mtd: nand: gpmi: rely on generic DT parsing done in nand_scan_ident()
[deliverable/linux.git] / drivers / mtd / nand / davinci_nand.c
CommitLineData
ff4569c7
DB
1/*
2 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
3 *
4 * Copyright © 2006 Texas Instruments.
5 *
6 * Port to 2.6.23 Copyright © 2008 by:
7 * Sander Huijsen <Shuijsen@optelecom-nkf.com>
8 * Troy Kisky <troy.kisky@boundarydevices.com>
9 * Dirk Behme <Dirk.Behme@gmail.com>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 */
25
26#include <linux/kernel.h>
ff4569c7
DB
27#include <linux/module.h>
28#include <linux/platform_device.h>
29#include <linux/err.h>
30#include <linux/clk.h>
31#include <linux/io.h>
32#include <linux/mtd/nand.h>
33#include <linux/mtd/partitions.h>
5a0e3ad6 34#include <linux/slab.h>
cdeadd71 35#include <linux/of_device.h>
c4f8cde8 36#include <linux/of.h>
75be1ea2 37#include <linux/of_mtd.h>
ff4569c7 38
ec2a0833
AB
39#include <linux/platform_data/mtd-davinci.h>
40#include <linux/platform_data/mtd-davinci-aemif.h>
ff4569c7 41
ff4569c7
DB
42/*
43 * This is a device driver for the NAND flash controller found on the
44 * various DaVinci family chips. It handles up to four SoC chipselects,
45 * and some flavors of secondary chipselect (e.g. based on A12) as used
46 * with multichip packages.
47 *
6a4123e5 48 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
ff4569c7
DB
49 * available on chips like the DM355 and OMAP-L137 and needed with the
50 * more error-prone MLC NAND chips.
51 *
52 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
53 * outputs in a "wire-AND" configuration, with no per-chip signals.
54 */
55struct davinci_nand_info {
ff4569c7
DB
56 struct nand_chip chip;
57
58 struct device *dev;
59 struct clk *clk;
ff4569c7 60
6a4123e5
DB
61 bool is_readmode;
62
ff4569c7
DB
63 void __iomem *base;
64 void __iomem *vaddr;
65
66 uint32_t ioaddr;
67 uint32_t current_cs;
68
69 uint32_t mask_chipsel;
70 uint32_t mask_ale;
71 uint32_t mask_cle;
72
73 uint32_t core_chipsel;
a88dbc5b
SN
74
75 struct davinci_aemif_timing *timing;
ff4569c7
DB
76};
77
78static DEFINE_SPINLOCK(davinci_nand_lock);
6a4123e5 79static bool ecc4_busy;
ff4569c7 80
a5cfb4db
BB
81static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd)
82{
83 return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip);
84}
ff4569c7
DB
85
86static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
87 int offset)
88{
89 return __raw_readl(info->base + offset);
90}
91
92static inline void davinci_nand_writel(struct davinci_nand_info *info,
93 int offset, unsigned long value)
94{
95 __raw_writel(value, info->base + offset);
96}
97
98/*----------------------------------------------------------------------*/
99
100/*
101 * Access to hardware control lines: ALE, CLE, secondary chipselect.
