buf: buffer to get bytes from
1238 * @oob: buffer to get out of band bytes from (can be NULL if no OOB should be
1239 * written)
1240 * @autoecc: if 0, all 16 bytes from OOB are taken, regardless of HW Hamming or
1241 * BCH computations. If 1, only bytes 0-7 and byte 15 are taken,
1242 * remaining ones are filled with hardware Hamming and BCH
1243 * computations. Its value is not meaningfull is oob == NULL.
1244 *
1245 * Write one full page (ie. 1 page split on two planes), of 512 bytes, with the
1246 * OOB data. The OOB ECC is automatically computed by the hardware Hamming and
1247 * BCH generator if autoecc is not null.
1248 *
1249 * Returns 0 if write successful, -EIO if write error, -EAGAIN if timeout
1250 */
1251static int doc_write_page(struct docg3 *docg3, loff_t to, const u_char *buf,
1252 const u_char *oob, int autoecc)
1253{
1254 int block0, block1, page, ret, ofs = 0;
b604436c 1255 u8 hwecc[DOC_ECC_BCH_SIZE], hamming;
fb50b58e
RJ
1256
1257 doc_dbg("doc_write_page(to=%lld)\n", to);
c3de8a8a 1258 calc_block_sector(to, &block0, &block1, &page, &ofs, docg3->reliable);
fb50b58e
RJ
1259
1260 doc_set_device_id(docg3, docg3->device_id);
1261 ret = doc_reset_seq(docg3);
1262 if (ret)
1263 goto err;
1264
1265 /* Program the flash address block and page */
1266 ret = doc_write_seek(docg3, block0, block1, page, ofs);
1267 if (ret)
1268 goto err;
1269
d13d19ec 1270 doc_write_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
fb50b58e
RJ
1271 doc_delay(docg3, 2);
1272 doc_write_page_putbytes(docg3, DOC_LAYOUT_PAGE_SIZE, buf);
1273
1274 if (oob && autoecc) {
1275 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ, oob);
1276 doc_delay(docg3, 2);
1277 oob += DOC_LAYOUT_OOB_UNUSED_OFS;
1278
1279 hamming = doc_register_readb(docg3, DOC_HAMMINGPARITY);
1280 doc_delay(docg3, 2);
1281 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_HAMMING_SZ,
1282 &hamming);
1283 doc_delay(docg3, 2);
1284
b604436c
RJ
1285 doc_get_bch_hw_ecc(docg3, hwecc);
1286 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_BCH_SZ, hwecc);
fb50b58e
RJ
1287 doc_delay(docg3, 2);
1288
1289 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_UNUSED_SZ, oob);
1290 }
1291 if (oob && !autoecc)
1292 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_SIZE, oob);
1293
1294 doc_delay(docg3, 2);
1295 doc_page_finish(docg3);
1296 doc_delay(docg3, 2);
1297 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE2);
1298 doc_delay(docg3, 2);
1299
1300 /*
1301 * The wait status will perform another doc_page_finish() call, but that
1302 * seems to please the docg3, so leave it.
1303 */
1304 ret = doc_write_erase_wait_status(docg3);
1305 return ret;
1306err:
1307 doc_read_page_finish(docg3);
1308 return ret;
1309}
1310
1311/**
1312 * doc_guess_autoecc - Guess autoecc mode from mbd_oob_ops
1313 * @ops: the oob operations
1314 *
1315 * Returns 0 or 1 if success, -EINVAL if invalid oob mode
1316 */
1317static int doc_guess_autoecc(struct mtd_oob_ops *ops)
1318{
1319 int autoecc;
1320
1321 switch (ops->mode) {
1322 case MTD_OPS_PLACE_OOB:
1323 case MTD_OPS_AUTO_OOB:
1324 autoecc = 1;
1325 break;
1326 case MTD_OPS_RAW:
1327 autoecc = 0;
1328 break;
1329 default:
1330 autoecc = -EINVAL;
1331 }
1332 return autoecc;
1333}
1334
1335/**
1336 * doc_fill_autooob - Fill a 16 bytes OOB from 8 non-ECC bytes
1337 * @dst: the target 16 bytes OOB buffer
1338 * @oobsrc: the source 8 bytes non-ECC OOB buffer
1339 *
1340 */
1341static void doc_fill_autooob(u8 *dst, u8 *oobsrc)
1342{
1343 memcpy(dst, oobsrc, DOC_LAYOUT_OOB_PAGEINFO_SZ);
1344 dst[DOC_LAYOUT_OOB_UNUSED_OFS] = oobsrc[DOC_LAYOUT_OOB_PAGEINFO_SZ];
1345}
1346
1347/**
1348 * doc_backup_oob - Backup OOB into docg3 structure
1349 * @docg3: the device
1350 * @to: the page offset in the chip
1351 * @ops: the OOB size and buffer
1352 *
1353 * As the docg3 should write a page with its OOB in one pass, and some userland
1354 * applications do write_oob() to setup the OOB and then write(), store the OOB
1355 * into a temporary storage. This is very dangerous, as 2 concurrent
1356 * applications could store an OOB, and then write their pages (which will
1357 * result into one having its OOB corrupted).
