davinci: dm365 evm: use EDMAQ_3 as the audio DMA queue
[deliverable/linux.git] / drivers / mtd / nand / davinci_nand.c
CommitLineData
ff4569c7
DB
1/*
2 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
3 *
4 * Copyright © 2006 Texas Instruments.
5 *
6 * Port to 2.6.23 Copyright © 2008 by:
7 * Sander Huijsen <Shuijsen@optelecom-nkf.com>
8 * Troy Kisky <troy.kisky@boundarydevices.com>
9 * Dirk Behme <Dirk.Behme@gmail.com>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 */
25
26#include <linux/kernel.h>
27#include <linux/init.h>
28#include <linux/module.h>
29#include <linux/platform_device.h>
30#include <linux/err.h>
31#include <linux/clk.h>
32#include <linux/io.h>
33#include <linux/mtd/nand.h>
34#include <linux/mtd/partitions.h>
5a0e3ad6 35#include <linux/slab.h>
ff4569c7 36
ff4569c7
DB
37#include <mach/nand.h>
38
39#include <asm/mach-types.h>
40
41
ff4569c7
DB
42/*
43 * This is a device driver for the NAND flash controller found on the
44 * various DaVinci family chips. It handles up to four SoC chipselects,
45 * and some flavors of secondary chipselect (e.g. based on A12) as used
46 * with multichip packages.
47 *
6a4123e5 48 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
ff4569c7
DB
49 * available on chips like the DM355 and OMAP-L137 and needed with the
50 * more error-prone MLC NAND chips.
51 *
52 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
53 * outputs in a "wire-AND" configuration, with no per-chip signals.
54 */
55struct davinci_nand_info {
56 struct mtd_info mtd;
57 struct nand_chip chip;
6a4123e5 58 struct nand_ecclayout ecclayout;
ff4569c7
DB
59
60 struct device *dev;
61 struct clk *clk;
62 bool partitioned;
63
6a4123e5
DB
64 bool is_readmode;
65
ff4569c7
DB
66 void __iomem *base;
67 void __iomem *vaddr;
68
69 uint32_t ioaddr;
70 uint32_t current_cs;
71
72 uint32_t mask_chipsel;
73 uint32_t mask_ale;
74 uint32_t mask_cle;
75
76 uint32_t core_chipsel;
77};
78
79static DEFINE_SPINLOCK(davinci_nand_lock);
6a4123e5 80static bool ecc4_busy;
ff4569c7
DB
81
82#define to_davinci_nand(m) container_of(m, struct davinci_nand_info, mtd)
83
84
85static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
86 int offset)
87{
88 return __raw_readl(info->base + offset);
89}
90
91static inline void davinci_nand_writel(struct davinci_nand_info *info,
92 int offset, unsigned long value)
93{
94 __raw_writel(value, info->base + offset);
95}
96
97/*----------------------------------------------------------------------*/
98
99/*
100 * Access to hardware control lines: ALE, CLE, secondary chipselect.
101 */
102
103static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
104 unsigned int ctrl)
105{
106 struct davinci_nand_info *info = to_davinci_nand(mtd);
107 uint32_t addr = info->current_cs;
108 struct nand_chip *nand = mtd->priv;
109
110 /* Did the control lines change? */
111 if (ctrl & NAND_CTRL_CHANGE) {
112 if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
113 addr |= info->mask_cle;
114 else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
115 addr |= info->mask_ale;
116
117 nand->IO_ADDR_W = (void __iomem __force *)addr;
118 }
119
120 if (cmd != NAND_CMD_NONE)
121 iowrite8(cmd, nand->IO_ADDR_W);
122}
123
124static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
125{
126 struct davinci_nand_info *info = to_davinci_nand(mtd);
127 uint32_t addr = info->ioaddr;
128
129 /* maybe kick in a second chipselect */
130 if (chip > 0)
131 addr |= info->mask_chipsel;
132 info->current_cs = addr;
133
134 info->chip.IO_ADDR_W = (void __iomem __force *)addr;
135 info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
136}
137
138/*----------------------------------------------------------------------*/
139
140/*
141 * 1-bit hardware ECC ... context maintained for each core chipselect
142 */
143
144static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
145{
146 struct davinci_nand_info *info = to_davinci_nand(mtd);
147
148 return davinci_nand_readl(info, NANDF1ECC_OFFSET
149 + 4 * info->core_chipsel);
150}
151
152static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
153{
154 struct davinci_nand_info *info;
155 uint32_t nandcfr;
156 unsigned long flags;
157
158 info = to_davinci_nand(mtd);
159
