mtd: st_spi_fsm: Fix [-Wsign-compare] build warning
[deliverable/linux.git] / drivers / mtd / nand / denali.c
CommitLineData
ce082596
JR
1/*
2 * NAND Flash Controller Device Driver
3 * Copyright © 2009-2010, Intel Corporation and its suppliers.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 *
18 */
ce082596
JR
19#include <linux/interrupt.h>
20#include <linux/delay.h>
84457949 21#include <linux/dma-mapping.h>
ce082596
JR
22#include <linux/wait.h>
23#include <linux/mutex.h>
b8664b37 24#include <linux/slab.h>
ce082596
JR
25#include <linux/mtd/mtd.h>
26#include <linux/module.h>
27
28#include "denali.h"
29
30MODULE_LICENSE("GPL");
31
43914a2d
MY
32/*
33 * We define a module parameter that allows the user to override
ce082596
JR
34 * the hardware and decide what timing mode should be used.
35 */
36#define NAND_DEFAULT_TIMINGS -1
37
38static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
39module_param(onfi_timing_mode, int, S_IRUGO);
8125450c
MY
40MODULE_PARM_DESC(onfi_timing_mode,
41 "Overrides default ONFI setting. -1 indicates use default timings");
ce082596
JR
42
43#define DENALI_NAND_NAME "denali-nand"
44
43914a2d
MY
45/*
46 * We define a macro here that combines all interrupts this driver uses into
47 * a single constant value, for convenience.
48 */
9589bf5b
JI
49#define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \
50 INTR_STATUS__ECC_TRANSACTION_DONE | \
51 INTR_STATUS__ECC_ERR | \
52 INTR_STATUS__PROGRAM_FAIL | \
53 INTR_STATUS__LOAD_COMP | \
54 INTR_STATUS__PROGRAM_COMP | \
55 INTR_STATUS__TIME_OUT | \
56 INTR_STATUS__ERASE_FAIL | \
57 INTR_STATUS__RST_COMP | \
58 INTR_STATUS__ERASE_COMP)
ce082596 59
43914a2d
MY
60/*
61 * indicates whether or not the internal value for the flash bank is
62 * valid or not
63 */
5bac3acf 64#define CHIP_SELECT_INVALID -1
ce082596
JR
65
66#define SUPPORT_8BITECC 1
67
43914a2d
MY
68/*
69 * This macro divides two integers and rounds fractional values up
70 * to the nearest integer value.
71 */
ce082596
JR
72#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
73
43914a2d
MY
74/*
75 * this macro allows us to convert from an MTD structure to our own
ce082596
JR
76 * device context (denali) structure.
77 */
78#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
79
43914a2d
MY
80/*
81 * These constants are defined by the driver to enable common driver
82 * configuration options.
83 */
ce082596
JR
84#define SPARE_ACCESS 0x41
85#define MAIN_ACCESS 0x42
86#define MAIN_SPARE_ACCESS 0x43
2902330e 87#define PIPELINE_ACCESS 0x2000
ce082596
JR
88
89#define DENALI_READ 0
90#define DENALI_WRITE 0x100
91
92/* types of device accesses. We can issue commands and get status */
93#define COMMAND_CYCLE 0
94#define ADDR_CYCLE 1
95#define STATUS_CYCLE 2
96
43914a2d
MY
97/*
98 * this is a helper macro that allows us to
99 * format the bank into the proper bits for the controller
100 */
ce082596
JR
101#define BANK(x) ((x) << 24)
102
ce082596
JR
103/* forward declarations */
104static void clear_interrupts(struct denali_nand_info *denali);
bdca6dae
CD
105static uint32_t wait_for_irq(struct denali_nand_info *denali,
106 uint32_t irq_mask);
107static void denali_irq_enable(struct denali_nand_info *denali,
108 uint32_t int_mask);
ce082596
JR
109static uint32_t read_interrupt_status(struct denali_nand_info *denali);
110
43914a2d
MY
111/*
112 * Certain operations for the denali NAND controller use an indexed mode to
113 * read/write data. The operation is performed by writing the address value
114 * of the command to the device memory followed by the data. This function
bdca6dae 115 * abstracts this common operation.
43914a2d 116 */
bdca6dae
CD
117static void index_addr(struct denali_nand_info *denali,
118 uint32_t address, uint32_t data)
ce082596 119{
24c3fa36
CD
120 iowrite32(address, denali->flash_mem);
121 iowrite32(data, denali->flash_mem + 0x10);
ce082596
JR
122}
123
124/* Perform an indexed read of the device */
125static void index_addr_read_data(struct denali_nand_info *denali,
126 uint32_t address, uint32_t *pdata)
127{
24c3fa36 128 iowrite32(address, denali->flash_mem);
ce082596
JR
129 *pdata = ioread32(denali->flash_mem + 0x10);
130}
131
43914a2d
MY
132/*
133 * We need to buffer some data for some of the NAND core routines.
134 * The operations manage buffering that data.
135 */
ce082596
JR
136static void reset_buf(struct denali_nand_info *denali)
137{
138 denali->buf.head = denali->buf.tail = 0;
139}
140
141static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
142{
ce082596
JR
143 denali->buf.buf[denali->buf.tail++] = byte;
144}
145
146/* reads the status of the device */
147static void read_status(struct denali_nand_info *denali)
148{
5637b69d 149 uint32_t cmd;
ce082596
JR
150
151 /* initialize the data buffer to store status */
152 reset_buf(denali);
153
f0bc0c77
CD
154 cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
155 if (cmd)
156 write_byte_to_buf(denali, NAND_STATUS_WP);
157 else
158 write_byte_to_buf(denali, 0);
ce082596
JR
159}
160
161/* resets a specific device connected to the core */
162static void reset_bank(struct denali_nand_info *denali)
163{
5637b69d 164 uint32_t irq_status;
8125450c 165 uint32_t irq_mask = INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT;
ce082596
JR
166
167 clear_interrupts(denali);
168
9589bf5b 169 iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
ce082596
JR
170
171 irq_status = wait_for_irq(denali, irq_mask);
5bac3acf 172
9589bf5b 173 if (irq_status & INTR_STATUS__TIME_OUT)
84457949 174 dev_err(denali->dev, "reset bank failed.\n");
ce082596
JR
175}
176
177/* Reset the flash controller */
eda936ef 178static uint16_t denali_nand_reset(struct denali_nand_info *denali)
ce082596 179{
93e3c8ad 180 int i;
ce082596 181
84457949 182 dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
8125450c 183 __FILE__, __LINE__, __func__);
ce082596 184
8125450c 185 for (i = 0; i < denali->max_banks; i++)
9589bf5b
JI
186 iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
187 denali->flash_reg + INTR_STATUS(i));
ce082596 188
8125450c 189 for (i = 0; i < denali->max_banks; i++) {
9589bf5b 190 iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
8125450c 191 while (!(ioread32(denali->flash_reg + INTR_STATUS(i)) &
9589bf5b 192 (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
628bfd41 193 cpu_relax();
9589bf5b
JI
194 if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
195 INTR_STATUS__TIME_OUT)
84457949 196 dev_dbg(denali->dev,
ce082596
JR
197 "NAND Reset operation timed out on bank %d\n", i);
198 }
199
c89eeda8 200 for (i = 0; i < denali->max_banks; i++)
9589bf5b 201 iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
8125450c 202 denali->flash_reg + INTR_STATUS(i));
ce082596
JR
203
204 return PASS;
205}
206
43914a2d
MY
207/*
208 * this routine calculates the ONFI timing values for a given mode and
bdca6dae
CD
209 * programs the clocking register accordingly. The mode is determined by
210 * the get_onfi_nand_para routine.
ce082596 211 */
eda936ef 212static void nand_onfi_timing_set(struct denali_nand_info *denali,
bdca6dae 213 uint16_t mode)
ce082596
JR
214{
215 uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
216 uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
217 uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
218 uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
219 uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
220 uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
221 uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
222 uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
223 uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
224 uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
225 uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
226 uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
227
228 uint16_t TclsRising = 1;
229 uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
230 uint16_t dv_window = 0;
231 uint16_t en_lo, en_hi;
232 uint16_t acc_clks;
233 uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
234
84457949 235 dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
8125450c 236 __FILE__, __LINE__, __func__);
ce082596
JR
237
238 en_lo = CEIL_DIV(Trp[mode], CLK_X);
239 en_hi = CEIL_DIV(Treh[mode], CLK_X);
240#if ONFI_BLOOM_TIME
241 if ((en_hi * CLK_X) < (Treh[mode] + 2))
242 en_hi++;
243#endif
244
245 if ((en_lo + en_hi) * CLK_X < Trc[mode])
246 en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
247
248 if ((en_lo + en_hi) < CLK_MULTI)
249 en_lo += CLK_MULTI - en_lo - en_hi;
250
251 while (dv_window < 8) {
252 data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
253
254 data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
255
8125450c
MY
256 data_invalid = data_invalid_rhoh < data_invalid_rloh ?
