Merge branch 'fix/asoc' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[deliverable/linux.git] / drivers / mtd / devices / m25p80.c
CommitLineData
2f9f7628 1/*
fa0a8c71 2 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
2f9f7628
ML
3 *
4 * Author: Mike Lavender, mike@steroidmicros.com
5 *
6 * Copyright (c) 2005, Intec Automation Inc.
7 *
8 * Some parts are based on lart.c by Abraham Van Der Merwe
9 *
10 * Cleaned up and generalized based on mtd_dataflash.c
11 *
12 * This code is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 *
16 */
17
18#include <linux/init.h>
9d2c4f3f
AV
19#include <linux/err.h>
20#include <linux/errno.h>
2f9f7628
ML
21#include <linux/module.h>
22#include <linux/device.h>
23#include <linux/interrupt.h>
7d5230ea 24#include <linux/mutex.h>
d85316ac 25#include <linux/math64.h>
5a0e3ad6 26#include <linux/slab.h>
d43c36dc 27#include <linux/sched.h>
b34bc037 28#include <linux/mod_devicetable.h>
7d5230ea 29
2f9f7628
ML
30#include <linux/mtd/mtd.h>
31#include <linux/mtd/partitions.h>
7d5230ea 32
2f9f7628
ML
33#include <linux/spi/spi.h>
34#include <linux/spi/flash.h>
35
2f9f7628 36/* Flash opcodes. */
fa0a8c71
DB
37#define OPCODE_WREN 0x06 /* Write enable */
38#define OPCODE_RDSR 0x05 /* Read status register */
72289824 39#define OPCODE_WRSR 0x01 /* Write status register 1 byte */
2230b76b 40#define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */
fa0a8c71
DB
41#define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
42#define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
7854643a 43#define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
02d087db 44#define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
7854643a 45#define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */
02d087db 46#define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
2f9f7628
ML
47#define OPCODE_RDID 0x9f /* Read JEDEC ID */
48
49aac4ae
GY
49/* Used for SST flashes only. */
50#define OPCODE_BP 0x02 /* Byte program */
51#define OPCODE_WRDI 0x04 /* Write disable */
52#define OPCODE_AAI_WP 0xad /* Auto address increment word program */
53
4b7f7422
KC
54/* Used for Macronix flashes only. */
55#define OPCODE_EN4B 0xb7 /* Enter 4-byte mode */
56#define OPCODE_EX4B 0xe9 /* Exit 4-byte mode */
57
2f9f7628
ML
58/* Status Register bits. */
59#define SR_WIP 1 /* Write in progress */
60#define SR_WEL 2 /* Write enable latch */
fa0a8c71 61/* meaning of other SR_* bits may differ between vendors */
2f9f7628
ML
62#define SR_BP0 4 /* Block protect 0 */
63#define SR_BP1 8 /* Block protect 1 */
64#define SR_BP2 0x10 /* Block protect 2 */
65#define SR_SRWD 0x80 /* SR write protect */
66
67/* Define max times to check status register before we give up. */
89bb871e 68#define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
4b7f7422 69#define MAX_CMD_SIZE 5
2f9f7628 70
2230b76b
BW
71#ifdef CONFIG_M25PXX_USE_FAST_READ
72#define OPCODE_READ OPCODE_FAST_READ
73#define FAST_READ_DUMMY_BYTE 1
74#else
75#define OPCODE_READ OPCODE_NORM_READ
76#define FAST_READ_DUMMY_BYTE 0
77#endif
2f9f7628 78
2f9f7628
ML
79/****************************************************************************/
80
81struct m25p {
82 struct spi_device *spi;
7d5230ea 83 struct mutex lock;
2f9f7628 84 struct mtd_info mtd;
fa0a8c71 85 unsigned partitioned:1;
837479d2
AV
86 u16 page_size;
87 u16 addr_width;
fa0a8c71 88 u8 erase_opcode;
61c3506c 89 u8 *command;
2f9f7628
ML
90};
91
92static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
93{
94 return container_of(mtd, struct m25p, mtd);
95}
96
97/****************************************************************************/
98
99/*
100 * Internal helper functions
101 */
102
103/*
104 * Read the status register, returning its value in the location
105 * Return the status register value.
106 * Returns negative if error occurred.
107 */
108static int read_sr(struct m25p *flash)
109{
110 ssize_t retval;
111 u8 code = OPCODE_RDSR;
112 u8 val;
113
114 retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);
115
116 if (retval < 0) {
117 dev_err(&flash->spi->dev, "error %d reading SR\n",
118 (int) retval);
119 return retval;
120 }
121
122 return val;
123}
124
72289824
MH
125/*
126 * Write status register 1 byte
127 * Returns negative if error occurred.
