mtd: nand: cmx270: use the mtd instance embedded in struct nand_chip
[deliverable/linux.git] / drivers / mtd / nand / davinci_nand.c
CommitLineData
ff4569c7
DB
1/*
2 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
3 *
4 * Copyright © 2006 Texas Instruments.
5 *
6 * Port to 2.6.23 Copyright © 2008 by:
7 * Sander Huijsen <Shuijsen@optelecom-nkf.com>
8 * Troy Kisky <troy.kisky@boundarydevices.com>
9 * Dirk Behme <Dirk.Behme@gmail.com>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 */
25
26#include <linux/kernel.h>
ff4569c7
DB
27#include <linux/module.h>
28#include <linux/platform_device.h>
29#include <linux/err.h>
30#include <linux/clk.h>
31#include <linux/io.h>
32#include <linux/mtd/nand.h>
33#include <linux/mtd/partitions.h>
5a0e3ad6 34#include <linux/slab.h>
cdeadd71 35#include <linux/of_device.h>
c4f8cde8 36#include <linux/of.h>
75be1ea2 37#include <linux/of_mtd.h>
ff4569c7 38
ec2a0833
AB
39#include <linux/platform_data/mtd-davinci.h>
40#include <linux/platform_data/mtd-davinci-aemif.h>
ff4569c7 41
ff4569c7
DB
42/*
43 * This is a device driver for the NAND flash controller found on the
44 * various DaVinci family chips. It handles up to four SoC chipselects,
45 * and some flavors of secondary chipselect (e.g. based on A12) as used
46 * with multichip packages.
47 *
6a4123e5 48 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
ff4569c7
DB
49 * available on chips like the DM355 and OMAP-L137 and needed with the
50 * more error-prone MLC NAND chips.
51 *
52 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
53 * outputs in a "wire-AND" configuration, with no per-chip signals.
54 */
55struct davinci_nand_info {
56 struct mtd_info mtd;
57 struct nand_chip chip;
6a4123e5 58 struct nand_ecclayout ecclayout;
ff4569c7
DB
59
60 struct device *dev;
61 struct clk *clk;
ff4569c7 62
6a4123e5
DB
63 bool is_readmode;
64
ff4569c7
DB
65 void __iomem *base;
66 void __iomem *vaddr;
67
68 uint32_t ioaddr;
69 uint32_t current_cs;
70
71 uint32_t mask_chipsel;
72 uint32_t mask_ale;
73 uint32_t mask_cle;
74
75 uint32_t core_chipsel;
a88dbc5b
SN
76
77 struct davinci_aemif_timing *timing;
ff4569c7
DB
78};
79
80static DEFINE_SPINLOCK(davinci_nand_lock);
6a4123e5 81static bool ecc4_busy;
ff4569c7
DB
82
83#define to_davinci_nand(m) container_of(m, struct davinci_nand_info, mtd)
84
85
86static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
87 int offset)
88{
89 return __raw_readl(info->base + offset);
90}
91
92static inline void davinci_nand_writel(struct davinci_nand_info *info,
93 int offset, unsigned long value)
94{
95 __raw_writel(value, info->base + offset);
96}
97
98/*----------------------------------------------------------------------*/
99
100/*
101 * Access to hardware control lines: ALE, CLE, secondary chipselect.