257 data_invalid_rhoh : data_invalid_rloh;
ce082596
JR
258
259 dv_window = data_invalid - Trea[mode];
260
261 if (dv_window < 8)
262 en_lo++;
263 }
264
265 acc_clks = CEIL_DIV(Trea[mode], CLK_X);
266
7d14ecd0 267 while (acc_clks * CLK_X - Trea[mode] < 3)
ce082596
JR
268 acc_clks++;
269
7d14ecd0 270 if (data_invalid - acc_clks * CLK_X < 2)
84457949 271 dev_warn(denali->dev, "%s, Line %d: Warning!\n",
8125450c 272 __FILE__, __LINE__);
ce082596
JR
273
274 addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
275 re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
276 re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
277 we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
278 cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
279 if (!TclsRising)
280 cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
281 if (cs_cnt == 0)
282 cs_cnt = 1;
283
284 if (Tcea[mode]) {
7d14ecd0 285 while (cs_cnt * CLK_X + Trea[mode] < Tcea[mode])
ce082596
JR
286 cs_cnt++;
287 }
288
289#if MODE5_WORKAROUND
290 if (mode == 5)
291 acc_clks = 5;
292#endif
293
294 /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
7d14ecd0
MY
295 if (ioread32(denali->flash_reg + MANUFACTURER_ID) == 0 &&
296 ioread32(denali->flash_reg + DEVICE_ID) == 0x88)
ce082596
JR
297 acc_clks = 6;
298
24c3fa36
CD
299 iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
300 iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
301 iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
302 iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
303 iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
304 iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
305 iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
306 iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
ce082596
JR
307}
308
ce082596
JR
309/* queries the NAND device to see what ONFI modes it supports. */
310static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
311{
312 int i;
43914a2d
MY
313
314 /*
315 * we needn't to do a reset here because driver has already
4c03bbdf 316 * reset all the banks before
43914a2d 317 */
ce082596
JR
318 if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
319 ONFI_TIMING_MODE__VALUE))
320 return FAIL;
321
322 for (i = 5; i > 0; i--) {
bdca6dae
CD
323 if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
324 (0x01 << i))
ce082596
JR
325 break;
326 }
327
eda936ef 328 nand_onfi_timing_set(denali, i);
ce082596 329
43914a2d
MY
330 /*
331 * By now, all the ONFI devices we know support the page cache
332 * rw feature. So here we enable the pipeline_rw_ahead feature
333 */
ce082596
JR
334 /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
335 /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */
336
337 return PASS;
338}
339
4c03bbdf
CD
340static void get_samsung_nand_para(struct denali_nand_info *denali,
341 uint8_t device_id)
ce082596 342{
4c03bbdf 343 if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
ce082596 344 /* Set timing register values according to datasheet */
24c3fa36
CD
345 iowrite32(5, denali->flash_reg + ACC_CLKS);
346 iowrite32(20, denali->flash_reg + RE_2_WE);
347 iowrite32(12, denali->flash_reg + WE_2_RE);
348 iowrite32(14, denali->flash_reg + ADDR_2_DATA);
349 iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
350 iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
351 iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
ce082596 352 }
ce082596
JR
353}
354
355static void get_toshiba_nand_para(struct denali_nand_info *denali)
356{
ce082596
JR
357 uint32_t tmp;
358
43914a2d
MY
359 /*
360 * Workaround to fix a controller bug which reports a wrong
361 * spare area size for some kind of Toshiba NAND device
362 */
ce082596
JR
363 if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
364 (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
24c3fa36 365 iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
ce082596
JR
366 tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
367 ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
24c3fa36 368 iowrite32(tmp,
bdca6dae 369 denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
ce082596 370#if SUPPORT_15BITECC
24c3fa36 371 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
ce082596 372#elif SUPPORT_8BITECC
24c3fa36 373 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
ce082596
JR
374#endif
375 }
ce082596
JR
376}
377
ef41e1bb
CD
378static void get_hynix_nand_para(struct denali_nand_info *denali,
379 uint8_t device_id)
ce082596 380{
ce082596
JR
381 uint32_t main_size, spare_size;
382
ef41e1bb 383 switch (device_id) {
ce082596
JR
384 case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
385 case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
24c3fa36
CD
386 iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
387 iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
388 iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
bdca6dae
CD
389 main_size = 4096 *
390 ioread32(denali->flash_reg + DEVICES_CONNECTED);
391 spare_size = 224 *
392 ioread32(denali->flash_reg + DEVICES_CONNECTED);
24c3fa36 393 iowrite32(main_size,
bdca6dae 394 denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
24c3fa36 395 iowrite32(spare_size,
bdca6dae 396 denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
24c3fa36 397 iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
ce082596 398#if SUPPORT_15BITECC
24c3fa36 399 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
ce082596 400#elif SUPPORT_8BITECC
24c3fa36 401 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
ce082596 402#endif
ce082596
JR
403 break;
404 default:
84457949 405 dev_warn(denali->dev,
8125450c
MY
406 "Spectra: Unknown Hynix NAND (Device ID: 0x%x).\n"
407 "Will use default parameter values instead.\n",
408 device_id);
ce082596
JR
409 }
410}
411
43914a2d
MY
412/*
413 * determines how many NAND chips are connected to the controller. Note for
b292c341 414 * Intel CE4100 devices we don't support more than one device.
ce082596
JR
415 */
416static void find_valid_banks(struct denali_nand_info *denali)
417{
c89eeda8 418 uint32_t id[denali->max_banks];
ce082596
JR
419 int i;
420
421 denali->total_used_banks = 1;
c89eeda8 422 for (i = 0; i < denali->max_banks; i++) {
3157d1ed
MY
423 index_addr(denali, MODE_11 | (i << 24) | 0, 0x90);
424 index_addr(denali, MODE_11 | (i << 24) | 1, 0);
8125450c 425 index_addr_read_data(denali, MODE_11 | (i << 24) | 2, &id[i]);
ce082596 426
84457949 427 dev_dbg(denali->dev,
ce082596
JR
428 "Return 1st ID for bank[%d]: %x\n", i, id[i]);
429
430 if (i == 0) {
431 if (!(id[i] & 0x0ff))
432 break; /* WTF? */
433 } else {
434 if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
435 denali->total_used_banks++;
436 else
437 break;
438 }
439 }
440
345b1d3b 441 if (denali->platform == INTEL_CE4100) {
43914a2d
MY
442 /*
443 * Platform limitations of the CE4100 device limit
ce082596 444 * users to a single chip solution for NAND.
5bac3acf
C
445 * Multichip support is not enabled.
446 */
345b1d3b 447 if (denali->total_used_banks != 1) {
84457949 448 dev_err(denali->dev,
8125450c 449 "Sorry, Intel CE4100 only supports a single NAND device.\n");
ce082596
JR
450 BUG();
451 }
452 }
84457949 453 dev_dbg(denali->dev,
ce082596
JR
454 "denali->total_used_banks: %d\n", denali->total_used_banks);
455}
456
c89eeda8
JI
457/*
458 * Use the configuration feature register to determine the maximum number of
459 * banks that the hardware supports.
460 */
461static void detect_max_banks(struct denali_nand_info *denali)
462{
463 uint32_t features = ioread32(denali->flash_reg + FEATURES);
464
465 denali->max_banks = 2 << (features & FEATURES__N_BANKS);
466}
467
ce082596
JR
468static void detect_partition_feature(struct denali_nand_info *denali)
469{
43914a2d
MY
470 /*
471 * For MRST platform, denali->fwblks represent the
66406524
CD
472 * number of blocks firmware is taken,
473 * FW is in protect partition and MTD driver has no
474 * permission to access it. So let driver know how many
475 * blocks it can't touch.