1358 *
1359 * The only reliable way would be for userland to call doc_write_oob() with both
1360 * the page data _and_ the OOB area.
1361 *
1362 * Returns 0 if success, -EINVAL if ops content invalid
1363 */
1364static int doc_backup_oob(struct docg3 *docg3, loff_t to,
1365 struct mtd_oob_ops *ops)
1366{
1367 int ooblen = ops->ooblen, autoecc;
1368
1369 if (ooblen != DOC_LAYOUT_OOB_SIZE)
1370 return -EINVAL;
1371 autoecc = doc_guess_autoecc(ops);
1372 if (autoecc < 0)
1373 return autoecc;
1374
1375 docg3->oob_write_ofs = to;
1376 docg3->oob_autoecc = autoecc;
1377 if (ops->mode == MTD_OPS_AUTO_OOB) {
1378 doc_fill_autooob(docg3->oob_write_buf, ops->oobbuf);
1379 ops->oobretlen = 8;
1380 } else {
1381 memcpy(docg3->oob_write_buf, ops->oobbuf, DOC_LAYOUT_OOB_SIZE);
1382 ops->oobretlen = DOC_LAYOUT_OOB_SIZE;
1383 }
1384 return 0;
1385}
1386
1387/**
1388 * doc_write_oob - Write out of band bytes to flash
1389 * @mtd: the device
1390 * @ofs: the offset from first block and first page, in bytes, aligned on page
1391 * size
1392 * @ops: the mtd oob structure
1393 *
1394 * Either write OOB data into a temporary buffer, for the subsequent write
1395 * page. The provided OOB should be 16 bytes long. If a data buffer is provided
1396 * as well, issue the page write.
1397 * Or provide data without OOB, and then a all zeroed OOB will be used (ECC will
1398 * still be filled in if asked for).
1399 *
1400 * Returns 0 is successfull, EINVAL if length is not 14 bytes
1401 */
1402static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
1403 struct mtd_oob_ops *ops)
1404{
1405 struct docg3 *docg3 = mtd->priv;
7b0e67f6 1406 int ret, autoecc, oobdelta;
fb50b58e
RJ
1407 u8 *oobbuf = ops->oobbuf;
1408 u8 *buf = ops->datbuf;
1409 size_t len, ooblen;
1410 u8 oob[DOC_LAYOUT_OOB_SIZE];
1411
1412 if (buf)
1413 len = ops->len;
1414 else
1415 len = 0;
1416 if (oobbuf)
1417 ooblen = ops->ooblen;
1418 else
1419 ooblen = 0;
1420
1421 if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
1422 oobbuf += ops->ooboffs;
1423
1424 doc_dbg("doc_write_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
1425 ofs, ops->mode, buf, len, oobbuf, ooblen);
1426 switch (ops->mode) {
1427 case MTD_OPS_PLACE_OOB:
1428 case MTD_OPS_RAW:
1429 oobdelta = mtd->oobsize;
1430 break;
1431 case MTD_OPS_AUTO_OOB:
1432 oobdelta = mtd->ecclayout->oobavail;
1433 break;
1434 default:
1435 oobdelta = 0;
1436 }
1437 if ((len % DOC_LAYOUT_PAGE_SIZE) || (ooblen % oobdelta) ||
1438 (ofs % DOC_LAYOUT_PAGE_SIZE))
1439 return -EINVAL;
1440 if (len && ooblen &&
1441 (len / DOC_LAYOUT_PAGE_SIZE) != (ooblen / oobdelta))
1442 return -EINVAL;
a7baef12
RJ
1443 if (ofs + len > mtd->size)
1444 return -EINVAL;
fb50b58e
RJ
1445
1446 ops->oobretlen = 0;
1447 ops->retlen = 0;
1448 ret = 0;
1449 if (len == 0 && ooblen == 0)
1450 return -EINVAL;
1451 if (len == 0 && ooblen > 0)
1452 return doc_backup_oob(docg3, ofs, ops);
1453
1454 autoecc = doc_guess_autoecc(ops);
1455 if (autoecc < 0)
1456 return autoecc;
1457
7b0e67f6 1458 mutex_lock(&docg3->cascade->lock);
fb50b58e
RJ
1459 while (!ret && len > 0) {
1460 memset(oob, 0, sizeof(oob));
1461 if (ofs == docg3->oob_write_ofs)
1462 memcpy(oob, docg3->oob_write_buf, DOC_LAYOUT_OOB_SIZE);
1463 else if (ooblen > 0 && ops->mode == MTD_OPS_AUTO_OOB)
1464 doc_fill_autooob(oob, oobbuf);
1465 else if (ooblen > 0)
1466 memcpy(oob, oobbuf, DOC_LAYOUT_OOB_SIZE);
1467 ret = doc_write_page(docg3, ofs, buf, oob, autoecc);
1468
1469 ofs += DOC_LAYOUT_PAGE_SIZE;
1470 len -= DOC_LAYOUT_PAGE_SIZE;
1471 buf += DOC_LAYOUT_PAGE_SIZE;
1472 if (ooblen) {
1473 oobbuf += oobdelta;
1474 ooblen -= oobdelta;
1475 ops->oobretlen += oobdelta;
1476 }
1477 ops->retlen += DOC_LAYOUT_PAGE_SIZE;
1478 }
7b0e67f6 1479
fb50b58e 1480 doc_set_device_id(docg3, 0);
7b0e67f6 1481 mutex_unlock(&docg3->cascade->lock);
fb50b58e
RJ
1482 return ret;
1483}
1484
1485/**
1486 * doc_write - Write a buffer to the chip
1487 * @mtd: the device
1488 * @to: the offset from first block and first page, in bytes, aligned on page
1489 * size
1490 * @len: the number of bytes to write (must be a full page size, ie. 512)
1491 * @retlen: the number of bytes actually written (0 or 512)
1492 * @buf: the buffer to get bytes from
1493 *
1494 * Writes data to the chip.