128 */
129static int write_sr(struct m25p *flash, u8 val)
130{
131 flash->command[0] = OPCODE_WRSR;
132 flash->command[1] = val;
133
134 return spi_write(flash->spi, flash->command, 2);
135}
2f9f7628
ML
136
137/*
138 * Set write enable latch with Write Enable command.
139 * Returns negative if error occurred.
140 */
141static inline int write_enable(struct m25p *flash)
142{
143 u8 code = OPCODE_WREN;
144
8a1a6272 145 return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
2f9f7628
ML
146}
147
49aac4ae
GY
148/*
149 * Send write disble instruction to the chip.
150 */
151static inline int write_disable(struct m25p *flash)
152{
153 u8 code = OPCODE_WRDI;
154
155 return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
156}
2f9f7628 157
4b7f7422
KC
158/*
159 * Enable/disable 4-byte addressing mode.
160 */
161static inline int set_4byte(struct m25p *flash, int enable)
162{
163 u8 code = enable ? OPCODE_EN4B : OPCODE_EX4B;
164
165 return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
166}
167
2f9f7628
ML
168/*
169 * Service routine to read status register until ready, or timeout occurs.
170 * Returns non-zero if error.
171 */
172static int wait_till_ready(struct m25p *flash)
173{
cd1a6de7 174 unsigned long deadline;
2f9f7628
ML
175 int sr;
176
cd1a6de7
PH
177 deadline = jiffies + MAX_READY_WAIT_JIFFIES;
178
179 do {
2f9f7628
ML
180 if ((sr = read_sr(flash)) < 0)
181 break;
182 else if (!(sr & SR_WIP))
183 return 0;
184
cd1a6de7
PH
185 cond_resched();
186
187 } while (!time_after_eq(jiffies, deadline));
2f9f7628
ML
188
189 return 1;
190}
191
faff3750
CG
192/*
193 * Erase the whole flash memory
194 *
195 * Returns 0 if successful, non-zero otherwise.
196 */
7854643a 197static int erase_chip(struct m25p *flash)
faff3750 198{
d85316ac 199 DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %lldKiB\n",
160bbab3
KS
200 dev_name(&flash->spi->dev), __func__,
201 (long long)(flash->mtd.size >> 10));
faff3750
CG
202
203 /* Wait until finished previous write command. */
204 if (wait_till_ready(flash))
205 return 1;
206
207 /* Send write enable, then erase commands. */
208 write_enable(flash);
209
210 /* Set up command buffer. */
7854643a 211 flash->command[0] = OPCODE_CHIP_ERASE;
faff3750
CG
212
213 spi_write(flash->spi, flash->command, 1);
214
215 return 0;
216}
2f9f7628 217
837479d2
AV
218static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd)
219{
220 /* opcode is in cmd[0] */
221 cmd[1] = addr >> (flash->addr_width * 8 - 8);
222 cmd[2] = addr >> (flash->addr_width * 8 - 16);
223 cmd[3] = addr >> (flash->addr_width * 8 - 24);
4b7f7422 224 cmd[4] = addr >> (flash->addr_width * 8 - 32);
837479d2
AV
225}
226
227static int m25p_cmdsz(struct m25p *flash)
228{
229 return 1 + flash->addr_width;
230}
231
2f9f7628
ML
232/*
233 * Erase one sector of flash memory at offset ``offset'' which is any
234 * address within the sector which should be erased.
235 *
236 * Returns 0 if successful, non-zero otherwise.
237 */
238static int erase_sector(struct m25p *flash, u32 offset)
239{
02d087db 240 DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %dKiB at 0x%08x\n",
160bbab3 241 dev_name(&flash->spi->dev), __func__,
fa0a8c71 242 flash->mtd.erasesize / 1024, offset);
2f9f7628
ML
243
244 /* Wait until finished previous write command. */
245 if (wait_till_ready(flash))
246 return 1;
247
248 /* Send write enable, then erase commands. */
249 write_enable(flash);
250
251 /* Set up command buffer. */
fa0a8c71 252 flash->command[0] = flash->erase_opcode;
837479d2 253 m25p_addr2cmd(flash, offset, flash->command);
2f9f7628 254
837479d2 255 spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
2f9f7628
ML
256
257 return 0;
258}
259
260/****************************************************************************/
261
262/*
263 * MTD implementation
264 */
265
266/*
267 * Erase an address range on the flash chip. The address range may extend
268 * one or more erase sectors. Return an error is there is a problem erasing.
