Merge branch 'fixefi' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6
[deliverable/linux.git] / drivers / mtd / nand / bcm_umi_nand.c
CommitLineData
266dead2
LHC
1/*****************************************************************************
2* Copyright 2004 - 2009 Broadcom Corporation. All rights reserved.
3*
4* Unless you and Broadcom execute a separate written software license
5* agreement governing use of this software, this software is licensed to you
6* under the terms of the GNU General Public License version 2, available at
7* http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
8*
9* Notwithstanding the above, under no circumstances may you combine this
10* software in any way with any other Broadcom software provided under a
11* license other than the GPL, without Broadcom's express prior written
12* consent.
13*****************************************************************************/
14
15/* ---- Include Files ---------------------------------------------------- */
266dead2
LHC
16#include <linux/module.h>
17#include <linux/types.h>
18#include <linux/init.h>
19#include <linux/kernel.h>
5a0e3ad6 20#include <linux/slab.h>
266dead2
LHC
21#include <linux/string.h>
22#include <linux/ioport.h>
23#include <linux/device.h>
24#include <linux/delay.h>
25#include <linux/err.h>
26#include <linux/io.h>
27#include <linux/platform_device.h>
28#include <linux/mtd/mtd.h>
29#include <linux/mtd/nand.h>
30#include <linux/mtd/nand_ecc.h>
31#include <linux/mtd/partitions.h>
32
33#include <asm/mach-types.h>
34#include <asm/system.h>
35
36#include <mach/reg_nand.h>
37#include <mach/reg_umi.h>
38
39#include "nand_bcm_umi.h"
40
41#include <mach/memory_settings.h>
42
43#define USE_DMA 1
44#include <mach/dma.h>
45#include <linux/dma-mapping.h>
46#include <linux/completion.h>
47
48/* ---- External Variable Declarations ----------------------------------- */
49/* ---- External Function Prototypes ------------------------------------- */
50/* ---- Public Variables ------------------------------------------------- */
51/* ---- Private Constants and Types -------------------------------------- */
52static const __devinitconst char gBanner[] = KERN_INFO \
53 "BCM UMI MTD NAND Driver: 1.00\n";
54
266dead2 55const char *part_probes[] = { "cmdlinepart", NULL };
266dead2
LHC
56
57#if NAND_ECC_BCH
58static uint8_t scan_ff_pattern[] = { 0xff };
59
60static struct nand_bbt_descr largepage_bbt = {
61 .options = 0,
62 .offs = 0,
63 .len = 1,
64 .pattern = scan_ff_pattern
65};
66#endif
67
68/*
69** Preallocate a buffer to avoid having to do this every dma operation.
70** This is the size of the preallocated coherent DMA buffer.
71*/
72#if USE_DMA
73#define DMA_MIN_BUFLEN 512
74#define DMA_MAX_BUFLEN PAGE_SIZE
75#define USE_DIRECT_IO(len) (((len) < DMA_MIN_BUFLEN) || \
76 ((len) > DMA_MAX_BUFLEN))
77
78/*
79 * The current NAND data space goes from 0x80001900 to 0x80001FFF,
80 * which is only 0x700 = 1792 bytes long. This is too small for 2K, 4K page
81 * size NAND flash. Need to break the DMA down to multiple 1Ks.
