mtd: atmel_nand: make ecc parameters same as definition
[deliverable/linux.git] / drivers / mtd / nand / atmel_nand.c
CommitLineData
42cb1403 1/*
1c7b874d 2 * Copyright © 2003 Rick Bronson
42cb1403
AV
3 *
4 * Derived from drivers/mtd/nand/autcpu12.c
1c7b874d 5 * Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
42cb1403
AV
6 *
7 * Derived from drivers/mtd/spia.c
1c7b874d 8 * Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
42cb1403 9 *
77f5492c
RG
10 *
11 * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
1c7b874d 12 * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007
77f5492c
RG
13 *
14 * Derived from Das U-Boot source code
15 * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
1c7b874d 16 * © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
77f5492c 17 *
1c7b874d
JW
18 * Add Programmable Multibit ECC support for various AT91 SoC
19 * © Copyright 2012 ATMEL, Hong Xu
77f5492c 20 *
7dc37de7
JW
21 * Add Nand Flash Controller support for SAMA5 SoC
22 * © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
23 *
42cb1403
AV
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License version 2 as
26 * published by the Free Software Foundation.
27 *
28 */
29
b7f080cf 30#include <linux/dma-mapping.h>
42cb1403
AV
31#include <linux/slab.h>
32#include <linux/module.h>
f4fa697c 33#include <linux/moduleparam.h>
42cb1403 34#include <linux/platform_device.h>
d6a01661
JCPV
35#include <linux/of.h>
36#include <linux/of_device.h>
37#include <linux/of_gpio.h>
38#include <linux/of_mtd.h>
42cb1403
AV
39#include <linux/mtd/mtd.h>
40#include <linux/mtd/nand.h>
41#include <linux/mtd/partitions.h>
42
7dc37de7 43#include <linux/delay.h>
5c39c4c5 44#include <linux/dmaengine.h>
90574d0a 45#include <linux/gpio.h>
7dc37de7 46#include <linux/interrupt.h>
90574d0a 47#include <linux/io.h>
bf4289cb 48#include <linux/platform_data/atmel.h>
42cb1403 49
cbc6c5e7
HX
50static int use_dma = 1;
51module_param(use_dma, int, 0);
52
f4fa697c
SP
53static int on_flash_bbt = 0;
54module_param(on_flash_bbt, int, 0);
55
77f5492c
RG
56/* Register access macros */
57#define ecc_readl(add, reg) \
3c3796cc 58 __raw_readl(add + ATMEL_ECC_##reg)
77f5492c 59#define ecc_writel(add, reg, value) \
3c3796cc 60 __raw_writel((value), add + ATMEL_ECC_##reg)
77f5492c 61
d4f4c0aa 62#include "atmel_nand_ecc.h" /* Hardware ECC registers */
7dc37de7 63#include "atmel_nand_nfc.h" /* Nand Flash Controller definition */
77f5492c
RG
64
65/* oob layout for large page size
66 * bad block info is on bytes 0 and 1
67 * the bytes have to be consecutives to avoid
68 * several NAND_CMD_RNDOUT during read
69 */
3c3796cc 70static struct nand_ecclayout atmel_oobinfo_large = {
77f5492c
RG
71 .eccbytes = 4,
72 .eccpos = {60, 61, 62, 63},
73 .oobfree = {
74 {2, 58}
75 },
76};
77
78/* oob layout for small page size
79 * bad block info is on bytes 4 and 5
80 * the bytes have to be consecutives to avoid
81 * several NAND_CMD_RNDOUT during read
82 */
3c3796cc 83static struct nand_ecclayout atmel_oobinfo_small = {
77f5492c
RG
84 .eccbytes = 4,
85 .eccpos = {0, 1, 2, 3},
86 .oobfree = {
87 {6, 10}
88 },
89};
90
7dc37de7
JW
91struct atmel_nfc {
92 void __iomem *base_cmd_regs;
93 void __iomem *hsmc_regs;
94 void __iomem *sram_bank0;
95 dma_addr_t sram_bank0_phys;
1ae9c092 96 bool use_nfc_sram;
6054d4d5 97 bool write_by_sram;
7dc37de7
JW
98
99 bool is_initialized;
100 struct completion comp_nfc;
1ae9c092
JW
101
102 /* Point to the sram bank which include readed data via NFC */
103 void __iomem *data_in_sram;
6054d4d5 104 bool will_write_sram;
7dc37de7
JW
105};
106static struct atmel_nfc nand_nfc;
107
3c3796cc 108struct atmel_nand_host {
42cb1403
AV
109 struct nand_chip nand_chip;
110 struct mtd_info mtd;
111 void __iomem *io_base;
cbc6c5e7 112 dma_addr_t io_phys;
d6a01661 113 struct atmel_nand_data board;
77f5492c
RG
114 struct device *dev;
115 void __iomem *ecc;
cbc6c5e7
HX
116
117 struct completion comp;
118 struct dma_chan *dma_chan;
a41b51a1 119
7dc37de7
JW
120 struct atmel_nfc *nfc;
121
a41b51a1
JW
122 bool has_pmecc;
123 u8 pmecc_corr_cap;
124 u16 pmecc_sector_size;
125 u32 pmecc_lookup_table_offset;
e66b4318
JW
126 u32 pmecc_lookup_table_offset_512;
127 u32 pmecc_lookup_table_offset_1024;
1c7b874d
JW
128
129 int pmecc_bytes_per_sector;
130 int pmecc_sector_number;
131 int pmecc_degree; /* Degree of remainders */
132 int pmecc_cw_len; /* Length of codeword */
133
134 void __iomem *pmerrloc_base;
135 void __iomem *pmecc_rom_base;
136
137 /* lookup table for alpha_to and index_of */
138 void __iomem *pmecc_alpha_to;
139 void __iomem *pmecc_index_of;
140
141 /* data for pmecc computation */
142 int16_t *pmecc_partial_syn;
143 int16_t *pmecc_si;
144 int16_t *pmecc_smu; /* Sigma table */
145 int16_t *pmecc_lmu; /* polynomal order */
146 int *pmecc_mu;
147 int *pmecc_dmu;
148 int *pmecc_delta;
42cb1403
AV
149};
150
1c7b874d
JW
151static struct nand_ecclayout atmel_pmecc_oobinfo;
152
8136508c
AN
153/*
154 * Enable NAND.
155 */
3c3796cc 156static void atmel_nand_enable(struct atmel_nand_host *host)
8136508c 157{
d6a01661
JCPV
158 if (gpio_is_valid(host->board.enable_pin))
159 gpio_set_value(host->board.enable_pin, 0);
8136508c
AN
160}
161
162/*
163 * Disable NAND.
164 */
3c3796cc 165static void atmel_nand_disable(struct atmel_nand_host *host)
8136508c 166{
d6a01661
JCPV
167 if (gpio_is_valid(host->board.enable_pin))
168 gpio_set_value(host->board.enable_pin, 1);
8136508c
AN
169}
170
42cb1403
AV
171/*
172 * Hardware specific access to control-lines
173 */
3c3796cc 174static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
42cb1403
AV
175{
176 struct nand_chip *nand_chip = mtd->priv;
3c3796cc 177 struct atmel_nand_host *host = nand_chip->priv;
42cb1403 178
8136508c 179 if (ctrl & NAND_CTRL_CHANGE) {
2314488e 180 if (ctrl & NAND_NCE)
3c3796cc 181 atmel_nand_enable(host);
2314488e 182 else
3c3796cc 183 atmel_nand_disable(host);
2314488e 184 }
42cb1403
AV
185 if (cmd == NAND_CMD_NONE)
186 return;
187
188 if (ctrl & NAND_CLE)
d6a01661 189 writeb(cmd, host->io_base + (1 << host->board.cle));
42cb1403 190 else
d6a01661 191 writeb(cmd, host->io_base + (1 << host->board.ale));
42cb1403
AV
192}
193
194/*
195 * Read the Device Ready pin.
196 */
3c3796cc 197static int atmel_nand_device_ready(struct mtd_info *mtd)
42cb1403
AV
198{
199 struct nand_chip *nand_chip = mtd->priv;
3c3796cc 200 struct atmel_nand_host *host = nand_chip->priv;
42cb1403 201
d6a01661
JCPV
202 return gpio_get_value(host->board.rdy_pin) ^
203 !!host->board.rdy_pin_active_low;
42cb1403
AV
204}
205
7dc37de7
JW
206/* Set up for hardware ready pin and enable pin. */
207static int atmel_nand_set_enable_ready_pins(struct mtd_info *mtd)
208{
209 struct nand_chip *chip = mtd->priv;
210 struct atmel_nand_host *host = chip->priv;
211 int res = 0;
212
213 if (gpio_is_valid(host->board.rdy_pin)) {
214 res = devm_gpio_request(host->dev,
215 host->board.rdy_pin, "nand_rdy");
216 if (res < 0) {
217 dev_err(host->dev,
218 "can't request rdy gpio %d\n",
219 host->board.rdy_pin);
220 return res;
221 }
222
223 res = gpio_direction_input(host->board.rdy_pin);
224 if (res < 0) {
225 dev_err(host->dev,
226 "can't request input direction rdy gpio %d\n",
227 host->board.rdy_pin);
228 return res;
229 }
230
231 chip->dev_ready = atmel_nand_device_ready;
232 }
233
234 if (gpio_is_valid(host->board.enable_pin)) {
235 res = devm_gpio_request(host->dev,
236 host->board.enable_pin, "nand_enable");
237 if (res < 0) {
238 dev_err(host->dev,
239 "can't request enable gpio %d\n",
240 host->board.enable_pin);
241 return res;
242 }
243
244 res = gpio_direction_output(host->board.enable_pin, 1);
245 if (res < 0) {
246 dev_err(host->dev,
247 "can't request output direction enable gpio %d\n",
248 host->board.enable_pin);
249 return res;
250 }
251 }
252
253 return res;
254}
255
1ae9c092
JW
256static void memcpy32_fromio(void *trg, const void __iomem *src, size_t size)
257{
258 int i;
259 u32 *t = trg;
260 const __iomem u32 *s = src;
261
262 for (i = 0; i < (size >> 2); i++)
263 *t++ = readl_relaxed(s++);
264}
265
6054d4d5
JW
266static void memcpy32_toio(void __iomem *trg, const void *src, int size)
267{
268 int i;
269 u32 __iomem *t = trg;
270 const u32 *s = src;
271
272 for (i = 0; i < (size >> 2); i++)
273 writel_relaxed(*s++, t++);
274}
275
50082319
AB
276/*
277 * Minimal-overhead PIO for data access.