102 */
103
104static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
105 unsigned int ctrl)
106{
107 struct davinci_nand_info *info = to_davinci_nand(mtd);
108 uint32_t addr = info->current_cs;
4bd4ebcc 109 struct nand_chip *nand = mtd_to_nand(mtd);
ff4569c7
DB
110
111 /* Did the control lines change? */
112 if (ctrl & NAND_CTRL_CHANGE) {
113 if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
114 addr |= info->mask_cle;
115 else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
116 addr |= info->mask_ale;
117
118 nand->IO_ADDR_W = (void __iomem __force *)addr;
119 }
120
121 if (cmd != NAND_CMD_NONE)
122 iowrite8(cmd, nand->IO_ADDR_W);
123}
124
125static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
126{
127 struct davinci_nand_info *info = to_davinci_nand(mtd);
128 uint32_t addr = info->ioaddr;
129
130 /* maybe kick in a second chipselect */
131 if (chip > 0)
132 addr |= info->mask_chipsel;
133 info->current_cs = addr;
134
135 info->chip.IO_ADDR_W = (void __iomem __force *)addr;
136 info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
137}
138
139/*----------------------------------------------------------------------*/
140
141/*
142 * 1-bit hardware ECC ... context maintained for each core chipselect
143 */
144
145static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
146{
147 struct davinci_nand_info *info = to_davinci_nand(mtd);
148
149 return davinci_nand_readl(info, NANDF1ECC_OFFSET
150 + 4 * info->core_chipsel);
151}
152
153static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
154{
155 struct davinci_nand_info *info;
156 uint32_t nandcfr;
157 unsigned long flags;
158
159 info = to_davinci_nand(mtd);
160
161 /* Reset ECC hardware */
162 nand_davinci_readecc_1bit(mtd);
163
164 spin_lock_irqsave(&davinci_nand_lock, flags);
165
166 /* Restart ECC hardware */
167 nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
168 nandcfr |= BIT(8 + info->core_chipsel);
169 davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
170
171 spin_unlock_irqrestore(&davinci_nand_lock, flags);
172}
173
174/*
175 * Read hardware ECC value and pack into three bytes
176 */
177static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
178 const u_char *dat, u_char *ecc_code)
179{
180 unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
181 unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
182
183 /* invert so that erased block ecc is correct */
184 ecc24 = ~ecc24;
185 ecc_code[0] = (u_char)(ecc24);
186 ecc_code[1] = (u_char)(ecc24 >> 8);
187 ecc_code[2] = (u_char)(ecc24 >> 16);
188
189 return 0;
190}
191
192static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
193 u_char *read_ecc, u_char *calc_ecc)
194{
4bd4ebcc 195 struct nand_chip *chip = mtd_to_nand(mtd);
ff4569c7
DB
196 uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
197 (read_ecc[2] << 16);
198 uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
199 (calc_ecc[2] << 16);
200 uint32_t diff = eccCalc ^ eccNand;
201
202 if (diff) {
203 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
204 /* Correctable error */
205 if ((diff >> (12 + 3)) < chip->ecc.size) {
206 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
207 return 1;
208 } else {
6e941192 209 return -EBADMSG;
ff4569c7
DB
210 }
211 } else if (!(diff & (diff - 1))) {
212 /* Single bit ECC error in the ECC itself,
213 * nothing to fix */
214 return 1;
215 } else {
216 /* Uncorrectable error */
6e941192 217 return -EBADMSG;
ff4569c7
DB
218 }
219
220 }
221 return 0;
222}
223
224/*----------------------------------------------------------------------*/
225
6a4123e5
DB
226/*
227 * 4-bit hardware ECC ... context maintained over entire AEMIF
228 *
229 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
230 * since that forces use of a problematic "infix OOB" layout.
231 * Among other things, it trashes manufacturer bad block markers.
232 * Also, and specific to this hardware, it ECC-protects the "prepad"
233 * in the OOB ... while having ECC protection for parts of OOB would
234 * seem useful, the current MTD stack sometimes wants to update the
235 * OOB without recomputing ECC.