102 */
103
104static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
105 unsigned int ctrl)
106{
107 struct davinci_nand_info *info = to_davinci_nand(mtd);
108 uint32_t addr = info->current_cs;
4bd4ebcc 109 struct nand_chip *nand = mtd_to_nand(mtd);
ff4569c7
DB
110
111 /* Did the control lines change? */
112 if (ctrl & NAND_CTRL_CHANGE) {
113 if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
114 addr |= info->mask_cle;
115 else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
116 addr |= info->mask_ale;
117
118 nand->IO_ADDR_W = (void __iomem __force *)addr;
119 }
120
121 if (cmd != NAND_CMD_NONE)
122 iowrite8(cmd, nand->IO_ADDR_W);
123}
124
125static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
126{
127 struct davinci_nand_info *info = to_davinci_nand(mtd);
128 uint32_t addr = info->ioaddr;
129
130 /* maybe kick in a second chipselect */
131 if (chip > 0)
132 addr |= info->mask_chipsel;
133 info->current_cs = addr;
134
135 info->chip.IO_ADDR_W = (void __iomem __force *)addr;
136 info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
137}
138
139/*----------------------------------------------------------------------*/
140
141/*
142 * 1-bit hardware ECC ... context maintained for each core chipselect
143 */
144
145static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
146{
147 struct davinci_nand_info *info = to_davinci_nand(mtd);
148
149 return davinci_nand_readl(info, NANDF1ECC_OFFSET
150 + 4 * info->core_chipsel);
151}
152
153static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
154{
155 struct davinci_nand_info *info;
156 uint32_t nandcfr;
157 unsigned long flags;
158
159 info = to_davinci_nand(mtd);
160
161 /* Reset ECC hardware */
162 nand_davinci_readecc_1bit(mtd);
163
164 spin_lock_irqsave(&davinci_nand_lock, flags);
165
166 /* Restart ECC hardware */
167 nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
168 nandcfr |= BIT(8 + info->core_chipsel);
169 davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
170
171 spin_unlock_irqrestore(&davinci_nand_lock, flags);
172}
173
174/*
175 * Read hardware ECC value and pack into three bytes
176 */
177static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
178 const u_char *dat, u_char *ecc_code)
179{
180 unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
181 unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
182
183 /* invert so that erased block ecc is correct */
184 ecc24 = ~ecc24;
185 ecc_code[0] = (u_char)(ecc24);
186 ecc_code[1] = (u_char)(ecc24 >> 8);
187 ecc_code[2] = (u_char)(ecc24 >> 16);
188
189 return 0;
190}
191
192static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
193 u_char *read_ecc, u_char *calc_ecc)
194{
4bd4ebcc 195 struct nand_chip *chip = mtd_to_nand(mtd);
ff4569c7
DB
196 uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
197 (read_ecc[2] << 16);
198 uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
199 (calc_ecc[2] << 16);
200 uint32_t diff = eccCalc ^ eccNand;
201
202 if (diff) {
203 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
204 /* Correctable error */
205 if ((diff >> (12 + 3)) < chip->ecc.size) {
206 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
207 return 1;
208 } else {
209 return -1;
210 }
211 } else if (!(diff & (diff - 1))) {
212 /* Single bit ECC error in the ECC itself,
213 * nothing to fix */
214 return 1;
215 } else {
216 /* Uncorrectable error */
217 return -1;
218 }
219
220 }
221 return 0;
222}
223
224/*----------------------------------------------------------------------*/
225
6a4123e5
DB
226/*
227 * 4-bit hardware ECC ... context maintained over entire AEMIF
228 *
229 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
230 * since that forces use of a problematic "infix OOB" layout.
231 * Among other things, it trashes manufacturer bad block markers.
232 * Also, and specific to this hardware, it ECC-protects the "prepad"
233 * in the OOB ... while having ECC protection for parts of OOB would
234 * seem useful, the current MTD stack sometimes wants to update the
235 * OOB without recomputing ECC.
236 */
237
238static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
239{
240 struct davinci_nand_info *info = to_davinci_nand(mtd);
241 unsigned long flags;
242 u32 val;
243
244 spin_lock_irqsave(&davinci_nand_lock, flags);
245
246 /* Start 4-bit ECC calculation for read/write */
247 val = davinci_nand_readl(info, NANDFCR_OFFSET);
248 val &= ~(0x03 << 4);
249 val |= (info->core_chipsel << 4) | BIT(12);
250 davinci_nand_writel(info, NANDFCR_OFFSET, val);
251
252 info->is_readmode = (mode == NAND_ECC_READ);
253
254 spin_unlock_irqrestore(&davinci_nand_lock, flags);
255}
256
257/* Read raw ECC code after writing to NAND. */
258static void
259nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
260{
261 const u32 mask = 0x03ff03ff;
262
263 code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
264 code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
265 code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
266 code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
267}
268
269/* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
270static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
271 const u_char *dat, u_char *ecc_code)
272{
273 struct davinci_nand_info *info = to_davinci_nand(mtd);
274 u32 raw_ecc[4], *p;
275 unsigned i;
276
277 /* After a read, terminate ECC calculation by a dummy read
278 * of some 4-bit ECC register. ECC covers everything that
279 * was read; correct() just uses the hardware state, so
280 * ecc_code is not needed.