278 */
279static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len)
280{
281 struct nand_chip *nand_chip = mtd->priv;
1ae9c092 282 struct atmel_nand_host *host = nand_chip->priv;
50082319 283
1ae9c092
JW
284 if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
285 memcpy32_fromio(buf, host->nfc->data_in_sram, len);
286 host->nfc->data_in_sram += len;
287 } else {
288 __raw_readsb(nand_chip->IO_ADDR_R, buf, len);
289 }
50082319
AB
290}
291
292static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len)
293{
294 struct nand_chip *nand_chip = mtd->priv;
1ae9c092 295 struct atmel_nand_host *host = nand_chip->priv;
50082319 296
1ae9c092
JW
297 if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
298 memcpy32_fromio(buf, host->nfc->data_in_sram, len);
299 host->nfc->data_in_sram += len;
300 } else {
301 __raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2);
302 }
50082319
AB
303}
304
305static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len)
306{
307 struct nand_chip *nand_chip = mtd->priv;
308
309 __raw_writesb(nand_chip->IO_ADDR_W, buf, len);
310}
311
312static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len)
313{
314 struct nand_chip *nand_chip = mtd->priv;
315
316 __raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2);
317}
318
cbc6c5e7
HX
319static void dma_complete_func(void *completion)
320{
321 complete(completion);
322}
323
1ae9c092
JW
324static int nfc_set_sram_bank(struct atmel_nand_host *host, unsigned int bank)
325{
326 /* NFC only has two banks. Must be 0 or 1 */
327 if (bank > 1)
328 return -EINVAL;
329
330 if (bank) {
331 /* Only for a 2k-page or lower flash, NFC can handle 2 banks */
332 if (host->mtd.writesize > 2048)
333 return -EINVAL;
334 nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK1);
335 } else {
336 nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK0);
337 }
338
339 return 0;
340}
341
342static uint nfc_get_sram_off(struct atmel_nand_host *host)
343{
344 if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
345 return NFC_SRAM_BANK1_OFFSET;
346 else
347 return 0;
348}
349
350static dma_addr_t nfc_sram_phys(struct atmel_nand_host *host)
351{
352 if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
353 return host->nfc->sram_bank0_phys + NFC_SRAM_BANK1_OFFSET;
354 else
355 return host->nfc->sram_bank0_phys;
356}
357
cbc6c5e7
HX
358static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len,
359 int is_read)
360{
361 struct dma_device *dma_dev;
362 enum dma_ctrl_flags flags;
363 dma_addr_t dma_src_addr, dma_dst_addr, phys_addr;
364 struct dma_async_tx_descriptor *tx = NULL;
365 dma_cookie_t cookie;
366 struct nand_chip *chip = mtd->priv;
367 struct atmel_nand_host *host = chip->priv;
368 void *p = buf;
369 int err = -EIO;
370 enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1ae9c092 371 struct atmel_nfc *nfc = host->nfc;
cbc6c5e7 372
80b4f81a
HX
373 if (buf >= high_memory)
374 goto err_buf;
cbc6c5e7
HX
375
376 dma_dev = host->dma_chan->device;
377
0776ae7b 378 flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
cbc6c5e7
HX
379
380 phys_addr = dma_map_single(dma_dev->dev, p, len, dir);
381 if (dma_mapping_error(dma_dev->dev, phys_addr)) {
382 dev_err(host->dev, "Failed to dma_map_single\n");
383 goto err_buf;
384 }
385
386 if (is_read) {
1ae9c092
JW
387 if (nfc && nfc->data_in_sram)
388 dma_src_addr = nfc_sram_phys(host) + (nfc->data_in_sram
389 - (nfc->sram_bank0 + nfc_get_sram_off(host)));
390 else
391 dma_src_addr = host->io_phys;
392
cbc6c5e7
HX
393 dma_dst_addr = phys_addr;
394 } else {
395 dma_src_addr = phys_addr;
6054d4d5
JW
396
397 if (nfc && nfc->write_by_sram)
398 dma_dst_addr = nfc_sram_phys(host);
399 else
400 dma_dst_addr = host->io_phys;
cbc6c5e7
HX
401 }
402
403 tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr,
404 dma_src_addr, len, flags);
405 if (!tx) {
406 dev_err(host->dev, "Failed to prepare DMA memcpy\n");
407 goto err_dma;
408 }
409
410 init_completion(&host->comp);
411 tx->callback = dma_complete_func;
412 tx->callback_param = &host->comp;
413
414 cookie = tx->tx_submit(tx);
415 if (dma_submit_error(cookie)) {
416 dev_err(host->dev, "Failed to do DMA tx_submit\n");
417 goto err_dma;
418 }
419
420 dma_async_issue_pending(host->dma_chan);
421 wait_for_completion(&host->comp);
422
1ae9c092
JW
423 if (is_read && nfc && nfc->data_in_sram)
424 /* After read data from SRAM, need to increase the position */
425 nfc->data_in_sram += len;
426
cbc6c5e7
HX
427 err = 0;
428
429err_dma:
430 dma_unmap_single(dma_dev->dev, phys_addr, len, dir);
431err_buf:
432 if (err != 0)
74414a94 433 dev_dbg(host->dev, "Fall back to CPU I/O\n");
cbc6c5e7
HX
434 return err;
435}
436
437static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len)
438{
439 struct nand_chip *chip = mtd->priv;
50082319 440 struct atmel_nand_host *host = chip->priv;
cbc6c5e7 441
9d51567e
NF
442 if (use_dma && len > mtd->oobsize)
443 /* only use DMA for bigger than oob size: better performances */
cbc6c5e7
HX
444 if (atmel_nand_dma_op(mtd, buf, len, 1) == 0)
445 return;
446
d6a01661 447 if (host->board.bus_width_16)
50082319
AB
448 atmel_read_buf16(mtd, buf, len);
449 else
450 atmel_read_buf8(mtd, buf, len);
cbc6c5e7
HX
451}
452
453static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
454{
455 struct nand_chip *chip = mtd->priv;
50082319 456 struct atmel_nand_host *host = chip->priv;
cbc6c5e7 457
9d51567e
NF
458 if (use_dma && len > mtd->oobsize)
459 /* only use DMA for bigger than oob size: better performances */
cbc6c5e7
HX
460 if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0)
461 return;
462
d6a01661 463 if (host->board.bus_width_16)
50082319
AB
464 atmel_write_buf16(mtd, buf, len);
465 else
466 atmel_write_buf8(mtd, buf, len);
cbc6c5e7
HX
467}
468
1c7b874d
JW
469/*
470 * Return number of ecc bytes per sector according to sector size and
471 * correction capability
472 *
473 * Following table shows what at91 PMECC supported:
474 * Correction Capability Sector_512_bytes Sector_1024_bytes
475 * ===================== ================ =================
476 * 2-bits 4-bytes 4-bytes
477 * 4-bits 7-bytes 7-bytes
478 * 8-bits 13-bytes 14-bytes
479 * 12-bits 20-bytes 21-bytes
480 * 24-bits 39-bytes 42-bytes
481 */
06f25510 482static int pmecc_get_ecc_bytes(int cap, int sector_size)
1c7b874d
JW
483{
484 int m = 12 + sector_size / 512;
485 return (m * cap + 7) / 8;
486}
487
06f25510 488static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
d8929942 489 int oobsize, int ecc_len)
1c7b874d
JW
490{
491 int i;
492
493 layout->eccbytes = ecc_len;
494
495 /* ECC will occupy the last ecc_len bytes continuously */
496 for (i = 0; i < ecc_len; i++)
497 layout->eccpos[i] = oobsize - ecc_len + i;
498
499 layout->oobfree[0].offset = 2;
500 layout->oobfree[0].length =
501 oobsize - ecc_len - layout->oobfree[0].offset;
502}
503
06f25510 504static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
1c7b874d
JW
505{
506 int table_size;
507
508 table_size = host->pmecc_sector_size == 512 ?
509 PMECC_LOOKUP_TABLE_SIZE_512 : PMECC_LOOKUP_TABLE_SIZE_1024;
510
511 return host->pmecc_rom_base + host->pmecc_lookup_table_offset +
512 table_size * sizeof(int16_t);
513}
514
06f25510 515static int pmecc_data_alloc(struct atmel_nand_host *host)
1c7b874d
JW
516{
517 const int cap = host->pmecc_corr_cap;
0d63748d
JCPV
518 int size;
519
520 size = (2 * cap + 1) * sizeof(int16_t);
521 host->pmecc_partial_syn = devm_kzalloc(host->dev, size, GFP_KERNEL);
522 host->pmecc_si = devm_kzalloc(host->dev, size, GFP_KERNEL);
523 host->pmecc_lmu = devm_kzalloc(host->dev,
524 (cap + 1) * sizeof(int16_t), GFP_KERNEL);
525 host->pmecc_smu = devm_kzalloc(host->dev,
526 (cap + 2) * size, GFP_KERNEL);
527
528 size = (cap + 1) * sizeof(int);
529 host->pmecc_mu = devm_kzalloc(host->dev, size, GFP_KERNEL);
530 host->pmecc_dmu = devm_kzalloc(host->dev, size, GFP_KERNEL);
531 host->pmecc_delta = devm_kzalloc(host->dev, size, GFP_KERNEL);
532
533 if (!host->pmecc_partial_syn ||
534 !host->pmecc_si ||
535 !host->pmecc_lmu ||
536 !host->pmecc_smu ||
537 !host->pmecc_mu ||
538 !host->pmecc_dmu ||
539 !host->pmecc_delta)
540 return -ENOMEM;
1c7b874d 541
0d63748d 542 return 0;
1c7b874d
JW
543}
544
545static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
546{
547 struct nand_chip *nand_chip = mtd->priv;
548 struct atmel_nand_host *host = nand_chip->priv;
549 int i;
550 uint32_t value;
551
552 /* Fill odd syndromes */
553 for (i = 0; i < host->pmecc_corr_cap; i++) {
554 value = pmecc_readl_rem_relaxed(host->ecc, sector, i / 2);
555 if (i & 1)
556 value >>= 16;
557 value &= 0xffff;
558 host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
559 }
560}
561
562static void pmecc_substitute(struct mtd_info *mtd)
563{
564 struct nand_chip *nand_chip = mtd->priv;
565 struct atmel_nand_host *host = nand_chip->priv;
566 int16_t __iomem *alpha_to = host->pmecc_alpha_to;
567 int16_t __iomem *index_of = host->pmecc_index_of;
568 int16_t *partial_syn = host->pmecc_partial_syn;
569 const int cap = host->pmecc_corr_cap;
570 int16_t *si;
571 int i, j;
572