236 */
237
238static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
239{
240 struct davinci_nand_info *info = to_davinci_nand(mtd);
241 unsigned long flags;
242 u32 val;
243
244 spin_lock_irqsave(&davinci_nand_lock, flags);
245
246 /* Start 4-bit ECC calculation for read/write */
247 val = davinci_nand_readl(info, NANDFCR_OFFSET);
248 val &= ~(0x03 << 4);
249 val |= (info->core_chipsel << 4) | BIT(12);
250 davinci_nand_writel(info, NANDFCR_OFFSET, val);
251
252 info->is_readmode = (mode == NAND_ECC_READ);
253
254 spin_unlock_irqrestore(&davinci_nand_lock, flags);
255}
256
257/* Read raw ECC code after writing to NAND. */
258static void
259nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
260{
261 const u32 mask = 0x03ff03ff;
262
263 code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
264 code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
265 code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
266 code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
267}
268
269/* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
270static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
271 const u_char *dat, u_char *ecc_code)
272{
273 struct davinci_nand_info *info = to_davinci_nand(mtd);
274 u32 raw_ecc[4], *p;
275 unsigned i;
276
277 /* After a read, terminate ECC calculation by a dummy read
278 * of some 4-bit ECC register. ECC covers everything that
279 * was read; correct() just uses the hardware state, so
280 * ecc_code is not needed.
281 */
282 if (info->is_readmode) {
283 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
284 return 0;
285 }
286
287 /* Pack eight raw 10-bit ecc values into ten bytes, making
288 * two passes which each convert four values (in upper and
289 * lower halves of two 32-bit words) into five bytes. The
290 * ROM boot loader uses this same packing scheme.
291 */
292 nand_davinci_readecc_4bit(info, raw_ecc);
293 for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
294 *ecc_code++ = p[0] & 0xff;
295 *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc);
296 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0);
297 *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0);
298 *ecc_code++ = (p[1] >> 18) & 0xff;
299 }
300
301 return 0;
302}
303
304/* Correct up to 4 bits in data we just read, using state left in the
305 * hardware plus the ecc_code computed when it was first written.
306 */
307static int nand_davinci_correct_4bit(struct mtd_info *mtd,
308 u_char *data, u_char *ecc_code, u_char *null)
309{
310 int i;
311 struct davinci_nand_info *info = to_davinci_nand(mtd);
312 unsigned short ecc10[8];
313 unsigned short *ecc16;
314 u32 syndrome[4];
1c3275b6 315 u32 ecc_state;
6a4123e5 316 unsigned num_errors, corrected;
2bdb053a 317 unsigned long timeo;
6a4123e5 318
6a4123e5
DB
319 /* Unpack ten bytes into eight 10 bit values. We know we're
320 * little-endian, and use type punning for less shifting/masking.
321 */
322 if (WARN_ON(0x01 & (unsigned) ecc_code))
323 return -EINVAL;
324 ecc16 = (unsigned short *)ecc_code;
325
326 ecc10[0] = (ecc16[0] >> 0) & 0x3ff;
327 ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
328 ecc10[2] = (ecc16[1] >> 4) & 0x3ff;
329 ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc);
330 ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300);
331 ecc10[5] = (ecc16[3] >> 2) & 0x3ff;
332 ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0);
333 ecc10[7] = (ecc16[4] >> 6) & 0x3ff;
334
335 /* Tell ECC controller about the expected ECC codes. */
336 for (i = 7; i >= 0; i--)
337 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
338
339 /* Allow time for syndrome calculation ... then read it.
340 * A syndrome of all zeroes 0 means no detected errors.
341 */
342 davinci_nand_readl(info, NANDFSR_OFFSET);
343 nand_davinci_readecc_4bit(info, syndrome);
344 if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
345 return 0;
346
f12a9473
SN
347 /*
348 * Clear any previous address calculation by doing a dummy read of an
349 * error address register.
350 */
351 davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
352
6a4123e5
DB
353 /* Start address calculation, and wait for it to complete.
354 * We _could_ start reading more data while this is working,
355 * to speed up the overall page read.
356 */
357 davinci_nand_writel(info, NANDFCR_OFFSET,
358 davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
1c3275b6
SR
359
360 /*
361 * ECC_STATE field reads 0x3 (Error correction complete) immediately
362 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
363 * begin trying to poll for the state, you may fall right out of your
364 * loop without any of the correction calculations having taken place.
eea116ed
WS
365 * The recommendation from the hardware team is to initially delay as
366 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
367 * correction state.