160 /* Reset ECC hardware */
161 nand_davinci_readecc_1bit(mtd);
162
163 spin_lock_irqsave(&davinci_nand_lock, flags);
164
165 /* Restart ECC hardware */
166 nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
167 nandcfr |= BIT(8 + info->core_chipsel);
168 davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
169
170 spin_unlock_irqrestore(&davinci_nand_lock, flags);
171}
172
173/*
174 * Read hardware ECC value and pack into three bytes
175 */
176static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
177 const u_char *dat, u_char *ecc_code)
178{
179 unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
180 unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
181
182 /* invert so that erased block ecc is correct */
183 ecc24 = ~ecc24;
184 ecc_code[0] = (u_char)(ecc24);
185 ecc_code[1] = (u_char)(ecc24 >> 8);
186 ecc_code[2] = (u_char)(ecc24 >> 16);
187
188 return 0;
189}
190
191static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
192 u_char *read_ecc, u_char *calc_ecc)
193{
194 struct nand_chip *chip = mtd->priv;
195 uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
196 (read_ecc[2] << 16);
197 uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
198 (calc_ecc[2] << 16);
199 uint32_t diff = eccCalc ^ eccNand;
200
201 if (diff) {
202 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
203 /* Correctable error */
204 if ((diff >> (12 + 3)) < chip->ecc.size) {
205 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
206 return 1;
207 } else {
208 return -1;
209 }
210 } else if (!(diff & (diff - 1))) {
211 /* Single bit ECC error in the ECC itself,
212 * nothing to fix */
213 return 1;
214 } else {
215 /* Uncorrectable error */
216 return -1;
217 }
218
219 }
220 return 0;
221}
222
223/*----------------------------------------------------------------------*/
224
6a4123e5
DB
225/*
226 * 4-bit hardware ECC ... context maintained over entire AEMIF
227 *
228 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
229 * since that forces use of a problematic "infix OOB" layout.
230 * Among other things, it trashes manufacturer bad block markers.
231 * Also, and specific to this hardware, it ECC-protects the "prepad"
232 * in the OOB ... while having ECC protection for parts of OOB would
233 * seem useful, the current MTD stack sometimes wants to update the
234 * OOB without recomputing ECC.
235 */
236
237static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
238{
239 struct davinci_nand_info *info = to_davinci_nand(mtd);
240 unsigned long flags;
241 u32 val;
242
243 spin_lock_irqsave(&davinci_nand_lock, flags);
244
245 /* Start 4-bit ECC calculation for read/write */
246 val = davinci_nand_readl(info, NANDFCR_OFFSET);
247 val &= ~(0x03 << 4);
248 val |= (info->core_chipsel << 4) | BIT(12);
249 davinci_nand_writel(info, NANDFCR_OFFSET, val);
250
251 info->is_readmode = (mode == NAND_ECC_READ);
252
253 spin_unlock_irqrestore(&davinci_nand_lock, flags);
254}
255
256/* Read raw ECC code after writing to NAND. */
257static void
258nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
259{
260 const u32 mask = 0x03ff03ff;
261
262 code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
263 code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
264 code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
265 code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
266}
267
268/* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
269static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
270 const u_char *dat, u_char *ecc_code)
271{
272 struct davinci_nand_info *info = to_davinci_nand(mtd);
273 u32 raw_ecc[4], *p;
274 unsigned i;
275
276 /* After a read, terminate ECC calculation by a dummy read
277 * of some 4-bit ECC register. ECC covers everything that
278 * was read; correct() just uses the hardware state, so
279 * ecc_code is not needed.
280 */
281 if (info->is_readmode) {
282 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
283 return 0;
284 }
285
286 /* Pack eight raw 10-bit ecc values into ten bytes, making
287 * two passes which each convert four values (in upper and
288 * lower halves of two 32-bit words) into five bytes. The
289 * ROM boot loader uses this same packing scheme.