573 /* si[] is a table that holds the current syndrome value,
574 * an element of that table belongs to the field
575 */
576 si = host->pmecc_si;
577
578 memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
579
580 /* Computation 2t syndromes based on S(x) */
581 /* Odd syndromes */
582 for (i = 1; i < 2 * cap; i += 2) {
583 for (j = 0; j < host->pmecc_degree; j++) {
584 if (partial_syn[i] & ((unsigned short)0x1 << j))
585 si[i] = readw_relaxed(alpha_to + i * j) ^ si[i];
586 }
587 }
588 /* Even syndrome = (Odd syndrome) ** 2 */
589 for (i = 2, j = 1; j <= cap; i = ++j << 1) {
590 if (si[j] == 0) {
591 si[i] = 0;
592 } else {
593 int16_t tmp;
594
595 tmp = readw_relaxed(index_of + si[j]);
596 tmp = (tmp * 2) % host->pmecc_cw_len;
597 si[i] = readw_relaxed(alpha_to + tmp);
598 }
599 }
600
601 return;
602}
603
604static void pmecc_get_sigma(struct mtd_info *mtd)
605{
606 struct nand_chip *nand_chip = mtd->priv;
607 struct atmel_nand_host *host = nand_chip->priv;
608
609 int16_t *lmu = host->pmecc_lmu;
610 int16_t *si = host->pmecc_si;
611 int *mu = host->pmecc_mu;
612 int *dmu = host->pmecc_dmu; /* Discrepancy */
613 int *delta = host->pmecc_delta; /* Delta order */
614 int cw_len = host->pmecc_cw_len;
615 const int16_t cap = host->pmecc_corr_cap;
616 const int num = 2 * cap + 1;
617 int16_t __iomem *index_of = host->pmecc_index_of;
618 int16_t __iomem *alpha_to = host->pmecc_alpha_to;
619 int i, j, k;
620 uint32_t dmu_0_count, tmp;
621 int16_t *smu = host->pmecc_smu;
622
623 /* index of largest delta */
624 int ro;
625 int largest;
626 int diff;
627
628 dmu_0_count = 0;
629
630 /* First Row */
631
632 /* Mu */
633 mu[0] = -1;
634
635 memset(smu, 0, sizeof(int16_t) * num);
636 smu[0] = 1;
637
638 /* discrepancy set to 1 */
639 dmu[0] = 1;
640 /* polynom order set to 0 */
641 lmu[0] = 0;
642 delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
643
644 /* Second Row */
645
646 /* Mu */
647 mu[1] = 0;
648 /* Sigma(x) set to 1 */
649 memset(&smu[num], 0, sizeof(int16_t) * num);
650 smu[num] = 1;
651
652 /* discrepancy set to S1 */
653 dmu[1] = si[1];
654
655 /* polynom order set to 0 */
656 lmu[1] = 0;
657
658 delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
659
660 /* Init the Sigma(x) last row */
661 memset(&smu[(cap + 1) * num], 0, sizeof(int16_t) * num);
662
663 for (i = 1; i <= cap; i++) {
664 mu[i + 1] = i << 1;
665 /* Begin Computing Sigma (Mu+1) and L(mu) */
666 /* check if discrepancy is set to 0 */
667 if (dmu[i] == 0) {
668 dmu_0_count++;
669
670 tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
671 if ((cap - (lmu[i] >> 1) - 1) & 0x1)
672 tmp += 2;
673 else
674 tmp += 1;
675
676 if (dmu_0_count == tmp) {
677 for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
678 smu[(cap + 1) * num + j] =
679 smu[i * num + j];
680
681 lmu[cap + 1] = lmu[i];
682 return;
683 }
684
685 /* copy polynom */
686 for (j = 0; j <= lmu[i] >> 1; j++)
687 smu[(i + 1) * num + j] = smu[i * num + j];
688
689 /* copy previous polynom order to the next */
690 lmu[i + 1] = lmu[i];
691 } else {
692 ro = 0;
693 largest = -1;
694 /* find largest delta with dmu != 0 */
695 for (j = 0; j < i; j++) {
696 if ((dmu[j]) && (delta[j] > largest)) {
697 largest = delta[j];
698 ro = j;
699 }
700 }
701
702 /* compute difference */
703 diff = (mu[i] - mu[ro]);
704
705 /* Compute degree of the new smu polynomial */
706 if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
707 lmu[i + 1] = lmu[i];
708 else
709 lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
710
711 /* Init smu[i+1] with 0 */
712 for (k = 0; k < num; k++)
713 smu[(i + 1) * num + k] = 0;
714
715 /* Compute smu[i+1] */
716 for (k = 0; k <= lmu[ro] >> 1; k++) {
717 int16_t a, b, c;
718
719 if (!(smu[ro * num + k] && dmu[i]))
720 continue;
721 a = readw_relaxed(index_of + dmu[i]);
722 b = readw_relaxed(index_of + dmu[ro]);
723 c = readw_relaxed(index_of + smu[ro * num + k]);
724 tmp = a + (cw_len - b) + c;
725 a = readw_relaxed(alpha_to + tmp % cw_len);
726 smu[(i + 1) * num + (k + diff)] = a;
727 }
728
729 for (k = 0; k <= lmu[i] >> 1; k++)
730 smu[(i + 1) * num + k] ^= smu[i * num + k];
731 }
732
733 /* End Computing Sigma (Mu+1) and L(mu) */
734 /* In either case compute delta */
735 delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
736
737 /* Do not compute discrepancy for the last iteration */
738 if (i >= cap)
739 continue;
740
741 for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
742 tmp = 2 * (i - 1);
743 if (k == 0) {
744 dmu[i + 1] = si[tmp + 3];
745 } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
746 int16_t a, b, c;
747 a = readw_relaxed(index_of +
748 smu[(i + 1) * num + k]);
749 b = si[2 * (i - 1) + 3 - k];
750 c = readw_relaxed(index_of + b);
751 tmp = a + c;
752 tmp %= cw_len;
753 dmu[i + 1] = readw_relaxed(alpha_to + tmp) ^
754 dmu[i + 1];
755 }
756 }
757 }
758
759 return;
760}
761
762static int pmecc_err_location(struct mtd_info *mtd)
763{
764 struct nand_chip *nand_chip = mtd->priv;
765 struct atmel_nand_host *host = nand_chip->priv;
766 unsigned long end_time;
767 const int cap = host->pmecc_corr_cap;
768 const int num = 2 * cap + 1;
769 int sector_size = host->pmecc_sector_size;
770 int err_nbr = 0; /* number of error */
771 int roots_nbr; /* number of roots */
772 int i;
773 uint32_t val;
774 int16_t *smu = host->pmecc_smu;
775
776 pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE);
777
778 for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
779 pmerrloc_writel_sigma_relaxed(host->pmerrloc_base, i,
780 smu[(cap + 1) * num + i]);
781 err_nbr++;
782 }
783
784 val = (err_nbr - 1) << 16;
785 if (sector_size == 1024)
786 val |= 1;
787
788 pmerrloc_writel(host->pmerrloc_base, ELCFG, val);
789 pmerrloc_writel(host->pmerrloc_base, ELEN,
790 sector_size * 8 + host->pmecc_degree * cap);
791
792 end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
793 while (!(pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
794 & PMERRLOC_CALC_DONE)) {
795 if (unlikely(time_after(jiffies, end_time))) {
796 dev_err(host->dev, "PMECC: Timeout to calculate error location.\n");
797 return -1;
798 }
799 cpu_relax();
800 }
801
802 roots_nbr = (pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
803 & PMERRLOC_ERR_NUM_MASK) >> 8;
804 /* Number of roots == degree of smu hence <= cap */
805 if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
806 return err_nbr - 1;
807
808 /* Number of roots does not match the degree of smu
809 * unable to correct error */
810 return -1;
811}
812
813static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
814 int sector_num, int extra_bytes, int err_nbr)
815{
816 struct nand_chip *nand_chip = mtd->priv;
817 struct atmel_nand_host *host = nand_chip->priv;
818 int i = 0;
819 int byte_pos, bit_pos, sector_size, pos;
820 uint32_t tmp;
821 uint8_t err_byte;
822
823 sector_size = host->pmecc_sector_size;
824
825 while (err_nbr) {
826 tmp = pmerrloc_readl_el_relaxed(host->pmerrloc_base, i) - 1;
827 byte_pos = tmp / 8;
828 bit_pos = tmp % 8;
829
830 if (byte_pos >= (sector_size + extra_bytes))
831 BUG(); /* should never happen */
832
833 if (byte_pos < sector_size) {
834 err_byte = *(buf + byte_pos);
835 *(buf + byte_pos) ^= (1 << bit_pos);
836
837 pos = sector_num * host->pmecc_sector_size + byte_pos;
838 dev_info(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
839 pos, bit_pos, err_byte, *(buf + byte_pos));
840 } else {
841 /* Bit flip in OOB area */
842 tmp = sector_num * host->pmecc_bytes_per_sector
843 + (byte_pos - sector_size);
844 err_byte = ecc[tmp];
845 ecc[tmp] ^= (1 << bit_pos);
846
847 pos = tmp + nand_chip->ecc.layout->eccpos[0];
848 dev_info(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
849 pos, bit_pos, err_byte, ecc[tmp]);
850 }
851
852 i++;
853 err_nbr--;
854 }
855
856 return;
857}
858
859static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
860 u8 *ecc)
861{
862 struct nand_chip *nand_chip = mtd->priv;
863 struct atmel_nand_host *host = nand_chip->priv;
b3857666 864 int i, err_nbr;
1c7b874d 865 uint8_t *buf_pos;
c0c70d9e 866 int total_err = 0;
1c7b874d 867
b3857666 868 for (i = 0; i < nand_chip->ecc.total; i++)
1c7b874d
JW
869 if (ecc[i] != 0xff)
870 goto normal_check;
871 /* Erased page, return OK */
872 return 0;
873
874normal_check:
875 for (i = 0; i < host->pmecc_sector_number; i++) {
876 err_nbr = 0;
877 if (pmecc_stat & 0x1) {
878 buf_pos = buf + i * host->pmecc_sector_size;
879
880 pmecc_gen_syndrome(mtd, i);
881 pmecc_substitute(mtd);
882 pmecc_get_sigma(mtd);
883
884 err_nbr = pmecc_err_location(mtd);
885 if (err_nbr == -1) {
886 dev_err(host->dev, "PMECC: Too many errors\n");
887 mtd->ecc_stats.failed++;
888 return -EIO;
889 } else {
890 pmecc_correct_data(mtd, buf_pos, ecc, i,
891 host->pmecc_bytes_per_sector, err_nbr);
892 mtd->ecc_stats.corrected += err_nbr;
c0c70d9e 893 total_err += err_nbr;
1c7b874d
JW
894 }
895 }
896 pmecc_stat >>= 1;
897 }
898
c0c70d9e 899 return total_err;
1c7b874d
JW
900}
901
5ee3d9da
JW
902static void pmecc_enable(struct atmel_nand_host *host, int ecc_op)
903{
904 u32 val;
905
5ee3d9da
JW
906 if (ecc_op != NAND_ECC_READ && ecc_op != NAND_ECC_WRITE) {
