nand/denali: use iowrite32() to replace denali_write32()
[deliverable/linux.git] / drivers / mtd / nand / denali.c
CommitLineData
ce082596
JR
1/*
2 * NAND Flash Controller Device Driver
3 * Copyright © 2009-2010, Intel Corporation and its suppliers.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 *
18 */
19
20#include <linux/interrupt.h>
21#include <linux/delay.h>
22#include <linux/wait.h>
23#include <linux/mutex.h>
b8664b37 24#include <linux/slab.h>
ce082596
JR
25#include <linux/pci.h>
26#include <linux/mtd/mtd.h>
27#include <linux/module.h>
28
29#include "denali.h"
30
31MODULE_LICENSE("GPL");
32
5bac3acf 33/* We define a module parameter that allows the user to override
ce082596
JR
34 * the hardware and decide what timing mode should be used.
35 */
36#define NAND_DEFAULT_TIMINGS -1
37
38static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
39module_param(onfi_timing_mode, int, S_IRUGO);
bdca6dae
CD
40MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
41 " -1 indicates use default timings");
ce082596
JR
42
43#define DENALI_NAND_NAME "denali-nand"
44
45/* We define a macro here that combines all interrupts this driver uses into
46 * a single constant value, for convenience. */
47#define DENALI_IRQ_ALL (INTR_STATUS0__DMA_CMD_COMP | \
48 INTR_STATUS0__ECC_TRANSACTION_DONE | \
49 INTR_STATUS0__ECC_ERR | \
50 INTR_STATUS0__PROGRAM_FAIL | \
51 INTR_STATUS0__LOAD_COMP | \
52 INTR_STATUS0__PROGRAM_COMP | \
53 INTR_STATUS0__TIME_OUT | \
54 INTR_STATUS0__ERASE_FAIL | \
55 INTR_STATUS0__RST_COMP | \
56 INTR_STATUS0__ERASE_COMP)
57
5bac3acf 58/* indicates whether or not the internal value for the flash bank is
ce082596 59 valid or not */
5bac3acf 60#define CHIP_SELECT_INVALID -1
ce082596
JR
61
62#define SUPPORT_8BITECC 1
63
5bac3acf 64/* This macro divides two integers and rounds fractional values up
ce082596
JR
65 * to the nearest integer value. */
66#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
67
68/* this macro allows us to convert from an MTD structure to our own
69 * device context (denali) structure.
70 */
71#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
72
73/* These constants are defined by the driver to enable common driver
74 configuration options. */
75#define SPARE_ACCESS 0x41
76#define MAIN_ACCESS 0x42
77#define MAIN_SPARE_ACCESS 0x43
78
79#define DENALI_READ 0
80#define DENALI_WRITE 0x100
81
82/* types of device accesses. We can issue commands and get status */
83#define COMMAND_CYCLE 0
84#define ADDR_CYCLE 1
85#define STATUS_CYCLE 2
86
5bac3acf 87/* this is a helper macro that allows us to
ce082596
JR
88 * format the bank into the proper bits for the controller */
89#define BANK(x) ((x) << 24)
90
91/* List of platforms this NAND controller has be integrated into */
92static const struct pci_device_id denali_pci_ids[] = {
93 { PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 },
94 { PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST },
95 { /* end: all zeroes */ }
96};
97
98
5bac3acf
C
99/* these are static lookup tables that give us easy access to
100 registers in the NAND controller.
ce082596 101 */
5bac3acf
C
102static const uint32_t intr_status_addresses[4] = {INTR_STATUS0,
103 INTR_STATUS1,
104 INTR_STATUS2,
ce082596
JR
105 INTR_STATUS3};
106
107static const uint32_t device_reset_banks[4] = {DEVICE_RESET__BANK0,
5bac3acf
C
108 DEVICE_RESET__BANK1,
109 DEVICE_RESET__BANK2,
110 DEVICE_RESET__BANK3};
ce082596
JR
111
112static const uint32_t operation_timeout[4] = {INTR_STATUS0__TIME_OUT,
5bac3acf
C
113 INTR_STATUS1__TIME_OUT,
114 INTR_STATUS2__TIME_OUT,
115 INTR_STATUS3__TIME_OUT};
ce082596
JR
116
117static const uint32_t reset_complete[4] = {INTR_STATUS0__RST_COMP,
5bac3acf
C
118 INTR_STATUS1__RST_COMP,
119 INTR_STATUS2__RST_COMP,
120 INTR_STATUS3__RST_COMP};
ce082596
JR
121
122/* specifies the debug level of the driver */
a99d1796 123static int nand_debug_level;
ce082596
JR
124
125/* forward declarations */
126static void clear_interrupts(struct denali_nand_info *denali);
bdca6dae
CD
127static uint32_t wait_for_irq(struct denali_nand_info *denali,
128 uint32_t irq_mask);
129static void denali_irq_enable(struct denali_nand_info *denali,
130 uint32_t int_mask);
ce082596
JR
131static uint32_t read_interrupt_status(struct denali_nand_info *denali);
132
133#define DEBUG_DENALI 0
134
bdca6dae
CD
135/* Certain operations for the denali NAND controller use
136 * an indexed mode to read/write data. The operation is
137 * performed by writing the address value of the command
138 * to the device memory followed by the data. This function
139 * abstracts this common operation.
ce082596 140*/
bdca6dae
CD
141static void index_addr(struct denali_nand_info *denali,
142 uint32_t address, uint32_t data)
ce082596 143{
24c3fa36
CD
144 iowrite32(address, denali->flash_mem);
145 iowrite32(data, denali->flash_mem + 0x10);
ce082596
JR
146}
147
148/* Perform an indexed read of the device */
149static void index_addr_read_data(struct denali_nand_info *denali,
150 uint32_t address, uint32_t *pdata)
151{
24c3fa36 152 iowrite32(address, denali->flash_mem);
ce082596
JR
153 *pdata = ioread32(denali->flash_mem + 0x10);
154}
155
5bac3acf 156/* We need to buffer some data for some of the NAND core routines.
ce082596
JR
157 * The operations manage buffering that data. */
158static void reset_buf(struct denali_nand_info *denali)
159{
160 denali->buf.head = denali->buf.tail = 0;
161}
162
163static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
164{
165 BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf));
166 denali->buf.buf[denali->buf.tail++] = byte;
167}
168
169/* reads the status of the device */
170static void read_status(struct denali_nand_info *denali)
171{
172 uint32_t cmd = 0x0;
173
174 /* initialize the data buffer to store status */
175 reset_buf(denali);
176
177 /* initiate a device status read */
5bac3acf 178 cmd = MODE_11 | BANK(denali->flash_bank);
ce082596 179 index_addr(denali, cmd | COMMAND_CYCLE, 0x70);
24c3fa36 180 iowrite32(cmd | STATUS_CYCLE, denali->flash_mem);
ce082596
JR
181
182 /* update buffer with status value */
183 write_byte_to_buf(denali, ioread32(denali->flash_mem + 0x10));
184
185#if DEBUG_DENALI
bdca6dae
CD
186 printk(KERN_INFO "device reporting status value of 0x%2x\n",
187 denali->buf.buf[0]);
ce082596
JR
188#endif
189}
190
191/* resets a specific device connected to the core */
192static void reset_bank(struct denali_nand_info *denali)
193{
194 uint32_t irq_status = 0;
5bac3acf 195 uint32_t irq_mask = reset_complete[denali->flash_bank] |
ce082596
JR
196 operation_timeout[denali->flash_bank];
197 int bank = 0;
198
199 clear_interrupts(denali);
200
201 bank = device_reset_banks[denali->flash_bank];
24c3fa36 202 iowrite32(bank, denali->flash_reg + DEVICE_RESET);
ce082596
JR
203
204 irq_status = wait_for_irq(denali, irq_mask);
5bac3acf 205
ce082596 206 if (irq_status & operation_timeout[denali->flash_bank])
ce082596 207 printk(KERN_ERR "reset bank failed.\n");
ce082596
JR
208}
209
210/* Reset the flash controller */
eda936ef 211static uint16_t denali_nand_reset(struct denali_nand_info *denali)
ce082596
JR
212{
213 uint32_t i;
214
215 nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
216 __FILE__, __LINE__, __func__);
217
218 for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++)
24c3fa36 219 iowrite32(reset_complete[i] | operation_timeout[i],
ce082596
JR
220 denali->flash_reg + intr_status_addresses[i]);
221
222 for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) {
24c3fa36 223 iowrite32(device_reset_banks[i],
bdca6dae
CD
224 denali->flash_reg + DEVICE_RESET);
225 while (!(ioread32(denali->flash_reg +
226 intr_status_addresses[i]) &
ce082596
JR
227 (reset_complete[i] | operation_timeout[i])))
228 ;
229 if (ioread32(denali->flash_reg + intr_status_addresses[i]) &
230 operation_timeout[i])
231 nand_dbg_print(NAND_DBG_WARN,
232 "NAND Reset operation timed out on bank %d\n", i);
233 }
234
235 for (i = 0; i < LLD_MAX_FLASH_BANKS; i++)
24c3fa36 236 iowrite32(reset_complete[i] | operation_timeout[i],
ce082596
JR
237 denali->flash_reg + intr_status_addresses[i]);
238
239 return PASS;
240}
241
bdca6dae
CD
242/* this routine calculates the ONFI timing values for a given mode and
243 * programs the clocking register accordingly. The mode is determined by
244 * the get_onfi_nand_para routine.
