mtd: denali: Add multi connected NAND support
[deliverable/linux.git] / drivers / mtd / nand / denali.c
CommitLineData
ce082596
JR
1/*
2 * NAND Flash Controller Device Driver
3 * Copyright © 2009-2010, Intel Corporation and its suppliers.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 *
18 */
19
20#include <linux/interrupt.h>
21#include <linux/delay.h>
22#include <linux/wait.h>
23#include <linux/mutex.h>
b8664b37 24#include <linux/slab.h>
ce082596
JR
25#include <linux/pci.h>
26#include <linux/mtd/mtd.h>
27#include <linux/module.h>
28
29#include "denali.h"
30
31MODULE_LICENSE("GPL");
32
5bac3acf 33/* We define a module parameter that allows the user to override
ce082596
JR
34 * the hardware and decide what timing mode should be used.
35 */
36#define NAND_DEFAULT_TIMINGS -1
37
38static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
39module_param(onfi_timing_mode, int, S_IRUGO);
bdca6dae
CD
40MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
41 " -1 indicates use default timings");
ce082596
JR
42
43#define DENALI_NAND_NAME "denali-nand"
44
45/* We define a macro here that combines all interrupts this driver uses into
46 * a single constant value, for convenience. */
47#define DENALI_IRQ_ALL (INTR_STATUS0__DMA_CMD_COMP | \
48 INTR_STATUS0__ECC_TRANSACTION_DONE | \
49 INTR_STATUS0__ECC_ERR | \
50 INTR_STATUS0__PROGRAM_FAIL | \
51 INTR_STATUS0__LOAD_COMP | \
52 INTR_STATUS0__PROGRAM_COMP | \
53 INTR_STATUS0__TIME_OUT | \
54 INTR_STATUS0__ERASE_FAIL | \
55 INTR_STATUS0__RST_COMP | \
56 INTR_STATUS0__ERASE_COMP)
57
5bac3acf 58/* indicates whether or not the internal value for the flash bank is
ce082596 59 valid or not */
5bac3acf 60#define CHIP_SELECT_INVALID -1
ce082596
JR
61
62#define SUPPORT_8BITECC 1
63
5bac3acf 64/* This macro divides two integers and rounds fractional values up
ce082596
JR
65 * to the nearest integer value. */
66#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
67
68/* this macro allows us to convert from an MTD structure to our own
69 * device context (denali) structure.
70 */
71#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
72
73/* These constants are defined by the driver to enable common driver
74 configuration options. */
75#define SPARE_ACCESS 0x41
76#define MAIN_ACCESS 0x42
77#define MAIN_SPARE_ACCESS 0x43
78
79#define DENALI_READ 0
80#define DENALI_WRITE 0x100
81
82/* types of device accesses. We can issue commands and get status */
83#define COMMAND_CYCLE 0
84#define ADDR_CYCLE 1
85#define STATUS_CYCLE 2
86
5bac3acf 87/* this is a helper macro that allows us to
ce082596
JR
88 * format the bank into the proper bits for the controller */
89#define BANK(x) ((x) << 24)
90
91/* List of platforms this NAND controller has be integrated into */
92static const struct pci_device_id denali_pci_ids[] = {
93 { PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 },
94 { PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST },
95 { /* end: all zeroes */ }
96};
97
98
5bac3acf
C
99/* these are static lookup tables that give us easy access to
100 registers in the NAND controller.
ce082596 101 */
5bac3acf
C
102static const uint32_t intr_status_addresses[4] = {INTR_STATUS0,
103 INTR_STATUS1,
104 INTR_STATUS2,
ce082596
JR
105 INTR_STATUS3};
106
107static const uint32_t device_reset_banks[4] = {DEVICE_RESET__BANK0,
5bac3acf
C
108 DEVICE_RESET__BANK1,
109 DEVICE_RESET__BANK2,
110 DEVICE_RESET__BANK3};
ce082596
JR
111
112static const uint32_t operation_timeout[4] = {INTR_STATUS0__TIME_OUT,
5bac3acf
C
113 INTR_STATUS1__TIME_OUT,
114 INTR_STATUS2__TIME_OUT,
115 INTR_STATUS3__TIME_OUT};
ce082596
JR
116
117static const uint32_t reset_complete[4] = {INTR_STATUS0__RST_COMP,
5bac3acf
C
118 INTR_STATUS1__RST_COMP,
119 INTR_STATUS2__RST_COMP,
120 INTR_STATUS3__RST_COMP};
ce082596
JR
121
122/* specifies the debug level of the driver */
a99d1796 123static int nand_debug_level;
ce082596
JR
124
125/* forward declarations */
126static void clear_interrupts(struct denali_nand_info *denali);
bdca6dae
CD
127static uint32_t wait_for_irq(struct denali_nand_info *denali,
128 uint32_t irq_mask);
129static void denali_irq_enable(struct denali_nand_info *denali,
130 uint32_t int_mask);
ce082596
JR
131static uint32_t read_interrupt_status(struct denali_nand_info *denali);
132
133#define DEBUG_DENALI 0
134
135/* This is a wrapper for writing to the denali registers.
136 * this allows us to create debug information so we can
5bac3acf 137 * observe how the driver is programming the device.
ce082596
JR
138 * it uses standard linux convention for (val, addr) */
139static void denali_write32(uint32_t value, void *addr)
140{
5bac3acf 141 iowrite32(value, addr);
ce082596
JR
142
143#if DEBUG_DENALI
bdca6dae
CD
144 printk(KERN_INFO "wrote: 0x%x -> 0x%x\n", value,
145 (uint32_t)((uint32_t)addr & 0x1fff));
ce082596 146#endif
5bac3acf 147}
ce082596 148
bdca6dae
CD
149/* Certain operations for the denali NAND controller use
150 * an indexed mode to read/write data. The operation is
151 * performed by writing the address value of the command
152 * to the device memory followed by the data. This function
153 * abstracts this common operation.
ce082596 154*/
bdca6dae
CD
155static void index_addr(struct denali_nand_info *denali,
156 uint32_t address, uint32_t data)
ce082596
JR
157{
158 denali_write32(address, denali->flash_mem);
159 denali_write32(data, denali->flash_mem + 0x10);
160}
161
162/* Perform an indexed read of the device */
163static void index_addr_read_data(struct denali_nand_info *denali,
164 uint32_t address, uint32_t *pdata)
165{
166 denali_write32(address, denali->flash_mem);
167 *pdata = ioread32(denali->flash_mem + 0x10);
168}
169
5bac3acf 170/* We need to buffer some data for some of the NAND core routines.
ce082596
JR
171 * The operations manage buffering that data. */
172static void reset_buf(struct denali_nand_info *denali)
173{
174 denali->buf.head = denali->buf.tail = 0;
175}
176
177static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
178{
179 BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf));
180 denali->buf.buf[denali->buf.tail++] = byte;
181}
182
183/* reads the status of the device */
184static void read_status(struct denali_nand_info *denali)
185{
186 uint32_t cmd = 0x0;
187
188 /* initialize the data buffer to store status */
189 reset_buf(denali);
190
191 /* initiate a device status read */
5bac3acf 192 cmd = MODE_11 | BANK(denali->flash_bank);
ce082596
JR
193 index_addr(denali, cmd | COMMAND_CYCLE, 0x70);
194 denali_write32(cmd | STATUS_CYCLE, denali->flash_mem);
195
196 /* update buffer with status value */
197 write_byte_to_buf(denali, ioread32(denali->flash_mem + 0x10));
198
199#if DEBUG_DENALI
bdca6dae
CD
200 printk(KERN_INFO "device reporting status value of 0x%2x\n",
201 denali->buf.buf[0]);
ce082596
JR
202#endif
203}
204
205/* resets a specific device connected to the core */
206static void reset_bank(struct denali_nand_info *denali)
207{
208 uint32_t irq_status = 0;
5bac3acf 209 uint32_t irq_mask = reset_complete[denali->flash_bank] |
ce082596
JR
210 operation_timeout[denali->flash_bank];
211 int bank = 0;
212
213 clear_interrupts(denali);
214
215 bank = device_reset_banks[denali->flash_bank];
216 denali_write32(bank, denali->flash_reg + DEVICE_RESET);
217
218 irq_status = wait_for_irq(denali, irq_mask);
5bac3acf 219
ce082596 220 if (irq_status & operation_timeout[denali->flash_bank])
ce082596 221 printk(KERN_ERR "reset bank failed.\n");
ce082596
JR
222}
223
224/* Reset the flash controller */
eda936ef 225static uint16_t denali_nand_reset(struct denali_nand_info *denali)
ce082596
JR
226{
227 uint32_t i;
228
229 nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
230 __FILE__, __LINE__, __func__);
231
232 for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++)
233 denali_write32(reset_complete[i] | operation_timeout[i],
234 denali->flash_reg + intr_status_addresses[i]);
235
236 for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) {
bdca6dae
CD
237 denali_write32(device_reset_banks[i],
238 denali->flash_reg + DEVICE_RESET);
239 while (!(ioread32(denali->flash_reg +
240 intr_status_addresses[i]) &
ce082596
JR
241 (reset_complete[i] | operation_timeout[i])))
242 ;
243 if (ioread32(denali->flash_reg + intr_status_addresses[i]) &
244 operation_timeout[i])
245 nand_dbg_print(NAND_DBG_WARN,
246 "NAND Reset operation timed out on bank %d\n", i);
247 }
248
249 for (i = 0; i < LLD_MAX_FLASH_BANKS; i++)
250 denali_write32(reset_complete[i] | operation_timeout[i],
251 denali->flash_reg + intr_status_addresses[i]);
252
253 return PASS;
254}
255
bdca6dae
CD
256/* this routine calculates the ONFI timing values for a given mode and
257 * programs the clocking register accordingly. The mode is determined by
258 * the get_onfi_nand_para routine.