43914a2d 476 */
ce082596 477 if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
9589bf5b
JI
478 if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) &
479 PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
66406524 480 denali->fwblks =
9589bf5b
JI
481 ((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) &
482 MIN_MAX_BANK__MIN_VALUE) *
66406524 483 denali->blksperchip)
ce082596 484 +
9589bf5b
JI
485 (ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) &
486 MIN_BLK_ADDR__VALUE);
8125450c 487 } else {
66406524 488 denali->fwblks = SPECTRA_START_BLOCK;
8125450c
MY
489 }
490 } else {
66406524 491 denali->fwblks = SPECTRA_START_BLOCK;
8125450c 492 }
ce082596
JR
493}
494
eda936ef 495static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
ce082596
JR
496{
497 uint16_t status = PASS;
d68a5c3d 498 uint32_t id_bytes[8], addr;
93e3c8ad
MY
499 uint8_t maf_id, device_id;
500 int i;
ce082596 501
8125450c 502 dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
7cfffac0 503 __FILE__, __LINE__, __func__);
ce082596 504
43914a2d
MY
505 /*
506 * Use read id method to get device ID and other params.
507 * For some NAND chips, controller can't report the correct
508 * device ID by reading from DEVICE_ID register
509 */
3157d1ed
MY
510 addr = MODE_11 | BANK(denali->flash_bank);
511 index_addr(denali, addr | 0, 0x90);
512 index_addr(denali, addr | 1, 0);
d68a5c3d 513 for (i = 0; i < 8; i++)
ef41e1bb
CD
514 index_addr_read_data(denali, addr | 2, &id_bytes[i]);
515 maf_id = id_bytes[0];
516 device_id = id_bytes[1];
ce082596
JR
517
518 if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
519 ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
520 if (FAIL == get_onfi_nand_para(denali))
521 return FAIL;
ef41e1bb 522 } else if (maf_id == 0xEC) { /* Samsung NAND */
4c03bbdf 523 get_samsung_nand_para(denali, device_id);
ef41e1bb 524 } else if (maf_id == 0x98) { /* Toshiba NAND */
ce082596 525 get_toshiba_nand_para(denali);
ef41e1bb
CD
526 } else if (maf_id == 0xAD) { /* Hynix NAND */
527 get_hynix_nand_para(denali, device_id);
ce082596
JR
528 }
529
84457949 530 dev_info(denali->dev,
8125450c 531 "Dump timing register values:\n"
7cfffac0
CD
532 "acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
533 "we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
ce082596
JR
534 "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
535 ioread32(denali->flash_reg + ACC_CLKS),
536 ioread32(denali->flash_reg + RE_2_WE),
7cfffac0 537 ioread32(denali->flash_reg + RE_2_RE),
ce082596
JR
538 ioread32(denali->flash_reg + WE_2_RE),
539 ioread32(denali->flash_reg + ADDR_2_DATA),
540 ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
541 ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
542 ioread32(denali->flash_reg + CS_SETUP_CNT));
543
ce082596
JR
544 find_valid_banks(denali);
545
546 detect_partition_feature(denali);
547
43914a2d
MY
548 /*
549 * If the user specified to override the default timings
5bac3acf 550 * with a specific ONFI mode, we apply those changes here.
ce082596
JR
551 */
552 if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
eda936ef 553 nand_onfi_timing_set(denali, onfi_timing_mode);
ce082596
JR
554
555 return status;
556}
557
eda936ef 558static void denali_set_intr_modes(struct denali_nand_info *denali,
ce082596
JR
559 uint16_t INT_ENABLE)
560{
84457949 561 dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
8125450c 562 __FILE__, __LINE__, __func__);
ce082596
JR
563
564 if (INT_ENABLE)
24c3fa36 565 iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
ce082596 566 else
24c3fa36 567 iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
ce082596
JR
568}
569
43914a2d
MY
570/*
571 * validation function to verify that the controlling software is making
b292c341 572 * a valid request
ce082596
JR
573 */
574static inline bool is_flash_bank_valid(int flash_bank)
575{
7d14ecd0 576 return flash_bank >= 0 && flash_bank < 4;
ce082596
JR
577}
578
579static void denali_irq_init(struct denali_nand_info *denali)
580{
5637b69d 581 uint32_t int_mask;
9589bf5b 582 int i;
ce082596
JR
583
584 /* Disable global interrupts */
eda936ef 585 denali_set_intr_modes(denali, false);
ce082596
JR
586
587 int_mask = DENALI_IRQ_ALL;
588
589 /* Clear all status bits */
c89eeda8 590 for (i = 0; i < denali->max_banks; ++i)
9589bf5b 591 iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
ce082596
JR
592
593 denali_irq_enable(denali, int_mask);
594}
595
596static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
597{
eda936ef 598 denali_set_intr_modes(denali, false);
ce082596
JR
599 free_irq(irqnum, denali);
600}
601
bdca6dae
CD
602static void denali_irq_enable(struct denali_nand_info *denali,
603 uint32_t int_mask)
ce082596 604{
9589bf5b
JI
605 int i;
606
c89eeda8 607 for (i = 0; i < denali->max_banks; ++i)
9589bf5b 608 iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
ce082596
JR
609}
610
43914a2d
MY
611/*
612 * This function only returns when an interrupt that this driver cares about
5bac3acf 613 * occurs. This is to reduce the overhead of servicing interrupts
ce082596
JR
614 */
615static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
616{
a99d1796 617 return read_interrupt_status(denali) & DENALI_IRQ_ALL;
ce082596
JR
618}
619
620/* Interrupts are cleared by writing a 1 to the appropriate status bit */
bdca6dae
CD
621static inline void clear_interrupt(struct denali_nand_info *denali,
622 uint32_t irq_mask)
ce082596 623{
5637b69d 624 uint32_t intr_status_reg;
ce082596 625
9589bf5b 626 intr_status_reg = INTR_STATUS(denali->flash_bank);
ce082596 627
24c3fa36 628 iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
ce082596
JR
629}
630
631static void clear_interrupts(struct denali_nand_info *denali)
632{
5637b69d
MY
633 uint32_t status;
634
ce082596
JR
635 spin_lock_irq(&denali->irq_lock);
636
637 status = read_interrupt_status(denali);
8ae61ebd 638 clear_interrupt(denali, status);
ce082596 639
ce082596
JR
640 denali->irq_status = 0x0;
641 spin_unlock_irq(&denali->irq_lock);
642}
643
644static uint32_t read_interrupt_status(struct denali_nand_info *denali)
645{
5637b69d 646 uint32_t intr_status_reg;
ce082596 647
9589bf5b 648 intr_status_reg = INTR_STATUS(denali->flash_bank);
ce082596
JR
649
650 return ioread32(denali->flash_reg + intr_status_reg);
651}
652
43914a2d
MY
653/*
654 * This is the interrupt service routine. It handles all interrupts
655 * sent to this device. Note that on CE4100, this is a shared interrupt.