ce082596 245 */
eda936ef 246static void nand_onfi_timing_set(struct denali_nand_info *denali,
bdca6dae 247 uint16_t mode)
ce082596
JR
248{
249 uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
250 uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
251 uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
252 uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
253 uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
254 uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
255 uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
256 uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
257 uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
258 uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
259 uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
260 uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
261
262 uint16_t TclsRising = 1;
263 uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
264 uint16_t dv_window = 0;
265 uint16_t en_lo, en_hi;
266 uint16_t acc_clks;
267 uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
268
269 nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
270 __FILE__, __LINE__, __func__);
271
272 en_lo = CEIL_DIV(Trp[mode], CLK_X);
273 en_hi = CEIL_DIV(Treh[mode], CLK_X);
274#if ONFI_BLOOM_TIME
275 if ((en_hi * CLK_X) < (Treh[mode] + 2))
276 en_hi++;
277#endif
278
279 if ((en_lo + en_hi) * CLK_X < Trc[mode])
280 en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
281
282 if ((en_lo + en_hi) < CLK_MULTI)
283 en_lo += CLK_MULTI - en_lo - en_hi;
284
285 while (dv_window < 8) {
286 data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
287
288 data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
289
290 data_invalid =
291 data_invalid_rhoh <
292 data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;
293
294 dv_window = data_invalid - Trea[mode];
295
296 if (dv_window < 8)
297 en_lo++;
298 }
299
300 acc_clks = CEIL_DIV(Trea[mode], CLK_X);
301
302 while (((acc_clks * CLK_X) - Trea[mode]) < 3)
303 acc_clks++;
304
305 if ((data_invalid - acc_clks * CLK_X) < 2)
306 nand_dbg_print(NAND_DBG_WARN, "%s, Line %d: Warning!\n",
307 __FILE__, __LINE__);
308
309 addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
310 re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
311 re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
312 we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
313 cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
314 if (!TclsRising)
315 cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
316 if (cs_cnt == 0)
317 cs_cnt = 1;
318
319 if (Tcea[mode]) {
320 while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
321 cs_cnt++;
322 }
323
324#if MODE5_WORKAROUND
325 if (mode == 5)
326 acc_clks = 5;
327#endif
328
329 /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
330 if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
331 (ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
332 acc_clks = 6;
333
24c3fa36
CD
334 iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
335 iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
336 iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
337 iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
338 iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
339 iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
340 iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
341 iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
ce082596
JR
342}
343
ce082596
JR
344/* queries the NAND device to see what ONFI modes it supports. */
345static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
346{
347 int i;
4c03bbdf
CD
348 /* we needn't to do a reset here because driver has already
349 * reset all the banks before
350 * */
ce082596
JR
351 if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
352 ONFI_TIMING_MODE__VALUE))
353 return FAIL;
354
355 for (i = 5; i > 0; i--) {
bdca6dae
CD
356 if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
357 (0x01 << i))
ce082596
JR
358 break;
359 }
360
eda936ef 361 nand_onfi_timing_set(denali, i);
ce082596
JR
362
363 /* By now, all the ONFI devices we know support the page cache */
364 /* rw feature. So here we enable the pipeline_rw_ahead feature */
365 /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
366 /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */
367
368 return PASS;
369}
370
4c03bbdf
CD
371static void get_samsung_nand_para(struct denali_nand_info *denali,
372 uint8_t device_id)
ce082596 373{
4c03bbdf 374 if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
ce082596 375 /* Set timing register values according to datasheet */
24c3fa36
CD
376 iowrite32(5, denali->flash_reg + ACC_CLKS);
377 iowrite32(20, denali->flash_reg + RE_2_WE);
378 iowrite32(12, denali->flash_reg + WE_2_RE);
379 iowrite32(14, denali->flash_reg + ADDR_2_DATA);
380 iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
381 iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
382 iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
ce082596 383 }
ce082596
JR
384}
385
386static void get_toshiba_nand_para(struct denali_nand_info *denali)
387{
ce082596
JR
388 uint32_t tmp;
389
390 /* Workaround to fix a controller bug which reports a wrong */
391 /* spare area size for some kind of Toshiba NAND device */
392 if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
393 (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
24c3fa36 394 iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
ce082596
JR
395 tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
396 ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
24c3fa36 397 iowrite32(tmp,
bdca6dae 398 denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
ce082596 399#if SUPPORT_15BITECC
24c3fa36 400 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
ce082596 401#elif SUPPORT_8BITECC
24c3fa36 402 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
ce082596
JR
403#endif
404 }
ce082596
JR
405}
406
ef41e1bb
CD
407static void get_hynix_nand_para(struct denali_nand_info *denali,
408 uint8_t device_id)
ce082596 409{
ce082596
JR
410 uint32_t main_size, spare_size;
411
ef41e1bb 412 switch (device_id) {
ce082596
JR
413 case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
414 case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
24c3fa36
CD
415 iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
416 iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
417 iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
bdca6dae
CD
418 main_size = 4096 *
419 ioread32(denali->flash_reg + DEVICES_CONNECTED);
420 spare_size = 224 *
421 ioread32(denali->flash_reg + DEVICES_CONNECTED);
24c3fa36 422 iowrite32(main_size,
bdca6dae 423 denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
24c3fa36 424 iowrite32(spare_size,
bdca6dae 425 denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
24c3fa36 426 iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
ce082596 427#if SUPPORT_15BITECC
24c3fa36 428 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
ce082596 429#elif SUPPORT_8BITECC
24c3fa36 430 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
ce082596 431#endif
ce082596
JR
432 break;
433 default:
434 nand_dbg_print(NAND_DBG_WARN,
435 "Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
436 "Will use default parameter values instead.\n",
66406524 437 device_id);
ce082596
JR
438 }
439}
440
441/* determines how many NAND chips are connected to the controller. Note for
5bac3acf 442 Intel CE4100 devices we don't support more than one device.
ce082596
JR
443 */
444static void find_valid_banks(struct denali_nand_info *denali)
445{
446 uint32_t id[LLD_MAX_FLASH_BANKS];
447 int i;
448
449 denali->total_used_banks = 1;
450 for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) {
451 index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
452 index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
bdca6dae
CD
453 index_addr_read_data(denali,
454 (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
ce082596
JR
455
456 nand_dbg_print(NAND_DBG_DEBUG,
457 "Return 1st ID for bank[%d]: %x\n", i, id[i]);
458
459 if (i == 0) {
460 if (!(id[i] & 0x0ff))
461 break; /* WTF? */
462 } else {
463 if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
464 denali->total_used_banks++;
465 else
466 break;
467 }
468 }
469
345b1d3b 470 if (denali->platform == INTEL_CE4100) {
ce082596
JR
471 /* Platform limitations of the CE4100 device limit
472 * users to a single chip solution for NAND.
5bac3acf
C
473 * Multichip support is not enabled.
474 */
345b1d3b 475 if (denali->total_used_banks != 1) {
ce082596
JR
476 printk(KERN_ERR "Sorry, Intel CE4100 only supports "
477 "a single NAND device.\n");
478 BUG();
479 }
480 }
481 nand_dbg_print(NAND_DBG_DEBUG,
482 "denali->total_used_banks: %d\n", denali->total_used_banks);
483}
484
485static void detect_partition_feature(struct denali_nand_info *denali)
486{
66406524
CD
487 /* For MRST platform, denali->fwblks represent the
488 * number of blocks firmware is taken,
489 * FW is in protect partition and MTD driver has no
490 * permission to access it. So let driver know how many
491 * blocks it can't touch.