1495 *
1496 * Returns 0 if write successful, -EIO if write error
1497 */
1498static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
1499 size_t *retlen, const u_char *buf)
1500{
1501 struct docg3 *docg3 = mtd->priv;
1502 int ret;
1503 struct mtd_oob_ops ops;
1504
1505 doc_dbg("doc_write(to=%lld, len=%zu)\n", to, len);
1506 ops.datbuf = (char *)buf;
1507 ops.len = len;
1508 ops.mode = MTD_OPS_PLACE_OOB;
1509 ops.oobbuf = NULL;
1510 ops.ooblen = 0;
1511 ops.ooboffs = 0;
1512
1513 ret = doc_write_oob(mtd, to, &ops);
1514 *retlen = ops.retlen;
1515 return ret;
1516}
1517
0f769d3f
RJ
1518static struct docg3 *sysfs_dev2docg3(struct device *dev,
1519 struct device_attribute *attr)
1520{
1521 int floor;
1522 struct platform_device *pdev = to_platform_device(dev);
1523 struct mtd_info **docg3_floors = platform_get_drvdata(pdev);
1524
1525 floor = attr->attr.name[1] - '0';
1526 if (floor < 0 || floor >= DOC_MAX_NBFLOORS)
1527 return NULL;
1528 else
1529 return docg3_floors[floor]->priv;
1530}
1531
1532static ssize_t dps0_is_key_locked(struct device *dev,
1533 struct device_attribute *attr, char *buf)
1534{
1535 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1536 int dps0;
1537
7b0e67f6 1538 mutex_lock(&docg3->cascade->lock);
0f769d3f
RJ
1539 doc_set_device_id(docg3, docg3->device_id);
1540 dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1541 doc_set_device_id(docg3, 0);
7b0e67f6 1542 mutex_unlock(&docg3->cascade->lock);
0f769d3f
RJ
1543
1544 return sprintf(buf, "%d\n", !(dps0 & DOC_DPS_KEY_OK));
1545}
1546
1547static ssize_t dps1_is_key_locked(struct device *dev,
1548 struct device_attribute *attr, char *buf)
1549{
1550 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1551 int dps1;
1552
7b0e67f6 1553 mutex_lock(&docg3->cascade->lock);
0f769d3f
RJ
1554 doc_set_device_id(docg3, docg3->device_id);
1555 dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1556 doc_set_device_id(docg3, 0);
7b0e67f6 1557 mutex_unlock(&docg3->cascade->lock);
0f769d3f
RJ
1558
1559 return sprintf(buf, "%d\n", !(dps1 & DOC_DPS_KEY_OK));
1560}
1561
1562static ssize_t dps0_insert_key(struct device *dev,
1563 struct device_attribute *attr,
1564 const char *buf, size_t count)
1565{
1566 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1567 int i;
1568
1569 if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1570 return -EINVAL;
1571
7b0e67f6 1572 mutex_lock(&docg3->cascade->lock);
0f769d3f
RJ
1573 doc_set_device_id(docg3, docg3->device_id);
1574 for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1575 doc_writeb(docg3, buf[i], DOC_DPS0_KEY);
1576 doc_set_device_id(docg3, 0);
7b0e67f6 1577 mutex_unlock(&docg3->cascade->lock);
0f769d3f
RJ
1578 return count;
1579}
1580
1581static ssize_t dps1_insert_key(struct device *dev,
1582 struct device_attribute *attr,
1583 const char *buf, size_t count)
1584{
1585 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1586 int i;
1587
1588 if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1589 return -EINVAL;
1590
7b0e67f6 1591 mutex_lock(&docg3->cascade->lock);
0f769d3f
RJ
1592 doc_set_device_id(docg3, docg3->device_id);
1593 for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1594 doc_writeb(docg3, buf[i], DOC_DPS1_KEY);
1595 doc_set_device_id(docg3, 0);
7b0e67f6 1596 mutex_unlock(&docg3->cascade->lock);
0f769d3f
RJ
1597 return count;
1598}
1599
1600#define FLOOR_SYSFS(id) { \
1601 __ATTR(f##id##_dps0_is_keylocked, S_IRUGO, dps0_is_key_locked, NULL), \
1602 __ATTR(f##id##_dps1_is_keylocked, S_IRUGO, dps1_is_key_locked, NULL), \