269 */
270static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
271{
272 struct m25p *flash = mtd_to_m25p(mtd);
273 u32 addr,len;
d85316ac 274 uint32_t rem;
2f9f7628 275
d85316ac 276 DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%llx, len %lld\n",
160bbab3
KS
277 dev_name(&flash->spi->dev), __func__, "at",
278 (long long)instr->addr, (long long)instr->len);
2f9f7628
ML
279
280 /* sanity checks */
281 if (instr->addr + instr->len > flash->mtd.size)
282 return -EINVAL;
d85316ac
AB
283 div_u64_rem(instr->len, mtd->erasesize, &rem);
284 if (rem)
2f9f7628 285 return -EINVAL;
2f9f7628
ML
286
287 addr = instr->addr;
288 len = instr->len;
289
7d5230ea 290 mutex_lock(&flash->lock);
2f9f7628 291
7854643a 292 /* whole-chip erase? */
3f33b0aa
SF
293 if (len == flash->mtd.size) {
294 if (erase_chip(flash)) {
295 instr->state = MTD_ERASE_FAILED;
296 mutex_unlock(&flash->lock);
297 return -EIO;
298 }
7854643a
CG
299
300 /* REVISIT in some cases we could speed up erasing large regions
301 * by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up
302 * to use "small sector erase", but that's not always optimal.
303 */
304
305 /* "sector"-at-a-time erase */
faff3750
CG
306 } else {
307 while (len) {
308 if (erase_sector(flash, addr)) {
309 instr->state = MTD_ERASE_FAILED;
310 mutex_unlock(&flash->lock);
311 return -EIO;
312 }
313
314 addr += mtd->erasesize;
315 len -= mtd->erasesize;
2f9f7628 316 }
2f9f7628
ML
317 }
318
7d5230ea 319 mutex_unlock(&flash->lock);
2f9f7628
ML
320
321 instr->state = MTD_ERASE_DONE;
322 mtd_erase_callback(instr);
323
324 return 0;
325}
326
327/*
328 * Read an address range from the flash chip. The address range
329 * may be any size provided it is within the physical boundaries.
330 */
331static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
332 size_t *retlen, u_char *buf)
333{
334 struct m25p *flash = mtd_to_m25p(mtd);
335 struct spi_transfer t[2];
336 struct spi_message m;
337
338 DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
160bbab3 339 dev_name(&flash->spi->dev), __func__, "from",
2f9f7628
ML
340 (u32)from, len);
341
342 /* sanity checks */
343 if (!len)
344 return 0;
345
346 if (from + len > flash->mtd.size)
347 return -EINVAL;
348
8275c642
VW
349 spi_message_init(&m);
350 memset(t, 0, (sizeof t));
351
2230b76b
BW
352 /* NOTE:
353 * OPCODE_FAST_READ (if available) is faster.
354 * Should add 1 byte DUMMY_BYTE.
355 */
8275c642 356 t[0].tx_buf = flash->command;
837479d2 357 t[0].len = m25p_cmdsz(flash) + FAST_READ_DUMMY_BYTE;
8275c642
VW
358 spi_message_add_tail(&t[0], &m);
359
360 t[1].rx_buf = buf;
361 t[1].len = len;
362 spi_message_add_tail(&t[1], &m);
363
364 /* Byte count starts at zero. */
b06cd21e 365 *retlen = 0;
8275c642 366
7d5230ea 367 mutex_lock(&flash->lock);
2f9f7628
ML
368
369 /* Wait till previous write/erase is done. */
370 if (wait_till_ready(flash)) {
371 /* REVISIT status return?? */
7d5230ea 372 mutex_unlock(&flash->lock);
2f9f7628
ML
373 return 1;
374 }
375
fa0a8c71
DB
376 /* FIXME switch to OPCODE_FAST_READ. It's required for higher
377 * clocks; and at this writing, every chip this driver handles
378 * supports that opcode.
379 */
2f9f7628
ML
380
381 /* Set up the write data buffer. */
382 flash->command[0] = OPCODE_READ;
837479d2 383 m25p_addr2cmd(flash, from, flash->command);
2f9f7628 384
2f9f7628
ML
385 spi_sync(flash->spi, &m);
386
837479d2 387 *retlen = m.actual_length - m25p_cmdsz(flash) - FAST_READ_DUMMY_BYTE;
2f9f7628 388
7d5230ea 389 mutex_unlock(&flash->lock);
2f9f7628
ML
390
391 return 0;
392}
393
394/*
395 * Write an address range to the flash chip. Data must be written in
396 * FLASH_PAGESIZE chunks. The address range may be any size provided
397 * it is within the physical boundaries.