492 * */
ce082596
JR
493 if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
494 if ((ioread32(denali->flash_reg + PERM_SRC_ID_1) &
495 PERM_SRC_ID_1__SRCID) == SPECTRA_PARTITION_ID) {
66406524 496 denali->fwblks =
ce082596
JR
497 ((ioread32(denali->flash_reg + MIN_MAX_BANK_1) &
498 MIN_MAX_BANK_1__MIN_VALUE) *
66406524 499 denali->blksperchip)
ce082596
JR
500 +
501 (ioread32(denali->flash_reg + MIN_BLK_ADDR_1) &
502 MIN_BLK_ADDR_1__VALUE);
66406524
CD
503 } else
504 denali->fwblks = SPECTRA_START_BLOCK;
505 } else
506 denali->fwblks = SPECTRA_START_BLOCK;
ce082596
JR
507}
508
eda936ef 509static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
ce082596
JR
510{
511 uint16_t status = PASS;
ef41e1bb
CD
512 uint32_t id_bytes[5], addr;
513 uint8_t i, maf_id, device_id;
ce082596
JR
514
515 nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
516 __FILE__, __LINE__, __func__);
517
ef41e1bb
CD
518 /* Use read id method to get device ID and other
519 * params. For some NAND chips, controller can't
520 * report the correct device ID by reading from
521 * DEVICE_ID register
522 * */
523 addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
524 index_addr(denali, (uint32_t)addr | 0, 0x90);
525 index_addr(denali, (uint32_t)addr | 1, 0);
526 for (i = 0; i < 5; i++)
527 index_addr_read_data(denali, addr | 2, &id_bytes[i]);
528 maf_id = id_bytes[0];
529 device_id = id_bytes[1];
ce082596
JR
530
531 if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
532 ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
533 if (FAIL == get_onfi_nand_para(denali))
534 return FAIL;
ef41e1bb 535 } else if (maf_id == 0xEC) { /* Samsung NAND */
4c03bbdf 536 get_samsung_nand_para(denali, device_id);
ef41e1bb 537 } else if (maf_id == 0x98) { /* Toshiba NAND */
ce082596 538 get_toshiba_nand_para(denali);
ef41e1bb
CD
539 } else if (maf_id == 0xAD) { /* Hynix NAND */
540 get_hynix_nand_para(denali, device_id);
ce082596
JR
541 }
542
543 nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:"
544 "acc_clks: %d, re_2_we: %d, we_2_re: %d,"
545 "addr_2_data: %d, rdwr_en_lo_cnt: %d, "
546 "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
547 ioread32(denali->flash_reg + ACC_CLKS),
548 ioread32(denali->flash_reg + RE_2_WE),
549 ioread32(denali->flash_reg + WE_2_RE),
550 ioread32(denali->flash_reg + ADDR_2_DATA),
551 ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
552 ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
553 ioread32(denali->flash_reg + CS_SETUP_CNT));
554
ce082596
JR
555 find_valid_banks(denali);
556
557 detect_partition_feature(denali);
558
ce082596 559 /* If the user specified to override the default timings
5bac3acf 560 * with a specific ONFI mode, we apply those changes here.
ce082596
JR
561 */
562 if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
eda936ef 563 nand_onfi_timing_set(denali, onfi_timing_mode);
ce082596
JR
564
565 return status;
566}
567
eda936ef 568static void denali_set_intr_modes(struct denali_nand_info *denali,
ce082596
JR
569 uint16_t INT_ENABLE)
570{
571 nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
572 __FILE__, __LINE__, __func__);
573
574 if (INT_ENABLE)
24c3fa36 575 iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
ce082596 576 else
24c3fa36 577 iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
ce082596
JR
578}
579
580/* validation function to verify that the controlling software is making
581 a valid request
582 */
583static inline bool is_flash_bank_valid(int flash_bank)
584{
5bac3acf 585 return (flash_bank >= 0 && flash_bank < 4);
ce082596
JR
586}
587
588static void denali_irq_init(struct denali_nand_info *denali)
589{
590 uint32_t int_mask = 0;
591
592 /* Disable global interrupts */
eda936ef 593 denali_set_intr_modes(denali, false);
ce082596
JR
594
595 int_mask = DENALI_IRQ_ALL;
596
597 /* Clear all status bits */
24c3fa36
CD
598 iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS0);
599 iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS1);
600 iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS2);
601 iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS3);
ce082596
JR
602
603 denali_irq_enable(denali, int_mask);
604}
605
606static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
607{
eda936ef 608 denali_set_intr_modes(denali, false);
ce082596
JR
609 free_irq(irqnum, denali);
610}
611
bdca6dae
CD
612static void denali_irq_enable(struct denali_nand_info *denali,
613 uint32_t int_mask)
ce082596 614{
24c3fa36
CD
615 iowrite32(int_mask, denali->flash_reg + INTR_EN0);
616 iowrite32(int_mask, denali->flash_reg + INTR_EN1);
617 iowrite32(int_mask, denali->flash_reg + INTR_EN2);
618 iowrite32(int_mask, denali->flash_reg + INTR_EN3);
ce082596
JR
619}
620
621/* This function only returns when an interrupt that this driver cares about
5bac3acf 622 * occurs. This is to reduce the overhead of servicing interrupts
ce082596
JR
623 */
624static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
625{
a99d1796 626 return read_interrupt_status(denali) & DENALI_IRQ_ALL;
ce082596
JR
627}
628
629/* Interrupts are cleared by writing a 1 to the appropriate status bit */
bdca6dae
CD
630static inline void clear_interrupt(struct denali_nand_info *denali,
631 uint32_t irq_mask)
ce082596
JR
632{
633 uint32_t intr_status_reg = 0;
634
635 intr_status_reg = intr_status_addresses[denali->flash_bank];
636
24c3fa36 637 iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
ce082596
JR
638}
639
640static void clear_interrupts(struct denali_nand_info *denali)
641{
642 uint32_t status = 0x0;
643 spin_lock_irq(&denali->irq_lock);
644
645 status = read_interrupt_status(denali);
646
647#if DEBUG_DENALI
648 denali->irq_debug_array[denali->idx++] = 0x30000000 | status;
649 denali->idx %= 32;
650#endif
651
652 denali->irq_status = 0x0;
653 spin_unlock_irq(&denali->irq_lock);
654}
655
656static uint32_t read_interrupt_status(struct denali_nand_info *denali)
657{
658 uint32_t intr_status_reg = 0;
659
660 intr_status_reg = intr_status_addresses[denali->flash_bank];
661
662 return ioread32(denali->flash_reg + intr_status_reg);
663}
664
665#if DEBUG_DENALI
666static void print_irq_log(struct denali_nand_info *denali)
667{
668 int i = 0;
669
bf1806dd 670 printk(KERN_INFO "ISR debug log index = %X\n", denali->idx);
ce082596 671 for (i = 0; i < 32; i++)
bf1806dd 672 printk(KERN_INFO "%08X: %08X\n", i, denali->irq_debug_array[i]);
ce082596
JR
673}
674#endif
675
5bac3acf
C
676/* This is the interrupt service routine. It handles all interrupts
677 * sent to this device. Note that on CE4100, this is a shared
678 * interrupt.
ce082596
JR
679 */
680static irqreturn_t denali_isr(int irq, void *dev_id)
681{
682 struct denali_nand_info *denali = dev_id;
683 uint32_t irq_status = 0x0;
684 irqreturn_t result = IRQ_NONE;
685
686 spin_lock(&denali->irq_lock);
687
5bac3acf
C
688 /* check to see if a valid NAND chip has
689 * been selected.
ce082596 690 */
345b1d3b 691 if (is_flash_bank_valid(denali->flash_bank)) {
5bac3acf 692 /* check to see if controller generated
ce082596 693 * the interrupt, since this is a shared interrupt */
bdca6dae
CD
694 irq_status = denali_irq_detected(denali);
695 if (irq_status != 0) {
ce082596 696#if DEBUG_DENALI
bdca6dae
CD
697 denali->irq_debug_array[denali->idx++] =
698 0x10000000 | irq_status;
ce082596
JR
699 denali->idx %= 32;
700
bf1806dd 701 printk(KERN_INFO "IRQ status = 0x%04x\n", irq_status);
ce082596
JR
702#endif
703 /* handle interrupt */
704 /* first acknowledge it */
705 clear_interrupt(denali, irq_status);
706 /* store the status in the device context for someone
707 to read */
708 denali->irq_status |= irq_status;
709 /* notify anyone who cares that it happened */
710 complete(&denali->complete);
711 /* tell the OS that we've handled this */
712 result = IRQ_HANDLED;
713 }
714 }
715 spin_unlock(&denali->irq_lock);
716 return result;
717}
718#define BANK(x) ((x) << 24)
719
720static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
721{
722 unsigned long comp_res = 0;
723 uint32_t intr_status = 0;
724 bool retry = false;
725 unsigned long timeout = msecs_to_jiffies(1000);
726
345b1d3b 727 do {
ce082596 728#if DEBUG_DENALI
bf1806dd 729 printk(KERN_INFO "waiting for 0x%x\n", irq_mask);
ce082596 730#endif
bdca6dae
CD
731 comp_res =
732 wait_for_completion_timeout(&denali->complete, timeout);
ce082596
JR
733 spin_lock_irq(&denali->irq_lock);
734 intr_status = denali->irq_status;
735
736#if DEBUG_DENALI
bdca6dae
CD
737 denali->irq_debug_array[denali->idx++] =
738 0x20000000 | (irq_mask << 16) | intr_status;
ce082596
JR
739 denali->idx %= 32;
740#endif
741
345b1d3b 742 if (intr_status & irq_mask) {
ce082596
JR
743 denali->irq_status &= ~irq_mask;
744 spin_unlock_irq(&denali->irq_lock);
745#if DEBUG_DENALI
bdca6dae
CD
746 if (retry)
747 printk(KERN_INFO "status on retry = 0x%x\n",
748 intr_status);
ce082596
JR
749#endif
750 /* our interrupt was detected */
751 break;
345b1d3b 752 } else {
5bac3acf
C
753 /* these are not the interrupts you are looking for -
754 * need to wait again */
ce082596
JR
755 spin_unlock_irq(&denali->irq_lock);
756#if DEBUG_DENALI
757 print_irq_log(denali);
bdca6dae
CD
758 printk(KERN_INFO "received irq nobody cared:"
759 " irq_status = 0x%x, irq_mask = 0x%x,"
760 " timeout = %ld\n", intr_status,
761 irq_mask, comp_res);
ce082596
JR
762#endif
763 retry = true;
764 }
765 } while (comp_res != 0);
766
345b1d3b 767 if (comp_res == 0) {
ce082596 768 /* timeout */
5bac3acf
C
769 printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n",
770 intr_status, irq_mask);
ce082596
JR
771
772 intr_status = 0;
773 }
774 return intr_status;
775}
776
5bac3acf 777/* This helper function setups the registers for ECC and whether or not
ce082596 778 the spare area will be transfered. */
5bac3acf 779static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
ce082596
JR
780 bool transfer_spare)
781{
5bac3acf 782 int ecc_en_flag = 0, transfer_spare_flag = 0;
ce082596
JR
783
784 /* set ECC, transfer spare bits if needed */
785 ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
786 transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
787
788 /* Enable spare area/ECC per user's request. */
24c3fa36
CD
789 iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
790 iowrite32(transfer_spare_flag,
bdca6dae 791 denali->flash_reg + TRANSFER_SPARE_REG);
ce082596
JR
792}
793
5bac3acf
C
794/* sends a pipeline command operation to the controller. See the Denali NAND
795 controller's user guide for more information (section 4.2.3.6).