1c3275b6 368 */
2bdb053a 369 timeo = jiffies + usecs_to_jiffies(100);
1c3275b6
SR
370 do {
371 ecc_state = (davinci_nand_readl(info,
372 NANDFSR_OFFSET) >> 8) & 0x0f;
373 cpu_relax();
374 } while ((ecc_state < 4) && time_before(jiffies, timeo));
375
6a4123e5
DB
376 for (;;) {
377 u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
378
379 switch ((fsr >> 8) & 0x0f) {
380 case 0: /* no error, should not happen */
f12a9473 381 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
6a4123e5
DB
382 return 0;
383 case 1: /* five or more errors detected */
f12a9473 384 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
6e941192 385 return -EBADMSG;
6a4123e5
DB
386 case 2: /* error addresses computed */
387 case 3:
388 num_errors = 1 + ((fsr >> 16) & 0x03);
389 goto correct;
390 default: /* still working on it */
391 cpu_relax();
392 continue;
393 }
394 }
395
396correct:
397 /* correct each error */
398 for (i = 0, corrected = 0; i < num_errors; i++) {
399 int error_address, error_value;
400
401 if (i > 1) {
402 error_address = davinci_nand_readl(info,
403 NAND_ERR_ADD2_OFFSET);
404 error_value = davinci_nand_readl(info,
405 NAND_ERR_ERRVAL2_OFFSET);
406 } else {
407 error_address = davinci_nand_readl(info,
408 NAND_ERR_ADD1_OFFSET);
409 error_value = davinci_nand_readl(info,
410 NAND_ERR_ERRVAL1_OFFSET);
411 }
412
413 if (i & 1) {
414 error_address >>= 16;
415 error_value >>= 16;
416 }
417 error_address &= 0x3ff;
418 error_address = (512 + 7) - error_address;
419
420 if (error_address < 512) {
421 data[error_address] ^= error_value;
422 corrected++;
423 }
424 }
425
426 return corrected;
427}
428
429/*----------------------------------------------------------------------*/
430
ff4569c7
DB
431/*
432 * NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
433 * how these chips are normally wired. This translates to both 8 and 16
434 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
435 *
436 * For now we assume that configuration, or any other one which ignores
437 * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
438 * and have that transparently morphed into multiple NAND operations.
439 */
440static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
441{
4bd4ebcc 442 struct nand_chip *chip = mtd_to_nand(mtd);
ff4569c7
DB
443
444 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
445 ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
446 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
447 ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
448 else
449 ioread8_rep(chip->IO_ADDR_R, buf, len);
450}
451
452static void nand_davinci_write_buf(struct mtd_info *mtd,
453 const uint8_t *buf, int len)
454{
4bd4ebcc 455 struct nand_chip *chip = mtd_to_nand(mtd);
ff4569c7
DB
456
457 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
458 iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
459 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
460 iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
461 else
462 iowrite8_rep(chip->IO_ADDR_R, buf, len);
463}
464
465/*
466 * Check hardware register for wait status. Returns 1 if device is ready,
467 * 0 if it is still busy.
468 */
469static int nand_davinci_dev_ready(struct mtd_info *mtd)
470{
471 struct davinci_nand_info *info = to_davinci_nand(mtd);
472
473 return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
474}
475
ff4569c7
DB
476/*----------------------------------------------------------------------*/
477
6a4123e5
DB
478/* An ECC layout for using 4-bit ECC with small-page flash, storing
479 * ten ECC bytes plus the manufacturer's bad block marker byte, and
480 * and not overlapping the default BBT markers.
