mtd: m25p80: make CONFIG_M25PXX_USE_FAST_READ safe to enable
[deliverable/linux.git] / drivers / mtd / devices / m25p80.c
CommitLineData
2f9f7628 1/*
fa0a8c71 2 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
2f9f7628
ML
3 *
4 * Author: Mike Lavender, mike@steroidmicros.com
5 *
6 * Copyright (c) 2005, Intec Automation Inc.
7 *
8 * Some parts are based on lart.c by Abraham Van Der Merwe
9 *
10 * Cleaned up and generalized based on mtd_dataflash.c
11 *
12 * This code is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 *
16 */
17
18#include <linux/init.h>
9d2c4f3f
AV
19#include <linux/err.h>
20#include <linux/errno.h>
2f9f7628
ML
21#include <linux/module.h>
22#include <linux/device.h>
23#include <linux/interrupt.h>
7d5230ea 24#include <linux/mutex.h>
d85316ac 25#include <linux/math64.h>
5a0e3ad6 26#include <linux/slab.h>
d43c36dc 27#include <linux/sched.h>
b34bc037 28#include <linux/mod_devicetable.h>
7d5230ea 29
aa084653 30#include <linux/mtd/cfi.h>
2f9f7628
ML
31#include <linux/mtd/mtd.h>
32#include <linux/mtd/partitions.h>
5f949137 33#include <linux/of_platform.h>
7d5230ea 34
2f9f7628
ML
35#include <linux/spi/spi.h>
36#include <linux/spi/flash.h>
37
2f9f7628 38/* Flash opcodes. */
fa0a8c71
DB
39#define OPCODE_WREN 0x06 /* Write enable */
40#define OPCODE_RDSR 0x05 /* Read status register */
72289824 41#define OPCODE_WRSR 0x01 /* Write status register 1 byte */
2230b76b 42#define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */
fa0a8c71
DB
43#define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
44#define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
7854643a 45#define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
02d087db 46#define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
7854643a 47#define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */
02d087db 48#define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
2f9f7628
ML
49#define OPCODE_RDID 0x9f /* Read JEDEC ID */
50
87c9511f
BN
51/* 4-byte address opcodes - used on Spansion and some Macronix flashes. */
52#define OPCODE_NORM_READ_4B 0x13 /* Read data bytes (low frequency) */
53#define OPCODE_FAST_READ_4B 0x0c /* Read data bytes (high frequency) */
54#define OPCODE_PP_4B 0x12 /* Page program (up to 256 bytes) */
55#define OPCODE_SE_4B 0xdc /* Sector erase (usually 64KiB) */
56
49aac4ae
GY
57/* Used for SST flashes only. */
58#define OPCODE_BP 0x02 /* Byte program */
59#define OPCODE_WRDI 0x04 /* Write disable */
60#define OPCODE_AAI_WP 0xad /* Auto address increment word program */
61
caddab0f 62/* Used for Macronix and Winbond flashes. */
4b7f7422
KC
63#define OPCODE_EN4B 0xb7 /* Enter 4-byte mode */
64#define OPCODE_EX4B 0xe9 /* Exit 4-byte mode */
65
baa9ae3c
KC
66/* Used for Spansion flashes only. */
67#define OPCODE_BRWR 0x17 /* Bank register write */
68
2f9f7628
ML
69/* Status Register bits. */
70#define SR_WIP 1 /* Write in progress */
71#define SR_WEL 2 /* Write enable latch */
fa0a8c71 72/* meaning of other SR_* bits may differ between vendors */
2f9f7628
ML
73#define SR_BP0 4 /* Block protect 0 */
74#define SR_BP1 8 /* Block protect 1 */
75#define SR_BP2 0x10 /* Block protect 2 */
76#define SR_SRWD 0x80 /* SR write protect */
77
78/* Define max times to check status register before we give up. */
89bb871e 79#define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
4b7f7422 80#define MAX_CMD_SIZE 5
2f9f7628 81
aa084653
KC
82#define JEDEC_MFR(_jedec_id) ((_jedec_id) >> 16)
83
2f9f7628
ML
84/****************************************************************************/
85
86struct m25p {
87 struct spi_device *spi;
7d5230ea 88 struct mutex lock;
2f9f7628 89 struct mtd_info mtd;
837479d2
AV
90 u16 page_size;
91 u16 addr_width;
fa0a8c71 92 u8 erase_opcode;
87c9511f
BN
93 u8 read_opcode;
94 u8 program_opcode;
61c3506c 95 u8 *command;
12ad2be9 96 bool fast_read;
2f9f7628
ML
97};
98
99static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
100{
101 return container_of(mtd, struct m25p, mtd);
102}
103
104/****************************************************************************/
105
106/*
107 * Internal helper functions
108 */
109
110/*
111 * Read the status register, returning its value in the location
112 * Return the status register value.
113 * Returns negative if error occurred.
114 */
115static int read_sr(struct m25p *flash)
116{
117 ssize_t retval;
118 u8 code = OPCODE_RDSR;
119 u8 val;
120
121 retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);
122
123 if (retval < 0) {
124 dev_err(&flash->spi->dev, "error %d reading SR\n",
125 (int) retval);
126 return retval;
127 }
128
129 return val;
130}
131
72289824
MH
132/*
133 * Write status register 1 byte
134 * Returns negative if error occurred.