1603 __ATTR(f##id##_dps0_protection_key, S_IWUGO, NULL, dps0_insert_key), \
1604 __ATTR(f##id##_dps1_protection_key, S_IWUGO, NULL, dps1_insert_key), \
1605}
1606
1607static struct device_attribute doc_sys_attrs[DOC_MAX_NBFLOORS][4] = {
1608 FLOOR_SYSFS(0), FLOOR_SYSFS(1), FLOOR_SYSFS(2), FLOOR_SYSFS(3)
1609};
1610
1611static int doc_register_sysfs(struct platform_device *pdev,
1b15a5f9 1612 struct docg3_cascade *cascade)
0f769d3f
RJ
1613{
1614 int ret = 0, floor, i = 0;
1615 struct device *dev = &pdev->dev;
1616
1b15a5f9
RJ
1617 for (floor = 0; !ret && floor < DOC_MAX_NBFLOORS &&
1618 cascade->floors[floor]; floor++)
0f769d3f
RJ
1619 for (i = 0; !ret && i < 4; i++)
1620 ret = device_create_file(dev, &doc_sys_attrs[floor][i]);
1621 if (!ret)
1622 return 0;
1623 do {
1624 while (--i >= 0)
1625 device_remove_file(dev, &doc_sys_attrs[floor][i]);
1626 i = 4;
1627 } while (--floor >= 0);
1628 return ret;
1629}
1630
1631static void doc_unregister_sysfs(struct platform_device *pdev,
1b15a5f9 1632 struct docg3_cascade *cascade)
0f769d3f
RJ
1633{
1634 struct device *dev = &pdev->dev;
1635 int floor, i;
1636
1b15a5f9 1637 for (floor = 0; floor < DOC_MAX_NBFLOORS && cascade->floors[floor];
0f769d3f
RJ
1638 floor++)
1639 for (i = 0; i < 4; i++)
1640 device_remove_file(dev, &doc_sys_attrs[floor][i]);
1641}
1642
efa2ca73
RJ
1643/*
1644 * Debug sysfs entries
1645 */
1646static int dbg_flashctrl_show(struct seq_file *s, void *p)
1647{
1648 struct docg3 *docg3 = (struct docg3 *)s->private;
1649
1650 int pos = 0;
7b0e67f6
RJ
1651 u8 fctrl;
1652
1653 mutex_lock(&docg3->cascade->lock);
1654 fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
1655 mutex_unlock(&docg3->cascade->lock);
efa2ca73
RJ
1656
1657 pos += seq_printf(s,
1658 "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n",
1659 fctrl,
1660 fctrl & DOC_CTRL_VIOLATION ? "protocol violation" : "-",
1661 fctrl & DOC_CTRL_CE ? "active" : "inactive",
1662 fctrl & DOC_CTRL_PROTECTION_ERROR ? "protection error" : "-",
1663 fctrl & DOC_CTRL_SEQUENCE_ERROR ? "sequence error" : "-",
1664 fctrl & DOC_CTRL_FLASHREADY ? "ready" : "not ready");
1665 return pos;
1666}
1667DEBUGFS_RO_ATTR(flashcontrol, dbg_flashctrl_show);
1668
1669static int dbg_asicmode_show(struct seq_file *s, void *p)
1670{
1671 struct docg3 *docg3 = (struct docg3 *)s->private;
1672
7b0e67f6
RJ
1673 int pos = 0, pctrl, mode;
1674
1675 mutex_lock(&docg3->cascade->lock);
1676 pctrl = doc_register_readb(docg3, DOC_ASICMODE);
1677 mode = pctrl & 0x03;
1678 mutex_unlock(&docg3->cascade->lock);
efa2ca73
RJ
1679
1680 pos += seq_printf(s,
1681 "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (",
1682 pctrl,
1683 pctrl & DOC_ASICMODE_RAM_WE ? 1 : 0,
1684 pctrl & DOC_ASICMODE_RSTIN_RESET ? 1 : 0,
1685 pctrl & DOC_ASICMODE_BDETCT_RESET ? 1 : 0,
1686 pctrl & DOC_ASICMODE_MDWREN ? 1 : 0,
1687 pctrl & DOC_ASICMODE_POWERDOWN ? 1 : 0,
1688 mode >> 1, mode & 0x1);
1689
1690 switch (mode) {
1691 case DOC_ASICMODE_RESET:
1692 pos += seq_printf(s, "reset");
1693 break;
1694 case DOC_ASICMODE_NORMAL:
1695 pos += seq_printf(s, "normal");
1696 break;
1697 case DOC_ASICMODE_POWERDOWN:
1698 pos += seq_printf(s, "powerdown");
1699 break;
1700 }
1701 pos += seq_printf(s, ")\n");
1702 return pos;
1703}
1704DEBUGFS_RO_ATTR(asic_mode, dbg_asicmode_show);
1705
1706static int dbg_device_id_show(struct seq_file *s, void *p)
1707{
1708 struct docg3 *docg3 = (struct docg3 *)s->private;
1709 int pos = 0;
7b0e67f6
RJ
1710 int id;
1711
1712 mutex_lock(&docg3->cascade->lock);