281 */
282 if (info->is_readmode) {
283 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
284 return 0;
285 }
286
287 /* Pack eight raw 10-bit ecc values into ten bytes, making
288 * two passes which each convert four values (in upper and
289 * lower halves of two 32-bit words) into five bytes. The
290 * ROM boot loader uses this same packing scheme.
291 */
292 nand_davinci_readecc_4bit(info, raw_ecc);
293 for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
294 *ecc_code++ = p[0] & 0xff;
295 *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc);
296 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0);
297 *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0);
298 *ecc_code++ = (p[1] >> 18) & 0xff;
299 }
300
301 return 0;
302}
303
304/* Correct up to 4 bits in data we just read, using state left in the
305 * hardware plus the ecc_code computed when it was first written.
306 */
307static int nand_davinci_correct_4bit(struct mtd_info *mtd,
308 u_char *data, u_char *ecc_code, u_char *null)
309{
310 int i;
311 struct davinci_nand_info *info = to_davinci_nand(mtd);
312 unsigned short ecc10[8];
313 unsigned short *ecc16;
314 u32 syndrome[4];
1c3275b6 315 u32 ecc_state;
6a4123e5 316 unsigned num_errors, corrected;
2bdb053a 317 unsigned long timeo;
6a4123e5
DB
318
319 /* All bytes 0xff? It's an erased page; ignore its ECC. */
320 for (i = 0; i < 10; i++) {
321 if (ecc_code[i] != 0xff)
322 goto compare;
323 }
324 return 0;
325
326compare:
327 /* Unpack ten bytes into eight 10 bit values. We know we're
328 * little-endian, and use type punning for less shifting/masking.
329 */
330 if (WARN_ON(0x01 & (unsigned) ecc_code))
331 return -EINVAL;
332 ecc16 = (unsigned short *)ecc_code;
333
334 ecc10[0] = (ecc16[0] >> 0) & 0x3ff;
335 ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
336 ecc10[2] = (ecc16[1] >> 4) & 0x3ff;
337 ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc);
338 ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300);
339 ecc10[5] = (ecc16[3] >> 2) & 0x3ff;
340 ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0);
341 ecc10[7] = (ecc16[4] >> 6) & 0x3ff;
342
343 /* Tell ECC controller about the expected ECC codes. */
344 for (i = 7; i >= 0; i--)
345 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
346
347 /* Allow time for syndrome calculation ... then read it.
348 * A syndrome of all zeroes 0 means no detected errors.
349 */
350 davinci_nand_readl(info, NANDFSR_OFFSET);
351 nand_davinci_readecc_4bit(info, syndrome);
352 if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
353 return 0;
354
f12a9473
SN
355 /*
356 * Clear any previous address calculation by doing a dummy read of an
357 * error address register.
358 */
359 davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
360
6a4123e5
DB
361 /* Start address calculation, and wait for it to complete.
362 * We _could_ start reading more data while this is working,
363 * to speed up the overall page read.
364 */
365 davinci_nand_writel(info, NANDFCR_OFFSET,
366 davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
1c3275b6
SR
367
368 /*
369 * ECC_STATE field reads 0x3 (Error correction complete) immediately
370 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
371 * begin trying to poll for the state, you may fall right out of your
372 * loop without any of the correction calculations having taken place.
eea116ed
WS
373 * The recommendation from the hardware team is to initially delay as
374 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
375 * correction state.