290 */
291 nand_davinci_readecc_4bit(info, raw_ecc);
292 for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
293 *ecc_code++ = p[0] & 0xff;
294 *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc);
295 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0);
296 *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0);
297 *ecc_code++ = (p[1] >> 18) & 0xff;
298 }
299
300 return 0;
301}
302
303/* Correct up to 4 bits in data we just read, using state left in the
304 * hardware plus the ecc_code computed when it was first written.
305 */
306static int nand_davinci_correct_4bit(struct mtd_info *mtd,
307 u_char *data, u_char *ecc_code, u_char *null)
308{
309 int i;
310 struct davinci_nand_info *info = to_davinci_nand(mtd);
311 unsigned short ecc10[8];
312 unsigned short *ecc16;
313 u32 syndrome[4];
1c3275b6 314 u32 ecc_state;
6a4123e5 315 unsigned num_errors, corrected;
1c3275b6 316 unsigned long timeo = jiffies + msecs_to_jiffies(100);
6a4123e5
DB
317
318 /* All bytes 0xff? It's an erased page; ignore its ECC. */
319 for (i = 0; i < 10; i++) {
320 if (ecc_code[i] != 0xff)
321 goto compare;
322 }
323 return 0;
324
325compare:
326 /* Unpack ten bytes into eight 10 bit values. We know we're
327 * little-endian, and use type punning for less shifting/masking.
328 */
329 if (WARN_ON(0x01 & (unsigned) ecc_code))
330 return -EINVAL;
331 ecc16 = (unsigned short *)ecc_code;
332
333 ecc10[0] = (ecc16[0] >> 0) & 0x3ff;
334 ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
335 ecc10[2] = (ecc16[1] >> 4) & 0x3ff;
336 ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc);
337 ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300);
338 ecc10[5] = (ecc16[3] >> 2) & 0x3ff;
339 ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0);
340 ecc10[7] = (ecc16[4] >> 6) & 0x3ff;
341
342 /* Tell ECC controller about the expected ECC codes. */
343 for (i = 7; i >= 0; i--)
344 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
345
346 /* Allow time for syndrome calculation ... then read it.
347 * A syndrome of all zeroes 0 means no detected errors.
348 */
349 davinci_nand_readl(info, NANDFSR_OFFSET);
350 nand_davinci_readecc_4bit(info, syndrome);
351 if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
352 return 0;
353
f12a9473
SN
354 /*
355 * Clear any previous address calculation by doing a dummy read of an
356 * error address register.
357 */
358 davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
359
6a4123e5
DB
360 /* Start address calculation, and wait for it to complete.
361 * We _could_ start reading more data while this is working,
362 * to speed up the overall page read.
363 */
364 davinci_nand_writel(info, NANDFCR_OFFSET,
365 davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
1c3275b6
SR
366
367 /*
368 * ECC_STATE field reads 0x3 (Error correction complete) immediately
369 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
370 * begin trying to poll for the state, you may fall right out of your
371 * loop without any of the correction calculations having taken place.
372 * The recommendation from the hardware team is to wait till ECC_STATE
373 * reads less than 4, which means ECC HW has entered correction state.
374 */
375 do {
376 ecc_state = (davinci_nand_readl(info,
377 NANDFSR_OFFSET) >> 8) & 0x0f;
378 cpu_relax();
379 } while ((ecc_state < 4) && time_before(jiffies, timeo));
380
6a4123e5
DB
381 for (;;) {
382 u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
383
384 switch ((fsr >> 8) & 0x0f) {
385 case 0: /* no error, should not happen */
f12a9473 386 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
6a4123e5
DB
387 return 0;
388 case 1: /* five or more errors detected */
f12a9473 389 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
6a4123e5
DB
390 return -EIO;
391 case 2: /* error addresses computed */
392 case 3:
393 num_errors = 1 + ((fsr >> 16) & 0x03);
394 goto correct;
395 default: /* still working on it */
396 cpu_relax();
397 continue;
398 }
399 }
400
401correct:
402 /* correct each error */
403 for (i = 0, corrected = 0; i < num_errors; i++) {
404 int error_address, error_value;
405
406 if (i > 1) {
407 error_address = davinci_nand_readl(info,
408 NAND_ERR_ADD2_OFFSET);
409 error_value = davinci_nand_readl(info,
410 NAND_ERR_ERRVAL2_OFFSET);
411 } else {
412 error_address = davinci_nand_readl(info,
413 NAND_ERR_ADD1_OFFSET);
414 error_value = davinci_nand_readl(info,
415 NAND_ERR_ERRVAL1_OFFSET);
416 }
417
418 if (i & 1) {
419 error_address >>= 16;
420 error_value >>= 16;
421 }
422 error_address &= 0x3ff;
423 error_address = (512 + 7) - error_address;
424
425 if (error_address < 512) {
426 data[error_address] ^= error_value;
427 corrected++;
428 }
429 }
430
431 return corrected;
432}
433
434/*----------------------------------------------------------------------*/
435
ff4569c7
DB
436/*
437 * NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
438 * how these chips are normally wired. This translates to both 8 and 16
439 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
440 *
441 * For now we assume that configuration, or any other one which ignores
442 * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
443 * and have that transparently morphed into multiple NAND operations.