ce082596 796 */
bdca6dae
CD
797static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
798 bool ecc_en,
799 bool transfer_spare,
800 int access_type,
801 int op)
ce082596
JR
802{
803 int status = PASS;
5bac3acf 804 uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
ce082596
JR
805 irq_mask = 0;
806
a99d1796
CD
807 if (op == DENALI_READ)
808 irq_mask = INTR_STATUS0__LOAD_COMP;
809 else if (op == DENALI_WRITE)
810 irq_mask = 0;
811 else
812 BUG();
ce082596
JR
813
814 setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
815
816#if DEBUG_DENALI
817 spin_lock_irq(&denali->irq_lock);
bdca6dae
CD
818 denali->irq_debug_array[denali->idx++] =
819 0x40000000 | ioread32(denali->flash_reg + ECC_ENABLE) |
820 (access_type << 4);
ce082596
JR
821 denali->idx %= 32;
822 spin_unlock_irq(&denali->irq_lock);
823#endif
824
825
826 /* clear interrupts */
5bac3acf 827 clear_interrupts(denali);
ce082596
JR
828
829 addr = BANK(denali->flash_bank) | denali->page;
830
345b1d3b 831 if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
5bac3acf 832 cmd = MODE_01 | addr;
24c3fa36 833 iowrite32(cmd, denali->flash_mem);
345b1d3b 834 } else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
ce082596 835 /* read spare area */
5bac3acf 836 cmd = MODE_10 | addr;
ce082596
JR
837 index_addr(denali, (uint32_t)cmd, access_type);
838
5bac3acf 839 cmd = MODE_01 | addr;
24c3fa36 840 iowrite32(cmd, denali->flash_mem);
345b1d3b 841 } else if (op == DENALI_READ) {
ce082596 842 /* setup page read request for access type */
5bac3acf 843 cmd = MODE_10 | addr;
ce082596
JR
844 index_addr(denali, (uint32_t)cmd, access_type);
845
846 /* page 33 of the NAND controller spec indicates we should not
5bac3acf 847 use the pipeline commands in Spare area only mode. So we
ce082596
JR
848 don't.
849 */
345b1d3b 850 if (access_type == SPARE_ACCESS) {
ce082596 851 cmd = MODE_01 | addr;
24c3fa36 852 iowrite32(cmd, denali->flash_mem);
345b1d3b 853 } else {
bdca6dae
CD
854 index_addr(denali, (uint32_t)cmd,
855 0x2000 | op | page_count);
5bac3acf
C
856
857 /* wait for command to be accepted
bdca6dae
CD
858 * can always use status0 bit as the
859 * mask is identical for each
ce082596
JR
860 * bank. */
861 irq_status = wait_for_irq(denali, irq_mask);
862
345b1d3b 863 if (irq_status == 0) {
ce082596 864 printk(KERN_ERR "cmd, page, addr on timeout "
bdca6dae
CD
865 "(0x%x, 0x%x, 0x%x)\n", cmd,
866 denali->page, addr);
ce082596 867 status = FAIL;
345b1d3b 868 } else {
ce082596 869 cmd = MODE_01 | addr;
24c3fa36 870 iowrite32(cmd, denali->flash_mem);
ce082596
JR
871 }
872 }
873 }
874 return status;
875}
876
877/* helper function that simply writes a buffer to the flash */
bdca6dae
CD
878static int write_data_to_flash_mem(struct denali_nand_info *denali,
879 const uint8_t *buf,
880 int len)
ce082596
JR
881{
882 uint32_t i = 0, *buf32;
883
5bac3acf
C
884 /* verify that the len is a multiple of 4. see comment in
885 * read_data_from_flash_mem() */
ce082596
JR
886 BUG_ON((len % 4) != 0);
887
888 /* write the data to the flash memory */
889 buf32 = (uint32_t *)buf;
890 for (i = 0; i < len / 4; i++)
24c3fa36 891 iowrite32(*buf32++, denali->flash_mem + 0x10);
5bac3acf 892 return i*4; /* intent is to return the number of bytes read */
ce082596
JR
893}
894
895/* helper function that simply reads a buffer from the flash */
bdca6dae
CD
896static int read_data_from_flash_mem(struct denali_nand_info *denali,
897 uint8_t *buf,
898 int len)
ce082596
JR
899{
900 uint32_t i = 0, *buf32;
901
902 /* we assume that len will be a multiple of 4, if not
903 * it would be nice to know about it ASAP rather than
5bac3acf
C
904 * have random failures...
905 * This assumption is based on the fact that this
906 * function is designed to be used to read flash pages,
ce082596
JR
907 * which are typically multiples of 4...
908 */
909
910 BUG_ON((len % 4) != 0);
911
912 /* transfer the data from the flash */
913 buf32 = (uint32_t *)buf;
914 for (i = 0; i < len / 4; i++)
ce082596 915 *buf32++ = ioread32(denali->flash_mem + 0x10);
5bac3acf 916 return i*4; /* intent is to return the number of bytes read */
ce082596
JR
917}
918
919/* writes OOB data to the device */
920static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
921{
922 struct denali_nand_info *denali = mtd_to_denali(mtd);
923 uint32_t irq_status = 0;
5bac3acf 924 uint32_t irq_mask = INTR_STATUS0__PROGRAM_COMP |
ce082596
JR
925 INTR_STATUS0__PROGRAM_FAIL;
926 int status = 0;
927
928 denali->page = page;
929
5bac3acf 930 if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
345b1d3b 931 DENALI_WRITE) == PASS) {
ce082596
JR
932 write_data_to_flash_mem(denali, buf, mtd->oobsize);
933
934#if DEBUG_DENALI
935 spin_lock_irq(&denali->irq_lock);
bdca6dae
CD
936 denali->irq_debug_array[denali->idx++] =
937 0x80000000 | mtd->oobsize;
ce082596
JR
938 denali->idx %= 32;
939 spin_unlock_irq(&denali->irq_lock);
940#endif
941
5bac3acf 942
ce082596
JR
943 /* wait for operation to complete */
944 irq_status = wait_for_irq(denali, irq_mask);
945
345b1d3b 946 if (irq_status == 0) {
ce082596
JR
947 printk(KERN_ERR "OOB write failed\n");
948 status = -EIO;
949 }
345b1d3b 950 } else {
ce082596 951 printk(KERN_ERR "unable to send pipeline command\n");
5bac3acf 952 status = -EIO;
ce082596
JR
953 }
954 return status;
955}
956
957/* reads OOB data from the device */
958static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
959{
960 struct denali_nand_info *denali = mtd_to_denali(mtd);
bdca6dae
CD
961 uint32_t irq_mask = INTR_STATUS0__LOAD_COMP,
962 irq_status = 0, addr = 0x0, cmd = 0x0;
ce082596
JR
963
964 denali->page = page;
965
966#if DEBUG_DENALI
bf1806dd 967 printk(KERN_INFO "read_oob %d\n", page);
ce082596 968#endif
5bac3acf 969 if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
345b1d3b 970 DENALI_READ) == PASS) {
5bac3acf 971 read_data_from_flash_mem(denali, buf, mtd->oobsize);
ce082596 972
5bac3acf 973 /* wait for command to be accepted
ce082596
JR
974 * can always use status0 bit as the mask is identical for each
975 * bank. */
976 irq_status = wait_for_irq(denali, irq_mask);
977
978 if (irq_status == 0)
bdca6dae
CD
979 printk(KERN_ERR "page on OOB timeout %d\n",
980 denali->page);
ce082596
JR
981
982 /* We set the device back to MAIN_ACCESS here as I observed
983 * instability with the controller if you do a block erase
984 * and the last transaction was a SPARE_ACCESS. Block erase
985 * is reliable (according to the MTD test infrastructure)
5bac3acf 986 * if you are in MAIN_ACCESS.