135 */
136static int write_sr(struct m25p *flash, u8 val)
137{
138 flash->command[0] = OPCODE_WRSR;
139 flash->command[1] = val;
140
141 return spi_write(flash->spi, flash->command, 2);
142}
2f9f7628
ML
143
144/*
145 * Set write enable latch with Write Enable command.
146 * Returns negative if error occurred.
147 */
148static inline int write_enable(struct m25p *flash)
149{
150 u8 code = OPCODE_WREN;
151
8a1a6272 152 return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
2f9f7628
ML
153}
154
49aac4ae
GY
155/*
156 * Send write disble instruction to the chip.
157 */
158static inline int write_disable(struct m25p *flash)
159{
160 u8 code = OPCODE_WRDI;
161
162 return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
163}
2f9f7628 164
4b7f7422
KC
165/*
166 * Enable/disable 4-byte addressing mode.
167 */
baa9ae3c 168static inline int set_4byte(struct m25p *flash, u32 jedec_id, int enable)
4b7f7422 169{
baa9ae3c
KC
170 switch (JEDEC_MFR(jedec_id)) {
171 case CFI_MFR_MACRONIX:
eedeac3c 172 case CFI_MFR_ST: /* Micron, actually */
0aa87b75 173 case 0xEF /* winbond */:
baa9ae3c
KC
174 flash->command[0] = enable ? OPCODE_EN4B : OPCODE_EX4B;
175 return spi_write(flash->spi, flash->command, 1);
176 default:
177 /* Spansion style */
178 flash->command[0] = OPCODE_BRWR;
179 flash->command[1] = enable << 7;
180 return spi_write(flash->spi, flash->command, 2);
181 }
4b7f7422
KC
182}
183
2f9f7628
ML
184/*
185 * Service routine to read status register until ready, or timeout occurs.
186 * Returns non-zero if error.
187 */
188static int wait_till_ready(struct m25p *flash)
189{
cd1a6de7 190 unsigned long deadline;
2f9f7628
ML
191 int sr;
192
cd1a6de7
PH
193 deadline = jiffies + MAX_READY_WAIT_JIFFIES;
194
195 do {
2f9f7628
ML
196 if ((sr = read_sr(flash)) < 0)
197 break;
198 else if (!(sr & SR_WIP))
199 return 0;
200
cd1a6de7
PH
201 cond_resched();
202
203 } while (!time_after_eq(jiffies, deadline));
2f9f7628
ML
204
205 return 1;
206}
207
faff3750
CG
208/*
209 * Erase the whole flash memory
210 *
211 * Returns 0 if successful, non-zero otherwise.
212 */
7854643a 213static int erase_chip(struct m25p *flash)
faff3750 214{
0a32a102
BN
215 pr_debug("%s: %s %lldKiB\n", dev_name(&flash->spi->dev), __func__,
216 (long long)(flash->mtd.size >> 10));
faff3750
CG
217
218 /* Wait until finished previous write command. */
219 if (wait_till_ready(flash))
220 return 1;
221
222 /* Send write enable, then erase commands. */
223 write_enable(flash);
224
225 /* Set up command buffer. */
7854643a 226 flash->command[0] = OPCODE_CHIP_ERASE;
faff3750
CG
227
228 spi_write(flash->spi, flash->command, 1);
229
230 return 0;
231}
2f9f7628 232
837479d2
AV
233static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd)
234{
235 /* opcode is in cmd[0] */
236 cmd[1] = addr >> (flash->addr_width * 8 - 8);
237 cmd[2] = addr >> (flash->addr_width * 8 - 16);
238 cmd[3] = addr >> (flash->addr_width * 8 - 24);
4b7f7422 239 cmd[4] = addr >> (flash->addr_width * 8 - 32);
837479d2
AV
240}
241
242static int m25p_cmdsz(struct m25p *flash)
243{
244 return 1 + flash->addr_width;
245}
246
2f9f7628
ML
247/*
248 * Erase one sector of flash memory at offset ``offset'' which is any
249 * address within the sector which should be erased.
250 *
251 * Returns 0 if successful, non-zero otherwise.
252 */
253static int erase_sector(struct m25p *flash, u32 offset)
254{
0a32a102
BN
255 pr_debug("%s: %s %dKiB at 0x%08x\n", dev_name(&flash->spi->dev),
256 __func__, flash->mtd.erasesize / 1024, offset);
2f9f7628
ML
257
258 /* Wait until finished previous write command. */
259 if (wait_till_ready(flash))
260 return 1;
261
262 /* Send write enable, then erase commands. */
263 write_enable(flash);
264
265 /* Set up command buffer. */
fa0a8c71 266 flash->command[0] = flash->erase_opcode;
837479d2 267 m25p_addr2cmd(flash, offset, flash->command);
2f9f7628 268
837479d2 269 spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
2f9f7628
ML
270
271 return 0;
272}
273
274/****************************************************************************/
275
276/*
277 * MTD implementation
278 */
279
280/*
281 * Erase an address range on the flash chip. The address range may extend
282 * one or more erase sectors. Return an error is there is a problem erasing.