907 dev_err(host->dev, "atmel_nand: wrong pmecc operation type!");
908 return;
909 }
910
1fad0e8b
JW
911 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
912 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
913 val = pmecc_readl_relaxed(host->ecc, CFG);
914
5ee3d9da
JW
915 if (ecc_op == NAND_ECC_READ)
916 pmecc_writel(host->ecc, CFG, (val & ~PMECC_CFG_WRITE_OP)
917 | PMECC_CFG_AUTO_ENABLE);
918 else
919 pmecc_writel(host->ecc, CFG, (val | PMECC_CFG_WRITE_OP)
920 & ~PMECC_CFG_AUTO_ENABLE);
921
922 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
923 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA);
924}
925
1c7b874d
JW
926static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
927 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
928{
929 struct atmel_nand_host *host = chip->priv;
b3857666 930 int eccsize = chip->ecc.size * chip->ecc.steps;
1c7b874d
JW
931 uint8_t *oob = chip->oob_poi;
932 uint32_t *eccpos = chip->ecc.layout->eccpos;
933 uint32_t stat;
934 unsigned long end_time;
c0c70d9e 935 int bitflips = 0;
1c7b874d 936
1ae9c092
JW
937 if (!host->nfc || !host->nfc->use_nfc_sram)
938 pmecc_enable(host, NAND_ECC_READ);
1c7b874d
JW
939
940 chip->read_buf(mtd, buf, eccsize);
941 chip->read_buf(mtd, oob, mtd->oobsize);
942
943 end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
944 while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
945 if (unlikely(time_after(jiffies, end_time))) {
946 dev_err(host->dev, "PMECC: Timeout to get error status.\n");
947 return -EIO;
948 }
949 cpu_relax();
950 }
951
952 stat = pmecc_readl_relaxed(host->ecc, ISR);
c0c70d9e
JW
953 if (stat != 0) {
954 bitflips = pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]);
955 if (bitflips < 0)
956 /* uncorrectable errors */
957 return 0;
958 }
1c7b874d 959
c0c70d9e 960 return bitflips;
1c7b874d
JW
961}
962
963static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
964 struct nand_chip *chip, const uint8_t *buf, int oob_required)
965{
966 struct atmel_nand_host *host = chip->priv;
967 uint32_t *eccpos = chip->ecc.layout->eccpos;
968 int i, j;
969 unsigned long end_time;
970
6054d4d5
JW
971 if (!host->nfc || !host->nfc->write_by_sram) {
972 pmecc_enable(host, NAND_ECC_WRITE);
973 chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
974 }
1c7b874d
JW
975
976 end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
977 while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
978 if (unlikely(time_after(jiffies, end_time))) {
979 dev_err(host->dev, "PMECC: Timeout to get ECC value.\n");
980 return -EIO;
981 }
982 cpu_relax();
983 }
984
985 for (i = 0; i < host->pmecc_sector_number; i++) {
986 for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
987 int pos;
988
989 pos = i * host->pmecc_bytes_per_sector + j;
990 chip->oob_poi[eccpos[pos]] =
991 pmecc_readb_ecc_relaxed(host->ecc, i, j);
992 }
993 }
994 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
995
996 return 0;
997}
998
999static void atmel_pmecc_core_init(struct mtd_info *mtd)
1000{
1001 struct nand_chip *nand_chip = mtd->priv;
1002 struct atmel_nand_host *host = nand_chip->priv;
1003 uint32_t val = 0;
1004 struct nand_ecclayout *ecc_layout;
1005
1006 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
1007 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
1008
1009 switch (host->pmecc_corr_cap) {
1010 case 2:
1011 val = PMECC_CFG_BCH_ERR2;
1012 break;
1013 case 4:
1014 val = PMECC_CFG_BCH_ERR4;
1015 break;
1016 case 8:
1017 val = PMECC_CFG_BCH_ERR8;
1018 break;
1019 case 12:
1020 val = PMECC_CFG_BCH_ERR12;
1021 break;
1022 case 24:
1023 val = PMECC_CFG_BCH_ERR24;
1024 break;
1025 }
1026
1027 if (host->pmecc_sector_size == 512)
1028 val |= PMECC_CFG_SECTOR512;
1029 else if (host->pmecc_sector_size == 1024)
1030 val |= PMECC_CFG_SECTOR1024;
1031
1032 switch (host->pmecc_sector_number) {
1033 case 1:
1034 val |= PMECC_CFG_PAGE_1SECTOR;
1035 break;
1036 case 2:
1037 val |= PMECC_CFG_PAGE_2SECTORS;
1038 break;
1039 case 4:
1040 val |= PMECC_CFG_PAGE_4SECTORS;
1041 break;
1042 case 8:
1043 val |= PMECC_CFG_PAGE_8SECTORS;
1044 break;
1045 }
1046
1047 val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
1048 | PMECC_CFG_AUTO_DISABLE);
1049 pmecc_writel(host->ecc, CFG, val);
1050
1051 ecc_layout = nand_chip->ecc.layout;
1052 pmecc_writel(host->ecc, SAREA, mtd->oobsize - 1);
1053 pmecc_writel(host->ecc, SADDR, ecc_layout->eccpos[0]);
1054 pmecc_writel(host->ecc, EADDR,
1055 ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
1056 /* See datasheet about PMECC Clock Control Register */
1057 pmecc_writel(host->ecc, CLK, 2);
1058 pmecc_writel(host->ecc, IDR, 0xff);
1059 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
1060}
1061
84cfbbb8 1062/*
2a3d933a 1063 * Get minimum ecc requirements from NAND.
84cfbbb8 1064 * If pmecc-cap, pmecc-sector-size in DTS are not specified, this function
2a3d933a 1065 * will set them according to minimum ecc requirement. Otherwise, use the
84cfbbb8
JW
1066 * value in DTS file.
1067 * return 0 if success. otherwise return error code.
1068 */
1069static int pmecc_choose_ecc(struct atmel_nand_host *host,
1070 int *cap, int *sector_size)
1071{
2a3d933a
JW
1072 /* Get minimum ECC requirements */
1073 if (host->nand_chip.ecc_strength_ds) {
1074 *cap = host->nand_chip.ecc_strength_ds;
1075 *sector_size = host->nand_chip.ecc_step_ds;
1076 dev_info(host->dev, "minimum ECC: %d bits in %d bytes\n",
84cfbbb8 1077 *cap, *sector_size);
84cfbbb8 1078 } else {
84cfbbb8
JW
1079 *cap = 2;
1080 *sector_size = 512;
2a3d933a 1081 dev_info(host->dev, "can't detect min. ECC, assume 2 bits in 512 bytes\n");
84cfbbb8
JW
1082 }
1083
2a3d933a 1084 /* If device tree doesn't specify, use NAND's minimum ECC parameters */
84cfbbb8
JW
1085 if (host->pmecc_corr_cap == 0) {
1086 /* use the most fitable ecc bits (the near bigger one ) */
1087 if (*cap <= 2)
1088 host->pmecc_corr_cap = 2;
1089 else if (*cap <= 4)
1090 host->pmecc_corr_cap = 4;
edc9cba4 1091 else if (*cap <= 8)
84cfbbb8 1092 host->pmecc_corr_cap = 8;
edc9cba4 1093 else if (*cap <= 12)
84cfbbb8 1094 host->pmecc_corr_cap = 12;
edc9cba4 1095 else if (*cap <= 24)
84cfbbb8
JW
1096 host->pmecc_corr_cap = 24;
1097 else
1098 return -EINVAL;
1099 }
1100 if (host->pmecc_sector_size == 0) {
1101 /* use the most fitable sector size (the near smaller one ) */
1102 if (*sector_size >= 1024)
1103 host->pmecc_sector_size = 1024;
1104 else if (*sector_size >= 512)
1105 host->pmecc_sector_size = 512;
1106 else
1107 return -EINVAL;
1108 }
1109 return 0;
1110}
1111
2c2b9285 1112static int atmel_pmecc_nand_init_params(struct platform_device *pdev,
1c7b874d
JW
1113 struct atmel_nand_host *host)
1114{
1115 struct mtd_info *mtd = &host->mtd;
1116 struct nand_chip *nand_chip = &host->nand_chip;
1117 struct resource *regs, *regs_pmerr, *regs_rom;
1118 int cap, sector_size, err_no;
1119
84cfbbb8
JW
1120 err_no = pmecc_choose_ecc(host, &cap, &sector_size);
1121 if (err_no) {
1122 dev_err(host->dev, "The NAND flash's ECC requirement are not support!");
1123 return err_no;
1124 }
1125
f666d649 1126 if (cap > host->pmecc_corr_cap ||
84cfbbb8
JW
1127 sector_size != host->pmecc_sector_size)
1128 dev_info(host->dev, "WARNING: Be Caution! Using different PMECC parameters from Nand ONFI ECC reqirement.\n");
e66b4318 1129
1c7b874d
JW
1130 cap = host->pmecc_corr_cap;
1131 sector_size = host->pmecc_sector_size;
e66b4318
JW
1132 host->pmecc_lookup_table_offset = (sector_size == 512) ?
1133 host->pmecc_lookup_table_offset_512 :
1134 host->pmecc_lookup_table_offset_1024;
1135
1c7b874d
JW
1136 dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n",
1137 cap, sector_size);
1138
1139 regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1140 if (!regs) {
1141 dev_warn(host->dev,
1142 "Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n");
1143 nand_chip->ecc.mode = NAND_ECC_SOFT;
1144 return 0;
1145 }
1146
0d63748d
JCPV
1147 host->ecc = devm_ioremap_resource(&pdev->dev, regs);
1148 if (IS_ERR(host->ecc)) {
1c7b874d 1149 dev_err(host->dev, "ioremap failed\n");
0d63748d
JCPV
1150 err_no = PTR_ERR(host->ecc);
1151 goto err;
1c7b874d
JW
1152 }
1153
1154 regs_pmerr = platform_get_resource(pdev, IORESOURCE_MEM, 2);
0d63748d
JCPV
1155 host->pmerrloc_base = devm_ioremap_resource(&pdev->dev, regs_pmerr);
1156 if (IS_ERR(host->pmerrloc_base)) {
1157 dev_err(host->dev,
1158 "Can not get I/O resource for PMECC ERRLOC controller!\n");
1159 err_no = PTR_ERR(host->pmerrloc_base);
1160 goto err;
1c7b874d
JW
1161 }
1162
0d63748d
JCPV
1163 regs_rom = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1164 host->pmecc_rom_base = devm_ioremap_resource(&pdev->dev, regs_rom);
1165 if (IS_ERR(host->pmecc_rom_base)) {
1166 dev_err(host->dev, "Can not get I/O resource for ROM!\n");
1167 err_no = PTR_ERR(host->pmecc_rom_base);
1168 goto err;
1c7b874d
JW
1169 }
1170
b3857666 1171 nand_chip->ecc.size = sector_size;
1c7b874d
JW
1172
1173 /* set ECC page size and oob layout */
1174 switch (mtd->writesize) {
1175 case 2048:
2fa831f9
JW
1176 host->pmecc_degree = (sector_size == 512) ?