ce082596 259 */
eda936ef 260static void nand_onfi_timing_set(struct denali_nand_info *denali,
bdca6dae 261 uint16_t mode)
ce082596
JR
262{
263 uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
264 uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
265 uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
266 uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
267 uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
268 uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
269 uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
270 uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
271 uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
272 uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
273 uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
274 uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
275
276 uint16_t TclsRising = 1;
277 uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
278 uint16_t dv_window = 0;
279 uint16_t en_lo, en_hi;
280 uint16_t acc_clks;
281 uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
282
283 nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
284 __FILE__, __LINE__, __func__);
285
286 en_lo = CEIL_DIV(Trp[mode], CLK_X);
287 en_hi = CEIL_DIV(Treh[mode], CLK_X);
288#if ONFI_BLOOM_TIME
289 if ((en_hi * CLK_X) < (Treh[mode] + 2))
290 en_hi++;
291#endif
292
293 if ((en_lo + en_hi) * CLK_X < Trc[mode])
294 en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
295
296 if ((en_lo + en_hi) < CLK_MULTI)
297 en_lo += CLK_MULTI - en_lo - en_hi;
298
299 while (dv_window < 8) {
300 data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
301
302 data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
303
304 data_invalid =
305 data_invalid_rhoh <
306 data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;
307
308 dv_window = data_invalid - Trea[mode];
309
310 if (dv_window < 8)
311 en_lo++;
312 }
313
314 acc_clks = CEIL_DIV(Trea[mode], CLK_X);
315
316 while (((acc_clks * CLK_X) - Trea[mode]) < 3)
317 acc_clks++;
318
319 if ((data_invalid - acc_clks * CLK_X) < 2)
320 nand_dbg_print(NAND_DBG_WARN, "%s, Line %d: Warning!\n",
321 __FILE__, __LINE__);
322
323 addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
324 re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
325 re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
326 we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
327 cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
328 if (!TclsRising)
329 cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
330 if (cs_cnt == 0)
331 cs_cnt = 1;
332
333 if (Tcea[mode]) {
334 while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
335 cs_cnt++;
336 }
337
338#if MODE5_WORKAROUND
339 if (mode == 5)
340 acc_clks = 5;
341#endif
342
343 /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
344 if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
345 (ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
346 acc_clks = 6;
347
348 denali_write32(acc_clks, denali->flash_reg + ACC_CLKS);
349 denali_write32(re_2_we, denali->flash_reg + RE_2_WE);
350 denali_write32(re_2_re, denali->flash_reg + RE_2_RE);
351 denali_write32(we_2_re, denali->flash_reg + WE_2_RE);
352 denali_write32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
353 denali_write32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
354 denali_write32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
355 denali_write32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
356}
357
ce082596
JR
358/* queries the NAND device to see what ONFI modes it supports. */
359static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
360{
361 int i;
4c03bbdf
CD
362 /* we needn't to do a reset here because driver has already
363 * reset all the banks before
364 * */
ce082596
JR
365 if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
366 ONFI_TIMING_MODE__VALUE))
367 return FAIL;
368
369 for (i = 5; i > 0; i--) {
bdca6dae
CD
370 if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
371 (0x01 << i))
ce082596
JR
372 break;
373 }
374
eda936ef 375 nand_onfi_timing_set(denali, i);
ce082596 376
ce082596
JR
377 /* By now, all the ONFI devices we know support the page cache */
378 /* rw feature. So here we enable the pipeline_rw_ahead feature */
379 /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
380 /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */
381
382 return PASS;
383}
384
4c03bbdf
CD
385static void get_samsung_nand_para(struct denali_nand_info *denali,
386 uint8_t device_id)
ce082596 387{
4c03bbdf 388 if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
ce082596
JR
389 /* Set timing register values according to datasheet */
390 denali_write32(5, denali->flash_reg + ACC_CLKS);
391 denali_write32(20, denali->flash_reg + RE_2_WE);
392 denali_write32(12, denali->flash_reg + WE_2_RE);
393 denali_write32(14, denali->flash_reg + ADDR_2_DATA);
394 denali_write32(3, denali->flash_reg + RDWR_EN_LO_CNT);
395 denali_write32(2, denali->flash_reg + RDWR_EN_HI_CNT);
396 denali_write32(2, denali->flash_reg + CS_SETUP_CNT);
397 }
ce082596
JR
398}
399
400static void get_toshiba_nand_para(struct denali_nand_info *denali)
401{
ce082596
JR
402 uint32_t tmp;
403
404 /* Workaround to fix a controller bug which reports a wrong */
405 /* spare area size for some kind of Toshiba NAND device */
406 if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
407 (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
408 denali_write32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
409 tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
410 ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
bdca6dae
CD
411 denali_write32(tmp,
412 denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
ce082596
JR
413#if SUPPORT_15BITECC
414 denali_write32(15, denali->flash_reg + ECC_CORRECTION);
415#elif SUPPORT_8BITECC
416 denali_write32(8, denali->flash_reg + ECC_CORRECTION);
417#endif
418 }
ce082596
JR
419}
420
ef41e1bb
CD
421static void get_hynix_nand_para(struct denali_nand_info *denali,
422 uint8_t device_id)
ce082596 423{
ce082596
JR
424 uint32_t main_size, spare_size;
425
ef41e1bb 426 switch (device_id) {
ce082596
JR
427 case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
428 case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
429 denali_write32(128, denali->flash_reg + PAGES_PER_BLOCK);
430 denali_write32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
431 denali_write32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
bdca6dae
CD
432 main_size = 4096 *
433 ioread32(denali->flash_reg + DEVICES_CONNECTED);
434 spare_size = 224 *
435 ioread32(denali->flash_reg + DEVICES_CONNECTED);
436 denali_write32(main_size,
437 denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
438 denali_write32(spare_size,
439 denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
ce082596
JR
440 denali_write32(0, denali->flash_reg + DEVICE_WIDTH);
441#if SUPPORT_15BITECC
442 denali_write32(15, denali->flash_reg + ECC_CORRECTION);
443#elif SUPPORT_8BITECC
444 denali_write32(8, denali->flash_reg + ECC_CORRECTION);
445#endif
ce082596
JR
446 break;
447 default:
448 nand_dbg_print(NAND_DBG_WARN,
449 "Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
450 "Will use default parameter values instead.\n",
66406524 451 device_id);
ce082596 452 }
ce082596
JR
453}
454
455/* determines how many NAND chips are connected to the controller. Note for
5bac3acf 456 Intel CE4100 devices we don't support more than one device.
ce082596
JR
457 */
458static void find_valid_banks(struct denali_nand_info *denali)
459{
460 uint32_t id[LLD_MAX_FLASH_BANKS];
461 int i;
462
463 denali->total_used_banks = 1;
464 for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) {
465 index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
466 index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
bdca6dae
CD
467 index_addr_read_data(denali,
468 (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
ce082596
JR
469
470 nand_dbg_print(NAND_DBG_DEBUG,
471 "Return 1st ID for bank[%d]: %x\n", i, id[i]);
472
473 if (i == 0) {
474 if (!(id[i] & 0x0ff))
475 break; /* WTF? */
476 } else {
477 if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
478 denali->total_used_banks++;
479 else
480 break;
481 }
482 }
483
345b1d3b 484 if (denali->platform == INTEL_CE4100) {
ce082596
JR
485 /* Platform limitations of the CE4100 device limit
486 * users to a single chip solution for NAND.
5bac3acf
C
487 * Multichip support is not enabled.
488 */
345b1d3b 489 if (denali->total_used_banks != 1) {
ce082596
JR
490 printk(KERN_ERR "Sorry, Intel CE4100 only supports "
491 "a single NAND device.\n");
492 BUG();
493 }
494 }
495 nand_dbg_print(NAND_DBG_DEBUG,
496 "denali->total_used_banks: %d\n", denali->total_used_banks);
497}
498
499static void detect_partition_feature(struct denali_nand_info *denali)
500{
66406524
CD
501 /* For MRST platform, denali->fwblks represent the
502 * number of blocks firmware is taken,
503 * FW is in protect partition and MTD driver has no
504 * permission to access it. So let driver know how many
505 * blocks it can't touch.
