mtd: remove use of __devexit
[deliverable/linux.git] / drivers / mtd / devices / m25p80.c
CommitLineData
2f9f7628 1/*
fa0a8c71 2 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
2f9f7628
ML
3 *
4 * Author: Mike Lavender, mike@steroidmicros.com
5 *
6 * Copyright (c) 2005, Intec Automation Inc.
7 *
8 * Some parts are based on lart.c by Abraham Van Der Merwe
9 *
10 * Cleaned up and generalized based on mtd_dataflash.c
11 *
12 * This code is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 *
16 */
17
18#include <linux/init.h>
9d2c4f3f
AV
19#include <linux/err.h>
20#include <linux/errno.h>
2f9f7628
ML
21#include <linux/module.h>
22#include <linux/device.h>
23#include <linux/interrupt.h>
7d5230ea 24#include <linux/mutex.h>
d85316ac 25#include <linux/math64.h>
5a0e3ad6 26#include <linux/slab.h>
d43c36dc 27#include <linux/sched.h>
b34bc037 28#include <linux/mod_devicetable.h>
7d5230ea 29
aa084653 30#include <linux/mtd/cfi.h>
2f9f7628
ML
31#include <linux/mtd/mtd.h>
32#include <linux/mtd/partitions.h>
5f949137 33#include <linux/of_platform.h>
7d5230ea 34
2f9f7628
ML
35#include <linux/spi/spi.h>
36#include <linux/spi/flash.h>
37
2f9f7628 38/* Flash opcodes. */
fa0a8c71
DB
39#define OPCODE_WREN 0x06 /* Write enable */
40#define OPCODE_RDSR 0x05 /* Read status register */
72289824 41#define OPCODE_WRSR 0x01 /* Write status register 1 byte */
2230b76b 42#define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */
fa0a8c71
DB
43#define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
44#define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
7854643a 45#define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
02d087db 46#define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
7854643a 47#define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */
02d087db 48#define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
2f9f7628
ML
49#define OPCODE_RDID 0x9f /* Read JEDEC ID */
50
49aac4ae
GY
51/* Used for SST flashes only. */
52#define OPCODE_BP 0x02 /* Byte program */
53#define OPCODE_WRDI 0x04 /* Write disable */
54#define OPCODE_AAI_WP 0xad /* Auto address increment word program */
55
4b7f7422
KC
56/* Used for Macronix flashes only. */
57#define OPCODE_EN4B 0xb7 /* Enter 4-byte mode */
58#define OPCODE_EX4B 0xe9 /* Exit 4-byte mode */
59
baa9ae3c
KC
60/* Used for Spansion flashes only. */
61#define OPCODE_BRWR 0x17 /* Bank register write */
62
2f9f7628
ML
63/* Status Register bits. */
64#define SR_WIP 1 /* Write in progress */
65#define SR_WEL 2 /* Write enable latch */
fa0a8c71 66/* meaning of other SR_* bits may differ between vendors */
2f9f7628
ML
67#define SR_BP0 4 /* Block protect 0 */
68#define SR_BP1 8 /* Block protect 1 */
69#define SR_BP2 0x10 /* Block protect 2 */
70#define SR_SRWD 0x80 /* SR write protect */
71
72/* Define max times to check status register before we give up. */
89bb871e 73#define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
4b7f7422 74#define MAX_CMD_SIZE 5
2f9f7628 75
aa084653
KC
76#define JEDEC_MFR(_jedec_id) ((_jedec_id) >> 16)
77
2f9f7628
ML
78/****************************************************************************/
79
80struct m25p {
81 struct spi_device *spi;
7d5230ea 82 struct mutex lock;
2f9f7628 83 struct mtd_info mtd;
837479d2
AV
84 u16 page_size;
85 u16 addr_width;
fa0a8c71 86 u8 erase_opcode;
61c3506c 87 u8 *command;
12ad2be9 88 bool fast_read;
2f9f7628
ML
89};
90
91static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
92{
93 return container_of(mtd, struct m25p, mtd);
94}
95
96/****************************************************************************/
97
98/*
99 * Internal helper functions
100 */
101
102/*
103 * Read the status register, returning its value in the location
104 * Return the status register value.
105 * Returns negative if error occurred.
106 */
107static int read_sr(struct m25p *flash)
108{
109 ssize_t retval;
110 u8 code = OPCODE_RDSR;
111 u8 val;
112
113 retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);
114
115 if (retval < 0) {
116 dev_err(&flash->spi->dev, "error %d reading SR\n",
117 (int) retval);
118 return retval;
119 }
120
121 return val;
122}
123
72289824
MH
124/*
125 * Write status register 1 byte
126 * Returns negative if error occurred.