1c3275b6 376 */
2bdb053a 377 timeo = jiffies + usecs_to_jiffies(100);
1c3275b6
SR
378 do {
379 ecc_state = (davinci_nand_readl(info,
380 NANDFSR_OFFSET) >> 8) & 0x0f;
381 cpu_relax();
382 } while ((ecc_state < 4) && time_before(jiffies, timeo));
383
6a4123e5
DB
384 for (;;) {
385 u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
386
387 switch ((fsr >> 8) & 0x0f) {
388 case 0: /* no error, should not happen */
f12a9473 389 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
6a4123e5
DB
390 return 0;
391 case 1: /* five or more errors detected */
f12a9473 392 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
6a4123e5
DB
393 return -EIO;
394 case 2: /* error addresses computed */
395 case 3:
396 num_errors = 1 + ((fsr >> 16) & 0x03);
397 goto correct;
398 default: /* still working on it */
399 cpu_relax();
400 continue;
401 }
402 }
403
404correct:
405 /* correct each error */
406 for (i = 0, corrected = 0; i < num_errors; i++) {
407 int error_address, error_value;
408
409 if (i > 1) {
410 error_address = davinci_nand_readl(info,
411 NAND_ERR_ADD2_OFFSET);
412 error_value = davinci_nand_readl(info,
413 NAND_ERR_ERRVAL2_OFFSET);
414 } else {
415 error_address = davinci_nand_readl(info,
416 NAND_ERR_ADD1_OFFSET);
417 error_value = davinci_nand_readl(info,
418 NAND_ERR_ERRVAL1_OFFSET);
419 }
420
421 if (i & 1) {
422 error_address >>= 16;
423 error_value >>= 16;
424 }
425 error_address &= 0x3ff;
426 error_address = (512 + 7) - error_address;
427
428 if (error_address < 512) {
429 data[error_address] ^= error_value;
430 corrected++;
431 }
432 }
433
434 return corrected;
435}
436
437/*----------------------------------------------------------------------*/
438
ff4569c7
DB
439/*
440 * NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
441 * how these chips are normally wired. This translates to both 8 and 16
442 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
443 *
444 * For now we assume that configuration, or any other one which ignores
445 * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
446 * and have that transparently morphed into multiple NAND operations.
447 */
448static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
449{
4bd4ebcc 450 struct nand_chip *chip = mtd_to_nand(mtd);
ff4569c7
DB
451
452 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
453 ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
454 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
455 ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
456 else
457 ioread8_rep(chip->IO_ADDR_R, buf, len);
458}
459
460static void nand_davinci_write_buf(struct mtd_info *mtd,
461 const uint8_t *buf, int len)
462{
4bd4ebcc 463 struct nand_chip *chip = mtd_to_nand(mtd);
ff4569c7
DB
464
465 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
466 iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
467 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
468 iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
469 else
470 iowrite8_rep(chip->IO_ADDR_R, buf, len);
471}
472
473/*
474 * Check hardware register for wait status. Returns 1 if device is ready,
475 * 0 if it is still busy.
476 */
477static int nand_davinci_dev_ready(struct mtd_info *mtd)
478{
479 struct davinci_nand_info *info = to_davinci_nand(mtd);
480
481 return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
482}
483
ff4569c7
DB
484/*----------------------------------------------------------------------*/
485
6a4123e5
DB
486/* An ECC layout for using 4-bit ECC with small-page flash, storing
487 * ten ECC bytes plus the manufacturer's bad block marker byte, and
488 * and not overlapping the default BBT markers.
489 */
eaaa4a9a 490static struct nand_ecclayout hwecc4_small = {
6a4123e5
DB
491 .eccbytes = 10,
492 .eccpos = { 0, 1, 2, 3, 4,
493 /* offset 5 holds the badblock marker */
494 6, 7,
495 13, 14, 15, },
496 .oobfree = {
497 {.offset = 8, .length = 5, },
498 {.offset = 16, },
499 },
500};
501
f12a9473
SN
502/* An ECC layout for using 4-bit ECC with large-page (2048bytes) flash,
503 * storing ten ECC bytes plus the manufacturer's bad block marker byte,
504 * and not overlapping the default BBT markers.