444 */
445static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
446{
447 struct nand_chip *chip = mtd->priv;
448
449 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
450 ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
451 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
452 ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
453 else
454 ioread8_rep(chip->IO_ADDR_R, buf, len);
455}
456
457static void nand_davinci_write_buf(struct mtd_info *mtd,
458 const uint8_t *buf, int len)
459{
460 struct nand_chip *chip = mtd->priv;
461
462 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
463 iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
464 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
465 iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
466 else
467 iowrite8_rep(chip->IO_ADDR_R, buf, len);
468}
469
470/*
471 * Check hardware register for wait status. Returns 1 if device is ready,
472 * 0 if it is still busy.
473 */
474static int nand_davinci_dev_ready(struct mtd_info *mtd)
475{
476 struct davinci_nand_info *info = to_davinci_nand(mtd);
477
478 return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
479}
480
481static void __init nand_dm6446evm_flash_init(struct davinci_nand_info *info)
482{
483 uint32_t regval, a1cr;
484
485 /*
486 * NAND FLASH timings @ PLL1 == 459 MHz
487 * - AEMIF.CLK freq = PLL1/6 = 459/6 = 76.5 MHz
488 * - AEMIF.CLK period = 1/76.5 MHz = 13.1 ns
489 */
490 regval = 0
491 | (0 << 31) /* selectStrobe */
492 | (0 << 30) /* extWait (never with NAND) */
493 | (1 << 26) /* writeSetup 10 ns */
494 | (3 << 20) /* writeStrobe 40 ns */
495 | (1 << 17) /* writeHold 10 ns */
496 | (0 << 13) /* readSetup 10 ns */
497 | (3 << 7) /* readStrobe 60 ns */
498 | (0 << 4) /* readHold 10 ns */
499 | (3 << 2) /* turnAround ?? ns */
500 | (0 << 0) /* asyncSize 8-bit bus */
501 ;
502 a1cr = davinci_nand_readl(info, A1CR_OFFSET);
503 if (a1cr != regval) {
504 dev_dbg(info->dev, "Warning: NAND config: Set A1CR " \
505 "reg to 0x%08x, was 0x%08x, should be done by " \
506 "bootloader.\n", regval, a1cr);
507 davinci_nand_writel(info, A1CR_OFFSET, regval);
508 }
509}
510
511/*----------------------------------------------------------------------*/
512
6a4123e5
DB
513/* An ECC layout for using 4-bit ECC with small-page flash, storing
514 * ten ECC bytes plus the manufacturer's bad block marker byte, and
515 * and not overlapping the default BBT markers.
516 */
517static struct nand_ecclayout hwecc4_small __initconst = {
518 .eccbytes = 10,
519 .eccpos = { 0, 1, 2, 3, 4,
520 /* offset 5 holds the badblock marker */
521 6, 7,
522 13, 14, 15, },
523 .oobfree = {
524 {.offset = 8, .length = 5, },
525 {.offset = 16, },
526 },
527};
528
f12a9473
SN
529/* An ECC layout for using 4-bit ECC with large-page (2048bytes) flash,
530 * storing ten ECC bytes plus the manufacturer's bad block marker byte,
531 * and not overlapping the default BBT markers.