127 */
128static int write_sr(struct m25p *flash, u8 val)
129{
130 flash->command[0] = OPCODE_WRSR;
131 flash->command[1] = val;
132
133 return spi_write(flash->spi, flash->command, 2);
134}
2f9f7628
ML
135
136/*
137 * Set write enable latch with Write Enable command.
138 * Returns negative if error occurred.
139 */
140static inline int write_enable(struct m25p *flash)
141{
142 u8 code = OPCODE_WREN;
143
8a1a6272 144 return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
2f9f7628
ML
145}
146
49aac4ae
GY
147/*
148 * Send write disble instruction to the chip.
149 */
150static inline int write_disable(struct m25p *flash)
151{
152 u8 code = OPCODE_WRDI;
153
154 return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
155}
2f9f7628 156
4b7f7422
KC
157/*
158 * Enable/disable 4-byte addressing mode.
159 */
baa9ae3c 160static inline int set_4byte(struct m25p *flash, u32 jedec_id, int enable)
4b7f7422 161{
baa9ae3c
KC
162 switch (JEDEC_MFR(jedec_id)) {
163 case CFI_MFR_MACRONIX:
0aa87b75 164 case 0xEF /* winbond */:
baa9ae3c
KC
165 flash->command[0] = enable ? OPCODE_EN4B : OPCODE_EX4B;
166 return spi_write(flash->spi, flash->command, 1);
167 default:
168 /* Spansion style */
169 flash->command[0] = OPCODE_BRWR;
170 flash->command[1] = enable << 7;
171 return spi_write(flash->spi, flash->command, 2);
172 }
4b7f7422
KC
173}
174
2f9f7628
ML
175/*
176 * Service routine to read status register until ready, or timeout occurs.
177 * Returns non-zero if error.
178 */
179static int wait_till_ready(struct m25p *flash)
180{
cd1a6de7 181 unsigned long deadline;
2f9f7628
ML
182 int sr;
183
cd1a6de7
PH
184 deadline = jiffies + MAX_READY_WAIT_JIFFIES;
185
186 do {
2f9f7628
ML
187 if ((sr = read_sr(flash)) < 0)
188 break;
189 else if (!(sr & SR_WIP))
190 return 0;
191
cd1a6de7
PH
192 cond_resched();
193
194 } while (!time_after_eq(jiffies, deadline));
2f9f7628
ML
195
196 return 1;
197}
198
faff3750
CG
199/*
200 * Erase the whole flash memory
201 *
202 * Returns 0 if successful, non-zero otherwise.
203 */
7854643a 204static int erase_chip(struct m25p *flash)
faff3750 205{
0a32a102
BN
206 pr_debug("%s: %s %lldKiB\n", dev_name(&flash->spi->dev), __func__,
207 (long long)(flash->mtd.size >> 10));
faff3750
CG
208
209 /* Wait until finished previous write command. */
210 if (wait_till_ready(flash))
211 return 1;
212
213 /* Send write enable, then erase commands. */
214 write_enable(flash);
215
216 /* Set up command buffer. */
7854643a 217 flash->command[0] = OPCODE_CHIP_ERASE;
faff3750
CG
218
219 spi_write(flash->spi, flash->command, 1);
220
221 return 0;
222}
2f9f7628 223
837479d2
AV
224static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd)
225{
226 /* opcode is in cmd[0] */
227 cmd[1] = addr >> (flash->addr_width * 8 - 8);
228 cmd[2] = addr >> (flash->addr_width * 8 - 16);
229 cmd[3] = addr >> (flash->addr_width * 8 - 24);
4b7f7422 230 cmd[4] = addr >> (flash->addr_width * 8 - 32);
837479d2
AV
231}
232
233static int m25p_cmdsz(struct m25p *flash)
234{
235 return 1 + flash->addr_width;
236}
237
2f9f7628
ML
238/*
239 * Erase one sector of flash memory at offset ``offset'' which is any
240 * address within the sector which should be erased.
241 *
242 * Returns 0 if successful, non-zero otherwise.
243 */
244static int erase_sector(struct m25p *flash, u32 offset)
245{
0a32a102
BN
246 pr_debug("%s: %s %dKiB at 0x%08x\n", dev_name(&flash->spi->dev),
247 __func__, flash->mtd.erasesize / 1024, offset);
2f9f7628
ML
248
249 /* Wait until finished previous write command. */
250 if (wait_till_ready(flash))
251 return 1;
252
253 /* Send write enable, then erase commands. */
254 write_enable(flash);
255
256 /* Set up command buffer. */
fa0a8c71 257 flash->command[0] = flash->erase_opcode;
837479d2 258 m25p_addr2cmd(flash, offset, flash->command);
2f9f7628 259
837479d2 260 spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
2f9f7628
ML
261
262 return 0;
263}
264
265/****************************************************************************/
266
267/*
268 * MTD implementation
269 */
270
271/*
272 * Erase an address range on the flash chip. The address range may extend
273 * one or more erase sectors. Return an error is there is a problem erasing.