505 */
eaaa4a9a 506static struct nand_ecclayout hwecc4_2048 = {
f12a9473
SN
507 .eccbytes = 40,
508 .eccpos = {
509 /* at the end of spare sector */
510 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
511 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
512 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
513 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
514 },
515 .oobfree = {
516 /* 2 bytes at offset 0 hold manufacturer badblock markers */
517 {.offset = 2, .length = 22, },
518 /* 5 bytes at offset 8 hold BBT markers */
519 /* 8 bytes at offset 16 hold JFFS2 clean markers */
520 },
521};
6a4123e5 522
a11244c0
SP
523/*
524 * An ECC layout for using 4-bit ECC with large-page (4096bytes) flash,
525 * storing ten ECC bytes plus the manufacturer's bad block marker byte,
526 * and not overlapping the default BBT markers.
527 */
528static struct nand_ecclayout hwecc4_4096 = {
529 .eccbytes = 80,
530 .eccpos = {
531 /* at the end of spare sector */
532 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
533 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
534 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
535 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
536 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
537 98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
538 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
539 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
540 },
541 .oobfree = {
542 /* 2 bytes at offset 0 hold manufacturer badblock markers */
543 {.offset = 2, .length = 46, },
544 /* 5 bytes at offset 8 hold BBT markers */
545 /* 8 bytes at offset 16 hold JFFS2 clean markers */
546 },
547};
548
cdeadd71
HS
549#if defined(CONFIG_OF)
550static const struct of_device_id davinci_nand_of_match[] = {
551 {.compatible = "ti,davinci-nand", },
28c015a9 552 {.compatible = "ti,keystone-nand", },
cdeadd71 553 {},
13daa22f 554};
cdeadd71
HS
555MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
556
557static struct davinci_nand_pdata
558 *nand_davinci_get_pdata(struct platform_device *pdev)
559{
453810b7 560 if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
cdeadd71
HS
561 struct davinci_nand_pdata *pdata;
562 const char *mode;
563 u32 prop;
cdeadd71
HS
564
565 pdata = devm_kzalloc(&pdev->dev,
566 sizeof(struct davinci_nand_pdata),
567 GFP_KERNEL);
568 pdev->dev.platform_data = pdata;
569 if (!pdata)
f735a4d0 570 return ERR_PTR(-ENOMEM);
cdeadd71
HS
571 if (!of_property_read_u32(pdev->dev.of_node,
572 "ti,davinci-chipselect", &prop))
573 pdev->id = prop;
05103825
IK
574 else
575 return ERR_PTR(-EINVAL);
576
cdeadd71
HS
577 if (!of_property_read_u32(pdev->dev.of_node,
578 "ti,davinci-mask-ale", &prop))
579 pdata->mask_ale = prop;
580 if (!of_property_read_u32(pdev->dev.of_node,
581 "ti,davinci-mask-cle", &prop))
582 pdata->mask_cle = prop;
583 if (!of_property_read_u32(pdev->dev.of_node,
584 "ti,davinci-mask-chipsel", &prop))
585 pdata->mask_chipsel = prop;
586 if (!of_property_read_string(pdev->dev.of_node,
75be1ea2
IK
587 "nand-ecc-mode", &mode) ||
588 !of_property_read_string(pdev->dev.of_node,
cdeadd71
HS
589 "ti,davinci-ecc-mode", &mode)) {
590 if (!strncmp("none", mode, 4))
591 pdata->ecc_mode = NAND_ECC_NONE;
592 if (!strncmp("soft", mode, 4))
593 pdata->ecc_mode = NAND_ECC_SOFT;
594 if (!strncmp("hw", mode, 2))
595 pdata->ecc_mode = NAND_ECC_HW;
596 }