398 */
399static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
400 size_t *retlen, const u_char *buf)
401{
402 struct m25p *flash = mtd_to_m25p(mtd);
403 u32 page_offset, page_size;
404 struct spi_transfer t[2];
405 struct spi_message m;
406
407 DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
160bbab3 408 dev_name(&flash->spi->dev), __func__, "to",
2f9f7628
ML
409 (u32)to, len);
410
b06cd21e 411 *retlen = 0;
2f9f7628
ML
412
413 /* sanity checks */
414 if (!len)
415 return(0);
416
417 if (to + len > flash->mtd.size)
418 return -EINVAL;
419
8275c642
VW
420 spi_message_init(&m);
421 memset(t, 0, (sizeof t));
422
423 t[0].tx_buf = flash->command;
837479d2 424 t[0].len = m25p_cmdsz(flash);
8275c642
VW
425 spi_message_add_tail(&t[0], &m);
426
427 t[1].tx_buf = buf;
428 spi_message_add_tail(&t[1], &m);
429
7d5230ea 430 mutex_lock(&flash->lock);
2f9f7628
ML
431
432 /* Wait until finished previous write command. */
bc018863
CG
433 if (wait_till_ready(flash)) {
434 mutex_unlock(&flash->lock);
2f9f7628 435 return 1;
bc018863 436 }
2f9f7628
ML
437
438 write_enable(flash);
439
2f9f7628
ML
440 /* Set up the opcode in the write buffer. */
441 flash->command[0] = OPCODE_PP;
837479d2 442 m25p_addr2cmd(flash, to, flash->command);
2f9f7628 443
837479d2 444 page_offset = to & (flash->page_size - 1);
2f9f7628
ML
445
446 /* do all the bytes fit onto one page? */
837479d2 447 if (page_offset + len <= flash->page_size) {
2f9f7628
ML
448 t[1].len = len;
449
450 spi_sync(flash->spi, &m);
451
837479d2 452 *retlen = m.actual_length - m25p_cmdsz(flash);
2f9f7628
ML
453 } else {
454 u32 i;
455
456 /* the size of data remaining on the first page */
837479d2 457 page_size = flash->page_size - page_offset;
2f9f7628 458
2f9f7628
ML
459 t[1].len = page_size;
460 spi_sync(flash->spi, &m);
461
837479d2 462 *retlen = m.actual_length - m25p_cmdsz(flash);
2f9f7628 463
837479d2 464 /* write everything in flash->page_size chunks */
2f9f7628
ML
465 for (i = page_size; i < len; i += page_size) {
466 page_size = len - i;
837479d2
AV
467 if (page_size > flash->page_size)
468 page_size = flash->page_size;
2f9f7628
ML
469
470 /* write the next page to flash */
837479d2 471 m25p_addr2cmd(flash, to + i, flash->command);
2f9f7628
ML
472
473 t[1].tx_buf = buf + i;
474 t[1].len = page_size;
475
476 wait_till_ready(flash);
477
478 write_enable(flash);
479
480 spi_sync(flash->spi, &m);
481
b06cd21e 482 *retlen += m.actual_length - m25p_cmdsz(flash);
7d5230ea
DB
483 }
484 }
2f9f7628 485
7d5230ea 486 mutex_unlock(&flash->lock);
2f9f7628
ML
487
488 return 0;
489}
490
49aac4ae
GY
491static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
492 size_t *retlen, const u_char *buf)
493{
494 struct m25p *flash = mtd_to_m25p(mtd);
495 struct spi_transfer t[2];
496 struct spi_message m;
497 size_t actual;
498 int cmd_sz, ret;
499
dcf12463
NF
500 DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
501 dev_name(&flash->spi->dev), __func__, "to",
502 (u32)to, len);
503
b06cd21e 504 *retlen = 0;
49aac4ae
GY
505
506 /* sanity checks */
507 if (!len)
508 return 0;
509
510 if (to + len > flash->mtd.size)
511 return -EINVAL;
512
513 spi_message_init(&m);
514 memset(t, 0, (sizeof t));
515
516 t[0].tx_buf = flash->command;
837479d2 517 t[0].len = m25p_cmdsz(flash);
49aac4ae
GY
518 spi_message_add_tail(&t[0], &m);
519
520 t[1].tx_buf = buf;
521 spi_message_add_tail(&t[1], &m);
522
523 mutex_lock(&flash->lock);
524
525 /* Wait until finished previous write command. */
526 ret = wait_till_ready(flash);
527 if (ret)
528 goto time_out;
529
530 write_enable(flash);
531
532 actual = to % 2;
533 /* Start write from odd address. */
534 if (actual) {
535 flash->command[0] = OPCODE_BP;
837479d2 536 m25p_addr2cmd(flash, to, flash->command);
49aac4ae
GY
537
538 /* write one byte. */
539 t[1].len = 1;
540 spi_sync(flash->spi, &m);
541 ret = wait_till_ready(flash);
542 if (ret)
543 goto time_out;
837479d2 544 *retlen += m.actual_length - m25p_cmdsz(flash);
49aac4ae
GY
545 }
546 to += actual;
547
548 flash->command[0] = OPCODE_AAI_WP;
837479d2 549 m25p_addr2cmd(flash, to, flash->command);
49aac4ae
GY
550
551 /* Write out most of the data here. */
837479d2 552 cmd_sz = m25p_cmdsz(flash);
49aac4ae
GY
553 for (; actual < len - 1; actual += 2) {
554 t[0].len = cmd_sz;
555 /* write two bytes. */
556 t[1].len = 2;
557 t[1].tx_buf = buf + actual;