1177 PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
1c7b874d
JW
1178 host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
1179 host->pmecc_sector_number = mtd->writesize / sector_size;
1180 host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
1181 cap, sector_size);
1182 host->pmecc_alpha_to = pmecc_get_alpha_to(host);
1183 host->pmecc_index_of = host->pmecc_rom_base +
1184 host->pmecc_lookup_table_offset;
1185
b3857666 1186 nand_chip->ecc.steps = host->pmecc_sector_number;
1c7b874d 1187 nand_chip->ecc.strength = cap;
b3857666
BS
1188 nand_chip->ecc.bytes = host->pmecc_bytes_per_sector;
1189 nand_chip->ecc.total = host->pmecc_bytes_per_sector *
1c7b874d 1190 host->pmecc_sector_number;
b3857666 1191 if (nand_chip->ecc.total > mtd->oobsize - 2) {
1c7b874d
JW
1192 dev_err(host->dev, "No room for ECC bytes\n");
1193 err_no = -EINVAL;
0d63748d 1194 goto err;
1c7b874d
JW
1195 }
1196 pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
1197 mtd->oobsize,
b3857666
BS
1198 nand_chip->ecc.total);
1199
1c7b874d
JW
1200 nand_chip->ecc.layout = &atmel_pmecc_oobinfo;
1201 break;
1202 case 512:
1203 case 1024:
1204 case 4096:
1205 /* TODO */
1206 dev_warn(host->dev,
1207 "Unsupported page size for PMECC, use Software ECC\n");
1208 default:
1209 /* page size not handled by HW ECC */
1210 /* switching back to soft ECC */
1211 nand_chip->ecc.mode = NAND_ECC_SOFT;
1212 return 0;
1213 }
1214
1215 /* Allocate data for PMECC computation */
1216 err_no = pmecc_data_alloc(host);
1217 if (err_no) {
1218 dev_err(host->dev,
1219 "Cannot allocate memory for PMECC computation!\n");
0d63748d 1220 goto err;
1c7b874d
JW
1221 }
1222
90445ff6 1223 nand_chip->options |= NAND_NO_SUBPAGE_WRITE;
1c7b874d
JW
1224 nand_chip->ecc.read_page = atmel_nand_pmecc_read_page;
1225 nand_chip->ecc.write_page = atmel_nand_pmecc_write_page;
1226
1227 atmel_pmecc_core_init(mtd);
1228
1229 return 0;
1230
0d63748d 1231err:
1c7b874d
JW
1232 return err_no;
1233}
1234
77f5492c
RG
1235/*
1236 * Calculate HW ECC
1237 *
1238 * function called after a write
1239 *
1240 * mtd: MTD block structure
1241 * dat: raw data (unused)
1242 * ecc_code: buffer for ECC
1243 */
3c3796cc 1244static int atmel_nand_calculate(struct mtd_info *mtd,
77f5492c
RG
1245 const u_char *dat, unsigned char *ecc_code)
1246{
1247 struct nand_chip *nand_chip = mtd->priv;
3c3796cc 1248 struct atmel_nand_host *host = nand_chip->priv;
77f5492c
RG
1249 unsigned int ecc_value;
1250
1251 /* get the first 2 ECC bytes */
d43fa149 1252 ecc_value = ecc_readl(host->ecc, PR);
77f5492c 1253
3fc23898
RG
1254 ecc_code[0] = ecc_value & 0xFF;
1255 ecc_code[1] = (ecc_value >> 8) & 0xFF;
77f5492c
RG
1256
1257 /* get the last 2 ECC bytes */
3c3796cc 1258 ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
77f5492c 1259
3fc23898
RG
1260 ecc_code[2] = ecc_value & 0xFF;
1261 ecc_code[3] = (ecc_value >> 8) & 0xFF;
77f5492c
RG
1262
1263 return 0;
1264}
1265
1266/*
1267 * HW ECC read page function
1268 *
1269 * mtd: mtd info structure
1270 * chip: nand chip info structure
1271 * buf: buffer to store read data
1fbb938d 1272 * oob_required: caller expects OOB data read to chip->oob_poi
77f5492c 1273 */
1fbb938d
BN
1274static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1275 uint8_t *buf, int oob_required, int page)
77f5492c
RG
1276{
1277 int eccsize = chip->ecc.size;
1278 int eccbytes = chip->ecc.bytes;
1279 uint32_t *eccpos = chip->ecc.layout->eccpos;
1280 uint8_t *p = buf;
1281 uint8_t *oob = chip->oob_poi;
1282 uint8_t *ecc_pos;
1283 int stat;
3f91e94f 1284 unsigned int max_bitflips = 0;
77f5492c 1285
d6248fdd
HS
1286 /*
1287 * Errata: ALE is incorrectly wired up to the ECC controller
1288 * on the AP7000, so it will include the address cycles in the
1289 * ECC calculation.
1290 *
1291 * Workaround: Reset the parity registers before reading the
1292 * actual data.
1293 */
71b94e2e
JW
1294 struct atmel_nand_host *host = chip->priv;
1295 if (host->board.need_reset_workaround)
d6248fdd 1296 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
d6248fdd 1297
77f5492c
RG
1298 /* read the page */
1299 chip->read_buf(mtd, p, eccsize);
1300
1301 /* move to ECC position if needed */
1302 if (eccpos[0] != 0) {
1303 /* This only works on large pages
1304 * because the ECC controller waits for
1305 * NAND_CMD_RNDOUTSTART after the
1306 * NAND_CMD_RNDOUT.
1307 * anyway, for small pages, the eccpos[0] == 0
1308 */
1309 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1310 mtd->writesize + eccpos[0], -1);
1311 }
1312
1313 /* the ECC controller needs to read the ECC just after the data */
1314 ecc_pos = oob + eccpos[0];
1315 chip->read_buf(mtd, ecc_pos, eccbytes);
1316
1317 /* check if there's an error */
1318 stat = chip->ecc.correct(mtd, p, oob, NULL);
1319
3f91e94f 1320 if (stat < 0) {
77f5492c 1321 mtd->ecc_stats.failed++;
3f91e94f 1322 } else {
77f5492c 1323 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1324 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1325 }
77f5492c
RG
1326
1327 /* get back to oob start (end of page) */
1328 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1329
1330 /* read the oob */
1331 chip->read_buf(mtd, oob, mtd->oobsize);
1332
3f91e94f 1333 return max_bitflips;
77f5492c
RG
1334}
1335
1336/*
1337 * HW ECC Correction
1338 *
1339 * function called after a read
1340 *
1341 * mtd: MTD block structure
1342 * dat: raw data read from the chip
1343 * read_ecc: ECC from the chip (unused)
1344 * isnull: unused
1345 *
1346 * Detect and correct a 1 bit error for a page
1347 */
3c3796cc 1348static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
77f5492c
RG
1349 u_char *read_ecc, u_char *isnull)
1350{
1351 struct nand_chip *nand_chip = mtd->priv;
3c3796cc 1352 struct atmel_nand_host *host = nand_chip->priv;
77f5492c
RG
1353 unsigned int ecc_status;
1354 unsigned int ecc_word, ecc_bit;
1355
1356 /* get the status from the Status Register */
1357 ecc_status = ecc_readl(host->ecc, SR);
1358
1359 /* if there's no error */
3c3796cc 1360 if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
77f5492c
RG
1361 return 0;
1362
1363 /* get error bit offset (4 bits) */
3c3796cc 1364 ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR;
77f5492c 1365 /* get word address (12 bits) */
3c3796cc 1366 ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR;
77f5492c
RG
1367 ecc_word >>= 4;
1368
1369 /* if there are multiple errors */
3c3796cc 1370 if (ecc_status & ATMEL_ECC_MULERR) {
77f5492c
RG
1371 /* check if it is a freshly erased block
1372 * (filled with 0xff) */
3c3796cc
HS
1373 if ((ecc_bit == ATMEL_ECC_BITADDR)
1374 && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
77f5492c
RG
1375 /* the block has just been erased, return OK */
1376 return 0;
1377 }
1378 /* it doesn't seems to be a freshly
1379 * erased block.
1380 * We can't correct so many errors */
3c3796cc 1381 dev_dbg(host->dev, "atmel_nand : multiple errors detected."
77f5492c
RG
1382 " Unable to correct.\n");
1383 return -EIO;
1384 }
1385
1386 /* if there's a single bit error : we can correct it */
3c3796cc 1387 if (ecc_status & ATMEL_ECC_ECCERR) {
77f5492c
RG
1388 /* there's nothing much to do here.
1389 * the bit error is on the ECC itself.
1390 */
3c3796cc 1391 dev_dbg(host->dev, "atmel_nand : one bit error on ECC code."
77f5492c
RG
1392 " Nothing to correct\n");
1393 return 0;
1394 }
1395
3c3796cc 1396 dev_dbg(host->dev, "atmel_nand : one bit error on data."
77f5492c
RG
1397 " (word offset in the page :"
1398 " 0x%x bit offset : 0x%x)\n",
1399 ecc_word, ecc_bit);
1400 /* correct the error */
1401 if (nand_chip->options & NAND_BUSWIDTH_16) {
1402 /* 16 bits words */
1403 ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
1404 } else {
1405 /* 8 bits words */
1406 dat[ecc_word] ^= (1 << ecc_bit);
1407 }
3c3796cc 1408 dev_dbg(host->dev, "atmel_nand : error corrected\n");
77f5492c
RG
1409 return 1;
1410}
1411
1412/*
d6248fdd 1413 * Enable HW ECC : unused on most chips
77f5492c 1414 */
d6248fdd
HS
1415static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
1416{
71b94e2e
JW
1417 struct nand_chip *nand_chip = mtd->priv;
1418 struct atmel_nand_host *host = nand_chip->priv;
1419
1420 if (host->board.need_reset_workaround)
d6248fdd 1421 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
d6248fdd 1422}
77f5492c 1423
06f25510 1424static int atmel_of_init_port(struct atmel_nand_host *host,
d8929942 1425 struct device_node *np)
d6a01661 1426{
c0cf787f 1427 u32 val;
a41b51a1 1428 u32 offset[2];
d6a01661
JCPV
1429 int ecc_mode;
1430 struct atmel_nand_data *board = &host->board;
e9d8da80 1431 enum of_gpio_flags flags = 0;
d6a01661
JCPV
1432
1433 if (of_property_read_u32(np, "atmel,nand-addr-offset", &val) == 0) {
1434 if (val >= 32) {
1435 dev_err(host->dev, "invalid addr-offset %u\n", val);
1436 return -EINVAL;
1437 }
1438 board->ale = val;
1439 }
1440
1441 if (of_property_read_u32(np, "atmel,nand-cmd-offset", &val) == 0) {
1442 if (val >= 32) {
1443 dev_err(host->dev, "invalid cmd-offset %u\n", val);
1444 return -EINVAL;
1445 }
1446 board->cle = val;
1447 }
1448
1449 ecc_mode = of_get_nand_ecc_mode(np);
1450
1451 board->ecc_mode = ecc_mode < 0 ? NAND_ECC_SOFT : ecc_mode;
1452
1453 board->on_flash_bbt = of_get_nand_on_flash_bbt(np);
1454
1b719265
JW
1455 board->has_dma = of_property_read_bool(np, "atmel,nand-has-dma");
1456
d6a01661
JCPV
1457 if (of_get_nand_bus_width(np) == 16)
1458 board->bus_width_16 = 1;
1459
1460 board->rdy_pin = of_get_gpio_flags(np, 0, &flags);
1461 board->rdy_pin_active_low = (flags == OF_GPIO_ACTIVE_LOW);
1462
1463 board->enable_pin = of_get_gpio(np, 1);
1464 board->det_pin = of_get_gpio(np, 2);
1465
a41b51a1
JW
1466 host->has_pmecc = of_property_read_bool(np, "atmel,has-pmecc");
1467
7dc37de7
JW
1468 /* load the nfc driver if there is */
1469 of_platform_populate(np, NULL, NULL, host->dev);
1470
a41b51a1
JW
1471 if (!(board->ecc_mode == NAND_ECC_HW) || !host->has_pmecc)
1472 return 0; /* Not using PMECC */
1473
1474 /* use PMECC, get correction capability, sector size and lookup
1475 * table offset.