82 *
83 * Need to make sure REG_NAND_DATA_PADDR + DMA_MAX_LEN < 0x80002000
84 */
85#define DMA_MAX_LEN 1024
86
87#else /* !USE_DMA */
88#define DMA_MIN_BUFLEN 0
89#define DMA_MAX_BUFLEN 0
90#define USE_DIRECT_IO(len) 1
91#endif
92/* ---- Private Function Prototypes -------------------------------------- */
93static void bcm_umi_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len);
94static void bcm_umi_nand_write_buf(struct mtd_info *mtd, const u_char * buf,
95 int len);
96
97/* ---- Private Variables ------------------------------------------------ */
98static struct mtd_info *board_mtd;
99static void __iomem *bcm_umi_io_base;
100static void *virtPtr;
101static dma_addr_t physPtr;
102static struct completion nand_comp;
103
104/* ---- Private Functions ------------------------------------------------ */
105#if NAND_ECC_BCH
106#include "bcm_umi_bch.c"
107#else
108#include "bcm_umi_hamming.c"
109#endif
110
111#if USE_DMA
112
113/* Handler called when the DMA finishes. */
114static void nand_dma_handler(DMA_Device_t dev, int reason, void *userData)
115{
116 complete(&nand_comp);
117}
118
119static int nand_dma_init(void)
120{
121 int rc;
122
123 rc = dma_set_device_handler(DMA_DEVICE_NAND_MEM_TO_MEM,
124 nand_dma_handler, NULL);
125 if (rc != 0) {
126 printk(KERN_ERR "dma_set_device_handler failed: %d\n", rc);
127 return rc;
128 }
129
130 virtPtr =
131 dma_alloc_coherent(NULL, DMA_MAX_BUFLEN, &physPtr, GFP_KERNEL);
132 if (virtPtr == NULL) {
133 printk(KERN_ERR "NAND - Failed to allocate memory for DMA buffer\n");
134 return -ENOMEM;
135 }
136
137 return 0;
138}
139
140static void nand_dma_term(void)
141{
142 if (virtPtr != NULL)
143 dma_free_coherent(NULL, DMA_MAX_BUFLEN, virtPtr, physPtr);
144}
145
146static void nand_dma_read(void *buf, int len)
147{
148 int offset = 0;
149 int tmp_len = 0;
150 int len_left = len;
151 DMA_Handle_t hndl;
152
153 if (virtPtr == NULL)
154 panic("nand_dma_read: virtPtr == NULL\n");
155
156 if ((void *)physPtr == NULL)
157 panic("nand_dma_read: physPtr == NULL\n");
158
159 hndl = dma_request_channel(DMA_DEVICE_NAND_MEM_TO_MEM);
160 if (hndl < 0) {
161 printk(KERN_ERR
162 "nand_dma_read: unable to allocate dma channel: %d\n",
163 (int)hndl);
164 panic("\n");
165 }
166
167 while (len_left > 0) {
168 if (len_left > DMA_MAX_LEN) {
169 tmp_len = DMA_MAX_LEN;
170 len_left -= DMA_MAX_LEN;
171 } else {
172 tmp_len = len_left;
173 len_left = 0;
174 }
175
176 init_completion(&nand_comp);
177 dma_transfer_mem_to_mem(hndl, REG_NAND_DATA_PADDR,
178 physPtr + offset, tmp_len);
179 wait_for_completion(&nand_comp);
180
181 offset += tmp_len;
182 }
183
184 dma_free_channel(hndl);
185
186 if (buf != NULL)
187 memcpy(buf, virtPtr, len);
188}
189
190static void nand_dma_write(const void *buf, int len)
191{
192 int offset = 0;
193 int tmp_len = 0;
194 int len_left = len;
195 DMA_Handle_t hndl;
196
197 if (buf == NULL)
198 panic("nand_dma_write: buf == NULL\n");
199
200 if (virtPtr == NULL)
201 panic("nand_dma_write: virtPtr == NULL\n");
202
203 if ((void *)physPtr == NULL)
204 panic("nand_dma_write: physPtr == NULL\n");
205
206 memcpy(virtPtr, buf, len);
207
208
209 hndl = dma_request_channel(DMA_DEVICE_NAND_MEM_TO_MEM);
210 if (hndl < 0) {
211 printk(KERN_ERR
212 "nand_dma_write: unable to allocate dma channel: %d\n",
213 (int)hndl);
214 panic("\n");
215 }
216
217 while (len_left > 0) {
218 if (len_left > DMA_MAX_LEN) {
219 tmp_len = DMA_MAX_LEN;
220 len_left -= DMA_MAX_LEN;
221 } else {
222 tmp_len = len_left;
223 len_left = 0;
224 }
225
226 init_completion(&nand_comp);
227 dma_transfer_mem_to_mem(hndl, physPtr + offset,
228 REG_NAND_DATA_PADDR, tmp_len);
229 wait_for_completion(&nand_comp);
230
231 offset += tmp_len;
232 }
233
234 dma_free_channel(hndl);
235}
236
237#endif
238
239static int nand_dev_ready(struct mtd_info *mtd)
240{
241 return nand_bcm_umi_dev_ready();
242}
243
244/****************************************************************************
245*
246* bcm_umi_nand_inithw
247*
248* This routine does the necessary hardware (board-specific)
249* initializations. This includes setting up the timings, etc.