283 */
284static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
285{
286 struct m25p *flash = mtd_to_m25p(mtd);
287 u32 addr,len;
d85316ac 288 uint32_t rem;
2f9f7628 289
0a32a102
BN
290 pr_debug("%s: %s at 0x%llx, len %lld\n", dev_name(&flash->spi->dev),
291 __func__, (long long)instr->addr,
292 (long long)instr->len);
2f9f7628 293
d85316ac
AB
294 div_u64_rem(instr->len, mtd->erasesize, &rem);
295 if (rem)
2f9f7628 296 return -EINVAL;
2f9f7628
ML
297
298 addr = instr->addr;
299 len = instr->len;
300
7d5230ea 301 mutex_lock(&flash->lock);
2f9f7628 302
7854643a 303 /* whole-chip erase? */
3f33b0aa
SF
304 if (len == flash->mtd.size) {
305 if (erase_chip(flash)) {
306 instr->state = MTD_ERASE_FAILED;
307 mutex_unlock(&flash->lock);
308 return -EIO;
309 }
7854643a
CG
310
311 /* REVISIT in some cases we could speed up erasing large regions
312 * by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up
313 * to use "small sector erase", but that's not always optimal.
314 */
315
316 /* "sector"-at-a-time erase */
faff3750
CG
317 } else {
318 while (len) {
319 if (erase_sector(flash, addr)) {
320 instr->state = MTD_ERASE_FAILED;
321 mutex_unlock(&flash->lock);
322 return -EIO;
323 }
324
325 addr += mtd->erasesize;
326 len -= mtd->erasesize;
2f9f7628 327 }
2f9f7628
ML
328 }
329
7d5230ea 330 mutex_unlock(&flash->lock);
2f9f7628
ML
331
332 instr->state = MTD_ERASE_DONE;
333 mtd_erase_callback(instr);
334
335 return 0;
336}
337
338/*
339 * Read an address range from the flash chip. The address range
340 * may be any size provided it is within the physical boundaries.
341 */
342static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
343 size_t *retlen, u_char *buf)
344{
345 struct m25p *flash = mtd_to_m25p(mtd);
346 struct spi_transfer t[2];
347 struct spi_message m;
12ad2be9 348 uint8_t opcode;
2f9f7628 349
0a32a102
BN
350 pr_debug("%s: %s from 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
351 __func__, (u32)from, len);
2f9f7628 352
8275c642
VW
353 spi_message_init(&m);
354 memset(t, 0, (sizeof t));
355
2230b76b
BW
356 /* NOTE:
357 * OPCODE_FAST_READ (if available) is faster.
358 * Should add 1 byte DUMMY_BYTE.
359 */
8275c642 360 t[0].tx_buf = flash->command;
12ad2be9 361 t[0].len = m25p_cmdsz(flash) + (flash->fast_read ? 1 : 0);
8275c642
VW
362 spi_message_add_tail(&t[0], &m);
363
364 t[1].rx_buf = buf;
365 t[1].len = len;
366 spi_message_add_tail(&t[1], &m);
367
7d5230ea 368 mutex_lock(&flash->lock);
2f9f7628
ML
369
370 /* Wait till previous write/erase is done. */
371 if (wait_till_ready(flash)) {
372 /* REVISIT status return?? */
7d5230ea 373 mutex_unlock(&flash->lock);
2f9f7628
ML
374 return 1;
375 }
376
fa0a8c71
DB
377 /* FIXME switch to OPCODE_FAST_READ. It's required for higher
378 * clocks; and at this writing, every chip this driver handles
379 * supports that opcode.
380 */
2f9f7628
ML
381
382 /* Set up the write data buffer. */
87c9511f 383 opcode = flash->read_opcode;
12ad2be9 384 flash->command[0] = opcode;
837479d2 385 m25p_addr2cmd(flash, from, flash->command);
2f9f7628 386
2f9f7628
ML
387 spi_sync(flash->spi, &m);
388
12ad2be9
MV
389 *retlen = m.actual_length - m25p_cmdsz(flash) -
390 (flash->fast_read ? 1 : 0);
2f9f7628 391
7d5230ea 392 mutex_unlock(&flash->lock);
2f9f7628
ML
393
394 return 0;
395}
396
397/*
398 * Write an address range to the flash chip. Data must be written in
399 * FLASH_PAGESIZE chunks. The address range may be any size provided
400 * it is within the physical boundaries.