274 */
275static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
276{
277 struct m25p *flash = mtd_to_m25p(mtd);
278 u32 addr,len;
d85316ac 279 uint32_t rem;
2f9f7628 280
0a32a102
BN
281 pr_debug("%s: %s at 0x%llx, len %lld\n", dev_name(&flash->spi->dev),
282 __func__, (long long)instr->addr,
283 (long long)instr->len);
2f9f7628 284
d85316ac
AB
285 div_u64_rem(instr->len, mtd->erasesize, &rem);
286 if (rem)
2f9f7628 287 return -EINVAL;
2f9f7628
ML
288
289 addr = instr->addr;
290 len = instr->len;
291
7d5230ea 292 mutex_lock(&flash->lock);
2f9f7628 293
7854643a 294 /* whole-chip erase? */
3f33b0aa
SF
295 if (len == flash->mtd.size) {
296 if (erase_chip(flash)) {
297 instr->state = MTD_ERASE_FAILED;
298 mutex_unlock(&flash->lock);
299 return -EIO;
300 }
7854643a
CG
301
302 /* REVISIT in some cases we could speed up erasing large regions
303 * by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up
304 * to use "small sector erase", but that's not always optimal.
305 */
306
307 /* "sector"-at-a-time erase */
faff3750
CG
308 } else {
309 while (len) {
310 if (erase_sector(flash, addr)) {
311 instr->state = MTD_ERASE_FAILED;
312 mutex_unlock(&flash->lock);
313 return -EIO;
314 }
315
316 addr += mtd->erasesize;
317 len -= mtd->erasesize;
2f9f7628 318 }
2f9f7628
ML
319 }
320
7d5230ea 321 mutex_unlock(&flash->lock);
2f9f7628
ML
322
323 instr->state = MTD_ERASE_DONE;
324 mtd_erase_callback(instr);
325
326 return 0;
327}
328
329/*
330 * Read an address range from the flash chip. The address range
331 * may be any size provided it is within the physical boundaries.
332 */
333static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
334 size_t *retlen, u_char *buf)
335{
336 struct m25p *flash = mtd_to_m25p(mtd);
337 struct spi_transfer t[2];
338 struct spi_message m;
12ad2be9 339 uint8_t opcode;
2f9f7628 340
0a32a102
BN
341 pr_debug("%s: %s from 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
342 __func__, (u32)from, len);
2f9f7628 343
8275c642
VW
344 spi_message_init(&m);
345 memset(t, 0, (sizeof t));
346
2230b76b
BW
347 /* NOTE:
348 * OPCODE_FAST_READ (if available) is faster.
349 * Should add 1 byte DUMMY_BYTE.
350 */
8275c642 351 t[0].tx_buf = flash->command;
12ad2be9 352 t[0].len = m25p_cmdsz(flash) + (flash->fast_read ? 1 : 0);
8275c642
VW
353 spi_message_add_tail(&t[0], &m);
354
355 t[1].rx_buf = buf;
356 t[1].len = len;
357 spi_message_add_tail(&t[1], &m);
358
7d5230ea 359 mutex_lock(&flash->lock);
2f9f7628
ML
360
361 /* Wait till previous write/erase is done. */
362 if (wait_till_ready(flash)) {
363 /* REVISIT status return?? */
7d5230ea 364 mutex_unlock(&flash->lock);
2f9f7628
ML
365 return 1;
366 }
367
fa0a8c71
DB
368 /* FIXME switch to OPCODE_FAST_READ. It's required for higher
369 * clocks; and at this writing, every chip this driver handles
370 * supports that opcode.
371 */
2f9f7628
ML
372
373 /* Set up the write data buffer. */
12ad2be9
MV
374 opcode = flash->fast_read ? OPCODE_FAST_READ : OPCODE_NORM_READ;
375 flash->command[0] = opcode;
837479d2 376 m25p_addr2cmd(flash, from, flash->command);
2f9f7628 377
2f9f7628
ML
378 spi_sync(flash->spi, &m);
379
12ad2be9
MV
380 *retlen = m.actual_length - m25p_cmdsz(flash) -
381 (flash->fast_read ? 1 : 0);
2f9f7628 382
7d5230ea 383 mutex_unlock(&flash->lock);
2f9f7628
ML
384
385 return 0;
386}
387
388/*
389 * Write an address range to the flash chip. Data must be written in
390 * FLASH_PAGESIZE chunks. The address range may be any size provided
391 * it is within the physical boundaries.