506 * */
ce082596
JR
507 if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
508 if ((ioread32(denali->flash_reg + PERM_SRC_ID_1) &
509 PERM_SRC_ID_1__SRCID) == SPECTRA_PARTITION_ID) {
66406524 510 denali->fwblks =
ce082596
JR
511 ((ioread32(denali->flash_reg + MIN_MAX_BANK_1) &
512 MIN_MAX_BANK_1__MIN_VALUE) *
66406524 513 denali->blksperchip)
ce082596
JR
514 +
515 (ioread32(denali->flash_reg + MIN_BLK_ADDR_1) &
516 MIN_BLK_ADDR_1__VALUE);
66406524
CD
517 } else
518 denali->fwblks = SPECTRA_START_BLOCK;
519 } else
520 denali->fwblks = SPECTRA_START_BLOCK;
ce082596
JR
521}
522
eda936ef 523static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
ce082596
JR
524{
525 uint16_t status = PASS;
ef41e1bb
CD
526 uint32_t id_bytes[5], addr;
527 uint8_t i, maf_id, device_id;
ce082596
JR
528
529 nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
530 __FILE__, __LINE__, __func__);
531
ef41e1bb
CD
532 /* Use read id method to get device ID and other
533 * params. For some NAND chips, controller can't
534 * report the correct device ID by reading from
535 * DEVICE_ID register
536 * */
537 addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
538 index_addr(denali, (uint32_t)addr | 0, 0x90);
539 index_addr(denali, (uint32_t)addr | 1, 0);
540 for (i = 0; i < 5; i++)
541 index_addr_read_data(denali, addr | 2, &id_bytes[i]);
542 maf_id = id_bytes[0];
543 device_id = id_bytes[1];
ce082596
JR
544
545 if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
546 ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
547 if (FAIL == get_onfi_nand_para(denali))
548 return FAIL;
ef41e1bb 549 } else if (maf_id == 0xEC) { /* Samsung NAND */
4c03bbdf 550 get_samsung_nand_para(denali, device_id);
ef41e1bb 551 } else if (maf_id == 0x98) { /* Toshiba NAND */
ce082596 552 get_toshiba_nand_para(denali);
ef41e1bb
CD
553 } else if (maf_id == 0xAD) { /* Hynix NAND */
554 get_hynix_nand_para(denali, device_id);
ce082596
JR
555 }
556
557 nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:"
558 "acc_clks: %d, re_2_we: %d, we_2_re: %d,"
559 "addr_2_data: %d, rdwr_en_lo_cnt: %d, "
560 "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
561 ioread32(denali->flash_reg + ACC_CLKS),
562 ioread32(denali->flash_reg + RE_2_WE),
563 ioread32(denali->flash_reg + WE_2_RE),
564 ioread32(denali->flash_reg + ADDR_2_DATA),
565 ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
566 ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
567 ioread32(denali->flash_reg + CS_SETUP_CNT));
568
ce082596
JR
569 find_valid_banks(denali);
570
571 detect_partition_feature(denali);
572
ce082596 573 /* If the user specified to override the default timings
5bac3acf 574 * with a specific ONFI mode, we apply those changes here.
ce082596
JR
575 */
576 if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
eda936ef 577 nand_onfi_timing_set(denali, onfi_timing_mode);
ce082596
JR
578
579 return status;
580}
581
eda936ef 582static void denali_set_intr_modes(struct denali_nand_info *denali,
ce082596
JR
583 uint16_t INT_ENABLE)
584{
585 nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
586 __FILE__, __LINE__, __func__);
587
588 if (INT_ENABLE)
589 denali_write32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
590 else
591 denali_write32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
592}
593
594/* validation function to verify that the controlling software is making
595 a valid request
596 */
597static inline bool is_flash_bank_valid(int flash_bank)
598{
5bac3acf 599 return (flash_bank >= 0 && flash_bank < 4);
ce082596
JR
600}
601
602static void denali_irq_init(struct denali_nand_info *denali)
603{
604 uint32_t int_mask = 0;
605
606 /* Disable global interrupts */
eda936ef 607 denali_set_intr_modes(denali, false);
ce082596
JR
608
609 int_mask = DENALI_IRQ_ALL;
610
611 /* Clear all status bits */
612 denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS0);
613 denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS1);
614 denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS2);
615 denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS3);
616
617 denali_irq_enable(denali, int_mask);
618}
619
620static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
621{
eda936ef 622 denali_set_intr_modes(denali, false);
ce082596
JR
623 free_irq(irqnum, denali);
624}
625
bdca6dae
CD
626static void denali_irq_enable(struct denali_nand_info *denali,
627 uint32_t int_mask)
ce082596
JR
628{
629 denali_write32(int_mask, denali->flash_reg + INTR_EN0);
630 denali_write32(int_mask, denali->flash_reg + INTR_EN1);
631 denali_write32(int_mask, denali->flash_reg + INTR_EN2);
632 denali_write32(int_mask, denali->flash_reg + INTR_EN3);
633}
634
635/* This function only returns when an interrupt that this driver cares about
5bac3acf 636 * occurs. This is to reduce the overhead of servicing interrupts
ce082596
JR
637 */
638static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
639{
a99d1796 640 return read_interrupt_status(denali) & DENALI_IRQ_ALL;
ce082596
JR
641}
642
643/* Interrupts are cleared by writing a 1 to the appropriate status bit */
bdca6dae
CD
644static inline void clear_interrupt(struct denali_nand_info *denali,
645 uint32_t irq_mask)
ce082596
JR
646{
647 uint32_t intr_status_reg = 0;
648
649 intr_status_reg = intr_status_addresses[denali->flash_bank];
650
651 denali_write32(irq_mask, denali->flash_reg + intr_status_reg);
652}
653
654static void clear_interrupts(struct denali_nand_info *denali)
655{
656 uint32_t status = 0x0;
657 spin_lock_irq(&denali->irq_lock);
658
659 status = read_interrupt_status(denali);
660
661#if DEBUG_DENALI
662 denali->irq_debug_array[denali->idx++] = 0x30000000 | status;
663 denali->idx %= 32;
664#endif
665
666 denali->irq_status = 0x0;
667 spin_unlock_irq(&denali->irq_lock);
668}
669
670static uint32_t read_interrupt_status(struct denali_nand_info *denali)
671{
672 uint32_t intr_status_reg = 0;
673
674 intr_status_reg = intr_status_addresses[denali->flash_bank];
675
676 return ioread32(denali->flash_reg + intr_status_reg);
677}
678
679#if DEBUG_DENALI
680static void print_irq_log(struct denali_nand_info *denali)
681{
682 int i = 0;
683
bf1806dd 684 printk(KERN_INFO "ISR debug log index = %X\n", denali->idx);
ce082596 685 for (i = 0; i < 32; i++)
bf1806dd 686 printk(KERN_INFO "%08X: %08X\n", i, denali->irq_debug_array[i]);
ce082596
JR
687}
688#endif
689
5bac3acf
C
690/* This is the interrupt service routine. It handles all interrupts
691 * sent to this device. Note that on CE4100, this is a shared
692 * interrupt.
ce082596
JR
693 */
694static irqreturn_t denali_isr(int irq, void *dev_id)
695{
696 struct denali_nand_info *denali = dev_id;
697 uint32_t irq_status = 0x0;
698 irqreturn_t result = IRQ_NONE;
699
700 spin_lock(&denali->irq_lock);
701
5bac3acf
C
702 /* check to see if a valid NAND chip has
703 * been selected.