597 if (!of_property_read_u32(pdev->dev.of_node,
598 "ti,davinci-ecc-bits", &prop))
599 pdata->ecc_bits = prop;
75be1ea2
IK
600
601 prop = of_get_nand_bus_width(pdev->dev.of_node);
602 if (0 < prop || !of_property_read_u32(pdev->dev.of_node,
cdeadd71
HS
603 "ti,davinci-nand-buswidth", &prop))
604 if (prop == 16)
605 pdata->options |= NAND_BUSWIDTH_16;
75be1ea2
IK
606 if (of_property_read_bool(pdev->dev.of_node,
607 "nand-on-flash-bbt") ||
608 of_property_read_bool(pdev->dev.of_node,
609 "ti,davinci-nand-use-bbt"))
cdeadd71 610 pdata->bbt_options = NAND_BBT_USE_FLASH;
28c015a9
MK
611
612 if (of_device_is_compatible(pdev->dev.of_node,
613 "ti,keystone-nand")) {
614 pdata->options |= NAND_NO_SUBPAGE_WRITE;
615 }
cdeadd71
HS
616 }
617
453810b7 618 return dev_get_platdata(&pdev->dev);
cdeadd71
HS
619}
620#else
cdeadd71
HS
621static struct davinci_nand_pdata
622 *nand_davinci_get_pdata(struct platform_device *pdev)
623{
453810b7 624 return dev_get_platdata(&pdev->dev);
cdeadd71
HS
625}
626#endif
627
eaaa4a9a 628static int nand_davinci_probe(struct platform_device *pdev)
ff4569c7 629{
cdeadd71 630 struct davinci_nand_pdata *pdata;
ff4569c7
DB
631 struct davinci_nand_info *info;
632 struct resource *res1;
633 struct resource *res2;
634 void __iomem *vaddr;
635 void __iomem *base;
636 int ret;
637 uint32_t val;
638 nand_ecc_modes_t ecc_mode;
639
cdeadd71 640 pdata = nand_davinci_get_pdata(pdev);
f735a4d0
IK
641 if (IS_ERR(pdata))
642 return PTR_ERR(pdata);
643
533a0149
DB
644 /* insist on board-specific configuration */
645 if (!pdata)
646 return -ENODEV;
647
ff4569c7
DB
648 /* which external chipselect will we be managing? */
649 if (pdev->id < 0 || pdev->id > 3)
650 return -ENODEV;
651
ef4e0c21 652 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
00669231 653 if (!info)
30a3970c 654 return -ENOMEM;
ff4569c7
DB
655
656 platform_set_drvdata(pdev, info);
657
658 res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
659 res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
660 if (!res1 || !res2) {
661 dev_err(&pdev->dev, "resource missing\n");
30a3970c 662 return -EINVAL;
ff4569c7
DB
663 }
664
59bff7fb 665 vaddr = devm_ioremap_resource(&pdev->dev, res1);
30a3970c
IK
666 if (IS_ERR(vaddr))
667 return PTR_ERR(vaddr);
668
0966a416
IK
669 /*
670 * This registers range is used to setup NAND settings. In case with
671 * TI AEMIF driver, the same memory address range is requested already
672 * by AEMIF, so we cannot request it twice, just ioremap.
673 * The AEMIF and NAND drivers not use the same registers in this range.
674 */
675 base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
676 if (!base) {
677 dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
678 return -EADDRNOTAVAIL;
679 }
ff4569c7
DB
680
681 info->dev = &pdev->dev;
682 info->base = base;
683 info->vaddr = vaddr;
684
685 info->mtd.priv = &info->chip;
87f39f04 686 info->mtd.dev.parent = &pdev->dev;
a61ae81a 687 nand_set_flash_node(&info->chip, pdev->dev.of_node);
87f39f04 688
ff4569c7
DB
689 info->chip.IO_ADDR_R = vaddr;
690 info->chip.IO_ADDR_W = vaddr;
691 info->chip.chip_delay = 0;
692 info->chip.select_chip = nand_davinci_select_chip;
693
bb9ebd4e 694 /* options such as NAND_BBT_USE_FLASH */
a40f7341
BN
695 info->chip.bbt_options = pdata->bbt_options;
696 /* options such as 16-bit widths */
533a0149 697 info->chip.options = pdata->options;
f611a79f
MG
698 info->chip.bbt_td = pdata->bbt_td;