392 */
393static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
394 size_t *retlen, const u_char *buf)
395{
396 struct m25p *flash = mtd_to_m25p(mtd);
397 u32 page_offset, page_size;
398 struct spi_transfer t[2];
399 struct spi_message m;
400
0a32a102
BN
401 pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
402 __func__, (u32)to, len);
2f9f7628 403
8275c642
VW
404 spi_message_init(&m);
405 memset(t, 0, (sizeof t));
406
407 t[0].tx_buf = flash->command;
837479d2 408 t[0].len = m25p_cmdsz(flash);
8275c642
VW
409 spi_message_add_tail(&t[0], &m);
410
411 t[1].tx_buf = buf;
412 spi_message_add_tail(&t[1], &m);
413
7d5230ea 414 mutex_lock(&flash->lock);
2f9f7628
ML
415
416 /* Wait until finished previous write command. */
bc018863
CG
417 if (wait_till_ready(flash)) {
418 mutex_unlock(&flash->lock);
2f9f7628 419 return 1;
bc018863 420 }
2f9f7628
ML
421
422 write_enable(flash);
423
2f9f7628
ML
424 /* Set up the opcode in the write buffer. */
425 flash->command[0] = OPCODE_PP;
837479d2 426 m25p_addr2cmd(flash, to, flash->command);
2f9f7628 427
837479d2 428 page_offset = to & (flash->page_size - 1);
2f9f7628
ML
429
430 /* do all the bytes fit onto one page? */
837479d2 431 if (page_offset + len <= flash->page_size) {
2f9f7628
ML
432 t[1].len = len;
433
434 spi_sync(flash->spi, &m);
435
837479d2 436 *retlen = m.actual_length - m25p_cmdsz(flash);
2f9f7628
ML
437 } else {
438 u32 i;
439
440 /* the size of data remaining on the first page */
837479d2 441 page_size = flash->page_size - page_offset;
2f9f7628 442
2f9f7628
ML
443 t[1].len = page_size;
444 spi_sync(flash->spi, &m);
445
837479d2 446 *retlen = m.actual_length - m25p_cmdsz(flash);
2f9f7628 447
837479d2 448 /* write everything in flash->page_size chunks */
2f9f7628
ML
449 for (i = page_size; i < len; i += page_size) {
450 page_size = len - i;
837479d2
AV
451 if (page_size > flash->page_size)
452 page_size = flash->page_size;
2f9f7628
ML
453
454 /* write the next page to flash */
837479d2 455 m25p_addr2cmd(flash, to + i, flash->command);
2f9f7628
ML
456
457 t[1].tx_buf = buf + i;
458 t[1].len = page_size;
459
460 wait_till_ready(flash);
461
462 write_enable(flash);
463
464 spi_sync(flash->spi, &m);
465
b06cd21e 466 *retlen += m.actual_length - m25p_cmdsz(flash);
7d5230ea
DB
467 }
468 }
2f9f7628 469
7d5230ea 470 mutex_unlock(&flash->lock);
2f9f7628
ML
471
472 return 0;
473}
474
49aac4ae
GY
475static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
476 size_t *retlen, const u_char *buf)
477{
478 struct m25p *flash = mtd_to_m25p(mtd);
479 struct spi_transfer t[2];
480 struct spi_message m;
481 size_t actual;
482 int cmd_sz, ret;
483
0a32a102
BN
484 pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
485 __func__, (u32)to, len);
dcf12463 486
49aac4ae
GY
487 spi_message_init(&m);
488 memset(t, 0, (sizeof t));
489
490 t[0].tx_buf = flash->command;
837479d2 491 t[0].len = m25p_cmdsz(flash);
49aac4ae
GY
492 spi_message_add_tail(&t[0], &m);
493
494 t[1].tx_buf = buf;
495 spi_message_add_tail(&t[1], &m);
496
497 mutex_lock(&flash->lock);
498
499 /* Wait until finished previous write command. */
500 ret = wait_till_ready(flash);
501 if (ret)
502 goto time_out;
503
504 write_enable(flash);
505
506 actual = to % 2;
507 /* Start write from odd address. */
508 if (actual) {
509 flash->command[0] = OPCODE_BP;
837479d2 510 m25p_addr2cmd(flash, to, flash->command);
49aac4ae
GY
511
512 /* write one byte. */
513 t[1].len = 1;
514 spi_sync(flash->spi, &m);
515 ret = wait_till_ready(flash);
516 if (ret)
517 goto time_out;
837479d2 518 *retlen += m.actual_length - m25p_cmdsz(flash);
49aac4ae
GY
519 }
520 to += actual;
521
522 flash->command[0] = OPCODE_AAI_WP;
837479d2 523 m25p_addr2cmd(flash, to, flash->command);
49aac4ae
GY
524
525 /* Write out most of the data here. */
837479d2 526 cmd_sz = m25p_cmdsz(flash);
49aac4ae
GY
527 for (; actual < len - 1; actual += 2) {
528 t[0].len = cmd_sz;
529 /* write two bytes. */
530 t[1].len = 2;
531 t[1].tx_buf = buf + actual;
532
533 spi_sync(flash->spi, &m);
534 ret = wait_till_ready(flash);
535 if (ret)
536 goto time_out;
537 *retlen += m.actual_length - cmd_sz;
538 cmd_sz = 1;
539 to += 2;
540 }
541 write_disable(flash);
542 ret = wait_till_ready(flash);
543 if (ret)
544 goto time_out;
545
546 /* Write out trailing byte if it exists. */
547 if (actual != len) {
548 write_enable(flash);
549 flash->command[0] = OPCODE_BP;
837479d2
AV
550 m25p_addr2cmd(flash, to, flash->command);
551 t[0].len = m25p_cmdsz(flash);
49aac4ae
GY
552 t[1].len = 1;
553 t[1].tx_buf = buf + actual;
554
555 spi_sync(flash->spi, &m);
556 ret = wait_till_ready(flash);