ce082596 704 */
345b1d3b 705 if (is_flash_bank_valid(denali->flash_bank)) {
5bac3acf 706 /* check to see if controller generated
ce082596 707 * the interrupt, since this is a shared interrupt */
bdca6dae
CD
708 irq_status = denali_irq_detected(denali);
709 if (irq_status != 0) {
ce082596 710#if DEBUG_DENALI
bdca6dae
CD
711 denali->irq_debug_array[denali->idx++] =
712 0x10000000 | irq_status;
ce082596
JR
713 denali->idx %= 32;
714
bf1806dd 715 printk(KERN_INFO "IRQ status = 0x%04x\n", irq_status);
ce082596
JR
716#endif
717 /* handle interrupt */
718 /* first acknowledge it */
719 clear_interrupt(denali, irq_status);
720 /* store the status in the device context for someone
721 to read */
722 denali->irq_status |= irq_status;
723 /* notify anyone who cares that it happened */
724 complete(&denali->complete);
725 /* tell the OS that we've handled this */
726 result = IRQ_HANDLED;
727 }
728 }
729 spin_unlock(&denali->irq_lock);
730 return result;
731}
732#define BANK(x) ((x) << 24)
733
734static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
735{
736 unsigned long comp_res = 0;
737 uint32_t intr_status = 0;
738 bool retry = false;
739 unsigned long timeout = msecs_to_jiffies(1000);
740
345b1d3b 741 do {
ce082596 742#if DEBUG_DENALI
bf1806dd 743 printk(KERN_INFO "waiting for 0x%x\n", irq_mask);
ce082596 744#endif
bdca6dae
CD
745 comp_res =
746 wait_for_completion_timeout(&denali->complete, timeout);
ce082596
JR
747 spin_lock_irq(&denali->irq_lock);
748 intr_status = denali->irq_status;
749
750#if DEBUG_DENALI
bdca6dae
CD
751 denali->irq_debug_array[denali->idx++] =
752 0x20000000 | (irq_mask << 16) | intr_status;
ce082596
JR
753 denali->idx %= 32;
754#endif
755
345b1d3b 756 if (intr_status & irq_mask) {
ce082596
JR
757 denali->irq_status &= ~irq_mask;
758 spin_unlock_irq(&denali->irq_lock);
759#if DEBUG_DENALI
bdca6dae
CD
760 if (retry)
761 printk(KERN_INFO "status on retry = 0x%x\n",
762 intr_status);
ce082596
JR
763#endif
764 /* our interrupt was detected */
765 break;
345b1d3b 766 } else {
5bac3acf
C
767 /* these are not the interrupts you are looking for -
768 * need to wait again */
ce082596
JR
769 spin_unlock_irq(&denali->irq_lock);
770#if DEBUG_DENALI
771 print_irq_log(denali);
bdca6dae
CD
772 printk(KERN_INFO "received irq nobody cared:"
773 " irq_status = 0x%x, irq_mask = 0x%x,"
774 " timeout = %ld\n", intr_status,
775 irq_mask, comp_res);
ce082596
JR
776#endif
777 retry = true;
778 }
779 } while (comp_res != 0);
780
345b1d3b 781 if (comp_res == 0) {
ce082596 782 /* timeout */
5bac3acf
C
783 printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n",
784 intr_status, irq_mask);
ce082596
JR
785
786 intr_status = 0;
787 }
788 return intr_status;
789}
790
5bac3acf 791/* This helper function setups the registers for ECC and whether or not
ce082596 792 the spare area will be transfered. */
5bac3acf 793static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
ce082596
JR
794 bool transfer_spare)
795{
5bac3acf 796 int ecc_en_flag = 0, transfer_spare_flag = 0;
ce082596
JR
797
798 /* set ECC, transfer spare bits if needed */
799 ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
800 transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
801
802 /* Enable spare area/ECC per user's request. */
803 denali_write32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
bdca6dae
CD
804 denali_write32(transfer_spare_flag,
805 denali->flash_reg + TRANSFER_SPARE_REG);
ce082596
JR
806}
807
5bac3acf
C
808/* sends a pipeline command operation to the controller. See the Denali NAND
809 controller's user guide for more information (section 4.2.3.6).
ce082596 810 */
bdca6dae
CD
811static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
812 bool ecc_en,
813 bool transfer_spare,
814 int access_type,
815 int op)
ce082596
JR
816{
817 int status = PASS;
5bac3acf 818 uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
ce082596
JR
819 irq_mask = 0;
820
a99d1796
CD
821 if (op == DENALI_READ)
822 irq_mask = INTR_STATUS0__LOAD_COMP;
823 else if (op == DENALI_WRITE)
824 irq_mask = 0;
825 else
826 BUG();
ce082596
JR
827
828 setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
829
830#if DEBUG_DENALI
831 spin_lock_irq(&denali->irq_lock);
bdca6dae
CD
832 denali->irq_debug_array[denali->idx++] =
833 0x40000000 | ioread32(denali->flash_reg + ECC_ENABLE) |
834 (access_type << 4);
ce082596
JR
835 denali->idx %= 32;
836 spin_unlock_irq(&denali->irq_lock);
837#endif
838
839
840 /* clear interrupts */
5bac3acf 841 clear_interrupts(denali);
ce082596
JR
842
843 addr = BANK(denali->flash_bank) | denali->page;
844
345b1d3b 845 if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
5bac3acf 846 cmd = MODE_01 | addr;
ce082596 847 denali_write32(cmd, denali->flash_mem);
345b1d3b 848 } else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
ce082596 849 /* read spare area */
5bac3acf 850 cmd = MODE_10 | addr;
ce082596
JR
851 index_addr(denali, (uint32_t)cmd, access_type);
852
5bac3acf 853 cmd = MODE_01 | addr;
ce082596 854 denali_write32(cmd, denali->flash_mem);
345b1d3b 855 } else if (op == DENALI_READ) {
ce082596 856 /* setup page read request for access type */
5bac3acf 857 cmd = MODE_10 | addr;
ce082596
JR
858 index_addr(denali, (uint32_t)cmd, access_type);
859
860 /* page 33 of the NAND controller spec indicates we should not
5bac3acf 861 use the pipeline commands in Spare area only mode. So we
ce082596
JR
862 don't.
863 */
345b1d3b 864 if (access_type == SPARE_ACCESS) {
ce082596
JR
865 cmd = MODE_01 | addr;
866 denali_write32(cmd, denali->flash_mem);
345b1d3b 867 } else {
bdca6dae
CD
868 index_addr(denali, (uint32_t)cmd,
869 0x2000 | op | page_count);
5bac3acf
C
870
871 /* wait for command to be accepted
bdca6dae
CD
872 * can always use status0 bit as the
873 * mask is identical for each
ce082596
JR
874 * bank. */
875 irq_status = wait_for_irq(denali, irq_mask);
876
345b1d3b 877 if (irq_status == 0) {
ce082596 878 printk(KERN_ERR "cmd, page, addr on timeout "
bdca6dae
CD
879 "(0x%x, 0x%x, 0x%x)\n", cmd,
880 denali->page, addr);
ce082596 881 status = FAIL;
345b1d3b 882 } else {
ce082596
JR
883 cmd = MODE_01 | addr;
884 denali_write32(cmd, denali->flash_mem);
885 }
886 }
887 }
888 return status;
889}
890
891/* helper function that simply writes a buffer to the flash */
bdca6dae
CD
892static int write_data_to_flash_mem(struct denali_nand_info *denali,
893 const uint8_t *buf,
894 int len)
ce082596
JR
895{
896 uint32_t i = 0, *buf32;
897
5bac3acf
C
898 /* verify that the len is a multiple of 4. see comment in
899 * read_data_from_flash_mem() */
ce082596
JR
900 BUG_ON((len % 4) != 0);
901
902 /* write the data to the flash memory */
903 buf32 = (uint32_t *)buf;
904 for (i = 0; i < len / 4; i++)
ce082596 905 denali_write32(*buf32++, denali->flash_mem + 0x10);
5bac3acf 906 return i*4; /* intent is to return the number of bytes read */
ce082596
JR
907}
908
909/* helper function that simply reads a buffer from the flash */
bdca6dae
CD
910static int read_data_from_flash_mem(struct denali_nand_info *denali,
911 uint8_t *buf,
912 int len)
ce082596
JR
913{
914 uint32_t i = 0, *buf32;
915
916 /* we assume that len will be a multiple of 4, if not
917 * it would be nice to know about it ASAP rather than
5bac3acf
C
918 * have random failures...
919 * This assumption is based on the fact that this
920 * function is designed to be used to read flash pages,
ce082596
JR
921 * which are typically multiples of 4...
922 */
923
924 BUG_ON((len % 4) != 0);
925
926 /* transfer the data from the flash */
927 buf32 = (uint32_t *)buf;
928 for (i = 0; i < len / 4; i++)
ce082596 929 *buf32++ = ioread32(denali->flash_mem + 0x10);
5bac3acf 930 return i*4; /* intent is to return the number of bytes read */
ce082596
JR
931}
932
933/* writes OOB data to the device */
934static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
935{
936 struct denali_nand_info *denali = mtd_to_denali(mtd);
937 uint32_t irq_status = 0;
5bac3acf 938 uint32_t irq_mask = INTR_STATUS0__PROGRAM_COMP |
ce082596
JR
939 INTR_STATUS0__PROGRAM_FAIL;
940 int status = 0;
941
942 denali->page = page;
943
5bac3acf 944 if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
345b1d3b 945 DENALI_WRITE) == PASS) {
ce082596
JR
946 write_data_to_flash_mem(denali, buf, mtd->oobsize);
947
948#if DEBUG_DENALI
949 spin_lock_irq(&denali->irq_lock);
bdca6dae
CD
950 denali->irq_debug_array[denali->idx++] =
951 0x80000000 | mtd->oobsize;
ce082596
JR
952 denali->idx %= 32;
953 spin_unlock_irq(&denali->irq_lock);
954#endif
955
5bac3acf 956
ce082596
JR
957 /* wait for operation to complete */
958 irq_status = wait_for_irq(denali, irq_mask);
959
345b1d3b 960 if (irq_status == 0) {
ce082596
JR
961 printk(KERN_ERR "OOB write failed\n");
962 status = -EIO;
963 }
345b1d3b 964 } else {
ce082596 965 printk(KERN_ERR "unable to send pipeline command\n");
5bac3acf 966 status = -EIO;
ce082596
JR
967 }
968 return status;
969}
970
971/* reads OOB data from the device */
972static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
973{
974 struct denali_nand_info *denali = mtd_to_denali(mtd);
bdca6dae
CD
975 uint32_t irq_mask = INTR_STATUS0__LOAD_COMP,
976 irq_status = 0, addr = 0x0, cmd = 0x0;
ce082596
JR
977
978 denali->page = page;
979
980#if DEBUG_DENALI
bf1806dd 981 printk(KERN_INFO "read_oob %d\n", page);
ce082596 982#endif
5bac3acf 983 if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
345b1d3b 984 DENALI_READ) == PASS) {
5bac3acf 985 read_data_from_flash_mem(denali, buf, mtd->oobsize);
ce082596 986
5bac3acf 987 /* wait for command to be accepted
ce082596
JR
988 * can always use status0 bit as the mask is identical for each
989 * bank. */
990 irq_status = wait_for_irq(denali, irq_mask);
991
992 if (irq_status == 0)
bdca6dae
CD
993 printk(KERN_ERR "page on OOB timeout %d\n",
994 denali->page);
ce082596
JR
995
996 /* We set the device back to MAIN_ACCESS here as I observed
997 * instability with the controller if you do a block erase
998 * and the last transaction was a SPARE_ACCESS. Block erase
999 * is reliable (according to the MTD test infrastructure)
5bac3acf 1000 * if you are in MAIN_ACCESS.