481 */
e4aacaa1
BB
482static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section,
483 struct mtd_oob_region *oobregion)
484{
485 if (section > 2)
486 return -ERANGE;
487
488 if (!section) {
489 oobregion->offset = 0;
490 oobregion->length = 5;
491 } else if (section == 1) {
492 oobregion->offset = 6;
493 oobregion->length = 2;
494 } else {
495 oobregion->offset = 13;
496 oobregion->length = 3;
497 }
6a4123e5 498
e4aacaa1
BB
499 return 0;
500}
6a4123e5 501
e4aacaa1
BB
502static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section,
503 struct mtd_oob_region *oobregion)
504{
505 if (section > 1)
506 return -ERANGE;
507
508 if (!section) {
509 oobregion->offset = 8;
510 oobregion->length = 5;
511 } else {
512 oobregion->offset = 16;
513 oobregion->length = mtd->oobsize - 16;
514 }
515
516 return 0;
517}
518
519static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = {
520 .ecc = hwecc4_ooblayout_small_ecc,
521 .free = hwecc4_ooblayout_small_free,
a11244c0
SP
522};
523
cdeadd71
HS
524#if defined(CONFIG_OF)
525static const struct of_device_id davinci_nand_of_match[] = {
526 {.compatible = "ti,davinci-nand", },
28c015a9 527 {.compatible = "ti,keystone-nand", },
cdeadd71 528 {},
13daa22f 529};
cdeadd71
HS
530MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
531
532static struct davinci_nand_pdata
533 *nand_davinci_get_pdata(struct platform_device *pdev)
534{
453810b7 535 if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
cdeadd71
HS
536 struct davinci_nand_pdata *pdata;
537 const char *mode;
538 u32 prop;
cdeadd71
HS
539
540 pdata = devm_kzalloc(&pdev->dev,
541 sizeof(struct davinci_nand_pdata),
542 GFP_KERNEL);
543 pdev->dev.platform_data = pdata;
544 if (!pdata)
f735a4d0 545 return ERR_PTR(-ENOMEM);
cdeadd71
HS
546 if (!of_property_read_u32(pdev->dev.of_node,
547 "ti,davinci-chipselect", &prop))
548 pdev->id = prop;
05103825
IK
549 else
550 return ERR_PTR(-EINVAL);
551
cdeadd71
HS
552 if (!of_property_read_u32(pdev->dev.of_node,
553 "ti,davinci-mask-ale", &prop))
554 pdata->mask_ale = prop;
555 if (!of_property_read_u32(pdev->dev.of_node,
556 "ti,davinci-mask-cle", &prop))
557 pdata->mask_cle = prop;
558 if (!of_property_read_u32(pdev->dev.of_node,
559 "ti,davinci-mask-chipsel", &prop))
560 pdata->mask_chipsel = prop;
561 if (!of_property_read_string(pdev->dev.of_node,
75be1ea2
IK
562 "nand-ecc-mode", &mode) ||
563 !of_property_read_string(pdev->dev.of_node,
cdeadd71
HS
564 "ti,davinci-ecc-mode", &mode)) {
565 if (!strncmp("none", mode, 4))
566 pdata->ecc_mode = NAND_ECC_NONE;
567 if (!strncmp("soft", mode, 4))
568 pdata->ecc_mode = NAND_ECC_SOFT;
569 if (!strncmp("hw", mode, 2))
570 pdata->ecc_mode = NAND_ECC_HW;
571 }
572 if (!of_property_read_u32(pdev->dev.of_node,
573 "ti,davinci-ecc-bits", &prop))
574 pdata->ecc_bits = prop;
75be1ea2
IK
575
576 prop = of_get_nand_bus_width(pdev->dev.of_node);
577 if (0 < prop || !of_property_read_u32(pdev->dev.of_node,
cdeadd71
HS
578 "ti,davinci-nand-buswidth", &prop))
579 if (prop == 16)
580 pdata->options |= NAND_BUSWIDTH_16;
75be1ea2
IK
581 if (of_property_read_bool(pdev->dev.of_node,
582 "nand-on-flash-bbt") ||
583 of_property_read_bool(pdev->dev.of_node,
584 "ti,davinci-nand-use-bbt"))