401 */
402static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
403 size_t *retlen, const u_char *buf)
404{
405 struct m25p *flash = mtd_to_m25p(mtd);
406 u32 page_offset, page_size;
407 struct spi_transfer t[2];
408 struct spi_message m;
409
0a32a102
BN
410 pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
411 __func__, (u32)to, len);
2f9f7628 412
8275c642
VW
413 spi_message_init(&m);
414 memset(t, 0, (sizeof t));
415
416 t[0].tx_buf = flash->command;
837479d2 417 t[0].len = m25p_cmdsz(flash);
8275c642
VW
418 spi_message_add_tail(&t[0], &m);
419
420 t[1].tx_buf = buf;
421 spi_message_add_tail(&t[1], &m);
422
7d5230ea 423 mutex_lock(&flash->lock);
2f9f7628
ML
424
425 /* Wait until finished previous write command. */
bc018863
CG
426 if (wait_till_ready(flash)) {
427 mutex_unlock(&flash->lock);
2f9f7628 428 return 1;
bc018863 429 }
2f9f7628
ML
430
431 write_enable(flash);
432
2f9f7628 433 /* Set up the opcode in the write buffer. */
87c9511f 434 flash->command[0] = flash->program_opcode;
837479d2 435 m25p_addr2cmd(flash, to, flash->command);
2f9f7628 436
837479d2 437 page_offset = to & (flash->page_size - 1);
2f9f7628
ML
438
439 /* do all the bytes fit onto one page? */
837479d2 440 if (page_offset + len <= flash->page_size) {
2f9f7628
ML
441 t[1].len = len;
442
443 spi_sync(flash->spi, &m);
444
837479d2 445 *retlen = m.actual_length - m25p_cmdsz(flash);
2f9f7628
ML
446 } else {
447 u32 i;
448
449 /* the size of data remaining on the first page */
837479d2 450 page_size = flash->page_size - page_offset;
2f9f7628 451
2f9f7628
ML
452 t[1].len = page_size;
453 spi_sync(flash->spi, &m);
454
837479d2 455 *retlen = m.actual_length - m25p_cmdsz(flash);
2f9f7628 456
837479d2 457 /* write everything in flash->page_size chunks */
2f9f7628
ML
458 for (i = page_size; i < len; i += page_size) {
459 page_size = len - i;
837479d2
AV
460 if (page_size > flash->page_size)
461 page_size = flash->page_size;
2f9f7628
ML
462
463 /* write the next page to flash */
837479d2 464 m25p_addr2cmd(flash, to + i, flash->command);
2f9f7628
ML
465
466 t[1].tx_buf = buf + i;
467 t[1].len = page_size;
468
469 wait_till_ready(flash);
470
471 write_enable(flash);
472
473 spi_sync(flash->spi, &m);
474
b06cd21e 475 *retlen += m.actual_length - m25p_cmdsz(flash);
7d5230ea
DB
476 }
477 }
2f9f7628 478
7d5230ea 479 mutex_unlock(&flash->lock);
2f9f7628
ML
480
481 return 0;
482}
483
49aac4ae
GY
484static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
485 size_t *retlen, const u_char *buf)
486{
487 struct m25p *flash = mtd_to_m25p(mtd);
488 struct spi_transfer t[2];
489 struct spi_message m;
490 size_t actual;
491 int cmd_sz, ret;
492
0a32a102
BN
493 pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
494 __func__, (u32)to, len);
dcf12463 495
49aac4ae
GY
496 spi_message_init(&m);
497 memset(t, 0, (sizeof t));
498
499 t[0].tx_buf = flash->command;
837479d2 500 t[0].len = m25p_cmdsz(flash);
49aac4ae
GY
501 spi_message_add_tail(&t[0], &m);
502
503 t[1].tx_buf = buf;
504 spi_message_add_tail(&t[1], &m);
505
506 mutex_lock(&flash->lock);
507
508 /* Wait until finished previous write command. */
509 ret = wait_till_ready(flash);
510 if (ret)
511 goto time_out;
512
513 write_enable(flash);
514
515 actual = to % 2;
516 /* Start write from odd address. */
517 if (actual) {
518 flash->command[0] = OPCODE_BP;
837479d2 519 m25p_addr2cmd(flash, to, flash->command);
49aac4ae
GY
520
521 /* write one byte. */
522 t[1].len = 1;
523 spi_sync(flash->spi, &m);
524 ret = wait_till_ready(flash);
525 if (ret)
526 goto time_out;
837479d2 527 *retlen += m.actual_length - m25p_cmdsz(flash);
49aac4ae
GY
528 }
529 to += actual;
530
531 flash->command[0] = OPCODE_AAI_WP;
837479d2 532 m25p_addr2cmd(flash, to, flash->command);
49aac4ae
GY
533
534 /* Write out most of the data here. */
837479d2 535 cmd_sz = m25p_cmdsz(flash);
49aac4ae
GY
536 for (; actual < len - 1; actual += 2) {
537 t[0].len = cmd_sz;
538 /* write two bytes. */
539 t[1].len = 2;
540 t[1].tx_buf = buf + actual;
541
542 spi_sync(flash->spi, &m);
543 ret = wait_till_ready(flash);
544 if (ret)
545 goto time_out;
546 *retlen += m.actual_length - cmd_sz;
547 cmd_sz = 1;
548 to += 2;
549 }
550 write_disable(flash);
551 ret = wait_till_ready(flash);
552 if (ret)
553 goto time_out;
554
555 /* Write out trailing byte if it exists. */
556 if (actual != len) {
557 write_enable(flash);
558 flash->command[0] = OPCODE_BP;
837479d2
AV
559 m25p_addr2cmd(flash, to, flash->command);
560 t[0].len = m25p_cmdsz(flash);
49aac4ae
GY
561 t[1].len = 1;
562 t[1].tx_buf = buf + actual;
563
564 spi_sync(flash->spi, &m);
565 ret = wait_till_ready(flash);
566 if (ret)
567 goto time_out;
837479d2 568 *retlen += m.actual_length - m25p_cmdsz(flash);
49aac4ae
GY
569 write_disable(flash);
570 }
571
572time_out:
573 mutex_unlock(&flash->lock);
574 return ret;
575}
2f9f7628 576
972e1b7b
AB