ce082596
JR
1001 */
1002 addr = BANK(denali->flash_bank) | denali->page;
5bac3acf 1003 cmd = MODE_10 | addr;
ce082596
JR
1004 index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
1005
1006#if DEBUG_DENALI
1007 spin_lock_irq(&denali->irq_lock);
bdca6dae
CD
1008 denali->irq_debug_array[denali->idx++] =
1009 0x60000000 | mtd->oobsize;
ce082596
JR
1010 denali->idx %= 32;
1011 spin_unlock_irq(&denali->irq_lock);
1012#endif
1013 }
1014}
1015
5bac3acf 1016/* this function examines buffers to see if they contain data that
ce082596
JR
1017 * indicate that the buffer is part of an erased region of flash.
1018 */
1019bool is_erased(uint8_t *buf, int len)
1020{
1021 int i = 0;
1022 for (i = 0; i < len; i++)
ce082596 1023 if (buf[i] != 0xFF)
ce082596 1024 return false;
ce082596
JR
1025 return true;
1026}
1027#define ECC_SECTOR_SIZE 512
1028
1029#define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
1030#define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
1031#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
1032#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO))
1033#define ECC_ERR_DEVICE(x) ((x) & ERR_CORRECTION_INFO__DEVICE_NR >> 8)
1034#define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
1035
5bac3acf 1036static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
ce082596
JR
1037 uint8_t *oobbuf, uint32_t irq_status)
1038{
1039 bool check_erased_page = false;
1040
345b1d3b 1041 if (irq_status & INTR_STATUS0__ECC_ERR) {
ce082596
JR
1042 /* read the ECC errors. we'll ignore them for now */
1043 uint32_t err_address = 0, err_correction_info = 0;
1044 uint32_t err_byte = 0, err_sector = 0, err_device = 0;
1045 uint32_t err_correction_value = 0;
1046
345b1d3b 1047 do {
5bac3acf 1048 err_address = ioread32(denali->flash_reg +
ce082596
JR
1049 ECC_ERROR_ADDRESS);
1050 err_sector = ECC_SECTOR(err_address);
1051 err_byte = ECC_BYTE(err_address);
1052
1053
5bac3acf 1054 err_correction_info = ioread32(denali->flash_reg +
ce082596 1055 ERR_CORRECTION_INFO);
5bac3acf 1056 err_correction_value =
ce082596
JR
1057 ECC_CORRECTION_VALUE(err_correction_info);
1058 err_device = ECC_ERR_DEVICE(err_correction_info);
1059
345b1d3b 1060 if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
ce082596 1061 /* offset in our buffer is computed as:
5bac3acf 1062 sector number * sector size + offset in
ce082596
JR
1063 sector
1064 */
5bac3acf 1065 int offset = err_sector * ECC_SECTOR_SIZE +
ce082596 1066 err_byte;
345b1d3b 1067 if (offset < denali->mtd.writesize) {
ce082596
JR
1068 /* correct the ECC error */
1069 buf[offset] ^= err_correction_value;
1070 denali->mtd.ecc_stats.corrected++;
345b1d3b 1071 } else {
ce082596
JR
1072 /* bummer, couldn't correct the error */
1073 printk(KERN_ERR "ECC offset invalid\n");
1074 denali->mtd.ecc_stats.failed++;
1075 }
345b1d3b 1076 } else {
5bac3acf 1077 /* if the error is not correctable, need to
bdca6dae
CD
1078 * look at the page to see if it is an erased
1079 * page. if so, then it's not a real ECC error
1080 * */
ce082596
JR
1081 check_erased_page = true;
1082 }
1083
5bac3acf 1084#if DEBUG_DENALI
bdca6dae
CD
1085 printk(KERN_INFO "Detected ECC error in page %d:"
1086 " err_addr = 0x%08x, info to fix is"
1087 " 0x%08x\n", denali->page, err_address,
1088 err_correction_info);
ce082596
JR
1089#endif
1090 } while (!ECC_LAST_ERR(err_correction_info));
1091 }
1092 return check_erased_page;
1093}
1094
1095/* programs the controller to either enable/disable DMA transfers */
aadff49c 1096static void denali_enable_dma(struct denali_nand_info *denali, bool en)
ce082596
JR
1097{
1098 uint32_t reg_val = 0x0;
1099
a99d1796
CD
1100 if (en)
1101 reg_val = DMA_ENABLE__FLAG;
ce082596
JR
1102
1103 denali_write32(reg_val, denali->flash_reg + DMA_ENABLE);
1104 ioread32(denali->flash_reg + DMA_ENABLE);
1105}
1106
1107/* setups the HW to perform the data DMA */
aadff49c 1108static void denali_setup_dma(struct denali_nand_info *denali, int op)
ce082596
JR
1109{
1110 uint32_t mode = 0x0;
1111 const int page_count = 1;
1112 dma_addr_t addr = denali->buf.dma_buf;
1113
1114 mode = MODE_10 | BANK(denali->flash_bank);
1115
1116 /* DMA is a four step process */
1117
1118 /* 1. setup transfer type and # of pages */
1119 index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
1120
1121 /* 2. set memory high address bits 23:8 */
1122 index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);
1123
1124 /* 3. set memory low address bits 23:8 */
1125 index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);
1126
1127 /* 4. interrupt when complete, burst len = 64 bytes*/
1128 index_addr(denali, mode | 0x14000, 0x2400);
1129}
1130
5bac3acf 1131/* writes a page. user specifies type, and this function handles the
ce082596 1132 configuration details. */
5bac3acf 1133static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
ce082596
JR
1134 const uint8_t *buf, bool raw_xfer)
1135{
1136 struct denali_nand_info *denali = mtd_to_denali(mtd);
1137 struct pci_dev *pci_dev = denali->dev;
1138
1139 dma_addr_t addr = denali->buf.dma_buf;
1140 size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1141
1142 uint32_t irq_status = 0;
5bac3acf 1143 uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP |
ce082596
JR
1144 INTR_STATUS0__PROGRAM_FAIL;
1145
1146 /* if it is a raw xfer, we want to disable ecc, and send
1147 * the spare area.
1148 * !raw_xfer - enable ecc
1149 * raw_xfer - transfer spare
1150 */
1151 setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
1152
1153 /* copy buffer into DMA buffer */
1154 memcpy(denali->buf.buf, buf, mtd->writesize);
1155
345b1d3b 1156 if (raw_xfer) {
ce082596 1157 /* transfer the data to the spare area */
5bac3acf
C
1158 memcpy(denali->buf.buf + mtd->writesize,
1159 chip->oob_poi,
1160 mtd->oobsize);
ce082596
JR
1161 }
1162
1163 pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_TODEVICE);
1164
1165 clear_interrupts(denali);
5bac3acf 1166 denali_enable_dma(denali, true);
ce082596 1167
aadff49c 1168 denali_setup_dma(denali, DENALI_WRITE);
ce082596
JR
1169
1170 /* wait for operation to complete */
1171 irq_status = wait_for_irq(denali, irq_mask);
1172
345b1d3b 1173 if (irq_status == 0) {
bdca6dae
CD
1174 printk(KERN_ERR "timeout on write_page"
1175 " (type = %d)\n", raw_xfer);
5bac3acf 1176 denali->status =
bdca6dae
CD
1177 (irq_status & INTR_STATUS0__PROGRAM_FAIL) ?