250*
251***************************************************************************/
252int bcm_umi_nand_inithw(void)
253{
254 /* Configure nand timing parameters */
255 REG_UMI_NAND_TCR &= ~0x7ffff;
256 REG_UMI_NAND_TCR |= HW_CFG_NAND_TCR;
257
258#if !defined(CONFIG_MTD_NAND_BCM_UMI_HWCS)
259 /* enable software control of CS */
260 REG_UMI_NAND_TCR |= REG_UMI_NAND_TCR_CS_SWCTRL;
261#endif
262
263 /* keep NAND chip select asserted */
264 REG_UMI_NAND_RCSR |= REG_UMI_NAND_RCSR_CS_ASSERTED;
265
266 REG_UMI_NAND_TCR &= ~REG_UMI_NAND_TCR_WORD16;
267 /* enable writes to flash */
268 REG_UMI_MMD_ICR |= REG_UMI_MMD_ICR_FLASH_WP;
269
270 writel(NAND_CMD_RESET, bcm_umi_io_base + REG_NAND_CMD_OFFSET);
271 nand_bcm_umi_wait_till_ready();
272
273#if NAND_ECC_BCH
274 nand_bcm_umi_bch_config_ecc(NAND_ECC_NUM_BYTES);
275#endif
276
277 return 0;
278}
279
280/* Used to turn latch the proper register for access. */
281static void bcm_umi_nand_hwcontrol(struct mtd_info *mtd, int cmd,
282 unsigned int ctrl)
283{
284 /* send command to hardware */
285 struct nand_chip *chip = mtd->priv;
286 if (ctrl & NAND_CTRL_CHANGE) {
287 if (ctrl & NAND_CLE) {
288 chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_CMD_OFFSET;
289 goto CMD;
290 }
291 if (ctrl & NAND_ALE) {
292 chip->IO_ADDR_W =
293 bcm_umi_io_base + REG_NAND_ADDR_OFFSET;
294 goto CMD;
295 }
296 chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
297 }
298
299CMD:
300 /* Send command to chip directly */
301 if (cmd != NAND_CMD_NONE)
302 writeb(cmd, chip->IO_ADDR_W);
303}
304
305static void bcm_umi_nand_write_buf(struct mtd_info *mtd, const u_char * buf,
306 int len)
307{
308 if (USE_DIRECT_IO(len)) {
309 /* Do it the old way if the buffer is small or too large.
310 * Probably quicker than starting and checking dma. */
311 int i;
312 struct nand_chip *this = mtd->priv;
313
314 for (i = 0; i < len; i++)
315 writeb(buf[i], this->IO_ADDR_W);
316 }
317#if USE_DMA
318 else
319 nand_dma_write(buf, len);
320#endif
321}
322
323static void bcm_umi_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len)
324{
325 if (USE_DIRECT_IO(len)) {
326 int i;
327 struct nand_chip *this = mtd->priv;
328
329 for (i = 0; i < len; i++)
330 buf[i] = readb(this->IO_ADDR_R);
331 }
332#if USE_DMA
333 else
334 nand_dma_read(buf, len);
335#endif
336}
337
338static uint8_t readbackbuf[NAND_MAX_PAGESIZE];
339static int bcm_umi_nand_verify_buf(struct mtd_info *mtd, const u_char * buf,
340 int len)
341{
342 /*
343 * Try to readback page with ECC correction. This is necessary
344 * for MLC parts which may have permanently stuck bits.