ce082596
JR
987 */
988 addr = BANK(denali->flash_bank) | denali->page;
5bac3acf 989 cmd = MODE_10 | addr;
ce082596
JR
990 index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
991
992#if DEBUG_DENALI
993 spin_lock_irq(&denali->irq_lock);
bdca6dae
CD
994 denali->irq_debug_array[denali->idx++] =
995 0x60000000 | mtd->oobsize;
ce082596
JR
996 denali->idx %= 32;
997 spin_unlock_irq(&denali->irq_lock);
998#endif
999 }
1000}
1001
5bac3acf 1002/* this function examines buffers to see if they contain data that
ce082596
JR
1003 * indicate that the buffer is part of an erased region of flash.
1004 */
1005bool is_erased(uint8_t *buf, int len)
1006{
1007 int i = 0;
1008 for (i = 0; i < len; i++)
ce082596 1009 if (buf[i] != 0xFF)
ce082596 1010 return false;
ce082596
JR
1011 return true;
1012}
1013#define ECC_SECTOR_SIZE 512
1014
1015#define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
1016#define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
1017#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
1018#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO))
1019#define ECC_ERR_DEVICE(x) ((x) & ERR_CORRECTION_INFO__DEVICE_NR >> 8)
1020#define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
1021
5bac3acf 1022static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
ce082596
JR
1023 uint8_t *oobbuf, uint32_t irq_status)
1024{
1025 bool check_erased_page = false;
1026
345b1d3b 1027 if (irq_status & INTR_STATUS0__ECC_ERR) {
ce082596
JR
1028 /* read the ECC errors. we'll ignore them for now */
1029 uint32_t err_address = 0, err_correction_info = 0;
1030 uint32_t err_byte = 0, err_sector = 0, err_device = 0;
1031 uint32_t err_correction_value = 0;
1032
345b1d3b 1033 do {
5bac3acf 1034 err_address = ioread32(denali->flash_reg +
ce082596
JR
1035 ECC_ERROR_ADDRESS);
1036 err_sector = ECC_SECTOR(err_address);
1037 err_byte = ECC_BYTE(err_address);
1038
1039
5bac3acf 1040 err_correction_info = ioread32(denali->flash_reg +
ce082596 1041 ERR_CORRECTION_INFO);
5bac3acf 1042 err_correction_value =
ce082596
JR
1043 ECC_CORRECTION_VALUE(err_correction_info);
1044 err_device = ECC_ERR_DEVICE(err_correction_info);
1045
345b1d3b 1046 if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
ce082596 1047 /* offset in our buffer is computed as:
5bac3acf 1048 sector number * sector size + offset in
ce082596
JR
1049 sector
1050 */
5bac3acf 1051 int offset = err_sector * ECC_SECTOR_SIZE +
ce082596 1052 err_byte;
345b1d3b 1053 if (offset < denali->mtd.writesize) {
ce082596
JR
1054 /* correct the ECC error */
1055 buf[offset] ^= err_correction_value;
1056 denali->mtd.ecc_stats.corrected++;
345b1d3b 1057 } else {
ce082596
JR
1058 /* bummer, couldn't correct the error */
1059 printk(KERN_ERR "ECC offset invalid\n");
1060 denali->mtd.ecc_stats.failed++;
1061 }
345b1d3b 1062 } else {
5bac3acf 1063 /* if the error is not correctable, need to
bdca6dae
CD
1064 * look at the page to see if it is an erased
1065 * page. if so, then it's not a real ECC error
1066 * */
ce082596
JR
1067 check_erased_page = true;
1068 }
1069
5bac3acf 1070#if DEBUG_DENALI
bdca6dae
CD
1071 printk(KERN_INFO "Detected ECC error in page %d:"
1072 " err_addr = 0x%08x, info to fix is"
1073 " 0x%08x\n", denali->page, err_address,
1074 err_correction_info);
ce082596
JR
1075#endif
1076 } while (!ECC_LAST_ERR(err_correction_info));
1077 }
1078 return check_erased_page;
1079}
1080
1081/* programs the controller to either enable/disable DMA transfers */
aadff49c 1082static void denali_enable_dma(struct denali_nand_info *denali, bool en)
ce082596
JR
1083{
1084 uint32_t reg_val = 0x0;
1085
a99d1796
CD
1086 if (en)
1087 reg_val = DMA_ENABLE__FLAG;
ce082596 1088
24c3fa36 1089 iowrite32(reg_val, denali->flash_reg + DMA_ENABLE);
ce082596
JR
1090 ioread32(denali->flash_reg + DMA_ENABLE);
1091}
1092
1093/* setups the HW to perform the data DMA */
aadff49c 1094static void denali_setup_dma(struct denali_nand_info *denali, int op)
ce082596
JR
1095{
1096 uint32_t mode = 0x0;
1097 const int page_count = 1;
1098 dma_addr_t addr = denali->buf.dma_buf;
1099
1100 mode = MODE_10 | BANK(denali->flash_bank);
1101
1102 /* DMA is a four step process */
1103
1104 /* 1. setup transfer type and # of pages */
1105 index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
1106
1107 /* 2. set memory high address bits 23:8 */
1108 index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);
1109
1110 /* 3. set memory low address bits 23:8 */
1111 index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);
1112
1113 /* 4. interrupt when complete, burst len = 64 bytes*/
1114 index_addr(denali, mode | 0x14000, 0x2400);
1115}
1116
5bac3acf 1117/* writes a page. user specifies type, and this function handles the
ce082596 1118 configuration details. */
5bac3acf 1119static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
ce082596
JR
1120 const uint8_t *buf, bool raw_xfer)
1121{
1122 struct denali_nand_info *denali = mtd_to_denali(mtd);
1123 struct pci_dev *pci_dev = denali->dev;
1124
1125 dma_addr_t addr = denali->buf.dma_buf;
1126 size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1127
1128 uint32_t irq_status = 0;
5bac3acf 1129 uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP |
ce082596
JR
1130 INTR_STATUS0__PROGRAM_FAIL;
1131
1132 /* if it is a raw xfer, we want to disable ecc, and send
1133 * the spare area.
1134 * !raw_xfer - enable ecc
1135 * raw_xfer - transfer spare
1136 */
1137 setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
1138
1139 /* copy buffer into DMA buffer */
1140 memcpy(denali->buf.buf, buf, mtd->writesize);
1141
345b1d3b 1142 if (raw_xfer) {
ce082596 1143 /* transfer the data to the spare area */
5bac3acf
C
1144 memcpy(denali->buf.buf + mtd->writesize,
1145 chip->oob_poi,
1146 mtd->oobsize);
ce082596
JR
1147 }
1148
1149 pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_TODEVICE);
1150
1151 clear_interrupts(denali);
5bac3acf 1152 denali_enable_dma(denali, true);
ce082596 1153
aadff49c 1154 denali_setup_dma(denali, DENALI_WRITE);
ce082596
JR
1155
1156 /* wait for operation to complete */
1157 irq_status = wait_for_irq(denali, irq_mask);
1158
345b1d3b 1159 if (irq_status == 0) {
bdca6dae
CD
1160 printk(KERN_ERR "timeout on write_page"
1161 " (type = %d)\n", raw_xfer);
5bac3acf 1162 denali->status =
bdca6dae
CD
1163 (irq_status & INTR_STATUS0__PROGRAM_FAIL) ?