1178 NAND_STATUS_FAIL : PASS;
ce082596
JR
1179 }
1180
5bac3acf 1181 denali_enable_dma(denali, false);
ce082596
JR
1182 pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_TODEVICE);
1183}
1184
1185/* NAND core entry points */
1186
5bac3acf
C
1187/* this is the callback that the NAND core calls to write a page. Since
1188 writing a page with ECC or without is similar, all the work is done
ce082596 1189 by write_page above. */
5bac3acf 1190static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
ce082596
JR
1191 const uint8_t *buf)
1192{
1193 /* for regular page writes, we let HW handle all the ECC
5bac3acf 1194 * data written to the device. */
ce082596
JR
1195 write_page(mtd, chip, buf, false);
1196}
1197
5bac3acf 1198/* This is the callback that the NAND core calls to write a page without ECC.
ce082596 1199 raw access is similiar to ECC page writes, so all the work is done in the
5bac3acf 1200 write_page() function above.
ce082596 1201 */
5bac3acf 1202static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
ce082596
JR
1203 const uint8_t *buf)
1204{
5bac3acf 1205 /* for raw page writes, we want to disable ECC and simply write
ce082596
JR
1206 whatever data is in the buffer. */
1207 write_page(mtd, chip, buf, true);
1208}
1209
5bac3acf 1210static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
ce082596
JR
1211 int page)
1212{
5bac3acf 1213 return write_oob_data(mtd, chip->oob_poi, page);
ce082596
JR
1214}
1215
5bac3acf 1216static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
ce082596
JR
1217 int page, int sndcmd)
1218{
1219 read_oob_data(mtd, chip->oob_poi, page);
1220
5bac3acf
C
1221 return 0; /* notify NAND core to send command to
1222 NAND device. */
ce082596
JR
1223}
1224
1225static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1226 uint8_t *buf, int page)
1227{
1228 struct denali_nand_info *denali = mtd_to_denali(mtd);
1229 struct pci_dev *pci_dev = denali->dev;
1230
1231 dma_addr_t addr = denali->buf.dma_buf;
1232 size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1233
1234 uint32_t irq_status = 0;
5bac3acf 1235 uint32_t irq_mask = INTR_STATUS0__ECC_TRANSACTION_DONE |
ce082596
JR
1236 INTR_STATUS0__ECC_ERR;
1237 bool check_erased_page = false;
1238
1239 setup_ecc_for_xfer(denali, true, false);
1240
aadff49c 1241 denali_enable_dma(denali, true);
ce082596
JR
1242 pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
1243
1244 clear_interrupts(denali);
aadff49c 1245 denali_setup_dma(denali, DENALI_READ);
ce082596
JR
1246
1247 /* wait for operation to complete */
1248 irq_status = wait_for_irq(denali, irq_mask);
1249
1250 pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
1251
1252 memcpy(buf, denali->buf.buf, mtd->writesize);
5bac3acf 1253
ce082596 1254 check_erased_page = handle_ecc(denali, buf, chip->oob_poi, irq_status);
aadff49c 1255 denali_enable_dma(denali, false);
ce082596 1256
345b1d3b 1257 if (check_erased_page) {
ce082596
JR
1258 read_oob_data(&denali->mtd, chip->oob_poi, denali->page);
1259
1260 /* check ECC failures that may have occurred on erased pages */
345b1d3b 1261 if (check_erased_page) {
ce082596 1262 if (!is_erased(buf, denali->mtd.writesize))
ce082596 1263 denali->mtd.ecc_stats.failed++;
ce082596 1264 if (!is_erased(buf, denali->mtd.oobsize))
ce082596 1265 denali->mtd.ecc_stats.failed++;
5bac3acf 1266 }
ce082596
JR
1267 }
1268 return 0;
1269}
1270
1271static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1272 uint8_t *buf, int page)
1273{
1274 struct denali_nand_info *denali = mtd_to_denali(mtd);
1275 struct pci_dev *pci_dev = denali->dev;
1276
1277 dma_addr_t addr = denali->buf.dma_buf;
1278 size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1279
1280 uint32_t irq_status = 0;
1281 uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP;
5bac3acf 1282
ce082596 1283 setup_ecc_for_xfer(denali, false, true);
aadff49c 1284 denali_enable_dma(denali, true);
ce082596
JR
1285
1286 pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
1287
1288 clear_interrupts(denali);
aadff49c 1289 denali_setup_dma(denali, DENALI_READ);
ce082596
JR
1290
1291 /* wait for operation to complete */
1292 irq_status = wait_for_irq(denali, irq_mask);
1293
1294 pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
1295
aadff49c 1296 denali_enable_dma(denali, false);
ce082596
JR
1297
1298 memcpy(buf, denali->buf.buf, mtd->writesize);
1299 memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
1300
1301 return 0;
1302}
1303
1304static uint8_t denali_read_byte(struct mtd_info *mtd)
1305{
1306 struct denali_nand_info *denali = mtd_to_denali(mtd);
1307 uint8_t result = 0xff;
1308
1309 if (denali->buf.head < denali->buf.tail)
ce082596 1310 result = denali->buf.buf[denali->buf.head++];
ce082596
JR
1311
1312#if DEBUG_DENALI
bf1806dd 1313 printk(KERN_INFO "read byte -> 0x%02x\n", result);
ce082596
JR
1314#endif
1315 return result;
1316}
1317
1318static void denali_select_chip(struct mtd_info *mtd, int chip)
1319{
1320 struct denali_nand_info *denali = mtd_to_denali(mtd);
1321#if DEBUG_DENALI
bf1806dd 1322 printk(KERN_INFO "denali select chip %d\n", chip);
ce082596
JR
1323#endif
1324 spin_lock_irq(&denali->irq_lock);
1325 denali->flash_bank = chip;
1326 spin_unlock_irq(&denali->irq_lock);
1327}
1328
1329static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
1330{
1331 struct denali_nand_info *denali = mtd_to_denali(mtd);
1332 int status = denali->status;
1333 denali->status = 0;
1334
1335#if DEBUG_DENALI
bf1806dd 1336 printk(KERN_INFO "waitfunc %d\n", status);
ce082596
JR
1337#endif
1338 return status;
1339}
1340
1341static void denali_erase(struct mtd_info *mtd, int page)
1342{
1343 struct denali_nand_info *denali = mtd_to_denali(mtd);
1344
1345 uint32_t cmd = 0x0, irq_status = 0;
1346
1347#if DEBUG_DENALI
bf1806dd 1348 printk(KERN_INFO "erase page: %d\n", page);
ce082596
JR
1349#endif
1350 /* clear interrupts */
5bac3acf 1351 clear_interrupts(denali);
ce082596
JR
1352
1353 /* setup page read request for access type */
1354 cmd = MODE_10 | BANK(denali->flash_bank) | page;
1355 index_addr(denali, (uint32_t)cmd, 0x1);
1356
1357 /* wait for erase to complete or failure to occur */
5bac3acf 1358 irq_status = wait_for_irq(denali, INTR_STATUS0__ERASE_COMP |
ce082596
JR
1359 INTR_STATUS0__ERASE_FAIL);
1360
bdca6dae
CD
1361 denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ?
1362 NAND_STATUS_FAIL : PASS;
ce082596
JR
1363}
1364
5bac3acf 1365static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
ce082596
JR
1366 int page)
1367{
1368 struct denali_nand_info *denali = mtd_to_denali(mtd);
ef41e1bb
CD
1369 uint32_t addr, id;
1370 int i;
ce082596
JR
1371
1372#if DEBUG_DENALI
bf1806dd 1373 printk(KERN_INFO "cmdfunc: 0x%x %d %d\n", cmd, col, page);
ce082596 1374#endif
345b1d3b 1375 switch (cmd) {
a99d1796
CD
1376 case NAND_CMD_PAGEPROG:
1377 break;
1378 case NAND_CMD_STATUS:
1379 read_status(denali);
1380 break;
1381 case NAND_CMD_READID:
1382 reset_buf(denali);
ef41e1bb
CD
1383 /*sometimes ManufactureId read from register is not right
1384 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
1385 * So here we send READID cmd to NAND insteand
1386 * */
1387 addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
1388 index_addr(denali, (uint32_t)addr | 0, 0x90);
1389 index_addr(denali, (uint32_t)addr | 1, 0);
1390 for (i = 0; i < 5; i++) {
1391 index_addr_read_data(denali,
1392 (uint32_t)addr | 2,
1393 &id);
1394 write_byte_to_buf(denali, id);
a99d1796
CD
1395 }
1396 break;
1397 case NAND_CMD_READ0:
1398 case NAND_CMD_SEQIN:
1399 denali->page = page;
1400 break;
1401 case NAND_CMD_RESET:
1402 reset_bank(denali);
1403 break;
1404 case NAND_CMD_READOOB:
1405 /* TODO: Read OOB data */
1406 break;
1407 default:
1408 printk(KERN_ERR ": unsupported command"
1409 " received 0x%x\n", cmd);
1410 break;
ce082596
JR
1411 }
1412}
1413
1414/* stubs for ECC functions not used by the NAND core */
5bac3acf 1415static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
ce082596
JR
1416 uint8_t *ecc_code)
1417{
1418 printk(KERN_ERR "denali_ecc_calculate called unexpectedly\n");
1419 BUG();
1420 return -EIO;
1421}
1422
5bac3acf 1423static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
ce082596
JR
1424 uint8_t *read_ecc, uint8_t *calc_ecc)
1425{
1426 printk(KERN_ERR "denali_ecc_correct called unexpectedly\n");
1427 BUG();
1428 return -EIO;
1429}
1430
1431static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
1432{
1433 printk(KERN_ERR "denali_ecc_hwctl called unexpectedly\n");
1434 BUG();
1435}
1436/* end NAND core entry points */
1437
1438/* Initialization code to bring the device up to a known good state */
1439static void denali_hw_init(struct denali_nand_info *denali)
1440{
db9a3210
CD
1441 /* tell driver how many bit controller will skip before
1442 * writing ECC code in OOB, this register may be already
1443 * set by firmware. So we read this value out.