699 info->chip.bbt_md = pdata->bbt_md;
a88dbc5b 700 info->timing = pdata->timing;
ff4569c7
DB
701
702 info->ioaddr = (uint32_t __force) vaddr;
703
704 info->current_cs = info->ioaddr;
705 info->core_chipsel = pdev->id;
706 info->mask_chipsel = pdata->mask_chipsel;
707
708 /* use nandboot-capable ALE/CLE masks by default */
5cd0be8e 709 info->mask_ale = pdata->mask_ale ? : MASK_ALE;
533a0149 710 info->mask_cle = pdata->mask_cle ? : MASK_CLE;
ff4569c7
DB
711
712 /* Set address of hardware control function */
713 info->chip.cmd_ctrl = nand_davinci_hwcontrol;
714 info->chip.dev_ready = nand_davinci_dev_ready;
715
716 /* Speed up buffer I/O */
717 info->chip.read_buf = nand_davinci_read_buf;
718 info->chip.write_buf = nand_davinci_write_buf;
719
533a0149
DB
720 /* Use board-specific ECC config */
721 ecc_mode = pdata->ecc_mode;
ff4569c7 722
6a4123e5 723 ret = -EINVAL;
ff4569c7
DB
724 switch (ecc_mode) {
725 case NAND_ECC_NONE:
726 case NAND_ECC_SOFT:
6a4123e5 727 pdata->ecc_bits = 0;
ff4569c7
DB
728 break;
729 case NAND_ECC_HW:
6a4123e5
DB
730 if (pdata->ecc_bits == 4) {
731 /* No sanity checks: CPUs must support this,
732 * and the chips may not use NAND_BUSWIDTH_16.
733 */
734
735 /* No sharing 4-bit hardware between chipselects yet */
736 spin_lock_irq(&davinci_nand_lock);
737 if (ecc4_busy)
738 ret = -EBUSY;
739 else
740 ecc4_busy = true;
741 spin_unlock_irq(&davinci_nand_lock);
742
743 if (ret == -EBUSY)
30a3970c 744 return ret;
6a4123e5
DB
745
746 info->chip.ecc.calculate = nand_davinci_calculate_4bit;
747 info->chip.ecc.correct = nand_davinci_correct_4bit;
748 info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
749 info->chip.ecc.bytes = 10;
750 } else {
751 info->chip.ecc.calculate = nand_davinci_calculate_1bit;
752 info->chip.ecc.correct = nand_davinci_correct_1bit;
753 info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
754 info->chip.ecc.bytes = 3;
755 }
ff4569c7 756 info->chip.ecc.size = 512;
6a918bad 757 info->chip.ecc.strength = pdata->ecc_bits;
ff4569c7 758 break;
ff4569c7 759 default:
30a3970c 760 return -EINVAL;
ff4569c7
DB
761 }
762 info->chip.ecc.mode = ecc_mode;
763
ef4e0c21 764 info->clk = devm_clk_get(&pdev->dev, "aemif");
ff4569c7
DB
765 if (IS_ERR(info->clk)) {
766 ret = PTR_ERR(info->clk);
cd24f8c1 767 dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
30a3970c 768 return ret;
ff4569c7
DB
769 }
770
ea73fe7f 771 ret = clk_prepare_enable(info->clk);
ff4569c7 772 if (ret < 0) {
cd24f8c1
KH
773 dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n",
774 ret);
ff4569c7
DB
775 goto err_clk_enable;
776 }
777
ff4569c7
DB
778 spin_lock_irq(&davinci_nand_lock);
779
780 /* put CSxNAND into NAND mode */
781 val = davinci_nand_readl(info, NANDFCR_OFFSET);
782 val |= BIT(info->core_chipsel);
783 davinci_nand_writel(info, NANDFCR_OFFSET, val);
784
785 spin_unlock_irq(&davinci_nand_lock);
786
787 /* Scan to find existence of the device(s) */
5e81e88a 788 ret = nand_scan_ident(&info->mtd, pdata->mask_chipsel ? 2 : 1, NULL);
ff4569c7
DB
789 if (ret < 0) {
790 dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
30a3970c 791 goto err;
ff4569c7
DB
792 }
793
6a4123e5
DB
794 /* Update ECC layout if needed ... for 1-bit HW ECC, the default
795 * is OK, but it allocates 6 bytes when only 3 are needed (for
796 * each 512 bytes). For the 4-bit HW ECC, that default is not
797 * usable: 10 bytes are needed, not 6.