1713 id = doc_register_readb(docg3, DOC_DEVICESELECT);
1714 mutex_unlock(&docg3->cascade->lock);
efa2ca73
RJ
1715
1716 pos += seq_printf(s, "DeviceId = %d\n", id);
1717 return pos;
1718}
1719DEBUGFS_RO_ATTR(device_id, dbg_device_id_show);
1720
1721static int dbg_protection_show(struct seq_file *s, void *p)
1722{
1723 struct docg3 *docg3 = (struct docg3 *)s->private;
1724 int pos = 0;
dbc26d98
RJ
1725 int protect, dps0, dps0_low, dps0_high, dps1, dps1_low, dps1_high;
1726
7b0e67f6 1727 mutex_lock(&docg3->cascade->lock);
dbc26d98
RJ
1728 protect = doc_register_readb(docg3, DOC_PROTECTION);
1729 dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1730 dps0_low = doc_register_readw(docg3, DOC_DPS0_ADDRLOW);
1731 dps0_high = doc_register_readw(docg3, DOC_DPS0_ADDRHIGH);
1732 dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1733 dps1_low = doc_register_readw(docg3, DOC_DPS1_ADDRLOW);
1734 dps1_high = doc_register_readw(docg3, DOC_DPS1_ADDRHIGH);
7b0e67f6 1735 mutex_unlock(&docg3->cascade->lock);
efa2ca73
RJ
1736
1737 pos += seq_printf(s, "Protection = 0x%02x (",
1738 protect);
1739 if (protect & DOC_PROTECT_FOUNDRY_OTP_LOCK)
1740 pos += seq_printf(s, "FOUNDRY_OTP_LOCK,");
1741 if (protect & DOC_PROTECT_CUSTOMER_OTP_LOCK)
1742 pos += seq_printf(s, "CUSTOMER_OTP_LOCK,");
1743 if (protect & DOC_PROTECT_LOCK_INPUT)
1744 pos += seq_printf(s, "LOCK_INPUT,");
1745 if (protect & DOC_PROTECT_STICKY_LOCK)
1746 pos += seq_printf(s, "STICKY_LOCK,");
1747 if (protect & DOC_PROTECT_PROTECTION_ENABLED)
1748 pos += seq_printf(s, "PROTECTION ON,");
1749 if (protect & DOC_PROTECT_IPL_DOWNLOAD_LOCK)
1750 pos += seq_printf(s, "IPL_DOWNLOAD_LOCK,");
1751 if (protect & DOC_PROTECT_PROTECTION_ERROR)
1752 pos += seq_printf(s, "PROTECT_ERR,");
1753 else
1754 pos += seq_printf(s, "NO_PROTECT_ERR");
1755 pos += seq_printf(s, ")\n");
1756
1757 pos += seq_printf(s, "DPS0 = 0x%02x : "
1758 "Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, "
1759 "WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1760 dps0, dps0_low, dps0_high,
1761 !!(dps0 & DOC_DPS_OTP_PROTECTED),
1762 !!(dps0 & DOC_DPS_READ_PROTECTED),
1763 !!(dps0 & DOC_DPS_WRITE_PROTECTED),
1764 !!(dps0 & DOC_DPS_HW_LOCK_ENABLED),
1765 !!(dps0 & DOC_DPS_KEY_OK));
1766 pos += seq_printf(s, "DPS1 = 0x%02x : "
1767 "Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, "
1768 "WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1769 dps1, dps1_low, dps1_high,
1770 !!(dps1 & DOC_DPS_OTP_PROTECTED),
1771 !!(dps1 & DOC_DPS_READ_PROTECTED),
1772 !!(dps1 & DOC_DPS_WRITE_PROTECTED),
1773 !!(dps1 & DOC_DPS_HW_LOCK_ENABLED),
1774 !!(dps1 & DOC_DPS_KEY_OK));
1775 return pos;
1776}
1777DEBUGFS_RO_ATTR(protection, dbg_protection_show);
1778
1779static int __init doc_dbg_register(struct docg3 *docg3)
1780{
1781 struct dentry *root, *entry;
1782
1783 root = debugfs_create_dir("docg3", NULL);
1784 if (!root)
1785 return -ENOMEM;
1786
1787 entry = debugfs_create_file("flashcontrol", S_IRUSR, root, docg3,
1788 &flashcontrol_fops);
1789 if (entry)
1790 entry = debugfs_create_file("asic_mode", S_IRUSR, root,
1791 docg3, &asic_mode_fops);
1792 if (entry)
1793 entry = debugfs_create_file("device_id", S_IRUSR, root,
1794 docg3, &device_id_fops);
1795 if (entry)
1796 entry = debugfs_create_file("protection", S_IRUSR, root,
1797 docg3, &protection_fops);
1798 if (entry) {
1799 docg3->debugfs_root = root;
1800 return 0;
1801 } else {
1802 debugfs_remove_recursive(root);
1803 return -ENOMEM;
1804 }
1805}
1806