ce082596
JR
656 */
657static irqreturn_t denali_isr(int irq, void *dev_id)
658{
659 struct denali_nand_info *denali = dev_id;
5637b69d 660 uint32_t irq_status;
ce082596
JR
661 irqreturn_t result = IRQ_NONE;
662
663 spin_lock(&denali->irq_lock);
664
43914a2d 665 /* check to see if a valid NAND chip has been selected. */
345b1d3b 666 if (is_flash_bank_valid(denali->flash_bank)) {
43914a2d
MY
667 /*
668 * check to see if controller generated the interrupt,
669 * since this is a shared interrupt
670 */
bdca6dae
CD
671 irq_status = denali_irq_detected(denali);
672 if (irq_status != 0) {
ce082596
JR
673 /* handle interrupt */
674 /* first acknowledge it */
675 clear_interrupt(denali, irq_status);
43914a2d
MY
676 /*
677 * store the status in the device context for someone
678 * to read
679 */
ce082596
JR
680 denali->irq_status |= irq_status;
681 /* notify anyone who cares that it happened */
682 complete(&denali->complete);
683 /* tell the OS that we've handled this */
684 result = IRQ_HANDLED;
685 }
686 }
687 spin_unlock(&denali->irq_lock);
688 return result;
689}
690#define BANK(x) ((x) << 24)
691
692static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
693{
5637b69d
MY
694 unsigned long comp_res;
695 uint32_t intr_status;
ce082596
JR
696 unsigned long timeout = msecs_to_jiffies(1000);
697
345b1d3b 698 do {
bdca6dae
CD
699 comp_res =
700 wait_for_completion_timeout(&denali->complete, timeout);
ce082596
JR
701 spin_lock_irq(&denali->irq_lock);
702 intr_status = denali->irq_status;
703
345b1d3b 704 if (intr_status & irq_mask) {
ce082596
JR
705 denali->irq_status &= ~irq_mask;
706 spin_unlock_irq(&denali->irq_lock);
ce082596
JR
707 /* our interrupt was detected */
708 break;
ce082596 709 }
8125450c
MY
710
711 /*
712 * these are not the interrupts you are looking for -
713 * need to wait again
714 */
715 spin_unlock_irq(&denali->irq_lock);
ce082596
JR
716 } while (comp_res != 0);
717
345b1d3b 718 if (comp_res == 0) {
ce082596 719 /* timeout */
2a0a288e 720 pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
5bac3acf 721 intr_status, irq_mask);
ce082596
JR
722
723 intr_status = 0;
724 }
725 return intr_status;
726}
727
43914a2d
MY
728/*
729 * This helper function setups the registers for ECC and whether or not
730 * the spare area will be transferred.
731 */
5bac3acf 732static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
ce082596
JR
733 bool transfer_spare)
734{
5637b69d 735 int ecc_en_flag, transfer_spare_flag;
ce082596
JR
736
737 /* set ECC, transfer spare bits if needed */
738 ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
739 transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
740
741 /* Enable spare area/ECC per user's request. */
24c3fa36 742 iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
8125450c 743 iowrite32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
ce082596
JR
744}
745
43914a2d
MY
746/*
747 * sends a pipeline command operation to the controller. See the Denali NAND
b292c341 748 * controller's user guide for more information (section 4.2.3.6).
ce082596 749 */
bdca6dae 750static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
8125450c
MY
751 bool ecc_en, bool transfer_spare,
752 int access_type, int op)
ce082596
JR
753{
754 int status = PASS;
5637b69d
MY
755 uint32_t page_count = 1;
756 uint32_t addr, cmd, irq_status, irq_mask;
ce082596 757
a99d1796 758 if (op == DENALI_READ)
9589bf5b 759 irq_mask = INTR_STATUS__LOAD_COMP;
a99d1796
CD
760 else if (op == DENALI_WRITE)
761 irq_mask = 0;
762 else
763 BUG();
ce082596
JR
764
765 setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
766
5bac3acf 767 clear_interrupts(denali);
ce082596
JR
768
769 addr = BANK(denali->flash_bank) | denali->page;
770
345b1d3b 771 if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
5bac3acf 772 cmd = MODE_01 | addr;
24c3fa36 773 iowrite32(cmd, denali->flash_mem);
345b1d3b 774 } else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
ce082596 775 /* read spare area */
5bac3acf 776 cmd = MODE_10 | addr;
3157d1ed 777 index_addr(denali, cmd, access_type);
ce082596 778
5bac3acf 779 cmd = MODE_01 | addr;
24c3fa36 780 iowrite32(cmd, denali->flash_mem);
345b1d3b 781 } else if (op == DENALI_READ) {
ce082596 782 /* setup page read request for access type */
5bac3acf 783 cmd = MODE_10 | addr;
3157d1ed 784 index_addr(denali, cmd, access_type);
ce082596 785
43914a2d
MY
786 /*
787 * page 33 of the NAND controller spec indicates we should not
788 * use the pipeline commands in Spare area only mode.
789 * So we don't.
ce082596 790 */
345b1d3b 791 if (access_type == SPARE_ACCESS) {
ce082596 792 cmd = MODE_01 | addr;
24c3fa36 793 iowrite32(cmd, denali->flash_mem);
345b1d3b 794 } else {
3157d1ed 795 index_addr(denali, cmd,
2902330e 796 PIPELINE_ACCESS | op | page_count);
5bac3acf 797
43914a2d
MY
798 /*
799 * wait for command to be accepted
bdca6dae 800 * can always use status0 bit as the
43914a2d
MY
801 * mask is identical for each bank.
802 */
ce082596
JR
803 irq_status = wait_for_irq(denali, irq_mask);
804
345b1d3b 805 if (irq_status == 0) {
84457949 806 dev_err(denali->dev,
8125450c
MY
807 "cmd, page, addr on timeout (0x%x, 0x%x, 0x%x)\n",
808 cmd, denali->page, addr);
ce082596 809 status = FAIL;
345b1d3b 810 } else {
ce082596 811 cmd = MODE_01 | addr;
24c3fa36 812 iowrite32(cmd, denali->flash_mem);
ce082596
JR
813 }
814 }
815 }
816 return status;
817}
818
819/* helper function that simply writes a buffer to the flash */
bdca6dae 820static int write_data_to_flash_mem(struct denali_nand_info *denali,
8125450c 821 const uint8_t *buf, int len)
ce082596 822{
93e3c8ad
MY
823 uint32_t *buf32;
824 int i;
ce082596 825
43914a2d
MY
826 /*
827 * verify that the len is a multiple of 4.
828 * see comment in read_data_from_flash_mem()
829 */
ce082596
JR
830 BUG_ON((len % 4) != 0);
831
832 /* write the data to the flash memory */
833 buf32 = (uint32_t *)buf;
834 for (i = 0; i < len / 4; i++)
24c3fa36 835 iowrite32(*buf32++, denali->flash_mem + 0x10);
8125450c 836 return i * 4; /* intent is to return the number of bytes read */
ce082596
JR
837}
838
839/* helper function that simply reads a buffer from the flash */
bdca6dae 840static int read_data_from_flash_mem(struct denali_nand_info *denali,
8125450c 841 uint8_t *buf, int len)
ce082596 842{
93e3c8ad
MY
843 uint32_t *buf32;
844 int i;
ce082596 845
43914a2d
MY
846 /*
847 * we assume that len will be a multiple of 4, if not it would be nice
848 * to know about it ASAP rather than have random failures...
849 * This assumption is based on the fact that this function is designed
850 * to be used to read flash pages, which are typically multiples of 4.
ce082596 851 */
ce082596
JR
852 BUG_ON((len % 4) != 0);
853
854 /* transfer the data from the flash */
855 buf32 = (uint32_t *)buf;
856 for (i = 0; i < len / 4; i++)
ce082596 857 *buf32++ = ioread32(denali->flash_mem + 0x10);
8125450c 858 return i * 4; /* intent is to return the number of bytes read */
ce082596
JR
859}
860
861/* writes OOB data to the device */
862static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
863{
864 struct denali_nand_info *denali = mtd_to_denali(mtd);
5637b69d 865 uint32_t irq_status;
9589bf5b
JI
866 uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
867 INTR_STATUS__PROGRAM_FAIL;
ce082596
JR
868 int status = 0;
869
870 denali->page = page;
871
5bac3acf 872 if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
345b1d3b 873 DENALI_WRITE) == PASS) {
ce082596
JR
874 write_data_to_flash_mem(denali, buf, mtd->oobsize);
875
ce082596
JR
876 /* wait for operation to complete */
877 irq_status = wait_for_irq(denali, irq_mask);
878
345b1d3b 879 if (irq_status == 0) {
84457949 880 dev_err(denali->dev, "OOB write failed\n");
ce082596
JR
881 status = -EIO;
882 }
345b1d3b 883 } else {
84457949 884 dev_err(denali->dev, "unable to send pipeline command\n");
5bac3acf 885 status = -EIO;
ce082596
JR
886 }
887 return status;
888}
889
890/* reads OOB data from the device */
891static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
892{
893 struct denali_nand_info *denali = mtd_to_denali(mtd);
5637b69d
MY
894 uint32_t irq_mask = INTR_STATUS__LOAD_COMP;
895 uint32_t irq_status, addr, cmd;
ce082596
JR
896
897 denali->page = page;
898
5bac3acf 899 if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
345b1d3b 900 DENALI_READ) == PASS) {
5bac3acf 901 read_data_from_flash_mem(denali, buf, mtd->oobsize);
ce082596 902
43914a2d
MY
903 /*
904 * wait for command to be accepted
905 * can always use status0 bit as the
906 * mask is identical for each bank.