cdeadd71 585 pdata->bbt_options = NAND_BBT_USE_FLASH;
28c015a9
MK
586
587 if (of_device_is_compatible(pdev->dev.of_node,
588 "ti,keystone-nand")) {
589 pdata->options |= NAND_NO_SUBPAGE_WRITE;
590 }
cdeadd71
HS
591 }
592
453810b7 593 return dev_get_platdata(&pdev->dev);
cdeadd71
HS
594}
595#else
cdeadd71
HS
596static struct davinci_nand_pdata
597 *nand_davinci_get_pdata(struct platform_device *pdev)
598{
453810b7 599 return dev_get_platdata(&pdev->dev);
cdeadd71
HS
600}
601#endif
602
eaaa4a9a 603static int nand_davinci_probe(struct platform_device *pdev)
ff4569c7 604{
cdeadd71 605 struct davinci_nand_pdata *pdata;
ff4569c7
DB
606 struct davinci_nand_info *info;
607 struct resource *res1;
608 struct resource *res2;
609 void __iomem *vaddr;
610 void __iomem *base;
611 int ret;
612 uint32_t val;
613 nand_ecc_modes_t ecc_mode;
a5cfb4db 614 struct mtd_info *mtd;
ff4569c7 615
cdeadd71 616 pdata = nand_davinci_get_pdata(pdev);
f735a4d0
IK
617 if (IS_ERR(pdata))
618 return PTR_ERR(pdata);
619
533a0149
DB
620 /* insist on board-specific configuration */
621 if (!pdata)
622 return -ENODEV;
623
ff4569c7
DB
624 /* which external chipselect will we be managing? */
625 if (pdev->id < 0 || pdev->id > 3)
626 return -ENODEV;
627
ef4e0c21 628 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
00669231 629 if (!info)
30a3970c 630 return -ENOMEM;
ff4569c7
DB
631
632 platform_set_drvdata(pdev, info);
633
634 res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
635 res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
636 if (!res1 || !res2) {
637 dev_err(&pdev->dev, "resource missing\n");
30a3970c 638 return -EINVAL;
ff4569c7
DB
639 }
640
59bff7fb 641 vaddr = devm_ioremap_resource(&pdev->dev, res1);
30a3970c
IK
642 if (IS_ERR(vaddr))
643 return PTR_ERR(vaddr);
644
0966a416
IK
645 /*
646 * This registers range is used to setup NAND settings. In case with
647 * TI AEMIF driver, the same memory address range is requested already
648 * by AEMIF, so we cannot request it twice, just ioremap.
649 * The AEMIF and NAND drivers not use the same registers in this range.
650 */
651 base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
652 if (!base) {
653 dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
654 return -EADDRNOTAVAIL;
655 }
ff4569c7
DB
656
657 info->dev = &pdev->dev;
658 info->base = base;
659 info->vaddr = vaddr;
660
a5cfb4db 661 mtd = nand_to_mtd(&info->chip);
a5cfb4db 662 mtd->dev.parent = &pdev->dev;
a61ae81a 663 nand_set_flash_node(&info->chip, pdev->dev.of_node);
87f39f04 664
ff4569c7
DB
665 info->chip.IO_ADDR_R = vaddr;
666 info->chip.IO_ADDR_W = vaddr;
667 info->chip.chip_delay = 0;
668 info->chip.select_chip = nand_davinci_select_chip;
669
bb9ebd4e 670 /* options such as NAND_BBT_USE_FLASH */
a40f7341
BN
671 info->chip.bbt_options = pdata->bbt_options;
672 /* options such as 16-bit widths */
533a0149 673 info->chip.options = pdata->options;
f611a79f
MG
674 info->chip.bbt_td = pdata->bbt_td;
675 info->chip.bbt_md = pdata->bbt_md;
a88dbc5b 676 info->timing = pdata->timing;
ff4569c7
DB
677
678 info->ioaddr = (uint32_t __force) vaddr;
679
680 info->current_cs = info->ioaddr;
681 info->core_chipsel = pdev->id;
682 info->mask_chipsel = pdata->mask_chipsel;