558
559 spi_sync(flash->spi, &m);
560 ret = wait_till_ready(flash);
561 if (ret)
562 goto time_out;
563 *retlen += m.actual_length - cmd_sz;
564 cmd_sz = 1;
565 to += 2;
566 }
567 write_disable(flash);
568 ret = wait_till_ready(flash);
569 if (ret)
570 goto time_out;
571
572 /* Write out trailing byte if it exists. */
573 if (actual != len) {
574 write_enable(flash);
575 flash->command[0] = OPCODE_BP;
837479d2
AV
576 m25p_addr2cmd(flash, to, flash->command);
577 t[0].len = m25p_cmdsz(flash);
49aac4ae
GY
578 t[1].len = 1;
579 t[1].tx_buf = buf + actual;
580
581 spi_sync(flash->spi, &m);
582 ret = wait_till_ready(flash);
583 if (ret)
584 goto time_out;
837479d2 585 *retlen += m.actual_length - m25p_cmdsz(flash);
49aac4ae
GY
586 write_disable(flash);
587 }
588
589time_out:
590 mutex_unlock(&flash->lock);
591 return ret;
592}
2f9f7628
ML
593
594/****************************************************************************/
595
596/*
597 * SPI device driver setup and teardown
598 */
599
600struct flash_info {
fa0a8c71
DB
601 /* JEDEC id zero means "no ID" (most older chips); otherwise it has
602 * a high byte of zero plus three data bytes: the manufacturer id,
603 * then a two byte device id.
604 */
605 u32 jedec_id;
d0e8c47c 606 u16 ext_id;
fa0a8c71
DB
607
608 /* The size listed here is what works with OPCODE_SE, which isn't
609 * necessarily called a "sector" by the vendor.
610 */
2f9f7628 611 unsigned sector_size;
fa0a8c71
DB
612 u16 n_sectors;
613
837479d2
AV
614 u16 page_size;
615 u16 addr_width;
616
fa0a8c71
DB
617 u16 flags;
618#define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
837479d2 619#define M25P_NO_ERASE 0x02 /* No erase command needed */
2f9f7628
ML
620};
621
b34bc037
AV
622#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
623 ((kernel_ulong_t)&(struct flash_info) { \
624 .jedec_id = (_jedec_id), \
625 .ext_id = (_ext_id), \
626 .sector_size = (_sector_size), \
627 .n_sectors = (_n_sectors), \
837479d2 628 .page_size = 256, \
b34bc037
AV
629 .flags = (_flags), \
630 })
fa0a8c71 631
837479d2
AV
632#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width) \
633 ((kernel_ulong_t)&(struct flash_info) { \
634 .sector_size = (_sector_size), \
635 .n_sectors = (_n_sectors), \
636 .page_size = (_page_size), \
637 .addr_width = (_addr_width), \
638 .flags = M25P_NO_ERASE, \
639 })
fa0a8c71
DB
640
641/* NOTE: double check command sets and memory organization when you add
642 * more flash chips. This current list focusses on newer chips, which
643 * have been converging on command sets which including JEDEC ID.
644 */
b34bc037 645static const struct spi_device_id m25p_ids[] = {
fa0a8c71 646 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
b34bc037
AV
647 { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
648 { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
fa0a8c71 649
b34bc037
AV
650 { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
651 { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
fa0a8c71 652
b34bc037
AV
653 { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
654 { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
655 { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
8fffed8c 656 { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
fa0a8c71 657
60845e72
GJ
658 /* EON -- en25pxx */
659 { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
660 { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
661
f80e521c
GJ
662 /* Intel/Numonyx -- xxxs33b */
663 { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
664 { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
665 { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
666
ab1ff210 667 /* Macronix */
df0094d7 668 { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
6175f4a1 669 { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
b34bc037
AV
670 { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
671 { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
672 { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
673 { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
4b7f7422 674 { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
ac622f58 675 { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
ab1ff210 676
fa0a8c71
DB
677 /* Spansion -- single (large) sector size only, at least
678 * for the chips listed here (without boot sectors).