907 */
ce082596
JR
908 irq_status = wait_for_irq(denali, irq_mask);
909
910 if (irq_status == 0)
84457949 911 dev_err(denali->dev, "page on OOB timeout %d\n",
bdca6dae 912 denali->page);
ce082596 913
43914a2d
MY
914 /*
915 * We set the device back to MAIN_ACCESS here as I observed
ce082596
JR
916 * instability with the controller if you do a block erase
917 * and the last transaction was a SPARE_ACCESS. Block erase
918 * is reliable (according to the MTD test infrastructure)
5bac3acf 919 * if you are in MAIN_ACCESS.
ce082596
JR
920 */
921 addr = BANK(denali->flash_bank) | denali->page;
5bac3acf 922 cmd = MODE_10 | addr;
3157d1ed 923 index_addr(denali, cmd, MAIN_ACCESS);
ce082596
JR
924 }
925}
926
43914a2d
MY
927/*
928 * this function examines buffers to see if they contain data that
ce082596
JR
929 * indicate that the buffer is part of an erased region of flash.
930 */
919193ce 931static bool is_erased(uint8_t *buf, int len)
ce082596 932{
5637b69d 933 int i;
8125450c 934
ce082596 935 for (i = 0; i < len; i++)
ce082596 936 if (buf[i] != 0xFF)
ce082596 937 return false;
ce082596
JR
938 return true;
939}
940#define ECC_SECTOR_SIZE 512
941
942#define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
943#define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
944#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
8ae61ebd
CD
945#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
946#define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
ce082596
JR
947#define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
948
5bac3acf 949static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
3f91e94f 950 uint32_t irq_status, unsigned int *max_bitflips)
ce082596
JR
951{
952 bool check_erased_page = false;
3f91e94f 953 unsigned int bitflips = 0;
ce082596 954
9589bf5b 955 if (irq_status & INTR_STATUS__ECC_ERR) {
ce082596 956 /* read the ECC errors. we'll ignore them for now */
5637b69d
MY
957 uint32_t err_address, err_correction_info, err_byte,
958 err_sector, err_device, err_correction_value;
8ae61ebd 959 denali_set_intr_modes(denali, false);
ce082596 960
345b1d3b 961 do {
5bac3acf 962 err_address = ioread32(denali->flash_reg +
ce082596
JR
963 ECC_ERROR_ADDRESS);
964 err_sector = ECC_SECTOR(err_address);
965 err_byte = ECC_BYTE(err_address);
966
5bac3acf 967 err_correction_info = ioread32(denali->flash_reg +
ce082596 968 ERR_CORRECTION_INFO);
5bac3acf 969 err_correction_value =
ce082596
JR
970 ECC_CORRECTION_VALUE(err_correction_info);
971 err_device = ECC_ERR_DEVICE(err_correction_info);
972
345b1d3b 973 if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
43914a2d
MY
974 /*
975 * If err_byte is larger than ECC_SECTOR_SIZE,
25985edc 976 * means error happened in OOB, so we ignore
8ae61ebd
CD
977 * it. It's no need for us to correct it
978 * err_device is represented the NAND error
979 * bits are happened in if there are more
980 * than one NAND connected.
43914a2d 981 */
8ae61ebd
CD
982 if (err_byte < ECC_SECTOR_SIZE) {
983 int offset;
8125450c 984
8ae61ebd
CD
985 offset = (err_sector *
986 ECC_SECTOR_SIZE +
987 err_byte) *
988 denali->devnum +
989 err_device;
ce082596
JR
990 /* correct the ECC error */
991 buf[offset] ^= err_correction_value;
992 denali->mtd.ecc_stats.corrected++;
3f91e94f 993 bitflips++;
ce082596 994 }
345b1d3b 995 } else {
43914a2d
MY
996 /*
997 * if the error is not correctable, need to
bdca6dae
CD
998 * look at the page to see if it is an erased
999 * page. if so, then it's not a real ECC error
43914a2d 1000 */
ce082596
JR
1001 check_erased_page = true;
1002 }
ce082596 1003 } while (!ECC_LAST_ERR(err_correction_info));
43914a2d
MY
1004 /*
1005 * Once handle all ecc errors, controller will triger
8ae61ebd
CD
1006 * a ECC_TRANSACTION_DONE interrupt, so here just wait
1007 * for a while for this interrupt
43914a2d 1008 */
8ae61ebd 1009 while (!(read_interrupt_status(denali) &
9589bf5b 1010 INTR_STATUS__ECC_TRANSACTION_DONE))
8ae61ebd
CD
1011 cpu_relax();
1012 clear_interrupts(denali);
1013 denali_set_intr_modes(denali, true);
ce082596 1014 }
3f91e94f 1015 *max_bitflips = bitflips;
ce082596
JR
1016 return check_erased_page;
1017}
1018
1019/* programs the controller to either enable/disable DMA transfers */
aadff49c 1020static void denali_enable_dma(struct denali_nand_info *denali, bool en)
ce082596 1021{
5637b69d 1022 iowrite32(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE);
ce082596
JR
1023 ioread32(denali->flash_reg + DMA_ENABLE);
1024}
1025
1026/* setups the HW to perform the data DMA */
aadff49c 1027static void denali_setup_dma(struct denali_nand_info *denali, int op)
ce082596 1028{
5637b69d 1029 uint32_t mode;
ce082596 1030 const int page_count = 1;
3157d1ed 1031 uint32_t addr = denali->buf.dma_buf;
ce082596
JR
1032
1033 mode = MODE_10 | BANK(denali->flash_bank);
1034
1035 /* DMA is a four step process */
1036
1037 /* 1. setup transfer type and # of pages */
1038 index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
1039
1040 /* 2. set memory high address bits 23:8 */
3157d1ed 1041 index_addr(denali, mode | ((addr >> 16) << 8), 0x2200);
ce082596
JR
1042
1043 /* 3. set memory low address bits 23:8 */
3157d1ed 1044 index_addr(denali, mode | ((addr & 0xff) << 8), 0x2300);
ce082596 1045
43914a2d 1046 /* 4. interrupt when complete, burst len = 64 bytes */
ce082596
JR
1047 index_addr(denali, mode | 0x14000, 0x2400);
1048}
1049
43914a2d
MY
1050/*
1051 * writes a page. user specifies type, and this function handles the
1052 * configuration details.
1053 */
fdbad98d 1054static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
ce082596
JR
1055 const uint8_t *buf, bool raw_xfer)
1056{
1057 struct denali_nand_info *denali = mtd_to_denali(mtd);
ce082596
JR
1058 dma_addr_t addr = denali->buf.dma_buf;
1059 size_t size = denali->mtd.writesize + denali->mtd.oobsize;
5637b69d 1060 uint32_t irq_status;
9589bf5b
JI
1061 uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
1062 INTR_STATUS__PROGRAM_FAIL;
ce082596 1063
43914a2d
MY
1064 /*
1065 * if it is a raw xfer, we want to disable ecc and send the spare area.
ce082596
JR
1066 * !raw_xfer - enable ecc
1067 * raw_xfer - transfer spare
1068 */
1069 setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
1070
1071 /* copy buffer into DMA buffer */
1072 memcpy(denali->buf.buf, buf, mtd->writesize);
1073
345b1d3b 1074 if (raw_xfer) {
ce082596 1075 /* transfer the data to the spare area */
5bac3acf
C
1076 memcpy(denali->buf.buf + mtd->writesize,
1077 chip->oob_poi,
1078 mtd->oobsize);
ce082596
JR
1079 }
1080
84457949 1081 dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
ce082596
JR
1082
1083 clear_interrupts(denali);
5bac3acf 1084 denali_enable_dma(denali, true);
ce082596 1085
aadff49c 1086 denali_setup_dma(denali, DENALI_WRITE);
ce082596
JR
1087
1088 /* wait for operation to complete */
1089 irq_status = wait_for_irq(denali, irq_mask);
1090
345b1d3b 1091 if (irq_status == 0) {
8125450c
MY
1092 dev_err(denali->dev, "timeout on write_page (type = %d)\n",
1093 raw_xfer);
c115add9 1094 denali->status = NAND_STATUS_FAIL;
ce082596
JR
1095 }
1096
5bac3acf 1097 denali_enable_dma(denali, false);
84457949 1098 dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
fdbad98d
JW
1099
1100 return 0;
ce082596
JR
1101}
1102
1103/* NAND core entry points */
1104
43914a2d
MY
1105/*
1106 * this is the callback that the NAND core calls to write a page. Since
b292c341
CD
1107 * writing a page with ECC or without is similar, all the work is done
1108 * by write_page above.