e66b4318
JW
1476 * If correction bits and sector size are not specified, then find
1477 * them from NAND ONFI parameters.
a41b51a1 1478 */
e66b4318
JW
1479 if (of_property_read_u32(np, "atmel,pmecc-cap", &val) == 0) {
1480 if ((val != 2) && (val != 4) && (val != 8) && (val != 12) &&
1481 (val != 24)) {
1482 dev_err(host->dev,
1483 "Unsupported PMECC correction capability: %d; should be 2, 4, 8, 12 or 24\n",
1484 val);
1485 return -EINVAL;
1486 }
1487 host->pmecc_corr_cap = (u8)val;
a41b51a1 1488 }
a41b51a1 1489
e66b4318
JW
1490 if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) == 0) {
1491 if ((val != 512) && (val != 1024)) {
1492 dev_err(host->dev,
1493 "Unsupported PMECC sector size: %d; should be 512 or 1024 bytes\n",
1494 val);
1495 return -EINVAL;
1496 }
1497 host->pmecc_sector_size = (u16)val;
a41b51a1 1498 }
a41b51a1
JW
1499
1500 if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset",
1501 offset, 2) != 0) {
1502 dev_err(host->dev, "Cannot get PMECC lookup table offset\n");
1503 return -EINVAL;
1504 }
c0cf787f 1505 if (!offset[0] && !offset[1]) {
a41b51a1
JW
1506 dev_err(host->dev, "Invalid PMECC lookup table offset\n");
1507 return -EINVAL;
1508 }
e66b4318
JW
1509 host->pmecc_lookup_table_offset_512 = offset[0];
1510 host->pmecc_lookup_table_offset_1024 = offset[1];
a41b51a1 1511
d6a01661
JCPV
1512 return 0;
1513}
d6a01661 1514
2c2b9285 1515static int atmel_hw_nand_init_params(struct platform_device *pdev,
3dfe41a4
JW
1516 struct atmel_nand_host *host)
1517{
1518 struct mtd_info *mtd = &host->mtd;
1519 struct nand_chip *nand_chip = &host->nand_chip;
1520 struct resource *regs;
1521
1522 regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1523 if (!regs) {
1524 dev_err(host->dev,
1525 "Can't get I/O resource regs, use software ECC\n");
1526 nand_chip->ecc.mode = NAND_ECC_SOFT;
1527 return 0;
1528 }
1529
0d63748d
JCPV
1530 host->ecc = devm_ioremap_resource(&pdev->dev, regs);
1531 if (IS_ERR(host->ecc)) {
3dfe41a4 1532 dev_err(host->dev, "ioremap failed\n");
0d63748d 1533 return PTR_ERR(host->ecc);
3dfe41a4
JW
1534 }
1535
1536 /* ECC is calculated for the whole page (1 step) */
1537 nand_chip->ecc.size = mtd->writesize;
1538
1539 /* set ECC page size and oob layout */
1540 switch (mtd->writesize) {
1541 case 512:
1542 nand_chip->ecc.layout = &atmel_oobinfo_small;
1543 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
1544 break;
1545 case 1024:
1546 nand_chip->ecc.layout = &atmel_oobinfo_large;
1547 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056);
1548 break;
1549 case 2048:
1550 nand_chip->ecc.layout = &atmel_oobinfo_large;
1551 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112);
1552 break;
1553 case 4096:
1554 nand_chip->ecc.layout = &atmel_oobinfo_large;
1555 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224);
1556 break;
1557 default:
1558 /* page size not handled by HW ECC */
1559 /* switching back to soft ECC */
1560 nand_chip->ecc.mode = NAND_ECC_SOFT;
1561 return 0;
1562 }
1563
1564 /* set up for HW ECC */
1565 nand_chip->ecc.calculate = atmel_nand_calculate;
1566 nand_chip->ecc.correct = atmel_nand_correct;
1567 nand_chip->ecc.hwctl = atmel_nand_hwctl;
1568 nand_chip->ecc.read_page = atmel_nand_read_page;
1569 nand_chip->ecc.bytes = 4;
1570 nand_chip->ecc.strength = 1;
1571
1572 return 0;
1573}
1574
7dc37de7
JW
1575/* SMC interrupt service routine */
1576static irqreturn_t hsmc_interrupt(int irq, void *dev_id)
1577{
1578 struct atmel_nand_host *host = dev_id;
1579 u32 status, mask, pending;
1580 irqreturn_t ret = IRQ_HANDLED;
1581
1582 status = nfc_readl(host->nfc->hsmc_regs, SR);
1583 mask = nfc_readl(host->nfc->hsmc_regs, IMR);
1584 pending = status & mask;
1585
1586 if (pending & NFC_SR_XFR_DONE) {
1587 complete(&host->nfc->comp_nfc);
1588 nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_XFR_DONE);
1589 } else if (pending & NFC_SR_RB_EDGE) {
1590 complete(&host->nfc->comp_nfc);
1591 nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_RB_EDGE);
1592 } else if (pending & NFC_SR_CMD_DONE) {
1593 complete(&host->nfc->comp_nfc);
1594 nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_CMD_DONE);
1595 } else {
1596 ret = IRQ_NONE;
1597 }
1598
1599 return ret;
1600}
1601
1602/* NFC(Nand Flash Controller) related functions */
1603static int nfc_wait_interrupt(struct atmel_nand_host *host, u32 flag)
1604{
1605 unsigned long timeout;
1606 init_completion(&host->nfc->comp_nfc);
1607
1608 /* Enable interrupt that need to wait for */
1609 nfc_writel(host->nfc->hsmc_regs, IER, flag);
1610
1611 timeout = wait_for_completion_timeout(&host->nfc->comp_nfc,
1612 msecs_to_jiffies(NFC_TIME_OUT_MS));
1613 if (timeout)
1614 return 0;
1615
1616 /* Time out to wait for the interrupt */
1617 dev_err(host->dev, "Time out to wait for interrupt: 0x%08x\n", flag);
1618 return -ETIMEDOUT;
1619}
1620
1621static int nfc_send_command(struct atmel_nand_host *host,
1622 unsigned int cmd, unsigned int addr, unsigned char cycle0)
1623{
1624 unsigned long timeout;
1625 dev_dbg(host->dev,
1626 "nfc_cmd: 0x%08x, addr1234: 0x%08x, cycle0: 0x%02x\n",
1627 cmd, addr, cycle0);
1628
1629 timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
1630 while (nfc_cmd_readl(NFCADDR_CMD_NFCBUSY, host->nfc->base_cmd_regs)
1631 & NFCADDR_CMD_NFCBUSY) {
1632 if (time_after(jiffies, timeout)) {
1633 dev_err(host->dev,
1634 "Time out to wait CMD_NFCBUSY ready!\n");
1635 return -ETIMEDOUT;
1636 }
1637 }
1638 nfc_writel(host->nfc->hsmc_regs, CYCLE0, cycle0);
1639 nfc_cmd_addr1234_writel(cmd, addr, host->nfc->base_cmd_regs);
1640 return nfc_wait_interrupt(host, NFC_SR_CMD_DONE);
1641}
1642
1643static int nfc_device_ready(struct mtd_info *mtd)
1644{
1645 struct nand_chip *nand_chip = mtd->priv;
1646 struct atmel_nand_host *host = nand_chip->priv;
1647 if (!nfc_wait_interrupt(host, NFC_SR_RB_EDGE))
1648 return 1;
1649 return 0;
1650}
1651
1652static void nfc_select_chip(struct mtd_info *mtd, int chip)
1653{
1654 struct nand_chip *nand_chip = mtd->priv;
1655 struct atmel_nand_host *host = nand_chip->priv;
1656
1657 if (chip == -1)
1658 nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_DISABLE);
1659 else
1660 nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_ENABLE);
1661}
1662
3dad2344
BN
1663static int nfc_make_addr(struct mtd_info *mtd, int command, int column,
1664 int page_addr, unsigned int *addr1234, unsigned int *cycle0)
7dc37de7
JW
1665{
1666 struct nand_chip *chip = mtd->priv;
1667
1668 int acycle = 0;
1669 unsigned char addr_bytes[8];
1670 int index = 0, bit_shift;
1671
1672 BUG_ON(addr1234 == NULL || cycle0 == NULL);
1673
1674 *cycle0 = 0;
1675 *addr1234 = 0;
1676
1677 if (column != -1) {
3dad2344
BN
1678 if (chip->options & NAND_BUSWIDTH_16 &&
1679 !nand_opcode_8bits(command))
7dc37de7
JW
1680 column >>= 1;
1681 addr_bytes[acycle++] = column & 0xff;
1682 if (mtd->writesize > 512)
1683 addr_bytes[acycle++] = (column >> 8) & 0xff;
1684 }
1685
1686 if (page_addr != -1) {
1687 addr_bytes[acycle++] = page_addr & 0xff;
1688 addr_bytes[acycle++] = (page_addr >> 8) & 0xff;
1689 if (chip->chipsize > (128 << 20))
1690 addr_bytes[acycle++] = (page_addr >> 16) & 0xff;
1691 }
1692
1693 if (acycle > 4)
1694 *cycle0 = addr_bytes[index++];
1695
1696 for (bit_shift = 0; index < acycle; bit_shift += 8)
1697 *addr1234 += addr_bytes[index++] << bit_shift;
1698
1699 /* return acycle in cmd register */
1700 return acycle << NFCADDR_CMD_ACYCLE_BIT_POS;
1701}
1702
1703static void nfc_nand_command(struct mtd_info *mtd, unsigned int command,
1704 int column, int page_addr)
1705{
1706 struct nand_chip *chip = mtd->priv;
1707 struct atmel_nand_host *host = chip->priv;
1708 unsigned long timeout;
1709 unsigned int nfc_addr_cmd = 0;
1710
1711 unsigned int cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
1712
1713 /* Set default settings: no cmd2, no addr cycle. read from nand */
1714 unsigned int cmd2 = 0;
1715 unsigned int vcmd2 = 0;
1716 int acycle = NFCADDR_CMD_ACYCLE_NONE;
1717 int csid = NFCADDR_CMD_CSID_3;
1718 int dataen = NFCADDR_CMD_DATADIS;
1719 int nfcwr = NFCADDR_CMD_NFCRD;
1720 unsigned int addr1234 = 0;
1721 unsigned int cycle0 = 0;
1722 bool do_addr = true;
1ae9c092 1723 host->nfc->data_in_sram = NULL;
7dc37de7
JW
1724
1725 dev_dbg(host->dev, "%s: cmd = 0x%02x, col = 0x%08x, page = 0x%08x\n",
1726 __func__, command, column, page_addr);
1727
1728 switch (command) {
1729 case NAND_CMD_RESET:
1730 nfc_addr_cmd = cmd1 | acycle | csid | dataen | nfcwr;
1731 nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
1732 udelay(chip->chip_delay);
1733
1734 nfc_nand_command(mtd, NAND_CMD_STATUS, -1, -1);
1735 timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
1736 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) {
1737 if (time_after(jiffies, timeout)) {
1738 dev_err(host->dev,
1739 "Time out to wait status ready!\n");
1740 break;
1741 }
1742 }
1743 return;
1744 case NAND_CMD_STATUS:
1745 do_addr = false;
1746 break;
1747 case NAND_CMD_PARAM:
1748 case NAND_CMD_READID:
1749 do_addr = false;
1750 acycle = NFCADDR_CMD_ACYCLE_1;
1751 if (column != -1)
1752 addr1234 = column;
1753 break;
1754 case NAND_CMD_RNDOUT:
1755 cmd2 = NAND_CMD_RNDOUTSTART << NFCADDR_CMD_CMD2_BIT_POS;
1756 vcmd2 = NFCADDR_CMD_VCMD2;
1757 break;
1758 case NAND_CMD_READ0:
1759 case NAND_CMD_READOOB:
1760 if (command == NAND_CMD_READOOB) {
1761 column += mtd->writesize;
1762 command = NAND_CMD_READ0; /* only READ0 is valid */
1763 cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
1764 }
1ae9c092
JW
1765 if (host->nfc->use_nfc_sram) {
1766 /* Enable Data transfer to sram */
1767 dataen = NFCADDR_CMD_DATAEN;
1768
1769 /* Need enable PMECC now, since NFC will transfer
1770 * data in bus after sending nfc read command.