1444 * if this value is 0, just let it be.
1445 * */
1446 denali->bbtskipbytes = ioread32(denali->flash_reg +
1447 SPARE_AREA_SKIP_BYTES);
ce082596 1448 denali_irq_init(denali);
eda936ef 1449 denali_nand_reset(denali);
ce082596 1450 denali_write32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
bdca6dae
CD
1451 denali_write32(CHIP_EN_DONT_CARE__FLAG,
1452 denali->flash_reg + CHIP_ENABLE_DONT_CARE);
ce082596
JR
1453
1454 denali_write32(0x0, denali->flash_reg + SPARE_AREA_SKIP_BYTES);
1455 denali_write32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1456
1457 /* Should set value for these registers when init */
1458 denali_write32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
1459 denali_write32(1, denali->flash_reg + ECC_ENABLE);
1460}
1461
db9a3210
CD
1462/* Althogh controller spec said SLC ECC is forceb to be 4bit,
1463 * but denali controller in MRST only support 15bit and 8bit ECC
1464 * correction
1465 * */
1466#define ECC_8BITS 14
1467static struct nand_ecclayout nand_8bit_oob = {
1468 .eccbytes = 14,
ce082596
JR
1469};
1470
db9a3210
CD
1471#define ECC_15BITS 26
1472static struct nand_ecclayout nand_15bit_oob = {
1473 .eccbytes = 26,
ce082596
JR
1474};
1475
1476static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
1477static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
1478
1479static struct nand_bbt_descr bbt_main_descr = {
1480 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1481 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1482 .offs = 8,
1483 .len = 4,
1484 .veroffs = 12,
1485 .maxblocks = 4,
1486 .pattern = bbt_pattern,
1487};
1488
1489static struct nand_bbt_descr bbt_mirror_descr = {
1490 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1491 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1492 .offs = 8,
1493 .len = 4,
1494 .veroffs = 12,
1495 .maxblocks = 4,
1496 .pattern = mirror_pattern,
1497};
1498
1499/* initalize driver data structures */
1500void denali_drv_init(struct denali_nand_info *denali)
1501{
1502 denali->idx = 0;
1503
1504 /* setup interrupt handler */
5bac3acf 1505 /* the completion object will be used to notify
ce082596
JR
1506 * the callee that the interrupt is done */
1507 init_completion(&denali->complete);
1508
1509 /* the spinlock will be used to synchronize the ISR
5bac3acf 1510 * with any element that might be access shared
ce082596
JR
1511 * data (interrupt status) */
1512 spin_lock_init(&denali->irq_lock);
1513
1514 /* indicate that MTD has not selected a valid bank yet */
1515 denali->flash_bank = CHIP_SELECT_INVALID;
1516
1517 /* initialize our irq_status variable to indicate no interrupts */
1518 denali->irq_status = 0;
1519}
1520
1521/* driver entry point */
1522static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
1523{
1524 int ret = -ENODEV;
1525 resource_size_t csr_base, mem_base;
1526 unsigned long csr_len, mem_len;
1527 struct denali_nand_info *denali;
1528
1529 nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
1530 __FILE__, __LINE__, __func__);
1531
1532 denali = kzalloc(sizeof(*denali), GFP_KERNEL);
1533 if (!denali)
1534 return -ENOMEM;
1535
1536 ret = pci_enable_device(dev);
1537 if (ret) {
1538 printk(KERN_ERR "Spectra: pci_enable_device failed.\n");
1539 goto failed_enable;
1540 }
1541
1542 if (id->driver_data == INTEL_CE4100) {
5bac3acf
C
1543 /* Due to a silicon limitation, we can only support
1544 * ONFI timing mode 1 and below.
1545 */
345b1d3b 1546 if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
bdca6dae
CD
1547 printk(KERN_ERR "Intel CE4100 only supports"
1548 " ONFI timing mode 1 or below\n");
ce082596
JR
1549 ret = -EINVAL;
1550 goto failed_enable;
1551 }
1552 denali->platform = INTEL_CE4100;
1553 mem_base = pci_resource_start(dev, 0);
1554 mem_len = pci_resource_len(dev, 1);
1555 csr_base = pci_resource_start(dev, 1);
1556 csr_len = pci_resource_len(dev, 1);
1557 } else {
1558 denali->platform = INTEL_MRST;
1559 csr_base = pci_resource_start(dev, 0);
1560 csr_len = pci_resource_start(dev, 0);
1561 mem_base = pci_resource_start(dev, 1);
1562 mem_len = pci_resource_len(dev, 1);
1563 if (!mem_len) {
1564 mem_base = csr_base + csr_len;
1565 mem_len = csr_len;
1566 nand_dbg_print(NAND_DBG_WARN,
bdca6dae
CD
1567 "Spectra: No second"
1568 " BAR for PCI device;"
1569 " assuming %08Lx\n",
ce082596
JR
1570 (uint64_t)csr_base);
1571 }
1572 }
1573
1574 /* Is 32-bit DMA supported? */
1575 ret = pci_set_dma_mask(dev, DMA_BIT_MASK(32));
1576
345b1d3b 1577 if (ret) {
ce082596
JR
1578 printk(KERN_ERR "Spectra: no usable DMA configuration\n");
1579 goto failed_enable;
1580 }
bdca6dae
CD
1581 denali->buf.dma_buf =
1582 pci_map_single(dev, denali->buf.buf,
1583 DENALI_BUF_SIZE,
1584 PCI_DMA_BIDIRECTIONAL);
ce082596 1585
345b1d3b 1586 if (pci_dma_mapping_error(dev, denali->buf.dma_buf)) {
ce082596
JR
1587 printk(KERN_ERR "Spectra: failed to map DMA buffer\n");
1588 goto failed_enable;
1589 }
1590
1591 pci_set_master(dev);
1592 denali->dev = dev;
1593
1594 ret = pci_request_regions(dev, DENALI_NAND_NAME);
1595 if (ret) {
1596 printk(KERN_ERR "Spectra: Unable to request memory regions\n");
1597 goto failed_req_csr;
1598 }
1599
1600 denali->flash_reg = ioremap_nocache(csr_base, csr_len);
1601 if (!denali->flash_reg) {
1602 printk(KERN_ERR "Spectra: Unable to remap memory region\n");
1603 ret = -ENOMEM;
1604 goto failed_remap_csr;
1605 }
1606 nand_dbg_print(NAND_DBG_DEBUG, "Spectra: CSR 0x%08Lx -> 0x%p (0x%lx)\n",
1607 (uint64_t)csr_base, denali->flash_reg, csr_len);
1608
1609 denali->flash_mem = ioremap_nocache(mem_base, mem_len);
1610 if (!denali->flash_mem) {
1611 printk(KERN_ERR "Spectra: ioremap_nocache failed!");
1612 iounmap(denali->flash_reg);
1613 ret = -ENOMEM;
1614 goto failed_remap_csr;
1615 }
1616
1617 nand_dbg_print(NAND_DBG_WARN,
1618 "Spectra: Remapped flash base address: "
1619 "0x%p, len: %ld\n",
1620 denali->flash_mem, csr_len);
1621
1622 denali_hw_init(denali);
1623 denali_drv_init(denali);
1624
1625 nand_dbg_print(NAND_DBG_DEBUG, "Spectra: IRQ %d\n", dev->irq);
1626 if (request_irq(dev->irq, denali_isr, IRQF_SHARED,
1627 DENALI_NAND_NAME, denali)) {
1628 printk(KERN_ERR "Spectra: Unable to allocate IRQ\n");
1629 ret = -ENODEV;
1630 goto failed_request_irq;
1631 }
1632
1633 /* now that our ISR is registered, we can enable interrupts */
eda936ef 1634 denali_set_intr_modes(denali, true);
ce082596
JR
1635
1636 pci_set_drvdata(dev, denali);
1637
eda936ef 1638 denali_nand_timing_set(denali);
ce082596 1639
ce082596
JR
1640 nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:"
1641 "acc_clks: %d, re_2_we: %d, we_2_re: %d,"
1642 "addr_2_data: %d, rdwr_en_lo_cnt: %d, "
1643 "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
1644 ioread32(denali->flash_reg + ACC_CLKS),
1645 ioread32(denali->flash_reg + RE_2_WE),
1646 ioread32(denali->flash_reg + WE_2_RE),
1647 ioread32(denali->flash_reg + ADDR_2_DATA),
1648 ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
1649 ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
1650 ioread32(denali->flash_reg + CS_SETUP_CNT));
1651
1652 denali->mtd.name = "Denali NAND";
1653 denali->mtd.owner = THIS_MODULE;
1654 denali->mtd.priv = &denali->nand;
1655
1656 /* register the driver with the NAND core subsystem */
1657 denali->nand.select_chip = denali_select_chip;
1658 denali->nand.cmdfunc = denali_cmdfunc;
1659 denali->nand.read_byte = denali_read_byte;
1660 denali->nand.waitfunc = denali_waitfunc;
1661
5bac3acf 1662 /* scan for NAND devices attached to the controller
ce082596 1663 * this is the first stage in a two step process to register
5bac3acf 1664 * with the nand subsystem */
345b1d3b 1665 if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL)) {
ce082596
JR
1666 ret = -ENXIO;
1667 goto failed_nand;
1668 }
5bac3acf 1669
66406524
CD
1670 /* MTD supported page sizes vary by kernel. We validate our
1671 * kernel supports the device here.