43914a2d 1109 */
fdbad98d 1110static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1111 const uint8_t *buf, int oob_required)
ce082596 1112{
43914a2d
MY
1113 /*
1114 * for regular page writes, we let HW handle all the ECC
1115 * data written to the device.
1116 */
fdbad98d 1117 return write_page(mtd, chip, buf, false);
ce082596
JR
1118}
1119
43914a2d
MY
1120/*
1121 * This is the callback that the NAND core calls to write a page without ECC.
25985edc 1122 * raw access is similar to ECC page writes, so all the work is done in the
b292c341 1123 * write_page() function above.
ce082596 1124 */
fdbad98d 1125static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1126 const uint8_t *buf, int oob_required)
ce082596 1127{
43914a2d
MY
1128 /*
1129 * for raw page writes, we want to disable ECC and simply write
1130 * whatever data is in the buffer.
1131 */
fdbad98d 1132 return write_page(mtd, chip, buf, true);
ce082596
JR
1133}
1134
5bac3acf 1135static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
ce082596
JR
1136 int page)
1137{
5bac3acf 1138 return write_oob_data(mtd, chip->oob_poi, page);
ce082596
JR
1139}
1140
5bac3acf 1141static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
5c2ffb11 1142 int page)
ce082596
JR
1143{
1144 read_oob_data(mtd, chip->oob_poi, page);
1145
5c2ffb11 1146 return 0;
ce082596
JR
1147}
1148
1149static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1150 uint8_t *buf, int oob_required, int page)
ce082596 1151{
3f91e94f 1152 unsigned int max_bitflips;
ce082596 1153 struct denali_nand_info *denali = mtd_to_denali(mtd);
ce082596
JR
1154
1155 dma_addr_t addr = denali->buf.dma_buf;
1156 size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1157
5637b69d 1158 uint32_t irq_status;
9589bf5b
JI
1159 uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE |
1160 INTR_STATUS__ECC_ERR;
ce082596
JR
1161 bool check_erased_page = false;
1162
7d8a26fd 1163 if (page != denali->page) {
8125450c
MY
1164 dev_err(denali->dev,
1165 "IN %s: page %d is not equal to denali->page %d",
1166 __func__, page, denali->page);
7d8a26fd
CD
1167 BUG();
1168 }
1169
ce082596
JR
1170 setup_ecc_for_xfer(denali, true, false);
1171
aadff49c 1172 denali_enable_dma(denali, true);
84457949 1173 dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
ce082596
JR
1174
1175 clear_interrupts(denali);
aadff49c 1176 denali_setup_dma(denali, DENALI_READ);
ce082596
JR
1177
1178 /* wait for operation to complete */
1179 irq_status = wait_for_irq(denali, irq_mask);
1180
84457949 1181 dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
ce082596
JR
1182
1183 memcpy(buf, denali->buf.buf, mtd->writesize);
5bac3acf 1184
3f91e94f 1185 check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips);
aadff49c 1186 denali_enable_dma(denali, false);
ce082596 1187
345b1d3b 1188 if (check_erased_page) {
ce082596
JR
1189 read_oob_data(&denali->mtd, chip->oob_poi, denali->page);
1190
1191 /* check ECC failures that may have occurred on erased pages */
345b1d3b 1192 if (check_erased_page) {
ce082596 1193 if (!is_erased(buf, denali->mtd.writesize))
ce082596 1194 denali->mtd.ecc_stats.failed++;
ce082596 1195 if (!is_erased(buf, denali->mtd.oobsize))
ce082596 1196 denali->mtd.ecc_stats.failed++;
5bac3acf 1197 }
ce082596 1198 }
3f91e94f 1199 return max_bitflips;
ce082596
JR
1200}
1201
1202static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1203 uint8_t *buf, int oob_required, int page)
ce082596
JR
1204{
1205 struct denali_nand_info *denali = mtd_to_denali(mtd);
ce082596
JR
1206 dma_addr_t addr = denali->buf.dma_buf;
1207 size_t size = denali->mtd.writesize + denali->mtd.oobsize;
9589bf5b 1208 uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
5bac3acf 1209
7d8a26fd 1210 if (page != denali->page) {
8125450c
MY
1211 dev_err(denali->dev,
1212 "IN %s: page %d is not equal to denali->page %d",
1213 __func__, page, denali->page);
7d8a26fd
CD
1214 BUG();
1215 }
1216
ce082596 1217 setup_ecc_for_xfer(denali, false, true);
aadff49c 1218 denali_enable_dma(denali, true);
ce082596 1219
84457949 1220 dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
ce082596
JR
1221
1222 clear_interrupts(denali);
aadff49c 1223 denali_setup_dma(denali, DENALI_READ);
ce082596
JR
1224
1225 /* wait for operation to complete */
ba5f2bc2 1226 wait_for_irq(denali, irq_mask);
ce082596 1227
84457949 1228 dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
ce082596 1229
aadff49c 1230 denali_enable_dma(denali, false);
ce082596
JR
1231
1232 memcpy(buf, denali->buf.buf, mtd->writesize);
1233 memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
1234
1235 return 0;
1236}
1237
1238static uint8_t denali_read_byte(struct mtd_info *mtd)
1239{
1240 struct denali_nand_info *denali = mtd_to_denali(mtd);
1241 uint8_t result = 0xff;
1242
1243 if (denali->buf.head < denali->buf.tail)
ce082596 1244 result = denali->buf.buf[denali->buf.head++];
ce082596 1245
ce082596
JR
1246 return result;
1247}
1248
1249static void denali_select_chip(struct mtd_info *mtd, int chip)
1250{
1251 struct denali_nand_info *denali = mtd_to_denali(mtd);
7cfffac0 1252
ce082596
JR
1253 spin_lock_irq(&denali->irq_lock);
1254 denali->flash_bank = chip;
1255 spin_unlock_irq(&denali->irq_lock);
1256}
1257
1258static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
1259{
1260 struct denali_nand_info *denali = mtd_to_denali(mtd);
1261 int status = denali->status;
8125450c 1262
ce082596
JR
1263 denali->status = 0;
1264
ce082596
JR
1265 return status;
1266}
1267
49c50b97 1268static int denali_erase(struct mtd_info *mtd, int page)
ce082596
JR
1269{
1270 struct denali_nand_info *denali = mtd_to_denali(mtd);
1271
5637b69d 1272 uint32_t cmd, irq_status;
ce082596 1273
5bac3acf 1274 clear_interrupts(denali);
ce082596
JR
1275
1276 /* setup page read request for access type */
1277 cmd = MODE_10 | BANK(denali->flash_bank) | page;
3157d1ed 1278 index_addr(denali, cmd, 0x1);
ce082596
JR
1279
1280 /* wait for erase to complete or failure to occur */
9589bf5b
JI
1281 irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