683
684 /* use nandboot-capable ALE/CLE masks by default */
5cd0be8e 685 info->mask_ale = pdata->mask_ale ? : MASK_ALE;
533a0149 686 info->mask_cle = pdata->mask_cle ? : MASK_CLE;
ff4569c7
DB
687
688 /* Set address of hardware control function */
689 info->chip.cmd_ctrl = nand_davinci_hwcontrol;
690 info->chip.dev_ready = nand_davinci_dev_ready;
691
692 /* Speed up buffer I/O */
693 info->chip.read_buf = nand_davinci_read_buf;
694 info->chip.write_buf = nand_davinci_write_buf;
695
533a0149
DB
696 /* Use board-specific ECC config */
697 ecc_mode = pdata->ecc_mode;
ff4569c7 698
6a4123e5 699 ret = -EINVAL;
ff4569c7
DB
700 switch (ecc_mode) {
701 case NAND_ECC_NONE:
702 case NAND_ECC_SOFT:
6a4123e5 703 pdata->ecc_bits = 0;
ff4569c7
DB
704 break;
705 case NAND_ECC_HW:
6a4123e5
DB
706 if (pdata->ecc_bits == 4) {
707 /* No sanity checks: CPUs must support this,
708 * and the chips may not use NAND_BUSWIDTH_16.
709 */
710
711 /* No sharing 4-bit hardware between chipselects yet */
712 spin_lock_irq(&davinci_nand_lock);
713 if (ecc4_busy)
714 ret = -EBUSY;
715 else
716 ecc4_busy = true;
717 spin_unlock_irq(&davinci_nand_lock);
718
719 if (ret == -EBUSY)
30a3970c 720 return ret;
6a4123e5
DB
721
722 info->chip.ecc.calculate = nand_davinci_calculate_4bit;
723 info->chip.ecc.correct = nand_davinci_correct_4bit;
724 info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
725 info->chip.ecc.bytes = 10;
bc29c95d 726 info->chip.ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
6a4123e5
DB
727 } else {
728 info->chip.ecc.calculate = nand_davinci_calculate_1bit;
729 info->chip.ecc.correct = nand_davinci_correct_1bit;
730 info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
731 info->chip.ecc.bytes = 3;
732 }
ff4569c7 733 info->chip.ecc.size = 512;
6a918bad 734 info->chip.ecc.strength = pdata->ecc_bits;
ff4569c7 735 break;
ff4569c7 736 default:
30a3970c 737 return -EINVAL;
ff4569c7
DB
738 }
739 info->chip.ecc.mode = ecc_mode;
740
ef4e0c21 741 info->clk = devm_clk_get(&pdev->dev, "aemif");
ff4569c7
DB
742 if (IS_ERR(info->clk)) {
743 ret = PTR_ERR(info->clk);
cd24f8c1 744 dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
30a3970c 745 return ret;
ff4569c7
DB
746 }
747
ea73fe7f 748 ret = clk_prepare_enable(info->clk);
ff4569c7 749 if (ret < 0) {
cd24f8c1
KH
750 dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n",
751 ret);
ff4569c7
DB
752 goto err_clk_enable;
753 }
754
ff4569c7
DB
755 spin_lock_irq(&davinci_nand_lock);
756
757 /* put CSxNAND into NAND mode */
758 val = davinci_nand_readl(info, NANDFCR_OFFSET);
759 val |= BIT(info->core_chipsel);
760 davinci_nand_writel(info, NANDFCR_OFFSET, val);
761
762 spin_unlock_irq(&davinci_nand_lock);
763
764 /* Scan to find existence of the device(s) */
a5cfb4db 765 ret = nand_scan_ident(mtd, pdata->mask_chipsel ? 2 : 1, NULL);
ff4569c7
DB
766 if (ret < 0) {
767 dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
30a3970c 768 goto err;
ff4569c7
DB
769 }
770
6a4123e5
DB
771 /* Update ECC layout if needed ... for 1-bit HW ECC, the default
772 * is OK, but it allocates 6 bytes when only 3 are needed (for
773 * each 512 bytes). For the 4-bit HW ECC, that default is not
774 * usable: 10 bytes are needed, not 6.