679 */
b34bc037
AV
680 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
681 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
682 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
683 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
d86fbdb8 684 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SECT_4K) },
b34bc037
AV
685 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
686 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
687 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
688 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
689 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
f2df1ae3
GH
690 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) },
691 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
fa0a8c71
DB
692
693 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
b34bc037
AV
694 { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K) },
695 { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K) },
696 { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K) },
697 { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K) },
698 { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K) },
699 { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K) },
700 { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K) },
701 { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K) },
fa0a8c71
DB
702
703 /* ST Microelectronics -- newer production may have feature updates */
b34bc037
AV
704 { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
705 { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
706 { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
707 { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
708 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
709 { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
710 { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
711 { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
712 { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
713
f7b00090
AV
714 { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
715 { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
716 { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
717 { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
718 { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
719 { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
720 { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
721 { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
722 { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
723
b34bc037
AV
724 { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
725 { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
726 { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
727
728 { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
729 { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
fa0a8c71 730
02d087db 731 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
b34bc037
AV
732 { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
733 { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
734 { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
735 { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
736 { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
737 { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
0af18d27 738 { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
b34bc037 739 { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
d2ac467a 740 { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
837479d2
AV
741
742 /* Catalyst / On Semiconductor -- non-JEDEC */
743 { "cat25c11", CAT25_INFO( 16, 8, 16, 1) },
744 { "cat25c03", CAT25_INFO( 32, 8, 16, 2) },
745 { "cat25c09", CAT25_INFO( 128, 8, 32, 2) },
746 { "cat25c17", CAT25_INFO( 256, 8, 32, 2) },
747 { "cat25128", CAT25_INFO(2048, 8, 64, 2) },
b34bc037 748 { },
2f9f7628 749};
b34bc037 750MODULE_DEVICE_TABLE(spi, m25p_ids);
2f9f7628 751
b34bc037 752static const struct spi_device_id *__devinit jedec_probe(struct spi_device *spi)
fa0a8c71
DB
753{
754 int tmp;
755 u8 code = OPCODE_RDID;
daa84735 756 u8 id[5];
fa0a8c71 757 u32 jedec;
d0e8c47c 758 u16 ext_jedec;
fa0a8c71
DB
759 struct flash_info *info;
760
761 /* JEDEC also defines an optional "extended device information"
762 * string for after vendor-specific data, after the three bytes
763 * we use here. Supporting some chips might require using it.
764 */
daa84735 765 tmp = spi_write_then_read(spi, &code, 1, id, 5);
fa0a8c71
DB
766 if (tmp < 0) {
767 DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n",
160bbab3 768 dev_name(&spi->dev), tmp);
9d2c4f3f 769 return ERR_PTR(tmp);
fa0a8c71
DB
770 }
771 jedec = id[0];
772 jedec = jedec << 8;
773 jedec |= id[1];
774 jedec = jedec << 8;
775 jedec |= id[2];
776
d0e8c47c
CG
777 ext_jedec = id[3] << 8 | id[4];
778
b34bc037
AV
779 for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
780 info = (void *)m25p_ids[tmp].driver_data;
a3d3f73c 781 if (info->jedec_id == jedec) {
9168ab86 782 if (info->ext_id != 0 && info->ext_id != ext_jedec)
d0e8c47c 783 continue;
b34bc037 784 return &m25p_ids[tmp];
a3d3f73c 785 }
fa0a8c71 786 }
f0dff9bd 787 dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
9d2c4f3f 788 return ERR_PTR(-ENODEV);
fa0a8c71
DB
789}
790
791
2f9f7628
ML
792/*
793 * board specific setup should have ensured the SPI clock used here
794 * matches what the READ command supports, at least until this driver
795 * understands FAST_READ (for clocks over 25 MHz).
796 */
797static int __devinit m25p_probe(struct spi_device *spi)
798{
18c6182b 799 const struct spi_device_id *id = spi_get_device_id(spi);
2f9f7628
ML
800 struct flash_platform_data *data;
801 struct m25p *flash;
802 struct flash_info *info;
803 unsigned i;
804
805 /* Platform data helps sort out which chip type we have, as
fa0a8c71
DB
806 * well as how this board partitions it. If we don't have
807 * a chip ID, try the JEDEC id commands; they'll work for most
808 * newer chips, even if we don't recognize the particular chip.