1282 INTR_STATUS__ERASE_FAIL);
ce082596 1283
7d14ecd0 1284 return irq_status & INTR_STATUS__ERASE_FAIL ? NAND_STATUS_FAIL : PASS;
ce082596
JR
1285}
1286
5bac3acf 1287static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
ce082596
JR
1288 int page)
1289{
1290 struct denali_nand_info *denali = mtd_to_denali(mtd);
ef41e1bb
CD
1291 uint32_t addr, id;
1292 int i;
ce082596 1293
345b1d3b 1294 switch (cmd) {
a99d1796
CD
1295 case NAND_CMD_PAGEPROG:
1296 break;
1297 case NAND_CMD_STATUS:
1298 read_status(denali);
1299 break;
1300 case NAND_CMD_READID:
42af8b58 1301 case NAND_CMD_PARAM:
a99d1796 1302 reset_buf(denali);
43914a2d
MY
1303 /*
1304 * sometimes ManufactureId read from register is not right
ef41e1bb
CD
1305 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
1306 * So here we send READID cmd to NAND insteand
43914a2d 1307 */
3157d1ed
MY
1308 addr = MODE_11 | BANK(denali->flash_bank);
1309 index_addr(denali, addr | 0, 0x90);
1310 index_addr(denali, addr | 1, 0);
d68a5c3d 1311 for (i = 0; i < 8; i++) {
8125450c 1312 index_addr_read_data(denali, addr | 2, &id);
ef41e1bb 1313 write_byte_to_buf(denali, id);
a99d1796
CD
1314 }
1315 break;
1316 case NAND_CMD_READ0:
1317 case NAND_CMD_SEQIN:
1318 denali->page = page;
1319 break;
1320 case NAND_CMD_RESET:
1321 reset_bank(denali);
1322 break;
1323 case NAND_CMD_READOOB:
1324 /* TODO: Read OOB data */
1325 break;
1326 default:
2a0a288e 1327 pr_err(": unsupported command received 0x%x\n", cmd);
a99d1796 1328 break;
ce082596
JR
1329 }
1330}
1331
1332/* stubs for ECC functions not used by the NAND core */
5bac3acf 1333static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
ce082596
JR
1334 uint8_t *ecc_code)
1335{
7cfffac0 1336 struct denali_nand_info *denali = mtd_to_denali(mtd);
8125450c
MY
1337
1338 dev_err(denali->dev, "denali_ecc_calculate called unexpectedly\n");
ce082596
JR
1339 BUG();
1340 return -EIO;
1341}
1342
5bac3acf 1343static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
ce082596
JR
1344 uint8_t *read_ecc, uint8_t *calc_ecc)
1345{
7cfffac0 1346 struct denali_nand_info *denali = mtd_to_denali(mtd);
8125450c
MY
1347
1348 dev_err(denali->dev, "denali_ecc_correct called unexpectedly\n");
ce082596
JR
1349 BUG();
1350 return -EIO;
1351}
1352
1353static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
1354{
7cfffac0 1355 struct denali_nand_info *denali = mtd_to_denali(mtd);
8125450c
MY
1356
1357 dev_err(denali->dev, "denali_ecc_hwctl called unexpectedly\n");
ce082596
JR
1358 BUG();
1359}
1360/* end NAND core entry points */
1361
1362/* Initialization code to bring the device up to a known good state */
1363static void denali_hw_init(struct denali_nand_info *denali)
1364{
43914a2d
MY
1365 /*
1366 * tell driver how many bit controller will skip before
db9a3210
CD
1367 * writing ECC code in OOB, this register may be already
1368 * set by firmware. So we read this value out.
1369 * if this value is 0, just let it be.
43914a2d 1370 */
db9a3210
CD
1371 denali->bbtskipbytes = ioread32(denali->flash_reg +
1372 SPARE_AREA_SKIP_BYTES);
bc27ede3 1373 detect_max_banks(denali);
eda936ef 1374 denali_nand_reset(denali);
24c3fa36
CD
1375 iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
1376 iowrite32(CHIP_EN_DONT_CARE__FLAG,
bdca6dae 1377 denali->flash_reg + CHIP_ENABLE_DONT_CARE);
ce082596 1378
24c3fa36 1379 iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
ce082596
JR
1380
1381 /* Should set value for these registers when init */
24c3fa36
CD
1382 iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
1383 iowrite32(1, denali->flash_reg + ECC_ENABLE);
5eab6aaa
CD
1384 denali_nand_timing_set(denali);
1385 denali_irq_init(denali);
ce082596
JR
1386}
1387
43914a2d
MY
1388/*
1389 * Althogh controller spec said SLC ECC is forceb to be 4bit,
db9a3210
CD
1390 * but denali controller in MRST only support 15bit and 8bit ECC
1391 * correction
43914a2d 1392 */
db9a3210
CD
1393#define ECC_8BITS 14
1394static struct nand_ecclayout nand_8bit_oob = {
1395 .eccbytes = 14,
ce082596
JR
1396};
1397
db9a3210
CD
1398#define ECC_15BITS 26
1399static struct nand_ecclayout nand_15bit_oob = {
1400 .eccbytes = 26,
ce082596
JR
1401};
1402
1403static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
1404static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
1405
1406static struct nand_bbt_descr bbt_main_descr = {
1407 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1408 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1409 .offs = 8,
1410 .len = 4,
1411 .veroffs = 12,
1412 .maxblocks = 4,
1413 .pattern = bbt_pattern,
1414};
1415
1416static struct nand_bbt_descr bbt_mirror_descr = {
1417 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1418 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1419 .offs = 8,
1420 .len = 4,
1421 .veroffs = 12,
1422 .maxblocks = 4,
1423 .pattern = mirror_pattern,
1424};
1425
421f91d2 1426/* initialize driver data structures */
8c519436 1427static void denali_drv_init(struct denali_nand_info *denali)
ce082596
JR
1428{
1429 denali->idx = 0;
1430
1431 /* setup interrupt handler */
43914a2d
MY
1432 /*
1433 * the completion object will be used to notify
1434 * the callee that the interrupt is done
1435 */
ce082596
JR
1436 init_completion(&denali->complete);
1437
43914a2d
MY
1438 /*
1439 * the spinlock will be used to synchronize the ISR with any
1440 * element that might be access shared data (interrupt status)
1441 */
ce082596
JR
1442 spin_lock_init(&denali->irq_lock);
1443
1444 /* indicate that MTD has not selected a valid bank yet */
1445 denali->flash_bank = CHIP_SELECT_INVALID;
1446
1447 /* initialize our irq_status variable to indicate no interrupts */
1448 denali->irq_status = 0;
1449}
1450
2a0a288e 1451int denali_init(struct denali_nand_info *denali)
ce082596 1452{
2a0a288e 1453 int ret;
ce082596 1454
2a0a288e 1455 if (denali->platform == INTEL_CE4100) {
43914a2d
MY
1456 /*
1457 * Due to a silicon limitation, we can only support
5bac3acf
C
1458 * ONFI timing mode 1 and below.