1807static void __exit doc_dbg_unregister(struct docg3 *docg3)
1808{
1809 debugfs_remove_recursive(docg3->debugfs_root);
1810}
1811
1812/**
1813 * doc_set_driver_info - Fill the mtd_info structure and docg3 structure
1814 * @chip_id: The chip ID of the supported chip
1815 * @mtd: The structure to fill
1816 */
1817static void __init doc_set_driver_info(int chip_id, struct mtd_info *mtd)
1818{
1819 struct docg3 *docg3 = mtd->priv;
1820 int cfg;
1821
1822 cfg = doc_register_readb(docg3, DOC_CONFIGURATION);
1823 docg3->if_cfg = (cfg & DOC_CONF_IF_CFG ? 1 : 0);
c3de8a8a 1824 docg3->reliable = reliable_mode;
efa2ca73
RJ
1825
1826 switch (chip_id) {
1827 case DOC_CHIPID_G3:
31716a5a 1828 mtd->name = kasprintf(GFP_KERNEL, "docg3.%d",
ae9d4934 1829 docg3->device_id);
efa2ca73
RJ
1830 docg3->max_block = 2047;
1831 break;
1832 }
1833 mtd->type = MTD_NANDFLASH;
7a7fcf14 1834 mtd->flags = MTD_CAP_NANDFLASH;
efa2ca73 1835 mtd->size = (docg3->max_block + 1) * DOC_LAYOUT_BLOCK_SIZE;
c3de8a8a
RJ
1836 if (docg3->reliable == 2)
1837 mtd->size /= 2;
efa2ca73 1838 mtd->erasesize = DOC_LAYOUT_BLOCK_SIZE * DOC_LAYOUT_NBPLANES;
c3de8a8a
RJ
1839 if (docg3->reliable == 2)
1840 mtd->erasesize /= 2;
82c4c58d 1841 mtd->writebufsize = mtd->writesize = DOC_LAYOUT_PAGE_SIZE;
efa2ca73
RJ
1842 mtd->oobsize = DOC_LAYOUT_OOB_SIZE;
1843 mtd->owner = THIS_MODULE;
3c3c10bb
AB
1844 mtd->_erase = doc_erase;
1845 mtd->_read = doc_read;
1846 mtd->_write = doc_write;
1847 mtd->_read_oob = doc_read_oob;
1848 mtd->_write_oob = doc_write_oob;
1849 mtd->_block_isbad = doc_block_isbad;
732b63bd 1850 mtd->ecclayout = &docg3_oobinfo;
6a918bad 1851 mtd->ecc_strength = DOC_ECC_BCH_T;
efa2ca73
RJ
1852}
1853
1854/**
ae9d4934
RJ
1855 * doc_probe_device - Check if a device is available
1856 * @base: the io space where the device is probed
1857 * @floor: the floor of the probed device
1858 * @dev: the device
1b15a5f9 1859 * @cascade: the cascade of chips this devices will belong to
efa2ca73 1860 *
ae9d4934 1861 * Checks whether a device at the specified IO range, and floor is available.
efa2ca73 1862 *
ae9d4934
RJ
1863 * Returns a mtd_info struct if there is a device, ENODEV if none found, ENOMEM
1864 * if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is
1865 * launched.
efa2ca73 1866 */
30053b87 1867static struct mtd_info * __init
1b15a5f9 1868doc_probe_device(struct docg3_cascade *cascade, int floor, struct device *dev)
efa2ca73 1869{
efa2ca73
RJ
1870 int ret, bbt_nbpages;
1871 u16 chip_id, chip_id_inv;
ae9d4934
RJ
1872 struct docg3 *docg3;
1873 struct mtd_info *mtd;
efa2ca73
RJ
1874
1875 ret = -ENOMEM;
1876 docg3 = kzalloc(sizeof(struct docg3), GFP_KERNEL);
1877 if (!docg3)
1878 goto nomem1;
1879 mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL);
1880 if (!mtd)
1881 goto nomem2;
1882 mtd->priv = docg3;
ae9d4934
RJ
1883 bbt_nbpages = DIV_ROUND_UP(docg3->max_block + 1,
1884 8 * DOC_LAYOUT_PAGE_SIZE);
1885 docg3->bbt = kzalloc(bbt_nbpages * DOC_LAYOUT_PAGE_SIZE, GFP_KERNEL);
1886 if (!docg3->bbt)
1887 goto nomem3;
efa2ca73 1888
ae9d4934
RJ
1889 docg3->dev = dev;
1890 docg3->device_id = floor;
1b15a5f9 1891 docg3->cascade = cascade;
efa2ca73 1892 doc_set_device_id(docg3, docg3->device_id);
ae9d4934
RJ
1893 if (!floor)
1894 doc_set_asic_mode(docg3, DOC_ASICMODE_RESET);
efa2ca73
RJ
1895 doc_set_asic_mode(docg3, DOC_ASICMODE_NORMAL);
1896
1897 chip_id = doc_register_readw(docg3, DOC_CHIPID);
1898 chip_id_inv = doc_register_readw(docg3, DOC_CHIPID_INV);
1899
ae9d4934 1900 ret = 0;
efa2ca73 1901 if (chip_id != (u16)(~chip_id_inv)) {