577static int m25p80_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
578{
579 struct m25p *flash = mtd_to_m25p(mtd);
580 uint32_t offset = ofs;
581 uint8_t status_old, status_new;
582 int res = 0;
583
584 mutex_lock(&flash->lock);
585 /* Wait until finished previous command */
586 if (wait_till_ready(flash)) {
587 res = 1;
588 goto err;
589 }
590
591 status_old = read_sr(flash);
592
593 if (offset < flash->mtd.size-(flash->mtd.size/2))
594 status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
595 else if (offset < flash->mtd.size-(flash->mtd.size/4))
596 status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
597 else if (offset < flash->mtd.size-(flash->mtd.size/8))
598 status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
599 else if (offset < flash->mtd.size-(flash->mtd.size/16))
600 status_new = (status_old & ~(SR_BP0|SR_BP1)) | SR_BP2;
601 else if (offset < flash->mtd.size-(flash->mtd.size/32))
602 status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
603 else if (offset < flash->mtd.size-(flash->mtd.size/64))
604 status_new = (status_old & ~(SR_BP2|SR_BP0)) | SR_BP1;
605 else
606 status_new = (status_old & ~(SR_BP2|SR_BP1)) | SR_BP0;
607
608 /* Only modify protection if it will not unlock other areas */
609 if ((status_new&(SR_BP2|SR_BP1|SR_BP0)) >
610 (status_old&(SR_BP2|SR_BP1|SR_BP0))) {
611 write_enable(flash);
612 if (write_sr(flash, status_new) < 0) {
613 res = 1;
614 goto err;
615 }
616 }
617
618err: mutex_unlock(&flash->lock);
619 return res;
620}
621
622static int m25p80_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
623{
624 struct m25p *flash = mtd_to_m25p(mtd);
625 uint32_t offset = ofs;
626 uint8_t status_old, status_new;
627 int res = 0;
628
629 mutex_lock(&flash->lock);
630 /* Wait until finished previous command */
631 if (wait_till_ready(flash)) {
632 res = 1;
633 goto err;
634 }
635
636 status_old = read_sr(flash);
637
638 if (offset+len > flash->mtd.size-(flash->mtd.size/64))
639 status_new = status_old & ~(SR_BP2|SR_BP1|SR_BP0);
640 else if (offset+len > flash->mtd.size-(flash->mtd.size/32))
641 status_new = (status_old & ~(SR_BP2|SR_BP1)) | SR_BP0;
642 else if (offset+len > flash->mtd.size-(flash->mtd.size/16))
643 status_new = (status_old & ~(SR_BP2|SR_BP0)) | SR_BP1;
644 else if (offset+len > flash->mtd.size-(flash->mtd.size/8))
645 status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
646 else if (offset+len > flash->mtd.size-(flash->mtd.size/4))
647 status_new = (status_old & ~(SR_BP0|SR_BP1)) | SR_BP2;
648 else if (offset+len > flash->mtd.size-(flash->mtd.size/2))
649 status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
650 else
651 status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
652
653 /* Only modify protection if it will not lock other areas */
654 if ((status_new&(SR_BP2|SR_BP1|SR_BP0)) <
655 (status_old&(SR_BP2|SR_BP1|SR_BP0))) {
656 write_enable(flash);
657 if (write_sr(flash, status_new) < 0) {
658 res = 1;
659 goto err;
660 }
661 }
662
663err: mutex_unlock(&flash->lock);
664 return res;
665}
666
2f9f7628
ML
667/****************************************************************************/
668
669/*
670 * SPI device driver setup and teardown
671 */
672
673struct flash_info {
fa0a8c71
DB
674 /* JEDEC id zero means "no ID" (most older chips); otherwise it has
675 * a high byte of zero plus three data bytes: the manufacturer id,
676 * then a two byte device id.
677 */
678 u32 jedec_id;
d0e8c47c 679 u16 ext_id;
fa0a8c71
DB
680
681 /* The size listed here is what works with OPCODE_SE, which isn't
682 * necessarily called a "sector" by the vendor.
683 */
2f9f7628 684 unsigned sector_size;
fa0a8c71
DB
685 u16 n_sectors;
686
837479d2
AV
687 u16 page_size;
688 u16 addr_width;
689
fa0a8c71
DB
690 u16 flags;
691#define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
837479d2 692#define M25P_NO_ERASE 0x02 /* No erase command needed */
e534ee4f 693#define SST_WRITE 0x04 /* use SST byte programming */
58146992 694#define M25P_NO_FR 0x08 /* Can't do fastread */
2f9f7628
ML
695};
696
b34bc037
AV
697#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
698 ((kernel_ulong_t)&(struct flash_info) { \
699 .jedec_id = (_jedec_id), \
700 .ext_id = (_ext_id), \
701 .sector_size = (_sector_size), \
702 .n_sectors = (_n_sectors), \
837479d2 703 .page_size = 256, \
b34bc037
AV
704 .flags = (_flags), \
705 })
fa0a8c71 706
7e7d83b3 707#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
837479d2
AV
708 ((kernel_ulong_t)&(struct flash_info) { \
709 .sector_size = (_sector_size), \
710 .n_sectors = (_n_sectors), \
711 .page_size = (_page_size), \
712 .addr_width = (_addr_width), \
7e7d83b3 713 .flags = (_flags), \
837479d2 714 })
fa0a8c71
DB
715
716/* NOTE: double check command sets and memory organization when you add
717 * more flash chips. This current list focusses on newer chips, which
718 * have been converging on command sets which including JEDEC ID.