557 if (ret)
558 goto time_out;
837479d2 559 *retlen += m.actual_length - m25p_cmdsz(flash);
49aac4ae
GY
560 write_disable(flash);
561 }
562
563time_out:
564 mutex_unlock(&flash->lock);
565 return ret;
566}
2f9f7628
ML
567
568/****************************************************************************/
569
570/*
571 * SPI device driver setup and teardown
572 */
573
574struct flash_info {
fa0a8c71
DB
575 /* JEDEC id zero means "no ID" (most older chips); otherwise it has
576 * a high byte of zero plus three data bytes: the manufacturer id,
577 * then a two byte device id.
578 */
579 u32 jedec_id;
d0e8c47c 580 u16 ext_id;
fa0a8c71
DB
581
582 /* The size listed here is what works with OPCODE_SE, which isn't
583 * necessarily called a "sector" by the vendor.
584 */
2f9f7628 585 unsigned sector_size;
fa0a8c71
DB
586 u16 n_sectors;
587
837479d2
AV
588 u16 page_size;
589 u16 addr_width;
590
fa0a8c71
DB
591 u16 flags;
592#define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
837479d2 593#define M25P_NO_ERASE 0x02 /* No erase command needed */
2f9f7628
ML
594};
595
b34bc037
AV
596#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
597 ((kernel_ulong_t)&(struct flash_info) { \
598 .jedec_id = (_jedec_id), \
599 .ext_id = (_ext_id), \
600 .sector_size = (_sector_size), \
601 .n_sectors = (_n_sectors), \
837479d2 602 .page_size = 256, \
b34bc037
AV
603 .flags = (_flags), \
604 })
fa0a8c71 605
837479d2
AV
606#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width) \
607 ((kernel_ulong_t)&(struct flash_info) { \
608 .sector_size = (_sector_size), \
609 .n_sectors = (_n_sectors), \
610 .page_size = (_page_size), \
611 .addr_width = (_addr_width), \
612 .flags = M25P_NO_ERASE, \
613 })
fa0a8c71
DB
614
615/* NOTE: double check command sets and memory organization when you add
616 * more flash chips. This current list focusses on newer chips, which
617 * have been converging on command sets which including JEDEC ID.
618 */
b34bc037 619static const struct spi_device_id m25p_ids[] = {
fa0a8c71 620 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
b34bc037
AV
621 { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
622 { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
fa0a8c71 623
b34bc037 624 { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
ada766e9 625 { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
b34bc037 626 { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
fa0a8c71 627
b34bc037
AV
628 { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
629 { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
630 { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
8fffed8c 631 { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
fa0a8c71 632
a5b2d76d
CL
633 { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
634
37a23c20
GJ
635 /* EON -- en25xxx */
636 { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
60845e72 637 { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
86a9893d 638 { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
60845e72 639 { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
58d864ed 640 { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
60845e72 641
5ca11ca7
MV
642 /* Everspin */
643 { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2) },
644
f80e521c
GJ
645 /* Intel/Numonyx -- xxxs33b */
646 { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
647 { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
648 { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
95c1b0ce 649 { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, 0) },
f80e521c 650
ab1ff210 651 /* Macronix */
bb08bc10 652 { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) },
df0094d7 653 { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
6175f4a1 654 { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
9c76b4e5 655 { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
b34bc037
AV
656 { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
657 { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
658 { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
659 { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
4b7f7422 660 { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
ac622f58 661 { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
ab1ff210 662
8da28681 663 /* Micron */
3105875f 664 { "n25q128", INFO(0x20ba18, 0, 64 * 1024, 256, 0) },
8da28681
VD
665 { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K) },
666
fa0a8c71
DB
667 /* Spansion -- single (large) sector size only, at least
668 * for the chips listed here (without boot sectors).