532 */
533static struct nand_ecclayout hwecc4_2048 __initconst = {
534 .eccbytes = 40,
535 .eccpos = {
536 /* at the end of spare sector */
537 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
538 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
539 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
540 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
541 },
542 .oobfree = {
543 /* 2 bytes at offset 0 hold manufacturer badblock markers */
544 {.offset = 2, .length = 22, },
545 /* 5 bytes at offset 8 hold BBT markers */
546 /* 8 bytes at offset 16 hold JFFS2 clean markers */
547 },
548};
6a4123e5 549
ff4569c7
DB
550static int __init nand_davinci_probe(struct platform_device *pdev)
551{
552 struct davinci_nand_pdata *pdata = pdev->dev.platform_data;
553 struct davinci_nand_info *info;
554 struct resource *res1;
555 struct resource *res2;
556 void __iomem *vaddr;
557 void __iomem *base;
558 int ret;
559 uint32_t val;
560 nand_ecc_modes_t ecc_mode;
561
533a0149
DB
562 /* insist on board-specific configuration */
563 if (!pdata)
564 return -ENODEV;
565
ff4569c7
DB
566 /* which external chipselect will we be managing? */
567 if (pdev->id < 0 || pdev->id > 3)
568 return -ENODEV;
569
570 info = kzalloc(sizeof(*info), GFP_KERNEL);
571 if (!info) {
572 dev_err(&pdev->dev, "unable to allocate memory\n");
573 ret = -ENOMEM;
574 goto err_nomem;
575 }
576
577 platform_set_drvdata(pdev, info);
578
579 res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
580 res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
581 if (!res1 || !res2) {
582 dev_err(&pdev->dev, "resource missing\n");
583 ret = -EINVAL;
584 goto err_nomem;
585 }
586
d8bc5555
HS
587 vaddr = ioremap(res1->start, resource_size(res1));
588 base = ioremap(res2->start, resource_size(res2));
ff4569c7
DB
589 if (!vaddr || !base) {
590 dev_err(&pdev->dev, "ioremap failed\n");
591 ret = -EINVAL;
592 goto err_ioremap;
593 }
594
595 info->dev = &pdev->dev;
596 info->base = base;
597 info->vaddr = vaddr;
598
599 info->mtd.priv = &info->chip;
600 info->mtd.name = dev_name(&pdev->dev);
601 info->mtd.owner = THIS_MODULE;
602
87f39f04
DB
603 info->mtd.dev.parent = &pdev->dev;
604
ff4569c7
DB
605 info->chip.IO_ADDR_R = vaddr;
606 info->chip.IO_ADDR_W = vaddr;
607 info->chip.chip_delay = 0;
608 info->chip.select_chip = nand_davinci_select_chip;
609
610 /* options such as NAND_USE_FLASH_BBT or 16-bit widths */
533a0149 611 info->chip.options = pdata->options;
f611a79f
MG
612 info->chip.bbt_td = pdata->bbt_td;
613 info->chip.bbt_md = pdata->bbt_md;
ff4569c7
DB
614
615 info->ioaddr = (uint32_t __force) vaddr;
616
617 info->current_cs = info->ioaddr;
618 info->core_chipsel = pdev->id;
619 info->mask_chipsel = pdata->mask_chipsel;
620
621 /* use nandboot-capable ALE/CLE masks by default */
5cd0be8e 622 info->mask_ale = pdata->mask_ale ? : MASK_ALE;
533a0149 623 info->mask_cle = pdata->mask_cle ? : MASK_CLE;
ff4569c7
DB
624
625 /* Set address of hardware control function */
626 info->chip.cmd_ctrl = nand_davinci_hwcontrol;
627 info->chip.dev_ready = nand_davinci_dev_ready;
628
629 /* Speed up buffer I/O */
630 info->chip.read_buf = nand_davinci_read_buf;
631 info->chip.write_buf = nand_davinci_write_buf;
632
533a0149
DB
633 /* Use board-specific ECC config */
634 ecc_mode = pdata->ecc_mode;
ff4569c7 635
6a4123e5 636 ret = -EINVAL;
ff4569c7
DB
637 switch (ecc_mode) {
638 case NAND_ECC_NONE:
639 case NAND_ECC_SOFT:
6a4123e5 640 pdata->ecc_bits = 0;
ff4569c7
DB
641 break;
642 case NAND_ECC_HW:
6a4123e5
DB
643 if (pdata->ecc_bits == 4) {
644 /* No sanity checks: CPUs must support this,
645 * and the chips may not use NAND_BUSWIDTH_16.