1459 */
345b1d3b 1460 if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
2a0a288e
DN
1461 pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
1462 return -EINVAL;
ce082596
JR
1463 }
1464 }
1465
e07caa36
HS
1466 /* allocate a temporary buffer for nand_scan_ident() */
1467 denali->buf.buf = devm_kzalloc(denali->dev, PAGE_SIZE,
1468 GFP_DMA | GFP_KERNEL);
1469 if (!denali->buf.buf)
1470 return -ENOMEM;
ce082596 1471
2a0a288e 1472 denali->mtd.dev.parent = denali->dev;
ce082596
JR
1473 denali_hw_init(denali);
1474 denali_drv_init(denali);
1475
43914a2d
MY
1476 /*
1477 * denali_isr register is done after all the hardware
1478 * initilization is finished
1479 */
2a0a288e 1480 if (request_irq(denali->irq, denali_isr, IRQF_SHARED,
ce082596 1481 DENALI_NAND_NAME, denali)) {
2a0a288e
DN
1482 pr_err("Spectra: Unable to allocate IRQ\n");
1483 return -ENODEV;
ce082596
JR
1484 }
1485
1486 /* now that our ISR is registered, we can enable interrupts */
eda936ef 1487 denali_set_intr_modes(denali, true);
5eab6aaa 1488 denali->mtd.name = "denali-nand";
ce082596
JR
1489 denali->mtd.owner = THIS_MODULE;
1490 denali->mtd.priv = &denali->nand;
1491
1492 /* register the driver with the NAND core subsystem */
1493 denali->nand.select_chip = denali_select_chip;
1494 denali->nand.cmdfunc = denali_cmdfunc;
1495 denali->nand.read_byte = denali_read_byte;
1496 denali->nand.waitfunc = denali_waitfunc;
1497
43914a2d
MY
1498 /*
1499 * scan for NAND devices attached to the controller
ce082596 1500 * this is the first stage in a two step process to register
43914a2d
MY
1501 * with the nand subsystem
1502 */
c89eeda8 1503 if (nand_scan_ident(&denali->mtd, denali->max_banks, NULL)) {
ce082596 1504 ret = -ENXIO;
5c0eb900 1505 goto failed_req_irq;
ce082596 1506 }
5bac3acf 1507
e07caa36
HS
1508 /* allocate the right size buffer now */
1509 devm_kfree(denali->dev, denali->buf.buf);
1510 denali->buf.buf = devm_kzalloc(denali->dev,
1511 denali->mtd.writesize + denali->mtd.oobsize,
1512 GFP_KERNEL);
1513 if (!denali->buf.buf) {
1514 ret = -ENOMEM;
1515 goto failed_req_irq;
1516 }
1517
1518 /* Is 32-bit DMA supported? */
1519 ret = dma_set_mask(denali->dev, DMA_BIT_MASK(32));
1520 if (ret) {
1521 pr_err("Spectra: no usable DMA configuration\n");
1522 goto failed_req_irq;
1523 }
1524
1525 denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf,
1526 denali->mtd.writesize + denali->mtd.oobsize,
1527 DMA_BIDIRECTIONAL);
1528 if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) {
1529 dev_err(denali->dev, "Spectra: failed to map DMA buffer\n");
1530 ret = -EIO;
5c0eb900 1531 goto failed_req_irq;
66406524
CD
1532 }
1533
43914a2d
MY
1534 /*
1535 * support for multi nand
1536 * MTD known nothing about multi nand, so we should tell it
1537 * the real pagesize and anything necessery
08b9ab99
CD
1538 */
1539 denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
1540 denali->nand.chipsize <<= (denali->devnum - 1);
1541 denali->nand.page_shift += (denali->devnum - 1);
1542 denali->nand.pagemask = (denali->nand.chipsize >>
1543 denali->nand.page_shift) - 1;
1544 denali->nand.bbt_erase_shift += (denali->devnum - 1);
1545 denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
1546 denali->nand.chip_shift += (denali->devnum - 1);
1547 denali->mtd.writesize <<= (denali->devnum - 1);
1548 denali->mtd.oobsize <<= (denali->devnum - 1);
1549 denali->mtd.erasesize <<= (denali->devnum - 1);
1550 denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
1551 denali->bbtskipbytes *= denali->devnum;
1552
43914a2d
MY
1553 /*
1554 * second stage of the NAND scan
5bac3acf 1555 * this stage requires information regarding ECC and
43914a2d
MY
1556 * bad block management.
1557 */
ce082596
JR
1558
1559 /* Bad block management */
1560 denali->nand.bbt_td = &bbt_main_descr;
1561 denali->nand.bbt_md = &bbt_mirror_descr;
1562
1563 /* skip the scan for now until we have OOB read and write support */
bb9ebd4e 1564 denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
a40f7341 1565 denali->nand.options |= NAND_SKIP_BBTSCAN;
ce082596
JR
1566 denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
1567
43914a2d
MY
1568 /*
1569 * Denali Controller only support 15bit and 8bit ECC in MRST,
db9a3210
CD
1570 * so just let controller do 15bit ECC for MLC and 8bit ECC for
1571 * SLC if possible.
1572 * */
1d0ed69d 1573 if (!nand_is_slc(&denali->nand) &&
db9a3210
CD
1574 (denali->mtd.oobsize > (denali->bbtskipbytes +
1575 ECC_15BITS * (denali->mtd.writesize /
1576 ECC_SECTOR_SIZE)))) {
1577 /* if MLC OOB size is large enough, use 15bit ECC*/
6a918bad 1578 denali->nand.ecc.strength = 15;
db9a3210
CD
1579 denali->nand.ecc.layout = &nand_15bit_oob;
1580 denali->nand.ecc.bytes = ECC_15BITS;
24c3fa36 1581 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
db9a3210
CD
1582 } else if (denali->mtd.oobsize < (denali->bbtskipbytes +
1583 ECC_8BITS * (denali->mtd.writesize /
1584 ECC_SECTOR_SIZE))) {
8125450c 1585 pr_err("Your NAND chip OOB is not large enough to contain 8bit ECC correction codes");
5c0eb900 1586 goto failed_req_irq;
db9a3210 1587 } else {
6a918bad 1588 denali->nand.ecc.strength = 8;
db9a3210
CD
1589 denali->nand.ecc.layout = &nand_8bit_oob;
1590 denali->nand.ecc.bytes = ECC_8BITS;
24c3fa36 1591 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
ce082596
JR
1592 }
1593
08b9ab99 1594 denali->nand.ecc.bytes *= denali->devnum;
6a918bad 1595 denali->nand.ecc.strength *= denali->devnum;
db9a3210
CD
1596 denali->nand.ecc.layout->eccbytes *=
1597 denali->mtd.writesize / ECC_SECTOR_SIZE;
1598 denali->nand.ecc.layout->oobfree[0].offset =
1599 denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
1600 denali->nand.ecc.layout->oobfree[0].length =
1601 denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
1602 denali->bbtskipbytes;
1603
43914a2d
MY
1604 /*
1605 * Let driver know the total blocks number and how many blocks
1606 * contained by each nand chip. blksperchip will help driver to
1607 * know how many blocks is taken by FW.
1608 */
8125450c 1609 denali->totalblks = denali->mtd.size >> denali->nand.phys_erase_shift;
66406524
CD
1610 denali->blksperchip = denali->totalblks / denali->nand.numchips;
1611
43914a2d
MY
1612 /*
1613 * These functions are required by the NAND core framework, otherwise,
5bac3acf 1614 * the NAND core will assert. However, we don't need them, so we'll stub
43914a2d
MY
1615 * them out.
1616 */
ce082596
JR
1617 denali->nand.ecc.calculate = denali_ecc_calculate;
1618 denali->nand.ecc.correct = denali_ecc_correct;
1619 denali->nand.ecc.hwctl = denali_ecc_hwctl;
1620
1621 /* override the default read operations */
08b9ab99 1622 denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
ce082596
JR
1623 denali->nand.ecc.read_page = denali_read_page;
1624 denali->nand.ecc.read_page_raw = denali_read_page_raw;
1625 denali->nand.ecc.write_page = denali_write_page;
1626 denali->nand.ecc.write_page_raw = denali_write_page_raw;
1627 denali->nand.ecc.read_oob = denali_read_oob;
1628 denali->nand.ecc.write_oob = denali_write_oob;
49c50b97 1629 denali->nand.erase = denali_erase;
ce082596 1630
345b1d3b 1631 if (nand_scan_tail(&denali->mtd)) {
ce082596 1632 ret = -ENXIO;
5c0eb900 1633 goto failed_req_irq;
ce082596
JR
1634 }
1635
ee0e87b1 1636 ret = mtd_device_register(&denali->mtd, NULL, 0);
ce082596 1637 if (ret) {
2a0a288e 1638 dev_err(denali->dev, "Spectra: Failed to register MTD: %d\n",
7cfffac0 1639 ret);
5c0eb900 1640 goto failed_req_irq;
ce082596
JR
1641 }
1642 return 0;
1643
5c0eb900 1644failed_req_irq:
2a0a288e
DN
1645 denali_irq_cleanup(denali->irq, denali);
1646
ce082596
JR
1647 return ret;
1648}
2a0a288e 1649EXPORT_SYMBOL(denali_init);
ce082596
JR
1650
1651/* driver exit point */
2a0a288e 1652void denali_remove(struct denali_nand_info *denali)
ce082596 1653{
2a0a288e 1654 denali_irq_cleanup(denali->irq, denali);
e07caa36 1655 dma_unmap_single(denali->dev, denali->buf.dma_buf,
8125450c
MY
1656 denali->mtd.writesize + denali->mtd.oobsize,
1657 DMA_BIDIRECTIONAL);
ce082596 1658}
2a0a288e 1659EXPORT_SYMBOL(denali_remove);
This page took 0.323981 seconds and 5 git commands to generate.