719 */
b34bc037 720static const struct spi_device_id m25p_ids[] = {
fa0a8c71 721 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
b34bc037
AV
722 { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
723 { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
fa0a8c71 724
b34bc037 725 { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
ada766e9 726 { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
b34bc037 727 { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
fa0a8c71 728
b34bc037
AV
729 { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
730 { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
731 { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
8fffed8c 732 { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
fa0a8c71 733
a5b2d76d
CL
734 { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
735
37a23c20
GJ
736 /* EON -- en25xxx */
737 { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
60845e72 738 { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
86a9893d 739 { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
60845e72 740 { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
58d864ed 741 { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
6b75152b 742 { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
60845e72 743
5ca11ca7 744 /* Everspin */
58146992 745 { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, M25P_NO_ERASE | M25P_NO_FR) },
5ca11ca7 746
55bf75b7
MS
747 /* GigaDevice */
748 { "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K) },
749 { "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
750
f80e521c
GJ
751 /* Intel/Numonyx -- xxxs33b */
752 { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
753 { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
754 { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
755
ab1ff210 756 /* Macronix */
bb08bc10 757 { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) },
df0094d7 758 { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
6175f4a1 759 { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
9c76b4e5 760 { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
b34bc037
AV
761 { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
762 { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
763 { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
764 { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
4b7f7422 765 { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
ac622f58 766 { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
f9952754 767 { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, 0) },
ab1ff210 768
8da28681 769 /* Micron */
e66e280c 770 { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, 0) },
98a9e245
LW
771 { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, 0) },
772 { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, 0) },
8da28681
VD
773 { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K) },
774
fa0a8c71
DB
775 /* Spansion -- single (large) sector size only, at least
776 * for the chips listed here (without boot sectors).
777 */
b277f77e
MV
778 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, 0) },
779 { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, 0) },
baa9ae3c
KC
780 { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
781 { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, 0) },
3d2d2b65
KC
782 { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, 0) },
783 { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
b34bc037
AV
784 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
785 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
786 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
787 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
8bb8b85f
MV
788 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
789 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
790 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
791 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
792 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
f2df1ae3
GH
793 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) },
794 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
fa0a8c71
DB
795
796 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
e534ee4f
KM
797 { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
798 { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
799 { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
800 { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
89134055 801 { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
e534ee4f
KM
802 { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) },
803 { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) },
804 { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) },
805 { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
fa0a8c71
DB
806
807 /* ST Microelectronics -- newer production may have feature updates */
b34bc037
AV
808 { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
809 { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
810 { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
811 { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
812 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
813 { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
814 { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
815 { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
816 { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
4800399e 817 { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, 0) },
b34bc037 818
f7b00090
AV
819 { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
820 { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
821 { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
822 { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
823 { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
824 { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
825 { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
826 { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
827 { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
828
b34bc037
AV
829 { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
830 { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
831 { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
832
943b35a6 833 { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
b34bc037
AV
834 { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
835 { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
fa0a8c71 836
16004f36
KC
837 { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
838 { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
839 { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
840 { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
d8f90b2c 841
02d087db 842 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
b34bc037
AV
843 { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
844 { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
845 { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
846 { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
847 { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
848 { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
0af18d27 849 { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
9d6367f4 850 { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K) },
b34bc037 851 { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
d2ac467a 852 { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
4b6ff7af 853 { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
4fba37ae 854 { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) },
9b7ef60c 855 { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
001c33ab 856 { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
0aa87b75 857 { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
837479d2
AV
858
859 /* Catalyst / On Semiconductor -- non-JEDEC */
58146992
SH
860 { "cat25c11", CAT25_INFO( 16, 8, 16, 1, M25P_NO_ERASE | M25P_NO_FR) },
861 { "cat25c03", CAT25_INFO( 32, 8, 16, 2, M25P_NO_ERASE | M25P_NO_FR) },
862 { "cat25c09", CAT25_INFO( 128, 8, 32, 2, M25P_NO_ERASE | M25P_NO_FR) },
863 { "cat25c17", CAT25_INFO( 256, 8, 32, 2, M25P_NO_ERASE | M25P_NO_FR) },
864 { "cat25128", CAT25_INFO(2048, 8, 64, 2, M25P_NO_ERASE | M25P_NO_FR) },
b34bc037 865 { },
2f9f7628 866};
b34bc037 867MODULE_DEVICE_TABLE(spi, m25p_ids);
2f9f7628 868
06f25510 869static const struct spi_device_id *jedec_probe(struct spi_device *spi)
fa0a8c71
DB
870{
871 int tmp;
872 u8 code = OPCODE_RDID;
daa84735 873 u8 id[5];
fa0a8c71 874 u32 jedec;
d0e8c47c 875 u16 ext_jedec;
fa0a8c71
DB
876 struct flash_info *info;
877
878 /* JEDEC also defines an optional "extended device information"
879 * string for after vendor-specific data, after the three bytes
880 * we use here. Supporting some chips might require using it.
881 */
daa84735 882 tmp = spi_write_then_read(spi, &code, 1, id, 5);
fa0a8c71 883 if (tmp < 0) {
289c0522 884 pr_debug("%s: error %d reading JEDEC ID\n",
0a32a102 885 dev_name(&spi->dev), tmp);
9d2c4f3f 886 return ERR_PTR(tmp);
fa0a8c71
DB
887 }
888 jedec = id[0];
889 jedec = jedec << 8;
890 jedec |= id[1];
891 jedec = jedec << 8;
892 jedec |= id[2];
893
d0e8c47c
CG
894 ext_jedec = id[3] << 8 | id[4];
895
b34bc037
AV
896 for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
897 info = (void *)m25p_ids[tmp].driver_data;
a3d3f73c 898 if (info->jedec_id == jedec) {
9168ab86 899 if (info->ext_id != 0 && info->ext_id != ext_jedec)
d0e8c47c 900 continue;
b34bc037 901 return &m25p_ids[tmp];
a3d3f73c 902 }
fa0a8c71 903 }
f0dff9bd 904 dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
9d2c4f3f 905 return ERR_PTR(-ENODEV);
fa0a8c71
DB
906}
907
908
2f9f7628
ML
909/*
910 * board specific setup should have ensured the SPI clock used here
911 * matches what the READ command supports, at least until this driver
912 * understands FAST_READ (for clocks over 25 MHz).