1164 NAND_STATUS_FAIL : PASS;
ce082596
JR
1165 }
1166
5bac3acf 1167 denali_enable_dma(denali, false);
ce082596
JR
1168 pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_TODEVICE);
1169}
1170
1171/* NAND core entry points */
1172
5bac3acf
C
1173/* this is the callback that the NAND core calls to write a page. Since
1174 writing a page with ECC or without is similar, all the work is done
ce082596 1175 by write_page above. */
5bac3acf 1176static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
ce082596
JR
1177 const uint8_t *buf)
1178{
1179 /* for regular page writes, we let HW handle all the ECC
5bac3acf 1180 * data written to the device. */
ce082596
JR
1181 write_page(mtd, chip, buf, false);
1182}
1183
5bac3acf 1184/* This is the callback that the NAND core calls to write a page without ECC.
ce082596 1185 raw access is similiar to ECC page writes, so all the work is done in the
5bac3acf 1186 write_page() function above.
ce082596 1187 */
5bac3acf 1188static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
ce082596
JR
1189 const uint8_t *buf)
1190{
5bac3acf 1191 /* for raw page writes, we want to disable ECC and simply write
ce082596
JR
1192 whatever data is in the buffer. */
1193 write_page(mtd, chip, buf, true);
1194}
1195
5bac3acf 1196static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
ce082596
JR
1197 int page)
1198{
5bac3acf 1199 return write_oob_data(mtd, chip->oob_poi, page);
ce082596
JR
1200}
1201
5bac3acf 1202static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
ce082596
JR
1203 int page, int sndcmd)
1204{
1205 read_oob_data(mtd, chip->oob_poi, page);
1206
5bac3acf
C
1207 return 0; /* notify NAND core to send command to
1208 NAND device. */
ce082596
JR
1209}
1210
1211static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1212 uint8_t *buf, int page)
1213{
1214 struct denali_nand_info *denali = mtd_to_denali(mtd);
1215 struct pci_dev *pci_dev = denali->dev;
1216
1217 dma_addr_t addr = denali->buf.dma_buf;
1218 size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1219
1220 uint32_t irq_status = 0;
5bac3acf 1221 uint32_t irq_mask = INTR_STATUS0__ECC_TRANSACTION_DONE |
ce082596
JR
1222 INTR_STATUS0__ECC_ERR;
1223 bool check_erased_page = false;
1224
1225 setup_ecc_for_xfer(denali, true, false);
1226
aadff49c 1227 denali_enable_dma(denali, true);
ce082596
JR
1228 pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
1229
1230 clear_interrupts(denali);
aadff49c 1231 denali_setup_dma(denali, DENALI_READ);
ce082596
JR
1232
1233 /* wait for operation to complete */
1234 irq_status = wait_for_irq(denali, irq_mask);
1235
1236 pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
1237
1238 memcpy(buf, denali->buf.buf, mtd->writesize);
5bac3acf 1239
ce082596 1240 check_erased_page = handle_ecc(denali, buf, chip->oob_poi, irq_status);
aadff49c 1241 denali_enable_dma(denali, false);
ce082596 1242
345b1d3b 1243 if (check_erased_page) {
ce082596
JR
1244 read_oob_data(&denali->mtd, chip->oob_poi, denali->page);
1245
1246 /* check ECC failures that may have occurred on erased pages */
345b1d3b 1247 if (check_erased_page) {
ce082596 1248 if (!is_erased(buf, denali->mtd.writesize))
ce082596 1249 denali->mtd.ecc_stats.failed++;
ce082596 1250 if (!is_erased(buf, denali->mtd.oobsize))
ce082596 1251 denali->mtd.ecc_stats.failed++;
5bac3acf 1252 }
ce082596
JR
1253 }
1254 return 0;
1255}
1256
1257static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1258 uint8_t *buf, int page)
1259{
1260 struct denali_nand_info *denali = mtd_to_denali(mtd);
1261 struct pci_dev *pci_dev = denali->dev;
1262
1263 dma_addr_t addr = denali->buf.dma_buf;
1264 size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1265
1266 uint32_t irq_status = 0;
1267 uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP;
5bac3acf 1268
ce082596 1269 setup_ecc_for_xfer(denali, false, true);
aadff49c 1270 denali_enable_dma(denali, true);
ce082596
JR
1271
1272 pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
1273
1274 clear_interrupts(denali);
aadff49c 1275 denali_setup_dma(denali, DENALI_READ);
ce082596
JR
1276
1277 /* wait for operation to complete */
1278 irq_status = wait_for_irq(denali, irq_mask);
1279
1280 pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
1281
aadff49c 1282 denali_enable_dma(denali, false);
ce082596
JR
1283
1284 memcpy(buf, denali->buf.buf, mtd->writesize);
1285 memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
1286
1287 return 0;
1288}
1289
1290static uint8_t denali_read_byte(struct mtd_info *mtd)
1291{
1292 struct denali_nand_info *denali = mtd_to_denali(mtd);
1293 uint8_t result = 0xff;
1294
1295 if (denali->buf.head < denali->buf.tail)
ce082596 1296 result = denali->buf.buf[denali->buf.head++];
ce082596
JR
1297
1298#if DEBUG_DENALI
bf1806dd 1299 printk(KERN_INFO "read byte -> 0x%02x\n", result);
ce082596
JR
1300#endif
1301 return result;
1302}
1303
1304static void denali_select_chip(struct mtd_info *mtd, int chip)
1305{
1306 struct denali_nand_info *denali = mtd_to_denali(mtd);
1307#if DEBUG_DENALI
bf1806dd 1308 printk(KERN_INFO "denali select chip %d\n", chip);
ce082596
JR
1309#endif
1310 spin_lock_irq(&denali->irq_lock);
1311 denali->flash_bank = chip;
1312 spin_unlock_irq(&denali->irq_lock);
1313}
1314
1315static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
1316{
1317 struct denali_nand_info *denali = mtd_to_denali(mtd);
1318 int status = denali->status;
1319 denali->status = 0;
1320
1321#if DEBUG_DENALI
bf1806dd 1322 printk(KERN_INFO "waitfunc %d\n", status);
ce082596
JR
1323#endif
1324 return status;
1325}
1326
1327static void denali_erase(struct mtd_info *mtd, int page)
1328{
1329 struct denali_nand_info *denali = mtd_to_denali(mtd);
1330
1331 uint32_t cmd = 0x0, irq_status = 0;
1332
1333#if DEBUG_DENALI
bf1806dd 1334 printk(KERN_INFO "erase page: %d\n", page);
ce082596
JR
1335#endif
1336 /* clear interrupts */
5bac3acf 1337 clear_interrupts(denali);
ce082596
JR
1338
1339 /* setup page read request for access type */
1340 cmd = MODE_10 | BANK(denali->flash_bank) | page;
1341 index_addr(denali, (uint32_t)cmd, 0x1);
1342
1343 /* wait for erase to complete or failure to occur */
5bac3acf 1344 irq_status = wait_for_irq(denali, INTR_STATUS0__ERASE_COMP |
ce082596
JR
1345 INTR_STATUS0__ERASE_FAIL);
1346
bdca6dae
CD
1347 denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ?
1348 NAND_STATUS_FAIL : PASS;
ce082596
JR
1349}
1350
5bac3acf 1351static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
ce082596
JR
1352 int page)
1353{
1354 struct denali_nand_info *denali = mtd_to_denali(mtd);
ef41e1bb
CD
1355 uint32_t addr, id;
1356 int i;
ce082596
JR
1357
1358#if DEBUG_DENALI
bf1806dd 1359 printk(KERN_INFO "cmdfunc: 0x%x %d %d\n", cmd, col, page);
ce082596 1360#endif
345b1d3b 1361 switch (cmd) {
a99d1796
CD
1362 case NAND_CMD_PAGEPROG:
1363 break;
1364 case NAND_CMD_STATUS:
1365 read_status(denali);
1366 break;
1367 case NAND_CMD_READID:
1368 reset_buf(denali);
ef41e1bb
CD
1369 /*sometimes ManufactureId read from register is not right
1370 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
1371 * So here we send READID cmd to NAND insteand
1372 * */
1373 addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
1374 index_addr(denali, (uint32_t)addr | 0, 0x90);
1375 index_addr(denali, (uint32_t)addr | 1, 0);
1376 for (i = 0; i < 5; i++) {
1377 index_addr_read_data(denali,
1378 (uint32_t)addr | 2,
1379 &id);
1380 write_byte_to_buf(denali, id);
a99d1796
CD
1381 }
1382 break;
1383 case NAND_CMD_READ0:
1384 case NAND_CMD_SEQIN:
1385 denali->page = page;
1386 break;
1387 case NAND_CMD_RESET:
1388 reset_bank(denali);
1389 break;
1390 case NAND_CMD_READOOB:
1391 /* TODO: Read OOB data */
1392 break;
1393 default:
1394 printk(KERN_ERR ": unsupported command"
1395 " received 0x%x\n", cmd);
1396 break;
ce082596
JR
1397 }
1398}
1399
1400/* stubs for ECC functions not used by the NAND core */
5bac3acf 1401static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
ce082596
JR
1402 uint8_t *ecc_code)
1403{
1404 printk(KERN_ERR "denali_ecc_calculate called unexpectedly\n");
1405 BUG();
1406 return -EIO;
1407}
1408
5bac3acf 1409static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
ce082596
JR
1410 uint8_t *read_ecc, uint8_t *calc_ecc)
1411{
1412 printk(KERN_ERR "denali_ecc_correct called unexpectedly\n");
1413 BUG();
1414 return -EIO;
1415}
1416
1417static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
1418{
1419 printk(KERN_ERR "denali_ecc_hwctl called unexpectedly\n");
1420 BUG();
1421}
1422/* end NAND core entry points */
1423
1424/* Initialization code to bring the device up to a known good state */
1425static void denali_hw_init(struct denali_nand_info *denali)
1426{
db9a3210
CD
1427 /* tell driver how many bit controller will skip before
1428 * writing ECC code in OOB, this register may be already
1429 * set by firmware. So we read this value out.