345 */
346 struct nand_chip *chip = mtd->priv;
347 int ret = chip->ecc.read_page(mtd, chip, readbackbuf, 0);
348 if (ret < 0)
349 return -EFAULT;
350 else {
351 if (memcmp(readbackbuf, buf, len) == 0)
352 return 0;
353
354 return -EFAULT;
355 }
356 return 0;
357}
358
359static int __devinit bcm_umi_nand_probe(struct platform_device *pdev)
360{
361 struct nand_chip *this;
362 struct resource *r;
363 int err = 0;
364
365 printk(gBanner);
366
367 /* Allocate memory for MTD device structure and private data */
368 board_mtd =
369 kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip),
370 GFP_KERNEL);
371 if (!board_mtd) {
372 printk(KERN_WARNING
373 "Unable to allocate NAND MTD device structure.\n");
374 return -ENOMEM;
375 }
376
377 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
378
379 if (!r)
380 return -ENXIO;
381
3ad2f3fb 382 /* map physical address */
28f65c11 383 bcm_umi_io_base = ioremap(r->start, resource_size(r));
266dead2
LHC
384
385 if (!bcm_umi_io_base) {
386 printk(KERN_ERR "ioremap to access BCM UMI NAND chip failed\n");
387 kfree(board_mtd);
388 return -EIO;
389 }
390
391 /* Get pointer to private data */
392 this = (struct nand_chip *)(&board_mtd[1]);
393
394 /* Initialize structures */
395 memset((char *)board_mtd, 0, sizeof(struct mtd_info));
396 memset((char *)this, 0, sizeof(struct nand_chip));
397
398 /* Link the private data with the MTD structure */
399 board_mtd->priv = this;
400
401 /* Initialize the NAND hardware. */
402 if (bcm_umi_nand_inithw() < 0) {
403 printk(KERN_ERR "BCM UMI NAND chip could not be initialized\n");
404 iounmap(bcm_umi_io_base);
405 kfree(board_mtd);
406 return -EIO;
407 }
408
409 /* Set address of NAND IO lines */
410 this->IO_ADDR_W = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
411 this->IO_ADDR_R = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
412
413 /* Set command delay time, see datasheet for correct value */
414 this->chip_delay = 0;
415 /* Assign the device ready function, if available */
416 this->dev_ready = nand_dev_ready;
417 this->options = 0;
418
419 this->write_buf = bcm_umi_nand_write_buf;
420 this->read_buf = bcm_umi_nand_read_buf;
421 this->verify_buf = bcm_umi_nand_verify_buf;
422
423 this->cmd_ctrl = bcm_umi_nand_hwcontrol;
424 this->ecc.mode = NAND_ECC_HW;
425 this->ecc.size = 512;
426 this->ecc.bytes = NAND_ECC_NUM_BYTES;
427#if NAND_ECC_BCH
428 this->ecc.read_page = bcm_umi_bch_read_page_hwecc;
429 this->ecc.write_page = bcm_umi_bch_write_page_hwecc;
430#else
431 this->ecc.correct = nand_correct_data512;
432 this->ecc.calculate = bcm_umi_hamming_get_hw_ecc;
433 this->ecc.hwctl = bcm_umi_hamming_enable_hwecc;
434#endif
435
436#if USE_DMA
437 err = nand_dma_init();
438 if (err != 0)
439 return err;
440#endif
441
442 /* Figure out the size of the device that we have.
443 * We need to do this to figure out which ECC
444 * layout we'll be using.