2f9f7628
ML
809 */
810 data = spi->dev.platform_data;
fa0a8c71 811 if (data && data->type) {
18c6182b 812 const struct spi_device_id *plat_id;
2f9f7628 813
b34bc037 814 for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
18c6182b
AV
815 plat_id = &m25p_ids[i];
816 if (strcmp(data->type, plat_id->name))
b34bc037
AV
817 continue;
818 break;
fa0a8c71 819 }
fa0a8c71 820
f78ec6b2 821 if (i < ARRAY_SIZE(m25p_ids) - 1)
18c6182b
AV
822 id = plat_id;
823 else
824 dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
b34bc037 825 }
fa0a8c71 826
18c6182b
AV
827 info = (void *)id->driver_data;
828
829 if (info->jedec_id) {
830 const struct spi_device_id *jid;
831
832 jid = jedec_probe(spi);
9d2c4f3f
AV
833 if (IS_ERR(jid)) {
834 return PTR_ERR(jid);
18c6182b
AV
835 } else if (jid != id) {
836 /*
837 * JEDEC knows better, so overwrite platform ID. We
838 * can't trust partitions any longer, but we'll let
839 * mtd apply them anyway, since some partitions may be
840 * marked read-only, and we don't want to lose that
841 * information, even if it's not 100% accurate.
842 */
843 dev_warn(&spi->dev, "found %s, expected %s\n",
844 jid->name, id->name);
845 id = jid;
846 info = (void *)jid->driver_data;
847 }
848 }
2f9f7628 849
e94b1766 850 flash = kzalloc(sizeof *flash, GFP_KERNEL);
2f9f7628
ML
851 if (!flash)
852 return -ENOMEM;
837479d2 853 flash->command = kmalloc(MAX_CMD_SIZE + FAST_READ_DUMMY_BYTE, GFP_KERNEL);
61c3506c
JS
854 if (!flash->command) {
855 kfree(flash);
856 return -ENOMEM;
857 }
2f9f7628
ML
858
859 flash->spi = spi;
7d5230ea 860 mutex_init(&flash->lock);
2f9f7628
ML
861 dev_set_drvdata(&spi->dev, flash);
862
72289824 863 /*
f80e521c 864 * Atmel, SST and Intel/Numonyx serial flash tend to power
ea60658a 865 * up with the software protection bits set
72289824
MH
866 */
867
ea60658a 868 if (info->jedec_id >> 16 == 0x1f ||
f80e521c 869 info->jedec_id >> 16 == 0x89 ||
ea60658a 870 info->jedec_id >> 16 == 0xbf) {
72289824
MH
871 write_enable(flash);
872 write_sr(flash, 0);
873 }
874
fa0a8c71 875 if (data && data->name)
2f9f7628
ML
876 flash->mtd.name = data->name;
877 else
160bbab3 878 flash->mtd.name = dev_name(&spi->dev);
2f9f7628
ML
879
880 flash->mtd.type = MTD_NORFLASH;
783ed81f 881 flash->mtd.writesize = 1;
2f9f7628
ML
882 flash->mtd.flags = MTD_CAP_NORFLASH;
883 flash->mtd.size = info->sector_size * info->n_sectors;
2f9f7628
ML
884 flash->mtd.erase = m25p80_erase;
885 flash->mtd.read = m25p80_read;
49aac4ae
GY
886
887 /* sst flash chips use AAI word program */
888 if (info->jedec_id >> 16 == 0xbf)
889 flash->mtd.write = sst_write;
890 else
891 flash->mtd.write = m25p80_write;
2f9f7628 892
fa0a8c71
DB
893 /* prefer "small sector" erase if possible */
894 if (info->flags & SECT_4K) {
895 flash->erase_opcode = OPCODE_BE_4K;
896 flash->mtd.erasesize = 4096;
897 } else {
898 flash->erase_opcode = OPCODE_SE;
899 flash->mtd.erasesize = info->sector_size;
900 }
901
837479d2
AV
902 if (info->flags & M25P_NO_ERASE)
903 flash->mtd.flags |= MTD_NO_ERASE;
904
87f39f04 905 flash->mtd.dev.parent = &spi->dev;
837479d2 906 flash->page_size = info->page_size;
4b7f7422
KC
907
908 if (info->addr_width)
909 flash->addr_width = info->addr_width;
910 else {
911 /* enable 4-byte addressing if the device exceeds 16MiB */
912 if (flash->mtd.size > 0x1000000) {
913 flash->addr_width = 4;
914 set_4byte(flash, 1);
915 } else
916 flash->addr_width = 3;
917 }
87f39f04 918
b34bc037 919 dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name,
d85316ac 920 (long long)flash->mtd.size >> 10);
2f9f7628
ML
921
922 DEBUG(MTD_DEBUG_LEVEL2,
d85316ac 923 "mtd .name = %s, .size = 0x%llx (%lldMiB) "
02d087db 924 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
2f9f7628 925 flash->mtd.name,
d85316ac 926 (long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
2f9f7628
ML
927 flash->mtd.erasesize, flash->mtd.erasesize / 1024,
928 flash->mtd.numeraseregions);
929
930 if (flash->mtd.numeraseregions)
931 for (i = 0; i < flash->mtd.numeraseregions; i++)
932 DEBUG(MTD_DEBUG_LEVEL2,
d85316ac 933 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
02d087db 934 ".erasesize = 0x%.8x (%uKiB), "
2f9f7628 935 ".numblocks = %d }\n",
d85316ac 936 i, (long long)flash->mtd.eraseregions[i].offset,
2f9f7628
ML
937 flash->mtd.eraseregions[i].erasesize,
938 flash->mtd.eraseregions[i].erasesize / 1024,
939 flash->mtd.eraseregions[i].numblocks);
940
941
942 /* partitions should match sector boundaries; and it may be good to
943 * use readonly partitions for writeprotected sectors (BP2..BP0).