1430 * if this value is 0, just let it be.
1431 * */
1432 denali->bbtskipbytes = ioread32(denali->flash_reg +
1433 SPARE_AREA_SKIP_BYTES);
ce082596 1434 denali_irq_init(denali);
eda936ef 1435 denali_nand_reset(denali);
24c3fa36
CD
1436 iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
1437 iowrite32(CHIP_EN_DONT_CARE__FLAG,
bdca6dae 1438 denali->flash_reg + CHIP_ENABLE_DONT_CARE);
ce082596 1439
24c3fa36
CD
1440 iowrite32(0x0, denali->flash_reg + SPARE_AREA_SKIP_BYTES);
1441 iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
ce082596
JR
1442
1443 /* Should set value for these registers when init */
24c3fa36
CD
1444 iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
1445 iowrite32(1, denali->flash_reg + ECC_ENABLE);
ce082596
JR
1446}
1447
db9a3210
CD
1448/* Althogh controller spec said SLC ECC is forceb to be 4bit,
1449 * but denali controller in MRST only support 15bit and 8bit ECC
1450 * correction
1451 * */
1452#define ECC_8BITS 14
1453static struct nand_ecclayout nand_8bit_oob = {
1454 .eccbytes = 14,
ce082596
JR
1455};
1456
db9a3210
CD
1457#define ECC_15BITS 26
1458static struct nand_ecclayout nand_15bit_oob = {
1459 .eccbytes = 26,
ce082596
JR
1460};
1461
1462static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
1463static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
1464
1465static struct nand_bbt_descr bbt_main_descr = {
1466 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1467 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1468 .offs = 8,
1469 .len = 4,
1470 .veroffs = 12,
1471 .maxblocks = 4,
1472 .pattern = bbt_pattern,
1473};
1474
1475static struct nand_bbt_descr bbt_mirror_descr = {
1476 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1477 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1478 .offs = 8,
1479 .len = 4,
1480 .veroffs = 12,
1481 .maxblocks = 4,
1482 .pattern = mirror_pattern,
1483};
1484
421f91d2 1485/* initialize driver data structures */
ce082596
JR
1486void denali_drv_init(struct denali_nand_info *denali)
1487{
1488 denali->idx = 0;
1489
1490 /* setup interrupt handler */
5bac3acf 1491 /* the completion object will be used to notify
ce082596
JR
1492 * the callee that the interrupt is done */
1493 init_completion(&denali->complete);
1494
1495 /* the spinlock will be used to synchronize the ISR
5bac3acf 1496 * with any element that might be access shared
ce082596
JR
1497 * data (interrupt status) */
1498 spin_lock_init(&denali->irq_lock);
1499
1500 /* indicate that MTD has not selected a valid bank yet */
1501 denali->flash_bank = CHIP_SELECT_INVALID;
1502
1503 /* initialize our irq_status variable to indicate no interrupts */
1504 denali->irq_status = 0;
1505}
1506
1507/* driver entry point */
1508static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
1509{
1510 int ret = -ENODEV;
1511 resource_size_t csr_base, mem_base;
1512 unsigned long csr_len, mem_len;
1513 struct denali_nand_info *denali;
1514
1515 nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
1516 __FILE__, __LINE__, __func__);
1517
1518 denali = kzalloc(sizeof(*denali), GFP_KERNEL);
1519 if (!denali)
1520 return -ENOMEM;
1521
1522 ret = pci_enable_device(dev);
1523 if (ret) {
1524 printk(KERN_ERR "Spectra: pci_enable_device failed.\n");
5c0eb900 1525 goto failed_alloc_memery;
ce082596
JR
1526 }
1527
1528 if (id->driver_data == INTEL_CE4100) {
5bac3acf
C
1529 /* Due to a silicon limitation, we can only support
1530 * ONFI timing mode 1 and below.
1531 */
345b1d3b 1532 if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
bdca6dae
CD
1533 printk(KERN_ERR "Intel CE4100 only supports"
1534 " ONFI timing mode 1 or below\n");
ce082596 1535 ret = -EINVAL;
5c0eb900 1536 goto failed_enable_dev;
ce082596
JR
1537 }
1538 denali->platform = INTEL_CE4100;
1539 mem_base = pci_resource_start(dev, 0);
1540 mem_len = pci_resource_len(dev, 1);
1541 csr_base = pci_resource_start(dev, 1);
1542 csr_len = pci_resource_len(dev, 1);
1543 } else {
1544 denali->platform = INTEL_MRST;
1545 csr_base = pci_resource_start(dev, 0);
5c0eb900 1546 csr_len = pci_resource_len(dev, 0);
ce082596
JR
1547 mem_base = pci_resource_start(dev, 1);
1548 mem_len = pci_resource_len(dev, 1);
1549 if (!mem_len) {
1550 mem_base = csr_base + csr_len;
1551 mem_len = csr_len;
1552 nand_dbg_print(NAND_DBG_WARN,
bdca6dae
CD
1553 "Spectra: No second"
1554 " BAR for PCI device;"
1555 " assuming %08Lx\n",
ce082596
JR
1556 (uint64_t)csr_base);
1557 }
1558 }
1559
1560 /* Is 32-bit DMA supported? */
1561 ret = pci_set_dma_mask(dev, DMA_BIT_MASK(32));
1562
345b1d3b 1563 if (ret) {
ce082596 1564 printk(KERN_ERR "Spectra: no usable DMA configuration\n");
5c0eb900 1565 goto failed_enable_dev;
ce082596 1566 }
bdca6dae
CD
1567 denali->buf.dma_buf =
1568 pci_map_single(dev, denali->buf.buf,
1569 DENALI_BUF_SIZE,
1570 PCI_DMA_BIDIRECTIONAL);
ce082596 1571
345b1d3b 1572 if (pci_dma_mapping_error(dev, denali->buf.dma_buf)) {
ce082596 1573 printk(KERN_ERR "Spectra: failed to map DMA buffer\n");
5c0eb900 1574 goto failed_enable_dev;
ce082596
JR
1575 }
1576
1577 pci_set_master(dev);
1578 denali->dev = dev;
1579
1580 ret = pci_request_regions(dev, DENALI_NAND_NAME);
1581 if (ret) {
1582 printk(KERN_ERR "Spectra: Unable to request memory regions\n");
5c0eb900 1583 goto failed_dma_map;
ce082596
JR
1584 }
1585
1586 denali->flash_reg = ioremap_nocache(csr_base, csr_len);
1587 if (!denali->flash_reg) {
1588 printk(KERN_ERR "Spectra: Unable to remap memory region\n");
1589 ret = -ENOMEM;
5c0eb900 1590 goto failed_req_regions;
ce082596
JR
1591 }
1592 nand_dbg_print(NAND_DBG_DEBUG, "Spectra: CSR 0x%08Lx -> 0x%p (0x%lx)\n",
1593 (uint64_t)csr_base, denali->flash_reg, csr_len);
1594
1595 denali->flash_mem = ioremap_nocache(mem_base, mem_len);
1596 if (!denali->flash_mem) {
1597 printk(KERN_ERR "Spectra: ioremap_nocache failed!");
ce082596 1598 ret = -ENOMEM;
5c0eb900 1599 goto failed_remap_reg;
ce082596
JR
1600 }
1601
1602 nand_dbg_print(NAND_DBG_WARN,
1603 "Spectra: Remapped flash base address: "
1604 "0x%p, len: %ld\n",
1605 denali->flash_mem, csr_len);
1606
1607 denali_hw_init(denali);
1608 denali_drv_init(denali);
1609
1610 nand_dbg_print(NAND_DBG_DEBUG, "Spectra: IRQ %d\n", dev->irq);
1611 if (request_irq(dev->irq, denali_isr, IRQF_SHARED,
1612 DENALI_NAND_NAME, denali)) {
1613 printk(KERN_ERR "Spectra: Unable to allocate IRQ\n");
1614 ret = -ENODEV;
5c0eb900 1615 goto failed_remap_mem;
ce082596
JR
1616 }
1617
1618 /* now that our ISR is registered, we can enable interrupts */
eda936ef 1619 denali_set_intr_modes(denali, true);
ce082596
JR
1620
1621 pci_set_drvdata(dev, denali);
1622
eda936ef 1623 denali_nand_timing_set(denali);
ce082596
JR
1624
1625 nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:"
1626 "acc_clks: %d, re_2_we: %d, we_2_re: %d,"
1627 "addr_2_data: %d, rdwr_en_lo_cnt: %d, "
1628 "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
1629 ioread32(denali->flash_reg + ACC_CLKS),
1630 ioread32(denali->flash_reg + RE_2_WE),
1631 ioread32(denali->flash_reg + WE_2_RE),
1632 ioread32(denali->flash_reg + ADDR_2_DATA),
1633 ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
1634 ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
1635 ioread32(denali->flash_reg + CS_SETUP_CNT));
1636
1637 denali->mtd.name = "Denali NAND";
1638 denali->mtd.owner = THIS_MODULE;
1639 denali->mtd.priv = &denali->nand;
1640
1641 /* register the driver with the NAND core subsystem */
1642 denali->nand.select_chip = denali_select_chip;
1643 denali->nand.cmdfunc = denali_cmdfunc;
1644 denali->nand.read_byte = denali_read_byte;
1645 denali->nand.waitfunc = denali_waitfunc;
1646
5bac3acf 1647 /* scan for NAND devices attached to the controller
ce082596 1648 * this is the first stage in a two step process to register
5bac3acf 1649 * with the nand subsystem */
345b1d3b 1650 if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL)) {
ce082596 1651 ret = -ENXIO;
5c0eb900 1652 goto failed_req_irq;
ce082596 1653 }
5bac3acf 1654
66406524
CD
1655 /* MTD supported page sizes vary by kernel. We validate our
1656 * kernel supports the device here.