646 */
647
648 /* No sharing 4-bit hardware between chipselects yet */
649 spin_lock_irq(&davinci_nand_lock);
650 if (ecc4_busy)
651 ret = -EBUSY;
652 else
653 ecc4_busy = true;
654 spin_unlock_irq(&davinci_nand_lock);
655
656 if (ret == -EBUSY)
657 goto err_ecc;
658
659 info->chip.ecc.calculate = nand_davinci_calculate_4bit;
660 info->chip.ecc.correct = nand_davinci_correct_4bit;
661 info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
662 info->chip.ecc.bytes = 10;
663 } else {
664 info->chip.ecc.calculate = nand_davinci_calculate_1bit;
665 info->chip.ecc.correct = nand_davinci_correct_1bit;
666 info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
667 info->chip.ecc.bytes = 3;
668 }
ff4569c7 669 info->chip.ecc.size = 512;
ff4569c7 670 break;
ff4569c7
DB
671 default:
672 ret = -EINVAL;
673 goto err_ecc;
674 }
675 info->chip.ecc.mode = ecc_mode;
676
cd24f8c1 677 info->clk = clk_get(&pdev->dev, "aemif");
ff4569c7
DB
678 if (IS_ERR(info->clk)) {
679 ret = PTR_ERR(info->clk);
cd24f8c1 680 dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
ff4569c7
DB
681 goto err_clk;
682 }
683
684 ret = clk_enable(info->clk);
685 if (ret < 0) {
cd24f8c1
KH
686 dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n",
687 ret);
ff4569c7
DB
688 goto err_clk_enable;
689 }
690
691 /* EMIF timings should normally be set by the boot loader,
692 * especially after boot-from-NAND. The *only* reason to
693 * have this special casing for the DM6446 EVM is to work
694 * with boot-from-NOR ... with CS0 manually re-jumpered
695 * (after startup) so it addresses the NAND flash, not NOR.
696 * Even for dev boards, that's unusually rude...
697 */
698 if (machine_is_davinci_evm())
699 nand_dm6446evm_flash_init(info);
700
701 spin_lock_irq(&davinci_nand_lock);
702
703 /* put CSxNAND into NAND mode */
704 val = davinci_nand_readl(info, NANDFCR_OFFSET);
705 val |= BIT(info->core_chipsel);
706 davinci_nand_writel(info, NANDFCR_OFFSET, val);
707
708 spin_unlock_irq(&davinci_nand_lock);
709
710 /* Scan to find existence of the device(s) */
5e81e88a 711 ret = nand_scan_ident(&info->mtd, pdata->mask_chipsel ? 2 : 1, NULL);
ff4569c7
DB
712 if (ret < 0) {
713 dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
714 goto err_scan;
715 }
716
6a4123e5
DB
717 /* Update ECC layout if needed ... for 1-bit HW ECC, the default
718 * is OK, but it allocates 6 bytes when only 3 are needed (for
719 * each 512 bytes). For the 4-bit HW ECC, that default is not
720 * usable: 10 bytes are needed, not 6.
721 */
722 if (pdata->ecc_bits == 4) {
723 int chunks = info->mtd.writesize / 512;
724
725 if (!chunks || info->mtd.oobsize < 16) {
726 dev_dbg(&pdev->dev, "too small\n");
727 ret = -EINVAL;
728 goto err_scan;
729 }
730
731 /* For small page chips, preserve the manufacturer's
732 * badblock marking data ... and make sure a flash BBT
733 * table marker fits in the free bytes.
734 */
735 if (chunks == 1) {
736 info->ecclayout = hwecc4_small;
737 info->ecclayout.oobfree[1].length =
738 info->mtd.oobsize - 16;
739 goto syndrome_done;
740 }
f12a9473
SN
741 if (chunks == 4) {
742 info->ecclayout = hwecc4_2048;
743 info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
744 goto syndrome_done;
745 }
6a4123e5 746
f12a9473
SN
747 /* 4KiB page chips are not yet supported. The eccpos from
748 * nand_ecclayout cannot hold 80 bytes and change to eccpos[]
749 * breaks userspace ioctl interface with mtd-utils. Once we
750 * resolve this issue, NAND_ECC_HW_OOB_FIRST mode can be used
751 * for the 4KiB page chips.