ae9d4934 1902 goto nomem3;
efa2ca73
RJ
1903 }
1904
1905 switch (chip_id) {
1906 case DOC_CHIPID_G3:
ae9d4934 1907 doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n",
1b15a5f9 1908 docg3->cascade->base, floor);
efa2ca73
RJ
1909 break;
1910 default:
1911 doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id);
ae9d4934 1912 goto nomem3;
efa2ca73
RJ
1913 }
1914
1915 doc_set_driver_info(chip_id, mtd);
efa2ca73 1916
fb50b58e 1917 doc_hamming_ecc_init(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ);
efa2ca73 1918 doc_reload_bbt(docg3);
ae9d4934 1919 return mtd;
efa2ca73 1920
ae9d4934 1921nomem3:
efa2ca73
RJ
1922 kfree(mtd);
1923nomem2:
1924 kfree(docg3);
1925nomem1:
ae9d4934
RJ
1926 return ERR_PTR(ret);
1927}
1928
1929/**
1930 * doc_release_device - Release a docg3 floor
1931 * @mtd: the device
1932 */
1933static void doc_release_device(struct mtd_info *mtd)
1934{
1935 struct docg3 *docg3 = mtd->priv;
1936
1937 mtd_device_unregister(mtd);
1938 kfree(docg3->bbt);
1939 kfree(docg3);
1940 kfree(mtd->name);
1941 kfree(mtd);
1942}
1943
e4b2a96a
RJ
1944/**
1945 * docg3_resume - Awakens docg3 floor
1946 * @pdev: platfrom device
1947 *
1948 * Returns 0 (always successfull)
1949 */
1950static int docg3_resume(struct platform_device *pdev)
1951{
1952 int i;
1b15a5f9 1953 struct docg3_cascade *cascade;
e4b2a96a
RJ
1954 struct mtd_info **docg3_floors, *mtd;
1955 struct docg3 *docg3;
1956
1b15a5f9
RJ
1957 cascade = platform_get_drvdata(pdev);
1958 docg3_floors = cascade->floors;
e4b2a96a
RJ
1959 mtd = docg3_floors[0];
1960 docg3 = mtd->priv;
1961
1962 doc_dbg("docg3_resume()\n");
1963 for (i = 0; i < 12; i++)
1964 doc_readb(docg3, DOC_IOSPACE_IPL);
1965 return 0;
1966}
1967
1968/**
1969 * docg3_suspend - Put in low power mode the docg3 floor
1970 * @pdev: platform device
1971 * @state: power state
1972 *
1973 * Shuts off most of docg3 circuitery to lower power consumption.
1974 *
1975 * Returns 0 if suspend succeeded, -EIO if chip refused suspend
1976 */
1977static int docg3_suspend(struct platform_device *pdev, pm_message_t state)
1978{
1979 int floor, i;
1b15a5f9 1980 struct docg3_cascade *cascade;
e4b2a96a
RJ
1981 struct mtd_info **docg3_floors, *mtd;
1982 struct docg3 *docg3;
1983 u8 ctrl, pwr_down;
1984
1b15a5f9
RJ
1985 cascade = platform_get_drvdata(pdev);
1986 docg3_floors = cascade->floors;
e4b2a96a
RJ
1987 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
1988 mtd = docg3_floors[floor];
1989 if (!mtd)
1990 continue;
1991 docg3 = mtd->priv;
1992
1993 doc_writeb(docg3, floor, DOC_DEVICESELECT);
1994 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
1995 ctrl &= ~DOC_CTRL_VIOLATION & ~DOC_CTRL_CE;
1996 doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
1997
1998 for (i = 0; i < 10; i++) {
1999 usleep_range(3000, 4000);
2000 pwr_down = doc_register_readb(docg3, DOC_POWERMODE);
2001 if (pwr_down & DOC_POWERDOWN_READY)
2002 break;
2003 }
2004 if (pwr_down & DOC_POWERDOWN_READY) {
2005 doc_dbg("docg3_suspend(): floor %d powerdown ok\n",
2006 floor);
2007 } else {
2008 doc_err("docg3_suspend(): floor %d powerdown failed\n",
2009 floor);
2010 return -EIO;
2011 }
2012 }
2013
2014 mtd = docg3_floors[0];
2015 docg3 = mtd->priv;
2016 doc_set_asic_mode(docg3, DOC_ASICMODE_POWERDOWN);
2017 return 0;
2018}
2019
ae9d4934
RJ
2020/**
2021 * doc_probe - Probe the IO space for a DiskOnChip G3 chip
2022 * @pdev: platform device
2023 *
2024 * Probes for a G3 chip at the specified IO space in the platform data
2025 * ressources. The floor 0 must be available.