913 */
06f25510 914static int m25p_probe(struct spi_device *spi)
2f9f7628 915{
18c6182b 916 const struct spi_device_id *id = spi_get_device_id(spi);
2f9f7628
ML
917 struct flash_platform_data *data;
918 struct m25p *flash;
919 struct flash_info *info;
920 unsigned i;
ea6a4729 921 struct mtd_part_parser_data ppdata;
12ad2be9 922 struct device_node __maybe_unused *np = spi->dev.of_node;
2f9f7628 923
5f949137 924#ifdef CONFIG_MTD_OF_PARTS
12ad2be9 925 if (!of_device_is_available(np))
5f949137
SX
926 return -ENODEV;
927#endif
928
2f9f7628 929 /* Platform data helps sort out which chip type we have, as
fa0a8c71
DB
930 * well as how this board partitions it. If we don't have
931 * a chip ID, try the JEDEC id commands; they'll work for most
932 * newer chips, even if we don't recognize the particular chip.
2f9f7628 933 */
0278fd3f 934 data = dev_get_platdata(&spi->dev);
fa0a8c71 935 if (data && data->type) {
18c6182b 936 const struct spi_device_id *plat_id;
2f9f7628 937
b34bc037 938 for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
18c6182b
AV
939 plat_id = &m25p_ids[i];
940 if (strcmp(data->type, plat_id->name))
b34bc037
AV
941 continue;
942 break;
fa0a8c71 943 }
fa0a8c71 944
f78ec6b2 945 if (i < ARRAY_SIZE(m25p_ids) - 1)
18c6182b
AV
946 id = plat_id;
947 else
948 dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
b34bc037 949 }
fa0a8c71 950
18c6182b
AV
951 info = (void *)id->driver_data;
952
953 if (info->jedec_id) {
954 const struct spi_device_id *jid;
955
956 jid = jedec_probe(spi);
9d2c4f3f
AV
957 if (IS_ERR(jid)) {
958 return PTR_ERR(jid);
18c6182b
AV
959 } else if (jid != id) {
960 /*
961 * JEDEC knows better, so overwrite platform ID. We
962 * can't trust partitions any longer, but we'll let
963 * mtd apply them anyway, since some partitions may be
964 * marked read-only, and we don't want to lose that
965 * information, even if it's not 100% accurate.
966 */
967 dev_warn(&spi->dev, "found %s, expected %s\n",
968 jid->name, id->name);
969 id = jid;
970 info = (void *)jid->driver_data;
971 }
972 }
2f9f7628 973
e94b1766 974 flash = kzalloc(sizeof *flash, GFP_KERNEL);
2f9f7628
ML
975 if (!flash)
976 return -ENOMEM;
12ad2be9
MV
977 flash->command = kmalloc(MAX_CMD_SIZE + (flash->fast_read ? 1 : 0),
978 GFP_KERNEL);
61c3506c
JS
979 if (!flash->command) {
980 kfree(flash);
981 return -ENOMEM;
982 }
2f9f7628
ML
983
984 flash->spi = spi;
7d5230ea 985 mutex_init(&flash->lock);
975aefc9 986 spi_set_drvdata(spi, flash);
2f9f7628 987
72289824 988 /*
f80e521c 989 * Atmel, SST and Intel/Numonyx serial flash tend to power
ea60658a 990 * up with the software protection bits set
72289824
MH
991 */
992
aa084653
KC
993 if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
994 JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
995 JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
72289824
MH
996 write_enable(flash);
997 write_sr(flash, 0);
998 }
999
fa0a8c71 1000 if (data && data->name)
2f9f7628
ML
1001 flash->mtd.name = data->name;
1002 else
160bbab3 1003 flash->mtd.name = dev_name(&spi->dev);
2f9f7628
ML
1004
1005 flash->mtd.type = MTD_NORFLASH;
783ed81f 1006 flash->mtd.writesize = 1;
2f9f7628
ML
1007 flash->mtd.flags = MTD_CAP_NORFLASH;
1008 flash->mtd.size = info->sector_size * info->n_sectors;
3c3c10bb
AB
1009 flash->mtd._erase = m25p80_erase;
1010 flash->mtd._read = m25p80_read;
49aac4ae 1011
972e1b7b
AB
1012 /* flash protection support for STmicro chips */
1013 if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ST) {
1014 flash->mtd._lock = m25p80_lock;
1015 flash->mtd._unlock = m25p80_unlock;
1016 }
1017
49aac4ae 1018 /* sst flash chips use AAI word program */
e534ee4f 1019 if (info->flags & SST_WRITE)
3c3c10bb 1020 flash->mtd._write = sst_write;
49aac4ae 1021 else
3c3c10bb 1022 flash->mtd._write = m25p80_write;
2f9f7628 1023
fa0a8c71
DB
1024 /* prefer "small sector" erase if possible */
1025 if (info->flags & SECT_4K) {
1026 flash->erase_opcode = OPCODE_BE_4K;
1027 flash->mtd.erasesize = 4096;
1028 } else {
1029 flash->erase_opcode = OPCODE_SE;
1030 flash->mtd.erasesize = info->sector_size;