6a4123e5
DB
752 */
753 dev_warn(&pdev->dev, "no 4-bit ECC support yet "
f12a9473 754 "for 4KiB-page NAND\n");
6a4123e5
DB
755 ret = -EIO;
756 goto err_scan;
757
758syndrome_done:
759 info->chip.ecc.layout = &info->ecclayout;
760 }
761
762 ret = nand_scan_tail(&info->mtd);
763 if (ret < 0)
764 goto err_scan;
765
ff4569c7
DB
766 if (mtd_has_partitions()) {
767 struct mtd_partition *mtd_parts = NULL;
768 int mtd_parts_nb = 0;
769
770 if (mtd_has_cmdlinepart()) {
771 static const char *probes[] __initconst =
772 { "cmdlinepart", NULL };
773
ff4569c7
DB
774 mtd_parts_nb = parse_mtd_partitions(&info->mtd, probes,
775 &mtd_parts, 0);
ff4569c7
DB
776 }
777
533a0149 778 if (mtd_parts_nb <= 0) {
ff4569c7
DB
779 mtd_parts = pdata->parts;
780 mtd_parts_nb = pdata->nr_parts;
781 }
782
783 /* Register any partitions */
784 if (mtd_parts_nb > 0) {
785 ret = add_mtd_partitions(&info->mtd,
786 mtd_parts, mtd_parts_nb);
787 if (ret == 0)
788 info->partitioned = true;
789 }
790
533a0149 791 } else if (pdata->nr_parts) {
ff4569c7
DB
792 dev_warn(&pdev->dev, "ignoring %d default partitions on %s\n",
793 pdata->nr_parts, info->mtd.name);
794 }
795
796 /* If there's no partition info, just package the whole chip
797 * as a single MTD device.
798 */
799 if (!info->partitioned)
800 ret = add_mtd_device(&info->mtd) ? -ENODEV : 0;
801
802 if (ret < 0)
803 goto err_scan;
804
805 val = davinci_nand_readl(info, NRCSR_OFFSET);
806 dev_info(&pdev->dev, "controller rev. %d.%d\n",
807 (val >> 8) & 0xff, val & 0xff);
808
809 return 0;
810
811err_scan:
812 clk_disable(info->clk);
813
814err_clk_enable:
815 clk_put(info->clk);
816
6a4123e5
DB
817 spin_lock_irq(&davinci_nand_lock);
818 if (ecc_mode == NAND_ECC_HW_SYNDROME)
819 ecc4_busy = false;
820 spin_unlock_irq(&davinci_nand_lock);
821
ff4569c7
DB
822err_ecc:
823err_clk:
824err_ioremap:
825 if (base)
826 iounmap(base);
827 if (vaddr)
828 iounmap(vaddr);
829
830err_nomem:
831 kfree(info);
832 return ret;
833}
834
835static int __exit nand_davinci_remove(struct platform_device *pdev)
836{
837 struct davinci_nand_info *info = platform_get_drvdata(pdev);
838 int status;
839
840 if (mtd_has_partitions() && info->partitioned)
841 status = del_mtd_partitions(&info->mtd);
842 else
843 status = del_mtd_device(&info->mtd);
844
6a4123e5
DB
845 spin_lock_irq(&davinci_nand_lock);
846 if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
847 ecc4_busy = false;
848 spin_unlock_irq(&davinci_nand_lock);
849
ff4569c7
DB
850 iounmap(info->base);
851 iounmap(info->vaddr);
852
853 nand_release(&info->mtd);
854
855 clk_disable(info->clk);
856 clk_put(info->clk);
857
858 kfree(info);
859
860 return 0;
861}
862
863static struct platform_driver nand_davinci_driver = {
864 .remove = __exit_p(nand_davinci_remove),
865 .driver = {
866 .name = "davinci_nand",
867 },
868};
869MODULE_ALIAS("platform:davinci_nand");
870
871static int __init nand_davinci_init(void)
872{
873 return platform_driver_probe(&nand_davinci_driver, nand_davinci_probe);
874}
875module_init(nand_davinci_init);
876
877static void __exit nand_davinci_exit(void)
878{
879 platform_driver_unregister(&nand_davinci_driver);
880}
881module_exit(nand_davinci_exit);
882
883MODULE_LICENSE("GPL");
884MODULE_AUTHOR("Texas Instruments");
885MODULE_DESCRIPTION("Davinci NAND flash driver");
886
This page took 0.119392 seconds and 5 git commands to generate.