1657 */
1658 if (denali->mtd.writesize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) {
1659 ret = -ENODEV;
1660 printk(KERN_ERR "Spectra: device size not supported by this "
1661 "version of MTD.");
5c0eb900 1662 goto failed_req_irq;
66406524
CD
1663 }
1664
08b9ab99
CD
1665 /* support for multi nand
1666 * MTD known nothing about multi nand,
1667 * so we should tell it the real pagesize
1668 * and anything necessery
1669 */
1670 denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
1671 denali->nand.chipsize <<= (denali->devnum - 1);
1672 denali->nand.page_shift += (denali->devnum - 1);
1673 denali->nand.pagemask = (denali->nand.chipsize >>
1674 denali->nand.page_shift) - 1;
1675 denali->nand.bbt_erase_shift += (denali->devnum - 1);
1676 denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
1677 denali->nand.chip_shift += (denali->devnum - 1);
1678 denali->mtd.writesize <<= (denali->devnum - 1);
1679 denali->mtd.oobsize <<= (denali->devnum - 1);
1680 denali->mtd.erasesize <<= (denali->devnum - 1);
1681 denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
1682 denali->bbtskipbytes *= denali->devnum;
1683
5bac3acf
C
1684 /* second stage of the NAND scan
1685 * this stage requires information regarding ECC and
1686 * bad block management. */
ce082596
JR
1687
1688 /* Bad block management */
1689 denali->nand.bbt_td = &bbt_main_descr;
1690 denali->nand.bbt_md = &bbt_mirror_descr;
1691
1692 /* skip the scan for now until we have OOB read and write support */
1693 denali->nand.options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN;
1694 denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
1695
db9a3210
CD
1696 /* Denali Controller only support 15bit and 8bit ECC in MRST,
1697 * so just let controller do 15bit ECC for MLC and 8bit ECC for
1698 * SLC if possible.
1699 * */
1700 if (denali->nand.cellinfo & 0xc &&
1701 (denali->mtd.oobsize > (denali->bbtskipbytes +
1702 ECC_15BITS * (denali->mtd.writesize /
1703 ECC_SECTOR_SIZE)))) {
1704 /* if MLC OOB size is large enough, use 15bit ECC*/
1705 denali->nand.ecc.layout = &nand_15bit_oob;
1706 denali->nand.ecc.bytes = ECC_15BITS;
24c3fa36 1707 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
db9a3210
CD
1708 } else if (denali->mtd.oobsize < (denali->bbtskipbytes +
1709 ECC_8BITS * (denali->mtd.writesize /
1710 ECC_SECTOR_SIZE))) {
1711 printk(KERN_ERR "Your NAND chip OOB is not large enough to"
1712 " contain 8bit ECC correction codes");
5c0eb900 1713 goto failed_req_irq;
db9a3210
CD
1714 } else {
1715 denali->nand.ecc.layout = &nand_8bit_oob;
1716 denali->nand.ecc.bytes = ECC_8BITS;
24c3fa36 1717 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
ce082596
JR
1718 }
1719
08b9ab99 1720 denali->nand.ecc.bytes *= denali->devnum;
db9a3210
CD
1721 denali->nand.ecc.layout->eccbytes *=
1722 denali->mtd.writesize / ECC_SECTOR_SIZE;
1723 denali->nand.ecc.layout->oobfree[0].offset =
1724 denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
1725 denali->nand.ecc.layout->oobfree[0].length =
1726 denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
1727 denali->bbtskipbytes;
1728
66406524
CD
1729 /* Let driver know the total blocks number and
1730 * how many blocks contained by each nand chip.
1731 * blksperchip will help driver to know how many
1732 * blocks is taken by FW.
1733 * */
1734 denali->totalblks = denali->mtd.size >>
1735 denali->nand.phys_erase_shift;
1736 denali->blksperchip = denali->totalblks / denali->nand.numchips;
1737
5bac3acf
C
1738 /* These functions are required by the NAND core framework, otherwise,
1739 * the NAND core will assert. However, we don't need them, so we'll stub
1740 * them out. */
ce082596
JR
1741 denali->nand.ecc.calculate = denali_ecc_calculate;
1742 denali->nand.ecc.correct = denali_ecc_correct;
1743 denali->nand.ecc.hwctl = denali_ecc_hwctl;
1744
1745 /* override the default read operations */
08b9ab99 1746 denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
ce082596
JR
1747 denali->nand.ecc.read_page = denali_read_page;
1748 denali->nand.ecc.read_page_raw = denali_read_page_raw;
1749 denali->nand.ecc.write_page = denali_write_page;
1750 denali->nand.ecc.write_page_raw = denali_write_page_raw;
1751 denali->nand.ecc.read_oob = denali_read_oob;
1752 denali->nand.ecc.write_oob = denali_write_oob;
1753 denali->nand.erase_cmd = denali_erase;
1754
345b1d3b 1755 if (nand_scan_tail(&denali->mtd)) {
ce082596 1756 ret = -ENXIO;
5c0eb900 1757 goto failed_req_irq;
ce082596
JR
1758 }
1759
1760 ret = add_mtd_device(&denali->mtd);
1761 if (ret) {
bdca6dae
CD
1762 printk(KERN_ERR "Spectra: Failed to register"
1763 " MTD device: %d\n", ret);
5c0eb900 1764 goto failed_req_irq;
ce082596
JR
1765 }
1766 return 0;
1767
5c0eb900 1768failed_req_irq:
ce082596 1769 denali_irq_cleanup(dev->irq, denali);
5c0eb900 1770failed_remap_mem:
ce082596 1771 iounmap(denali->flash_mem);
5c0eb900
CD
1772failed_remap_reg:
1773 iounmap(denali->flash_reg);
1774failed_req_regions:
ce082596 1775 pci_release_regions(dev);
5c0eb900 1776failed_dma_map:
5bac3acf 1777 pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
ce082596 1778 PCI_DMA_BIDIRECTIONAL);
5c0eb900
CD
1779failed_enable_dev:
1780 pci_disable_device(dev);
1781failed_alloc_memery:
ce082596
JR
1782 kfree(denali);
1783 return ret;
1784}
1785
1786/* driver exit point */
1787static void denali_pci_remove(struct pci_dev *dev)
1788{
1789 struct denali_nand_info *denali = pci_get_drvdata(dev);
1790
1791 nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n",
1792 __FILE__, __LINE__, __func__);
1793
1794 nand_release(&denali->mtd);
1795 del_mtd_device(&denali->mtd);
1796
1797 denali_irq_cleanup(dev->irq, denali);
1798
1799 iounmap(denali->flash_reg);
1800 iounmap(denali->flash_mem);
1801 pci_release_regions(dev);
1802 pci_disable_device(dev);
5bac3acf 1803 pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
ce082596
JR
1804 PCI_DMA_BIDIRECTIONAL);
1805 pci_set_drvdata(dev, NULL);
1806 kfree(denali);
1807}
1808
1809MODULE_DEVICE_TABLE(pci, denali_pci_ids);
1810
1811static struct pci_driver denali_pci_driver = {
1812 .name = DENALI_NAND_NAME,
1813 .id_table = denali_pci_ids,
1814 .probe = denali_pci_probe,
1815 .remove = denali_pci_remove,
1816};
1817
1818static int __devinit denali_init(void)
1819{
bdca6dae
CD
1820 printk(KERN_INFO "Spectra MTD driver built on %s @ %s\n",
1821 __DATE__, __TIME__);
ce082596
JR
1822 return pci_register_driver(&denali_pci_driver);
1823}
1824
1825/* Free memory */
1826static void __devexit denali_exit(void)
1827{
1828 pci_unregister_driver(&denali_pci_driver);
1829}
1830
1831module_init(denali_init);
1832module_exit(denali_exit);
This page took 0.136569 seconds and 5 git commands to generate.