1031 }
1032
837479d2
AV
1033 if (info->flags & M25P_NO_ERASE)
1034 flash->mtd.flags |= MTD_NO_ERASE;
1035
ea6a4729 1036 ppdata.of_node = spi->dev.of_node;
87f39f04 1037 flash->mtd.dev.parent = &spi->dev;
837479d2 1038 flash->page_size = info->page_size;
b54f47c8 1039 flash->mtd.writebufsize = flash->page_size;
4b7f7422 1040
12ad2be9 1041 flash->fast_read = false;
12ad2be9
MV
1042 if (np && of_property_read_bool(np, "m25p,fast-read"))
1043 flash->fast_read = true;
12ad2be9
MV
1044
1045#ifdef CONFIG_M25PXX_USE_FAST_READ
1046 flash->fast_read = true;
1047#endif
58146992
SH
1048 if (info->flags & M25P_NO_FR)
1049 flash->fast_read = false;
12ad2be9 1050
87c9511f
BN
1051 /* Default commands */
1052 if (flash->fast_read)
1053 flash->read_opcode = OPCODE_FAST_READ;
1054 else
1055 flash->read_opcode = OPCODE_NORM_READ;
1056
1057 flash->program_opcode = OPCODE_PP;
1058
4b7f7422
KC
1059 if (info->addr_width)
1060 flash->addr_width = info->addr_width;
87c9511f 1061 else if (flash->mtd.size > 0x1000000) {
4b7f7422 1062 /* enable 4-byte addressing if the device exceeds 16MiB */
87c9511f
BN
1063 flash->addr_width = 4;
1064 if (JEDEC_MFR(info->jedec_id) == CFI_MFR_AMD) {
1065 /* Dedicated 4-byte command set */
1066 flash->read_opcode = flash->fast_read ?
1067 OPCODE_FAST_READ_4B :
1068 OPCODE_NORM_READ_4B;
1069 flash->program_opcode = OPCODE_PP_4B;
1070 /* No small sector erase for 4-byte command set */
1071 flash->erase_opcode = OPCODE_SE_4B;
1072 flash->mtd.erasesize = info->sector_size;
4b7f7422 1073 } else
87c9511f
BN
1074 set_4byte(flash, info->jedec_id, 1);
1075 } else {
1076 flash->addr_width = 3;
4b7f7422 1077 }
87f39f04 1078
b34bc037 1079 dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name,
d85316ac 1080 (long long)flash->mtd.size >> 10);
2f9f7628 1081
289c0522 1082 pr_debug("mtd .name = %s, .size = 0x%llx (%lldMiB) "
02d087db 1083 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
2f9f7628 1084 flash->mtd.name,
d85316ac 1085 (long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
2f9f7628
ML
1086 flash->mtd.erasesize, flash->mtd.erasesize / 1024,
1087 flash->mtd.numeraseregions);
1088
1089 if (flash->mtd.numeraseregions)
1090 for (i = 0; i < flash->mtd.numeraseregions; i++)
289c0522 1091 pr_debug("mtd.eraseregions[%d] = { .offset = 0x%llx, "
02d087db 1092 ".erasesize = 0x%.8x (%uKiB), "
2f9f7628 1093 ".numblocks = %d }\n",
d85316ac 1094 i, (long long)flash->mtd.eraseregions[i].offset,
2f9f7628
ML
1095 flash->mtd.eraseregions[i].erasesize,
1096 flash->mtd.eraseregions[i].erasesize / 1024,
1097 flash->mtd.eraseregions[i].numblocks);
1098
1099
1100 /* partitions should match sector boundaries; and it may be good to
1101 * use readonly partitions for writeprotected sectors (BP2..BP0).
1102 */
871770b5
DES
1103 return mtd_device_parse_register(&flash->mtd, NULL, &ppdata,
1104 data ? data->parts : NULL,
1105 data ? data->nr_parts : 0);
2f9f7628
ML
1106}
1107
1108
810b7e06 1109static int m25p_remove(struct spi_device *spi)
2f9f7628 1110{
975aefc9 1111 struct m25p *flash = spi_get_drvdata(spi);
2f9f7628
ML
1112 int status;
1113
1114 /* Clean up MTD stuff. */
ba52f3a2 1115 status = mtd_device_unregister(&flash->mtd);
61c3506c
JS
1116 if (status == 0) {
1117 kfree(flash->command);
2f9f7628 1118 kfree(flash);
61c3506c 1119 }
2f9f7628
ML
1120 return 0;
1121}
1122
1123
1124static struct spi_driver m25p80_driver = {
1125 .driver = {
1126 .name = "m25p80",
2f9f7628
ML
1127 .owner = THIS_MODULE,
1128 },
b34bc037 1129 .id_table = m25p_ids,
2f9f7628 1130 .probe = m25p_probe,
5153b88c 1131 .remove = m25p_remove,
fa0a8c71
DB
1132
1133 /* REVISIT: many of these chips have deep power-down modes, which
1134 * should clearly be entered on suspend() to minimize power use.
1135 * And also when they're otherwise idle...
1136 */
2f9f7628
ML
1137};
1138
c9d1b752 1139module_spi_driver(m25p80_driver);
2f9f7628
ML
1140
1141MODULE_LICENSE("GPL");
1142MODULE_AUTHOR("Mike Lavender");
1143MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");
This page took 0.565765 seconds and 5 git commands to generate.