669 */
b277f77e
MV
670 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, 0) },
671 { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, 0) },
baa9ae3c
KC
672 { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
673 { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, 0) },
3d2d2b65
KC
674 { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, 0) },
675 { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
b34bc037
AV
676 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
677 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
678 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
679 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
8bb8b85f
MV
680 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
681 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
682 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
683 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
684 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
f2df1ae3
GH
685 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) },
686 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
fa0a8c71
DB
687
688 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
b34bc037
AV
689 { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K) },
690 { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K) },
691 { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K) },
692 { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K) },
693 { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K) },
694 { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K) },
695 { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K) },
696 { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K) },
fa0a8c71
DB
697
698 /* ST Microelectronics -- newer production may have feature updates */
b34bc037
AV
699 { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
700 { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
701 { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
702 { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
703 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
704 { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
705 { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
706 { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
707 { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
4800399e 708 { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, 0) },
b34bc037 709
f7b00090
AV
710 { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
711 { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
712 { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
713 { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
714 { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
715 { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
716 { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
717 { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
718 { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
719
b34bc037
AV
720 { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
721 { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
722 { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
723
943b35a6 724 { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
b34bc037
AV
725 { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
726 { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
fa0a8c71 727
16004f36
KC
728 { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
729 { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
730 { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
731 { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
d8f90b2c 732
02d087db 733 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
b34bc037
AV
734 { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
735 { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
736 { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
737 { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
738 { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
739 { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
0af18d27 740 { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
9d6367f4 741 { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K) },
b34bc037 742 { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
d2ac467a 743 { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
4fba37ae 744 { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) },
9b7ef60c 745 { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
0aa87b75 746 { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
837479d2
AV
747
748 /* Catalyst / On Semiconductor -- non-JEDEC */
749 { "cat25c11", CAT25_INFO( 16, 8, 16, 1) },
750 { "cat25c03", CAT25_INFO( 32, 8, 16, 2) },
751 { "cat25c09", CAT25_INFO( 128, 8, 32, 2) },
752 { "cat25c17", CAT25_INFO( 256, 8, 32, 2) },
753 { "cat25128", CAT25_INFO(2048, 8, 64, 2) },
b34bc037 754 { },
2f9f7628 755};
b34bc037 756MODULE_DEVICE_TABLE(spi, m25p_ids);
2f9f7628 757
06f25510 758static const struct spi_device_id *jedec_probe(struct spi_device *spi)
fa0a8c71
DB
759{
760 int tmp;
761 u8 code = OPCODE_RDID;
daa84735 762 u8 id[5];
fa0a8c71 763 u32 jedec;
d0e8c47c 764 u16 ext_jedec;
fa0a8c71
DB
765 struct flash_info *info;
766
767 /* JEDEC also defines an optional "extended device information"
768 * string for after vendor-specific data, after the three bytes
769 * we use here. Supporting some chips might require using it.
770 */
daa84735 771 tmp = spi_write_then_read(spi, &code, 1, id, 5);
fa0a8c71 772 if (tmp < 0) {
289c0522 773 pr_debug("%s: error %d reading JEDEC ID\n",
0a32a102 774 dev_name(&spi->dev), tmp);
9d2c4f3f 775 return ERR_PTR(tmp);
fa0a8c71
DB
776 }
777 jedec = id[0];
778 jedec = jedec << 8;
779 jedec |= id[1];
780 jedec = jedec << 8;
781 jedec |= id[2];
782
d0e8c47c
CG
783 ext_jedec = id[3] << 8 | id[4];
784
b34bc037
AV
785 for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
786 info = (void *)m25p_ids[tmp].driver_data;
a3d3f73c 787 if (info->jedec_id == jedec) {
9168ab86 788 if (info->ext_id != 0 && info->ext_id != ext_jedec)
d0e8c47c 789 continue;
b34bc037 790 return &m25p_ids[tmp];
a3d3f73c 791 }
fa0a8c71 792 }
f0dff9bd 793 dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
9d2c4f3f 794 return ERR_PTR(-ENODEV);
fa0a8c71
DB
795}
796
797
2f9f7628
ML
798/*
799 * board specific setup should have ensured the SPI clock used here
800 * matches what the READ command supports, at least until this driver
801 * understands FAST_READ (for clocks over 25 MHz).