1771 */
1772 if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
1773 pmecc_enable(host, NAND_ECC_READ);
1774 }
7dc37de7
JW
1775
1776 cmd2 = NAND_CMD_READSTART << NFCADDR_CMD_CMD2_BIT_POS;
1777 vcmd2 = NFCADDR_CMD_VCMD2;
1778 break;
1779 /* For prgramming command, the cmd need set to write enable */
1780 case NAND_CMD_PAGEPROG:
1781 case NAND_CMD_SEQIN:
1782 case NAND_CMD_RNDIN:
1783 nfcwr = NFCADDR_CMD_NFCWR;
6054d4d5
JW
1784 if (host->nfc->will_write_sram && command == NAND_CMD_SEQIN)
1785 dataen = NFCADDR_CMD_DATAEN;
7dc37de7
JW
1786 break;
1787 default:
1788 break;
1789 }
1790
1791 if (do_addr)
3dad2344
BN
1792 acycle = nfc_make_addr(mtd, command, column, page_addr,
1793 &addr1234, &cycle0);
7dc37de7
JW
1794
1795 nfc_addr_cmd = cmd1 | cmd2 | vcmd2 | acycle | csid | dataen | nfcwr;
1796 nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
1797
1ae9c092
JW
1798 if (dataen == NFCADDR_CMD_DATAEN)
1799 if (nfc_wait_interrupt(host, NFC_SR_XFR_DONE))
1800 dev_err(host->dev, "something wrong, No XFR_DONE interrupt comes.\n");
1801
7dc37de7
JW
1802 /*
1803 * Program and erase have their own busy handlers status, sequential
1804 * in, and deplete1 need no delay.
1805 */
1806 switch (command) {
1807 case NAND_CMD_CACHEDPROG:
1808 case NAND_CMD_PAGEPROG:
1809 case NAND_CMD_ERASE1:
1810 case NAND_CMD_ERASE2:
1811 case NAND_CMD_RNDIN:
1812 case NAND_CMD_STATUS:
1813 case NAND_CMD_RNDOUT:
1814 case NAND_CMD_SEQIN:
1815 case NAND_CMD_READID:
1816 return;
1817
1818 case NAND_CMD_READ0:
1ae9c092
JW
1819 if (dataen == NFCADDR_CMD_DATAEN) {
1820 host->nfc->data_in_sram = host->nfc->sram_bank0 +
1821 nfc_get_sram_off(host);
1822 return;
1823 }
7dc37de7
JW
1824 /* fall through */
1825 default:
1826 nfc_wait_interrupt(host, NFC_SR_RB_EDGE);
1827 }
1828}
1829
6054d4d5
JW
1830static int nfc_sram_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1831 uint32_t offset, int data_len, const uint8_t *buf,
1832 int oob_required, int page, int cached, int raw)
1833{
1834 int cfg, len;
1835 int status = 0;
1836 struct atmel_nand_host *host = chip->priv;
1837 void __iomem *sram = host->nfc->sram_bank0 + nfc_get_sram_off(host);
1838
1839 /* Subpage write is not supported */
1840 if (offset || (data_len < mtd->writesize))
1841 return -EINVAL;
1842
1843 cfg = nfc_readl(host->nfc->hsmc_regs, CFG);
1844 len = mtd->writesize;
1845
1846 if (unlikely(raw)) {
1847 len += mtd->oobsize;
1848 nfc_writel(host->nfc->hsmc_regs, CFG, cfg | NFC_CFG_WSPARE);
1849 } else
1850 nfc_writel(host->nfc->hsmc_regs, CFG, cfg & ~NFC_CFG_WSPARE);
1851
1852 /* Copy page data to sram that will write to nand via NFC */
1853 if (use_dma) {
1854 if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) != 0)
1855 /* Fall back to use cpu copy */
1856 memcpy32_toio(sram, buf, len);
1857 } else {
1858 memcpy32_toio(sram, buf, len);
1859 }
1860
1861 if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
1862 /*
1863 * When use NFC sram, need set up PMECC before send
1864 * NAND_CMD_SEQIN command. Since when the nand command
1865 * is sent, nfc will do transfer from sram and nand.
1866 */
1867 pmecc_enable(host, NAND_ECC_WRITE);
1868
1869 host->nfc->will_write_sram = true;
1870 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1871 host->nfc->will_write_sram = false;
1872
1873 if (likely(!raw))
1874 /* Need to write ecc into oob */
1875 status = chip->ecc.write_page(mtd, chip, buf, oob_required);
1876
1877 if (status < 0)
1878 return status;
1879
1880 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1881 status = chip->waitfunc(mtd, chip);
1882
1883 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1884 status = chip->errstat(mtd, chip, FL_WRITING, status, page);
1885
1886 if (status & NAND_STATUS_FAIL)
1887 return -EIO;
1888
1889 return 0;
1890}
1891
1ae9c092
JW
1892static int nfc_sram_init(struct mtd_info *mtd)
1893{
1894 struct nand_chip *chip = mtd->priv;
1895 struct atmel_nand_host *host = chip->priv;
1896 int res = 0;
1897
1898 /* Initialize the NFC CFG register */
1899 unsigned int cfg_nfc = 0;
1900
1901 /* set page size and oob layout */
1902 switch (mtd->writesize) {
1903 case 512:
1904 cfg_nfc = NFC_CFG_PAGESIZE_512;
1905 break;
1906 case 1024:
1907 cfg_nfc = NFC_CFG_PAGESIZE_1024;
1908 break;
1909 case 2048:
1910 cfg_nfc = NFC_CFG_PAGESIZE_2048;
1911 break;
1912 case 4096:
1913 cfg_nfc = NFC_CFG_PAGESIZE_4096;
1914 break;
1915 case 8192:
1916 cfg_nfc = NFC_CFG_PAGESIZE_8192;
1917 break;
1918 default:
1919 dev_err(host->dev, "Unsupported page size for NFC.\n");
1920 res = -ENXIO;
1921 return res;
1922 }
1923
1924 /* oob bytes size = (NFCSPARESIZE + 1) * 4
1925 * Max support spare size is 512 bytes. */
1926 cfg_nfc |= (((mtd->oobsize / 4) - 1) << NFC_CFG_NFC_SPARESIZE_BIT_POS
1927 & NFC_CFG_NFC_SPARESIZE);
1928 /* default set a max timeout */
1929 cfg_nfc |= NFC_CFG_RSPARE |
1930 NFC_CFG_NFC_DTOCYC | NFC_CFG_NFC_DTOMUL;
1931
1932 nfc_writel(host->nfc->hsmc_regs, CFG, cfg_nfc);
1933
6054d4d5 1934 host->nfc->will_write_sram = false;
1ae9c092
JW
1935 nfc_set_sram_bank(host, 0);
1936
6054d4d5
JW
1937 /* Use Write page with NFC SRAM only for PMECC or ECC NONE. */
1938 if (host->nfc->write_by_sram) {
1939 if ((chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) ||
1940 chip->ecc.mode == NAND_ECC_NONE)
1941 chip->write_page = nfc_sram_write_page;
1942 else
1943 host->nfc->write_by_sram = false;
1944 }
1ae9c092 1945
6054d4d5
JW
1946 dev_info(host->dev, "Using NFC Sram read %s\n",
1947 host->nfc->write_by_sram ? "and write" : "");
1ae9c092
JW
1948 return 0;
1949}
1950
7dc37de7 1951static struct platform_driver atmel_nand_nfc_driver;
42cb1403
AV
1952/*
1953 * Probe for the NAND device.