775 */
776 if (pdata->ecc_bits == 4) {
a5cfb4db 777 int chunks = mtd->writesize / 512;
6a4123e5 778
a5cfb4db 779 if (!chunks || mtd->oobsize < 16) {
6a4123e5
DB
780 dev_dbg(&pdev->dev, "too small\n");
781 ret = -EINVAL;
30a3970c 782 goto err;
6a4123e5
DB
783 }
784
785 /* For small page chips, preserve the manufacturer's
786 * badblock marking data ... and make sure a flash BBT
787 * table marker fits in the free bytes.
788 */
789 if (chunks == 1) {
e4aacaa1
BB
790 mtd_set_ooblayout(mtd, &hwecc4_small_ooblayout_ops);
791 } else if (chunks == 4 || chunks == 8) {
792 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
a11244c0 793 info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
e4aacaa1
BB
794 } else {
795 ret = -EIO;
796 goto err;
a11244c0 797 }
6a4123e5
DB
798 }
799
a5cfb4db 800 ret = nand_scan_tail(mtd);
6a4123e5 801 if (ret < 0)
30a3970c 802 goto err;
6a4123e5 803
192afdbf 804 if (pdata->parts)
a5cfb4db 805 ret = mtd_device_parse_register(mtd, NULL, NULL,
192afdbf 806 pdata->parts, pdata->nr_parts);
a61ae81a 807 else
a5cfb4db 808 ret = mtd_device_register(mtd, NULL, 0);
ff4569c7 809 if (ret < 0)
30a3970c 810 goto err;
ff4569c7
DB
811
812 val = davinci_nand_readl(info, NRCSR_OFFSET);
813 dev_info(&pdev->dev, "controller rev. %d.%d\n",
814 (val >> 8) & 0xff, val & 0xff);
815
816 return 0;
817
30a3970c 818err:
ea73fe7f 819 clk_disable_unprepare(info->clk);
ff4569c7
DB
820
821err_clk_enable:
6a4123e5
DB
822 spin_lock_irq(&davinci_nand_lock);
823 if (ecc_mode == NAND_ECC_HW_SYNDROME)
824 ecc4_busy = false;
825 spin_unlock_irq(&davinci_nand_lock);
ff4569c7
DB
826 return ret;
827}
828
eaaa4a9a 829static int nand_davinci_remove(struct platform_device *pdev)
ff4569c7
DB
830{
831 struct davinci_nand_info *info = platform_get_drvdata(pdev);
ff4569c7 832
6a4123e5
DB
833 spin_lock_irq(&davinci_nand_lock);
834 if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
835 ecc4_busy = false;
836 spin_unlock_irq(&davinci_nand_lock);
837
a5cfb4db 838 nand_release(nand_to_mtd(&info->chip));
ff4569c7 839
ea73fe7f 840 clk_disable_unprepare(info->clk);
ff4569c7
DB
841
842 return 0;
843}
844
845static struct platform_driver nand_davinci_driver = {
eaaa4a9a
IK
846 .probe = nand_davinci_probe,
847 .remove = nand_davinci_remove,
ff4569c7
DB
848 .driver = {
849 .name = "davinci_nand",
c4f8cde8 850 .of_match_table = of_match_ptr(davinci_nand_of_match),
ff4569c7
DB
851 },
852};
853MODULE_ALIAS("platform:davinci_nand");
854
eaaa4a9a 855module_platform_driver(nand_davinci_driver);
ff4569c7
DB
856
857MODULE_LICENSE("GPL");
858MODULE_AUTHOR("Texas Instruments");
859MODULE_DESCRIPTION("Davinci NAND flash driver");
860
This page took 0.346422 seconds and 5 git commands to generate.