802 */
06f25510 803static int m25p_probe(struct spi_device *spi)
2f9f7628 804{
18c6182b 805 const struct spi_device_id *id = spi_get_device_id(spi);
2f9f7628
ML
806 struct flash_platform_data *data;
807 struct m25p *flash;
808 struct flash_info *info;
809 unsigned i;
ea6a4729 810 struct mtd_part_parser_data ppdata;
12ad2be9 811 struct device_node __maybe_unused *np = spi->dev.of_node;
2f9f7628 812
5f949137 813#ifdef CONFIG_MTD_OF_PARTS
12ad2be9 814 if (!of_device_is_available(np))
5f949137
SX
815 return -ENODEV;
816#endif
817
2f9f7628 818 /* Platform data helps sort out which chip type we have, as
fa0a8c71
DB
819 * well as how this board partitions it. If we don't have
820 * a chip ID, try the JEDEC id commands; they'll work for most
821 * newer chips, even if we don't recognize the particular chip.
2f9f7628
ML
822 */
823 data = spi->dev.platform_data;
fa0a8c71 824 if (data && data->type) {
18c6182b 825 const struct spi_device_id *plat_id;
2f9f7628 826
b34bc037 827 for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
18c6182b
AV
828 plat_id = &m25p_ids[i];
829 if (strcmp(data->type, plat_id->name))
b34bc037
AV
830 continue;
831 break;
fa0a8c71 832 }
fa0a8c71 833
f78ec6b2 834 if (i < ARRAY_SIZE(m25p_ids) - 1)
18c6182b
AV
835 id = plat_id;
836 else
837 dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
b34bc037 838 }
fa0a8c71 839
18c6182b
AV
840 info = (void *)id->driver_data;
841
842 if (info->jedec_id) {
843 const struct spi_device_id *jid;
844
845 jid = jedec_probe(spi);
9d2c4f3f
AV
846 if (IS_ERR(jid)) {
847 return PTR_ERR(jid);
18c6182b
AV
848 } else if (jid != id) {
849 /*
850 * JEDEC knows better, so overwrite platform ID. We
851 * can't trust partitions any longer, but we'll let
852 * mtd apply them anyway, since some partitions may be
853 * marked read-only, and we don't want to lose that
854 * information, even if it's not 100% accurate.
855 */
856 dev_warn(&spi->dev, "found %s, expected %s\n",
857 jid->name, id->name);
858 id = jid;
859 info = (void *)jid->driver_data;
860 }
861 }
2f9f7628 862
e94b1766 863 flash = kzalloc(sizeof *flash, GFP_KERNEL);
2f9f7628
ML
864 if (!flash)
865 return -ENOMEM;
12ad2be9
MV
866 flash->command = kmalloc(MAX_CMD_SIZE + (flash->fast_read ? 1 : 0),
867 GFP_KERNEL);
61c3506c
JS
868 if (!flash->command) {
869 kfree(flash);
870 return -ENOMEM;
871 }
2f9f7628
ML
872
873 flash->spi = spi;
7d5230ea 874 mutex_init(&flash->lock);
2f9f7628
ML
875 dev_set_drvdata(&spi->dev, flash);
876
72289824 877 /*
f80e521c 878 * Atmel, SST and Intel/Numonyx serial flash tend to power
ea60658a 879 * up with the software protection bits set
72289824
MH
880 */
881
aa084653
KC
882 if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
883 JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
884 JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
72289824
MH
885 write_enable(flash);
886 write_sr(flash, 0);
887 }
888
fa0a8c71 889 if (data && data->name)
2f9f7628
ML
890 flash->mtd.name = data->name;
891 else
160bbab3 892 flash->mtd.name = dev_name(&spi->dev);
2f9f7628
ML
893
894 flash->mtd.type = MTD_NORFLASH;
783ed81f 895 flash->mtd.writesize = 1;
2f9f7628
ML
896 flash->mtd.flags = MTD_CAP_NORFLASH;
897 flash->mtd.size = info->sector_size * info->n_sectors;
3c3c10bb
AB
898 flash->mtd._erase = m25p80_erase;
899 flash->mtd._read = m25p80_read;
49aac4ae
GY
900
901 /* sst flash chips use AAI word program */
aa084653 902 if (JEDEC_MFR(info->jedec_id) == CFI_MFR_SST)
3c3c10bb 903 flash->mtd._write = sst_write;
49aac4ae 904 else
3c3c10bb 905 flash->mtd._write = m25p80_write;