1954 */
2c2b9285 1955static int atmel_nand_probe(struct platform_device *pdev)
42cb1403 1956{
3c3796cc 1957 struct atmel_nand_host *host;
42cb1403
AV
1958 struct mtd_info *mtd;
1959 struct nand_chip *nand_chip;
77f5492c 1960 struct resource *mem;
d6a01661 1961 struct mtd_part_parser_data ppdata = {};
7dc37de7 1962 int res, irq;
42cb1403
AV
1963
1964 /* Allocate memory for the device structure (and zero it) */
0d63748d 1965 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
9e3677a8 1966 if (!host)
42cb1403 1967 return -ENOMEM;
42cb1403 1968
7dc37de7
JW
1969 res = platform_driver_register(&atmel_nand_nfc_driver);
1970 if (res)
1971 dev_err(&pdev->dev, "atmel_nand: can't register NFC driver\n");
1972
0d63748d
JCPV
1973 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1974 host->io_base = devm_ioremap_resource(&pdev->dev, mem);
1975 if (IS_ERR(host->io_base)) {
1976 dev_err(&pdev->dev, "atmel_nand: ioremap resource failed\n");
1977 res = PTR_ERR(host->io_base);
cc0c72e1 1978 goto err_nand_ioremap;
42cb1403 1979 }
0d63748d 1980 host->io_phys = (dma_addr_t)mem->start;
42cb1403
AV
1981
1982 mtd = &host->mtd;
1983 nand_chip = &host->nand_chip;
77f5492c 1984 host->dev = &pdev->dev;
e9d8da80
JW
1985 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
1986 /* Only when CONFIG_OF is enabled of_node can be parsed */
d6a01661
JCPV
1987 res = atmel_of_init_port(host, pdev->dev.of_node);
1988 if (res)
0d63748d 1989 goto err_nand_ioremap;
d6a01661 1990 } else {
453810b7 1991 memcpy(&host->board, dev_get_platdata(&pdev->dev),
d6a01661
JCPV
1992 sizeof(struct atmel_nand_data));
1993 }
42cb1403
AV
1994
1995 nand_chip->priv = host; /* link the private data structures */
1996 mtd->priv = nand_chip;
1997 mtd->owner = THIS_MODULE;
1998
1999 /* Set address of NAND IO lines */
2000 nand_chip->IO_ADDR_R = host->io_base;
2001 nand_chip->IO_ADDR_W = host->io_base;
28446acb 2002
7dc37de7
JW
2003 if (nand_nfc.is_initialized) {
2004 /* NFC driver is probed and initialized */
2005 host->nfc = &nand_nfc;
28446acb 2006
7dc37de7
JW
2007 nand_chip->select_chip = nfc_select_chip;
2008 nand_chip->dev_ready = nfc_device_ready;
2009 nand_chip->cmdfunc = nfc_nand_command;
28446acb 2010
7dc37de7
JW
2011 /* Initialize the interrupt for NFC */
2012 irq = platform_get_irq(pdev, 0);
2013 if (irq < 0) {
2014 dev_err(host->dev, "Cannot get HSMC irq!\n");
ff52c67a 2015 res = irq;
0d63748d 2016 goto err_nand_ioremap;
28446acb
JCPV
2017 }
2018
7dc37de7
JW
2019 res = devm_request_irq(&pdev->dev, irq, hsmc_interrupt,
2020 0, "hsmc", host);
2021 if (res) {
2022 dev_err(&pdev->dev, "Unable to request HSMC irq %d\n",
2023 irq);
0d63748d 2024 goto err_nand_ioremap;
28446acb 2025 }
7dc37de7
JW
2026 } else {
2027 res = atmel_nand_set_enable_ready_pins(mtd);
2028 if (res)
2029 goto err_nand_ioremap;
2030
2031 nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl;
28446acb 2032 }
a4265f8d 2033
d6a01661 2034 nand_chip->ecc.mode = host->board.ecc_mode;
42cb1403
AV
2035 nand_chip->chip_delay = 20; /* 20us command delay time */
2036
d6a01661 2037 if (host->board.bus_width_16) /* 16-bit bus width */
dd11b8cd 2038 nand_chip->options |= NAND_BUSWIDTH_16;
cbc6c5e7
HX
2039
2040 nand_chip->read_buf = atmel_read_buf;
2041 nand_chip->write_buf = atmel_write_buf;
dd11b8cd 2042
42cb1403 2043 platform_set_drvdata(pdev, host);
3c3796cc 2044 atmel_nand_enable(host);
42cb1403 2045
d6a01661 2046 if (gpio_is_valid(host->board.det_pin)) {
0d63748d
JCPV
2047 res = devm_gpio_request(&pdev->dev,
2048 host->board.det_pin, "nand_det");
28446acb
JCPV
2049 if (res < 0) {
2050 dev_err(&pdev->dev,
2051 "can't request det gpio %d\n",
2052 host->board.det_pin);
2053 goto err_no_card;
2054 }
2055
2056 res = gpio_direction_input(host->board.det_pin);
2057 if (res < 0) {
2058 dev_err(&pdev->dev,
2059 "can't request input direction det gpio %d\n",
2060 host->board.det_pin);
2061 goto err_no_card;
2062 }
2063
d6a01661 2064 if (gpio_get_value(host->board.det_pin)) {
1295f970 2065 dev_info(&pdev->dev, "No SmartMedia card inserted.\n");
895fb494 2066 res = -ENXIO;
cc0c72e1 2067 goto err_no_card;
42cb1403
AV
2068 }
2069 }
2070
d6a01661 2071 if (host->board.on_flash_bbt || on_flash_bbt) {
1295f970 2072 dev_info(&pdev->dev, "Use On Flash BBT\n");
bb9ebd4e 2073 nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
f4fa697c
SP
2074 }
2075
1b719265 2076 if (!host->board.has_dma)
cb457a4d
HX
2077 use_dma = 0;
2078
2079 if (use_dma) {
cbc6c5e7
HX
2080 dma_cap_mask_t mask;
2081
2082 dma_cap_zero(mask);
2083 dma_cap_set(DMA_MEMCPY, mask);
201ab536 2084 host->dma_chan = dma_request_channel(mask, NULL, NULL);
cbc6c5e7
HX
2085 if (!host->dma_chan) {
2086 dev_err(host->dev, "Failed to request DMA channel\n");
2087 use_dma = 0;
2088 }
2089 }
2090 if (use_dma)
042bc9c0
NF
2091 dev_info(host->dev, "Using %s for DMA transfers.\n",
2092 dma_chan_name(host->dma_chan));
cbc6c5e7
HX
2093 else
2094 dev_info(host->dev, "No DMA support for NAND access.\n");
2095
77f5492c 2096 /* first scan to find the device and get the page size */
5e81e88a 2097 if (nand_scan_ident(mtd, 1, NULL)) {
77f5492c 2098 res = -ENXIO;
cc0c72e1 2099 goto err_scan_ident;
77f5492c
RG
2100 }
2101
3fc23898 2102 if (nand_chip->ecc.mode == NAND_ECC_HW) {
1c7b874d
JW
2103 if (host->has_pmecc)
2104 res = atmel_pmecc_nand_init_params(pdev, host);
2105 else
2106 res = atmel_hw_nand_init_params(pdev, host);
2107
3dfe41a4
JW
2108 if (res != 0)
2109 goto err_hw_ecc;
77f5492c
RG
2110 }
2111
1ae9c092
JW
2112 /* initialize the nfc configuration register */
2113 if (host->nfc && host->nfc->use_nfc_sram) {
2114 res = nfc_sram_init(mtd);
2115 if (res) {
2116 host->nfc->use_nfc_sram = false;
2117 dev_err(host->dev, "Disable use nfc sram for data transfer.\n");
2118 }
2119 }
2120
77f5492c
RG
2121 /* second phase scan */
2122 if (nand_scan_tail(mtd)) {
42cb1403 2123 res = -ENXIO;
cc0c72e1 2124 goto err_scan_tail;
42cb1403
AV
2125 }
2126
3c3796cc 2127 mtd->name = "atmel_nand";
d6a01661
JCPV
2128 ppdata.of_node = pdev->dev.of_node;
2129 res = mtd_device_parse_register(mtd, NULL, &ppdata,
2130 host->board.parts, host->board.num_parts);
42cb1403
AV
2131 if (!res)
2132 return res;
2133
cc0c72e1 2134err_scan_tail:
0d63748d 2135 if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW)
1c7b874d 2136 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
3dfe41a4 2137err_hw_ecc:
cc0c72e1
HS
2138err_scan_ident:
2139err_no_card:
3c3796cc 2140 atmel_nand_disable(host);
cbc6c5e7
HX
2141 if (host->dma_chan)
2142 dma_release_channel(host->dma_chan);
cc0c72e1 2143err_nand_ioremap:
42cb1403
AV
2144 return res;
2145}
2146
2147/*
2148 * Remove a NAND device.
2149 */
2c2b9285 2150static int atmel_nand_remove(struct platform_device *pdev)
42cb1403 2151{
3c3796cc 2152 struct atmel_nand_host *host = platform_get_drvdata(pdev);
42cb1403
AV
2153 struct mtd_info *mtd = &host->mtd;
2154
2155 nand_release(mtd);
2156
3c3796cc 2157 atmel_nand_disable(host);
42cb1403 2158
1c7b874d
JW
2159 if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) {
2160 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
2161 pmerrloc_writel(host->pmerrloc_base, ELDIS,
2162 PMERRLOC_DISABLE);
1c7b874d
JW
2163 }
2164
cbc6c5e7
HX
2165 if (host->dma_chan)
2166 dma_release_channel(host->dma_chan);
2167
7dc37de7
JW
2168 platform_driver_unregister(&atmel_nand_nfc_driver);
2169
42cb1403
AV
2170 return 0;
2171}
2172
d6a01661
JCPV
2173static const struct of_device_id atmel_nand_dt_ids[] = {
2174 { .compatible = "atmel,at91rm9200-nand" },
2175 { /* sentinel */ }
2176};
2177
2178MODULE_DEVICE_TABLE(of, atmel_nand_dt_ids);
d6a01661 2179
7dc37de7
JW
2180static int atmel_nand_nfc_probe(struct platform_device *pdev)
2181{
2182 struct atmel_nfc *nfc = &nand_nfc;
2183 struct resource *nfc_cmd_regs, *nfc_hsmc_regs, *nfc_sram;
2184
2185 nfc_cmd_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2186 nfc->base_cmd_regs = devm_ioremap_resource(&pdev->dev, nfc_cmd_regs);
2187 if (IS_ERR(nfc->base_cmd_regs))
2188 return PTR_ERR(nfc->base_cmd_regs);
2189
2190 nfc_hsmc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2191 nfc->hsmc_regs = devm_ioremap_resource(&pdev->dev, nfc_hsmc_regs);
2192 if (IS_ERR(nfc->hsmc_regs))
2193 return PTR_ERR(nfc->hsmc_regs);
2194
2195 nfc_sram = platform_get_resource(pdev, IORESOURCE_MEM, 2);
2196 if (nfc_sram) {
2197 nfc->sram_bank0 = devm_ioremap_resource(&pdev->dev, nfc_sram);
1ae9c092 2198 if (IS_ERR(nfc->sram_bank0)) {
7dc37de7
JW
2199 dev_warn(&pdev->dev, "Fail to ioremap the NFC sram with error: %ld. So disable NFC sram.\n",
2200 PTR_ERR(nfc->sram_bank0));
1ae9c092
JW
2201 } else {
2202 nfc->use_nfc_sram = true;
7dc37de7 2203 nfc->sram_bank0_phys = (dma_addr_t)nfc_sram->start;
6054d4d5
JW
2204
2205 if (pdev->dev.of_node)
2206 nfc->write_by_sram = of_property_read_bool(
2207 pdev->dev.of_node,
2208 "atmel,write-by-sram");
1ae9c092 2209 }
7dc37de7
JW
2210 }
2211
2212 nfc->is_initialized = true;
2213 dev_info(&pdev->dev, "NFC is probed.\n");
2214 return 0;
2215}
2216
81f29b47 2217static const struct of_device_id atmel_nand_nfc_match[] = {
7dc37de7
JW
2218 { .compatible = "atmel,sama5d3-nfc" },
2219 { /* sentinel */ }
2220};
81f29b47 2221MODULE_DEVICE_TABLE(of, atmel_nand_nfc_match);
7dc37de7
JW
2222
2223static struct platform_driver atmel_nand_nfc_driver = {
2224 .driver = {
2225 .name = "atmel_nand_nfc",
2226 .owner = THIS_MODULE,
2227 .of_match_table = of_match_ptr(atmel_nand_nfc_match),
2228 },
2229 .probe = atmel_nand_nfc_probe,
2230};
2231
3c3796cc 2232static struct platform_driver atmel_nand_driver = {
2c2b9285
JH
2233 .probe = atmel_nand_probe,
2234 .remove = atmel_nand_remove,
42cb1403 2235 .driver = {
3c3796cc 2236 .name = "atmel_nand",
42cb1403 2237 .owner = THIS_MODULE,
d6a01661 2238 .of_match_table = of_match_ptr(atmel_nand_dt_ids),
42cb1403
AV
2239 },
2240};
2241
2c2b9285 2242module_platform_driver(atmel_nand_driver);
42cb1403
AV
2243
2244MODULE_LICENSE("GPL");
2245MODULE_AUTHOR("Rick Bronson");
d4f4c0aa 2246MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
3c3796cc 2247MODULE_ALIAS("platform:atmel_nand");
This page took 0.553247 seconds and 5 git commands to generate.