798 */
799 if (pdata->ecc_bits == 4) {
800 int chunks = info->mtd.writesize / 512;
801
802 if (!chunks || info->mtd.oobsize < 16) {
803 dev_dbg(&pdev->dev, "too small\n");
804 ret = -EINVAL;
30a3970c 805 goto err;
6a4123e5
DB
806 }
807
808 /* For small page chips, preserve the manufacturer's
809 * badblock marking data ... and make sure a flash BBT
810 * table marker fits in the free bytes.
811 */
812 if (chunks == 1) {
813 info->ecclayout = hwecc4_small;
814 info->ecclayout.oobfree[1].length =
815 info->mtd.oobsize - 16;
816 goto syndrome_done;
817 }
f12a9473
SN
818 if (chunks == 4) {
819 info->ecclayout = hwecc4_2048;
820 info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
821 goto syndrome_done;
822 }
a11244c0
SP
823 if (chunks == 8) {
824 info->ecclayout = hwecc4_4096;
825 info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
826 goto syndrome_done;
827 }
6a4123e5 828
6a4123e5 829 ret = -EIO;
30a3970c 830 goto err;
6a4123e5
DB
831
832syndrome_done:
833 info->chip.ecc.layout = &info->ecclayout;
834 }
835
836 ret = nand_scan_tail(&info->mtd);
837 if (ret < 0)
30a3970c 838 goto err;
6a4123e5 839
192afdbf
MK
840 if (pdata->parts)
841 ret = mtd_device_parse_register(&info->mtd, NULL, NULL,
842 pdata->parts, pdata->nr_parts);
a61ae81a
BN
843 else
844 ret = mtd_device_register(&info->mtd, NULL, 0);
ff4569c7 845 if (ret < 0)
30a3970c 846 goto err;
ff4569c7
DB
847
848 val = davinci_nand_readl(info, NRCSR_OFFSET);
849 dev_info(&pdev->dev, "controller rev. %d.%d\n",
850 (val >> 8) & 0xff, val & 0xff);
851
852 return 0;
853
30a3970c 854err:
ea73fe7f 855 clk_disable_unprepare(info->clk);
ff4569c7
DB
856
857err_clk_enable:
6a4123e5
DB
858 spin_lock_irq(&davinci_nand_lock);
859 if (ecc_mode == NAND_ECC_HW_SYNDROME)
860 ecc4_busy = false;
861 spin_unlock_irq(&davinci_nand_lock);
ff4569c7
DB
862 return ret;
863}
864
eaaa4a9a 865static int nand_davinci_remove(struct platform_device *pdev)
ff4569c7
DB
866{
867 struct davinci_nand_info *info = platform_get_drvdata(pdev);
ff4569c7 868
6a4123e5
DB
869 spin_lock_irq(&davinci_nand_lock);
870 if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
871 ecc4_busy = false;
872 spin_unlock_irq(&davinci_nand_lock);
873
ff4569c7
DB
874 nand_release(&info->mtd);
875
ea73fe7f 876 clk_disable_unprepare(info->clk);
ff4569c7
DB
877
878 return 0;
879}
880
881static struct platform_driver nand_davinci_driver = {
eaaa4a9a
IK
882 .probe = nand_davinci_probe,
883 .remove = nand_davinci_remove,
ff4569c7
DB
884 .driver = {
885 .name = "davinci_nand",
c4f8cde8 886 .of_match_table = of_match_ptr(davinci_nand_of_match),
ff4569c7
DB
887 },
888};
889MODULE_ALIAS("platform:davinci_nand");
890
eaaa4a9a 891module_platform_driver(nand_davinci_driver);
ff4569c7
DB
892
893MODULE_LICENSE("GPL");
894MODULE_AUTHOR("Texas Instruments");
895MODULE_DESCRIPTION("Davinci NAND flash driver");
896
This page took 0.33031 seconds and 5 git commands to generate.