944 */
945 if (mtd_has_partitions()) {
946 struct mtd_partition *parts = NULL;
947 int nr_parts = 0;
948
a4b6d516
DB
949 if (mtd_has_cmdlinepart()) {
950 static const char *part_probes[]
951 = { "cmdlinepart", NULL, };
2f9f7628 952
a4b6d516
DB
953 nr_parts = parse_mtd_partitions(&flash->mtd,
954 part_probes, &parts, 0);
955 }
2f9f7628
ML
956
957 if (nr_parts <= 0 && data && data->parts) {
958 parts = data->parts;
959 nr_parts = data->nr_parts;
960 }
961
40847437 962#ifdef CONFIG_MTD_OF_PARTS
97ff46cb
MH
963 if (nr_parts <= 0 && spi->dev.of_node) {
964 nr_parts = of_mtd_parse_partitions(&spi->dev,
965 spi->dev.of_node, &parts);
966 }
967#endif
968
2f9f7628 969 if (nr_parts > 0) {
fa0a8c71 970 for (i = 0; i < nr_parts; i++) {
2f9f7628 971 DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = "
d85316ac
AB
972 "{.name = %s, .offset = 0x%llx, "
973 ".size = 0x%llx (%lldKiB) }\n",
fa0a8c71 974 i, parts[i].name,
d85316ac
AB
975 (long long)parts[i].offset,
976 (long long)parts[i].size,
977 (long long)(parts[i].size >> 10));
2f9f7628
ML
978 }
979 flash->partitioned = 1;
980 return add_mtd_partitions(&flash->mtd, parts, nr_parts);
981 }
edcb3b14 982 } else if (data && data->nr_parts)
2f9f7628
ML
983 dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",
984 data->nr_parts, data->name);
985
986 return add_mtd_device(&flash->mtd) == 1 ? -ENODEV : 0;
987}
988
989
990static int __devexit m25p_remove(struct spi_device *spi)
991{
992 struct m25p *flash = dev_get_drvdata(&spi->dev);
993 int status;
994
995 /* Clean up MTD stuff. */
996 if (mtd_has_partitions() && flash->partitioned)
997 status = del_mtd_partitions(&flash->mtd);
998 else
999 status = del_mtd_device(&flash->mtd);
61c3506c
JS
1000 if (status == 0) {
1001 kfree(flash->command);
2f9f7628 1002 kfree(flash);
61c3506c 1003 }
2f9f7628
ML
1004 return 0;
1005}
1006
1007
1008static struct spi_driver m25p80_driver = {
1009 .driver = {
1010 .name = "m25p80",
1011 .bus = &spi_bus_type,
1012 .owner = THIS_MODULE,
1013 },
b34bc037 1014 .id_table = m25p_ids,
2f9f7628
ML
1015 .probe = m25p_probe,
1016 .remove = __devexit_p(m25p_remove),
fa0a8c71
DB
1017
1018 /* REVISIT: many of these chips have deep power-down modes, which
1019 * should clearly be entered on suspend() to minimize power use.
1020 * And also when they're otherwise idle...
1021 */
2f9f7628
ML
1022};
1023
1024
627df23c 1025static int __init m25p80_init(void)
2f9f7628
ML
1026{
1027 return spi_register_driver(&m25p80_driver);
1028}
1029
1030
627df23c 1031static void __exit m25p80_exit(void)
2f9f7628
ML
1032{
1033 spi_unregister_driver(&m25p80_driver);
1034}
1035
1036
1037module_init(m25p80_init);
1038module_exit(m25p80_exit);
1039
1040MODULE_LICENSE("GPL");
1041MODULE_AUTHOR("Mike Lavender");
1042MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");
This page took 0.435916 seconds and 5 git commands to generate.