1672 */
1673 if (denali->mtd.writesize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) {
1674 ret = -ENODEV;
1675 printk(KERN_ERR "Spectra: device size not supported by this "
1676 "version of MTD.");
1677 goto failed_nand;
1678 }
1679
08b9ab99
CD
1680 /* support for multi nand
1681 * MTD known nothing about multi nand,
1682 * so we should tell it the real pagesize
1683 * and anything necessery
1684 */
1685 denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
1686 denali->nand.chipsize <<= (denali->devnum - 1);
1687 denali->nand.page_shift += (denali->devnum - 1);
1688 denali->nand.pagemask = (denali->nand.chipsize >>
1689 denali->nand.page_shift) - 1;
1690 denali->nand.bbt_erase_shift += (denali->devnum - 1);
1691 denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
1692 denali->nand.chip_shift += (denali->devnum - 1);
1693 denali->mtd.writesize <<= (denali->devnum - 1);
1694 denali->mtd.oobsize <<= (denali->devnum - 1);
1695 denali->mtd.erasesize <<= (denali->devnum - 1);
1696 denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
1697 denali->bbtskipbytes *= denali->devnum;
1698
5bac3acf
C
1699 /* second stage of the NAND scan
1700 * this stage requires information regarding ECC and
1701 * bad block management. */
ce082596
JR
1702
1703 /* Bad block management */
1704 denali->nand.bbt_td = &bbt_main_descr;
1705 denali->nand.bbt_md = &bbt_mirror_descr;
1706
1707 /* skip the scan for now until we have OOB read and write support */
1708 denali->nand.options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN;
1709 denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
1710
db9a3210
CD
1711 /* Denali Controller only support 15bit and 8bit ECC in MRST,
1712 * so just let controller do 15bit ECC for MLC and 8bit ECC for
1713 * SLC if possible.
1714 * */
1715 if (denali->nand.cellinfo & 0xc &&
1716 (denali->mtd.oobsize > (denali->bbtskipbytes +
1717 ECC_15BITS * (denali->mtd.writesize /
1718 ECC_SECTOR_SIZE)))) {
1719 /* if MLC OOB size is large enough, use 15bit ECC*/
1720 denali->nand.ecc.layout = &nand_15bit_oob;
1721 denali->nand.ecc.bytes = ECC_15BITS;
1722 denali_write32(15, denali->flash_reg + ECC_CORRECTION);
1723 } else if (denali->mtd.oobsize < (denali->bbtskipbytes +
1724 ECC_8BITS * (denali->mtd.writesize /
1725 ECC_SECTOR_SIZE))) {
1726 printk(KERN_ERR "Your NAND chip OOB is not large enough to"
1727 " contain 8bit ECC correction codes");
1728 goto failed_nand;
1729 } else {
1730 denali->nand.ecc.layout = &nand_8bit_oob;
1731 denali->nand.ecc.bytes = ECC_8BITS;
1732 denali_write32(8, denali->flash_reg + ECC_CORRECTION);
ce082596
JR
1733 }
1734
08b9ab99 1735 denali->nand.ecc.bytes *= denali->devnum;
db9a3210
CD
1736 denali->nand.ecc.layout->eccbytes *=
1737 denali->mtd.writesize / ECC_SECTOR_SIZE;
1738 denali->nand.ecc.layout->oobfree[0].offset =
1739 denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
1740 denali->nand.ecc.layout->oobfree[0].length =
1741 denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
1742 denali->bbtskipbytes;
1743
66406524
CD
1744 /* Let driver know the total blocks number and
1745 * how many blocks contained by each nand chip.
1746 * blksperchip will help driver to know how many
1747 * blocks is taken by FW.
1748 * */
1749 denali->totalblks = denali->mtd.size >>
1750 denali->nand.phys_erase_shift;
1751 denali->blksperchip = denali->totalblks / denali->nand.numchips;
1752
5bac3acf
C
1753 /* These functions are required by the NAND core framework, otherwise,
1754 * the NAND core will assert. However, we don't need them, so we'll stub
1755 * them out. */
ce082596
JR
1756 denali->nand.ecc.calculate = denali_ecc_calculate;
1757 denali->nand.ecc.correct = denali_ecc_correct;
1758 denali->nand.ecc.hwctl = denali_ecc_hwctl;
1759
1760 /* override the default read operations */
08b9ab99 1761 denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
ce082596
JR
1762 denali->nand.ecc.read_page = denali_read_page;
1763 denali->nand.ecc.read_page_raw = denali_read_page_raw;
1764 denali->nand.ecc.write_page = denali_write_page;
1765 denali->nand.ecc.write_page_raw = denali_write_page_raw;
1766 denali->nand.ecc.read_oob = denali_read_oob;
1767 denali->nand.ecc.write_oob = denali_write_oob;
1768 denali->nand.erase_cmd = denali_erase;
1769
345b1d3b 1770 if (nand_scan_tail(&denali->mtd)) {
ce082596
JR
1771 ret = -ENXIO;
1772 goto failed_nand;
1773 }
1774
1775 ret = add_mtd_device(&denali->mtd);
1776 if (ret) {
bdca6dae
CD
1777 printk(KERN_ERR "Spectra: Failed to register"
1778 " MTD device: %d\n", ret);
ce082596
JR
1779 goto failed_nand;
1780 }
1781 return 0;
1782
1783 failed_nand:
1784 denali_irq_cleanup(dev->irq, denali);
1785 failed_request_irq:
1786 iounmap(denali->flash_reg);
1787 iounmap(denali->flash_mem);
1788 failed_remap_csr:
1789 pci_release_regions(dev);
1790 failed_req_csr:
5bac3acf 1791 pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
ce082596
JR
1792 PCI_DMA_BIDIRECTIONAL);
1793 failed_enable:
1794 kfree(denali);
1795 return ret;
1796}
1797
1798/* driver exit point */
1799static void denali_pci_remove(struct pci_dev *dev)
1800{
1801 struct denali_nand_info *denali = pci_get_drvdata(dev);
1802
1803 nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n",
1804 __FILE__, __LINE__, __func__);
1805
1806 nand_release(&denali->mtd);
1807 del_mtd_device(&denali->mtd);
1808
1809 denali_irq_cleanup(dev->irq, denali);
1810
1811 iounmap(denali->flash_reg);
1812 iounmap(denali->flash_mem);
1813 pci_release_regions(dev);
1814 pci_disable_device(dev);
5bac3acf 1815 pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
ce082596
JR
1816 PCI_DMA_BIDIRECTIONAL);
1817 pci_set_drvdata(dev, NULL);
1818 kfree(denali);
1819}
1820
1821MODULE_DEVICE_TABLE(pci, denali_pci_ids);
1822
1823static struct pci_driver denali_pci_driver = {
1824 .name = DENALI_NAND_NAME,
1825 .id_table = denali_pci_ids,
1826 .probe = denali_pci_probe,
1827 .remove = denali_pci_remove,
1828};
1829
1830static int __devinit denali_init(void)
1831{
bdca6dae
CD
1832 printk(KERN_INFO "Spectra MTD driver built on %s @ %s\n",
1833 __DATE__, __TIME__);
ce082596
JR
1834 return pci_register_driver(&denali_pci_driver);
1835}
1836
1837/* Free memory */
1838static void __devexit denali_exit(void)
1839{
1840 pci_unregister_driver(&denali_pci_driver);
1841}
1842
1843module_init(denali_init);
1844module_exit(denali_exit);
This page took 0.111082 seconds and 5 git commands to generate.