2026 *
2027 * Returns 0 on success, -ENOMEM, -ENXIO on error
2028 */
2029static int __init docg3_probe(struct platform_device *pdev)
2030{
2031 struct device *dev = &pdev->dev;
2032 struct mtd_info *mtd;
2033 struct resource *ress;
2034 void __iomem *base;
2035 int ret, floor, found = 0;
1b15a5f9 2036 struct docg3_cascade *cascade;
ae9d4934
RJ
2037
2038 ret = -ENXIO;
2039 ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2040 if (!ress) {
2041 dev_err(dev, "No I/O memory resource defined\n");
2042 goto noress;
2043 }
2044 base = ioremap(ress->start, DOC_IOSPACE_SIZE);
2045
2046 ret = -ENOMEM;
1b15a5f9
RJ
2047 cascade = kzalloc(sizeof(*cascade) * DOC_MAX_NBFLOORS,
2048 GFP_KERNEL);
2049 if (!cascade)
d13d19ec 2050 goto nomem1;
1b15a5f9 2051 cascade->base = base;
7b0e67f6 2052 mutex_init(&cascade->lock);
1b15a5f9 2053 cascade->bch = init_bch(DOC_ECC_BCH_M, DOC_ECC_BCH_T,
d13d19ec 2054 DOC_ECC_BCH_PRIMPOLY);
1b15a5f9 2055 if (!cascade->bch)
d13d19ec 2056 goto nomem2;
ae9d4934 2057
ae9d4934 2058 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
1b15a5f9 2059 mtd = doc_probe_device(cascade, floor, dev);
b49e345e 2060 if (IS_ERR(mtd)) {
ae9d4934 2061 ret = PTR_ERR(mtd);
b49e345e
DC
2062 goto err_probe;
2063 }
2064 if (!mtd) {
2065 if (floor == 0)
2066 goto notfound;
2067 else
2068 continue;
2069 }
1b15a5f9 2070 cascade->floors[floor] = mtd;
b49e345e
DC
2071 ret = mtd_device_parse_register(mtd, part_probes, NULL, NULL,
2072 0);
ae9d4934
RJ
2073 if (ret)
2074 goto err_probe;
b49e345e 2075 found++;
ae9d4934
RJ
2076 }
2077
1b15a5f9 2078 ret = doc_register_sysfs(pdev, cascade);
0f769d3f
RJ
2079 if (ret)
2080 goto err_probe;
ae9d4934
RJ
2081 if (!found)
2082 goto notfound;
2083
1b15a5f9
RJ
2084 platform_set_drvdata(pdev, cascade);
2085 doc_dbg_register(cascade->floors[0]->priv);
ae9d4934
RJ
2086 return 0;
2087
2088notfound:
2089 ret = -ENODEV;
2090 dev_info(dev, "No supported DiskOnChip found\n");
2091err_probe:
1b15a5f9 2092 kfree(cascade->bch);
ae9d4934 2093 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
1b15a5f9
RJ
2094 if (cascade->floors[floor])
2095 doc_release_device(cascade->floors[floor]);
d13d19ec 2096nomem2:
1b15a5f9 2097 kfree(cascade);
d13d19ec 2098nomem1:
ae9d4934
RJ
2099 iounmap(base);
2100noress:
efa2ca73
RJ
2101 return ret;
2102}
2103
2104/**
2105 * docg3_release - Release the driver
2106 * @pdev: the platform device
2107 *
2108 * Returns 0
2109 */
2110static int __exit docg3_release(struct platform_device *pdev)
2111{
1b15a5f9
RJ
2112 struct docg3_cascade *cascade = platform_get_drvdata(pdev);
2113 struct docg3 *docg3 = cascade->floors[0]->priv;
2114 void __iomem *base = cascade->base;
ae9d4934 2115 int floor;
efa2ca73 2116
1b15a5f9 2117 doc_unregister_sysfs(pdev, cascade);
efa2ca73 2118 doc_dbg_unregister(docg3);
ae9d4934 2119 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
1b15a5f9
RJ
2120 if (cascade->floors[floor])
2121 doc_release_device(cascade->floors[floor]);
ae9d4934 2122
1b15a5f9
RJ
2123 free_bch(docg3->cascade->bch);
2124 kfree(cascade);
ae9d4934 2125 iounmap(base);
efa2ca73
RJ
2126 return 0;
2127}
2128
2129static struct platform_driver g3_driver = {
2130 .driver = {
2131 .name = "docg3",
2132 .owner = THIS_MODULE,
2133 },
e4b2a96a
RJ
2134 .suspend = docg3_suspend,
2135 .resume = docg3_resume,
efa2ca73
RJ
2136 .remove = __exit_p(docg3_release),
2137};
2138
2139static int __init docg3_init(void)
2140{
2141 return platform_driver_probe(&g3_driver, docg3_probe);
2142}
2143module_init(docg3_init);
2144
2145
2146static void __exit docg3_exit(void)
2147{
2148 platform_driver_unregister(&g3_driver);
2149}
2150module_exit(docg3_exit);
2151
2152MODULE_LICENSE("GPL");
2153MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>");
2154MODULE_DESCRIPTION("MTD driver for DiskOnChip G3");
This page took 0.152257 seconds and 5 git commands to generate.