2f9f7628 906
fa0a8c71
DB
907 /* prefer "small sector" erase if possible */
908 if (info->flags & SECT_4K) {
909 flash->erase_opcode = OPCODE_BE_4K;
910 flash->mtd.erasesize = 4096;
911 } else {
912 flash->erase_opcode = OPCODE_SE;
913 flash->mtd.erasesize = info->sector_size;
914 }
915
837479d2
AV
916 if (info->flags & M25P_NO_ERASE)
917 flash->mtd.flags |= MTD_NO_ERASE;
918
ea6a4729 919 ppdata.of_node = spi->dev.of_node;
87f39f04 920 flash->mtd.dev.parent = &spi->dev;
837479d2 921 flash->page_size = info->page_size;
b54f47c8 922 flash->mtd.writebufsize = flash->page_size;
4b7f7422 923
12ad2be9
MV
924 flash->fast_read = false;
925#ifdef CONFIG_OF
926 if (np && of_property_read_bool(np, "m25p,fast-read"))
927 flash->fast_read = true;
928#endif
929
930#ifdef CONFIG_M25PXX_USE_FAST_READ
931 flash->fast_read = true;
932#endif
933
4b7f7422
KC
934 if (info->addr_width)
935 flash->addr_width = info->addr_width;
936 else {
937 /* enable 4-byte addressing if the device exceeds 16MiB */
938 if (flash->mtd.size > 0x1000000) {
939 flash->addr_width = 4;
baa9ae3c 940 set_4byte(flash, info->jedec_id, 1);
4b7f7422
KC
941 } else
942 flash->addr_width = 3;
943 }
87f39f04 944
b34bc037 945 dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name,
d85316ac 946 (long long)flash->mtd.size >> 10);
2f9f7628 947
289c0522 948 pr_debug("mtd .name = %s, .size = 0x%llx (%lldMiB) "
02d087db 949 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
2f9f7628 950 flash->mtd.name,
d85316ac 951 (long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
2f9f7628
ML
952 flash->mtd.erasesize, flash->mtd.erasesize / 1024,
953 flash->mtd.numeraseregions);
954
955 if (flash->mtd.numeraseregions)
956 for (i = 0; i < flash->mtd.numeraseregions; i++)
289c0522 957 pr_debug("mtd.eraseregions[%d] = { .offset = 0x%llx, "
02d087db 958 ".erasesize = 0x%.8x (%uKiB), "
2f9f7628 959 ".numblocks = %d }\n",
d85316ac 960 i, (long long)flash->mtd.eraseregions[i].offset,
2f9f7628
ML
961 flash->mtd.eraseregions[i].erasesize,
962 flash->mtd.eraseregions[i].erasesize / 1024,
963 flash->mtd.eraseregions[i].numblocks);
964
965
966 /* partitions should match sector boundaries; and it may be good to
967 * use readonly partitions for writeprotected sectors (BP2..BP0).
968 */
871770b5
DES
969 return mtd_device_parse_register(&flash->mtd, NULL, &ppdata,
970 data ? data->parts : NULL,
971 data ? data->nr_parts : 0);
2f9f7628
ML
972}
973
974
810b7e06 975static int m25p_remove(struct spi_device *spi)
2f9f7628
ML
976{
977 struct m25p *flash = dev_get_drvdata(&spi->dev);
978 int status;
979
980 /* Clean up MTD stuff. */
ba52f3a2 981 status = mtd_device_unregister(&flash->mtd);
61c3506c
JS
982 if (status == 0) {
983 kfree(flash->command);
2f9f7628 984 kfree(flash);
61c3506c 985 }
2f9f7628
ML
986 return 0;
987}
988
989
990static struct spi_driver m25p80_driver = {
991 .driver = {
992 .name = "m25p80",
2f9f7628
ML
993 .owner = THIS_MODULE,
994 },
b34bc037 995 .id_table = m25p_ids,
2f9f7628 996 .probe = m25p_probe,
5153b88c 997 .remove = m25p_remove,
fa0a8c71
DB
998
999 /* REVISIT: many of these chips have deep power-down modes, which
1000 * should clearly be entered on suspend() to minimize power use.
1001 * And also when they're otherwise idle...
1002 */
2f9f7628
ML
1003};
1004
c9d1b752 1005module_spi_driver(m25p80_driver);
2f9f7628
ML
1006
1007MODULE_LICENSE("GPL");
1008MODULE_AUTHOR("Mike Lavender");
1009MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");
This page took 0.518028 seconds and 5 git commands to generate.