445 */
446
5e81e88a 447 err = nand_scan_ident(board_mtd, 1, NULL);
266dead2
LHC
448 if (err) {
449 printk(KERN_ERR "nand_scan failed: %d\n", err);
450 iounmap(bcm_umi_io_base);
451 kfree(board_mtd);
452 return err;
453 }
454
455 /* Now that we know the nand size, we can setup the ECC layout */
456
457 switch (board_mtd->writesize) { /* writesize is the pagesize */
458 case 4096:
459 this->ecc.layout = &nand_hw_eccoob_4096;
460 break;
461 case 2048:
462 this->ecc.layout = &nand_hw_eccoob_2048;
463 break;
464 case 512:
465 this->ecc.layout = &nand_hw_eccoob_512;
466 break;
467 default:
468 {
469 printk(KERN_ERR "NAND - Unrecognized pagesize: %d\n",
470 board_mtd->writesize);
471 return -EINVAL;
472 }
473 }
474
475#if NAND_ECC_BCH
476 if (board_mtd->writesize > 512) {
477 if (this->options & NAND_USE_FLASH_BBT)
478 largepage_bbt.options = NAND_BBT_SCAN2NDPAGE;
479 this->badblock_pattern = &largepage_bbt;
480 }
481#endif
482
483 /* Now finish off the scan, now that ecc.layout has been initialized. */
484
485 err = nand_scan_tail(board_mtd);
486 if (err) {
487 printk(KERN_ERR "nand_scan failed: %d\n", err);
488 iounmap(bcm_umi_io_base);
489 kfree(board_mtd);
490 return err;
491 }
492
493 /* Register the partitions */
494 {
495 int nr_partitions;
496 struct mtd_partition *partition_info;
497
498 board_mtd->name = "bcm_umi-nand";
499 nr_partitions =
500 parse_mtd_partitions(board_mtd, part_probes,
501 &partition_info, 0);
502
503 if (nr_partitions <= 0) {
504 printk(KERN_ERR "BCM UMI NAND: Too few partitions - %d\n",
505 nr_partitions);
506 iounmap(bcm_umi_io_base);
507 kfree(board_mtd);
508 return -EIO;
509 }
63c9dd92 510 mtd_device_register(board_mtd, partition_info, nr_partitions);
266dead2
LHC
511 }
512
513 /* Return happy */
514 return 0;
515}
516
517static int bcm_umi_nand_remove(struct platform_device *pdev)
518{
519#if USE_DMA
520 nand_dma_term();
521#endif
522
523 /* Release resources, unregister device */
524 nand_release(board_mtd);
525
3ad2f3fb 526 /* unmap physical address */
266dead2
LHC
527 iounmap(bcm_umi_io_base);
528
529 /* Free the MTD device structure */
530 kfree(board_mtd);
531
532 return 0;
533}
534
535#ifdef CONFIG_PM
536static int bcm_umi_nand_suspend(struct platform_device *pdev,
537 pm_message_t state)
538{
539 printk(KERN_ERR "MTD NAND suspend is being called\n");
540 return 0;
541}
542
543static int bcm_umi_nand_resume(struct platform_device *pdev)
544{
545 printk(KERN_ERR "MTD NAND resume is being called\n");
546 return 0;
547}
548#else
549#define bcm_umi_nand_suspend NULL
550#define bcm_umi_nand_resume NULL
551#endif
552
553static struct platform_driver nand_driver = {
554 .driver = {
555 .name = "bcm-nand",
556 .owner = THIS_MODULE,
557 },
558 .probe = bcm_umi_nand_probe,
559 .remove = bcm_umi_nand_remove,
560 .suspend = bcm_umi_nand_suspend,
561 .resume = bcm_umi_nand_resume,
562};
563
564static int __init nand_init(void)
565{
566 return platform_driver_register(&nand_driver);
567}
568
569static void __exit nand_exit(void)
570{
571 platform_driver_unregister(&nand_driver);
572}
573
574module_init(nand_init);
575module_exit(nand_exit);
576
577MODULE_LICENSE("GPL");
578MODULE_AUTHOR("Broadcom");
579MODULE_DESCRIPTION("BCM UMI MTD NAND driver");
This page took 0.136756 seconds and 5 git commands to generate.