nand/denali: Fixed check patch warnings
[deliverable/linux.git] / drivers / mtd / nand / denali.c
CommitLineData
ce082596
JR
1/*
2 * NAND Flash Controller Device Driver
3 * Copyright © 2009-2010, Intel Corporation and its suppliers.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 *
18 */
19
20#include <linux/interrupt.h>
21#include <linux/delay.h>
22#include <linux/wait.h>
23#include <linux/mutex.h>
b8664b37 24#include <linux/slab.h>
ce082596
JR
25#include <linux/pci.h>
26#include <linux/mtd/mtd.h>
27#include <linux/module.h>
28
29#include "denali.h"
30
31MODULE_LICENSE("GPL");
32
5bac3acf 33/* We define a module parameter that allows the user to override
ce082596
JR
34 * the hardware and decide what timing mode should be used.
35 */
36#define NAND_DEFAULT_TIMINGS -1
37
38static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
39module_param(onfi_timing_mode, int, S_IRUGO);
bdca6dae
CD
40MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
41 " -1 indicates use default timings");
ce082596
JR
42
43#define DENALI_NAND_NAME "denali-nand"
44
45/* We define a macro here that combines all interrupts this driver uses into
46 * a single constant value, for convenience. */
47#define DENALI_IRQ_ALL (INTR_STATUS0__DMA_CMD_COMP | \
48 INTR_STATUS0__ECC_TRANSACTION_DONE | \
49 INTR_STATUS0__ECC_ERR | \
50 INTR_STATUS0__PROGRAM_FAIL | \
51 INTR_STATUS0__LOAD_COMP | \
52 INTR_STATUS0__PROGRAM_COMP | \
53 INTR_STATUS0__TIME_OUT | \
54 INTR_STATUS0__ERASE_FAIL | \
55 INTR_STATUS0__RST_COMP | \
56 INTR_STATUS0__ERASE_COMP)
57
5bac3acf 58/* indicates whether or not the internal value for the flash bank is
b292c341 59 * valid or not */
5bac3acf 60#define CHIP_SELECT_INVALID -1
ce082596
JR
61
62#define SUPPORT_8BITECC 1
63
5bac3acf 64/* This macro divides two integers and rounds fractional values up
ce082596
JR
65 * to the nearest integer value. */
66#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
67
68/* this macro allows us to convert from an MTD structure to our own
69 * device context (denali) structure.
70 */
71#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
72
73/* These constants are defined by the driver to enable common driver
b292c341 74 * configuration options. */
ce082596
JR
75#define SPARE_ACCESS 0x41
76#define MAIN_ACCESS 0x42
77#define MAIN_SPARE_ACCESS 0x43
78
79#define DENALI_READ 0
80#define DENALI_WRITE 0x100
81
82/* types of device accesses. We can issue commands and get status */
83#define COMMAND_CYCLE 0
84#define ADDR_CYCLE 1
85#define STATUS_CYCLE 2
86
5bac3acf 87/* this is a helper macro that allows us to
ce082596
JR
88 * format the bank into the proper bits for the controller */
89#define BANK(x) ((x) << 24)
90
91/* List of platforms this NAND controller has be integrated into */
92static const struct pci_device_id denali_pci_ids[] = {
93 { PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 },
94 { PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST },
95 { /* end: all zeroes */ }
96};
97
98
5bac3acf 99/* these are static lookup tables that give us easy access to
b292c341 100 * registers in the NAND controller.
ce082596 101 */
5bac3acf
C
102static const uint32_t intr_status_addresses[4] = {INTR_STATUS0,
103 INTR_STATUS1,
104 INTR_STATUS2,
ce082596
JR
105 INTR_STATUS3};
106
107static const uint32_t device_reset_banks[4] = {DEVICE_RESET__BANK0,
5bac3acf
C
108 DEVICE_RESET__BANK1,
109 DEVICE_RESET__BANK2,
110 DEVICE_RESET__BANK3};
ce082596
JR
111
112static const uint32_t operation_timeout[4] = {INTR_STATUS0__TIME_OUT,
5bac3acf
C
113 INTR_STATUS1__TIME_OUT,
114 INTR_STATUS2__TIME_OUT,
115 INTR_STATUS3__TIME_OUT};
ce082596
JR
116
117static const uint32_t reset_complete[4] = {INTR_STATUS0__RST_COMP,
5bac3acf
C
118 INTR_STATUS1__RST_COMP,
119 INTR_STATUS2__RST_COMP,
120 INTR_STATUS3__RST_COMP};
ce082596 121
ce082596
JR
122/* forward declarations */
123static void clear_interrupts(struct denali_nand_info *denali);
bdca6dae
CD
124static uint32_t wait_for_irq(struct denali_nand_info *denali,
125 uint32_t irq_mask);
126static void denali_irq_enable(struct denali_nand_info *denali,
127 uint32_t int_mask);
ce082596
JR
128static uint32_t read_interrupt_status(struct denali_nand_info *denali);
129
bdca6dae
CD
130/* Certain operations for the denali NAND controller use
131 * an indexed mode to read/write data. The operation is
132 * performed by writing the address value of the command
133 * to the device memory followed by the data. This function
134 * abstracts this common operation.
ce082596 135*/
bdca6dae
CD
136static void index_addr(struct denali_nand_info *denali,
137 uint32_t address, uint32_t data)
ce082596 138{
24c3fa36
CD
139 iowrite32(address, denali->flash_mem);
140 iowrite32(data, denali->flash_mem + 0x10);
ce082596
JR
141}
142
143/* Perform an indexed read of the device */
144static void index_addr_read_data(struct denali_nand_info *denali,
145 uint32_t address, uint32_t *pdata)
146{
24c3fa36 147 iowrite32(address, denali->flash_mem);
ce082596
JR
148 *pdata = ioread32(denali->flash_mem + 0x10);
149}
150
5bac3acf 151/* We need to buffer some data for some of the NAND core routines.
ce082596
JR
152 * The operations manage buffering that data. */
153static void reset_buf(struct denali_nand_info *denali)
154{
155 denali->buf.head = denali->buf.tail = 0;
156}
157
158static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
159{
160 BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf));
161 denali->buf.buf[denali->buf.tail++] = byte;
162}
163
164/* reads the status of the device */
165static void read_status(struct denali_nand_info *denali)
166{
167 uint32_t cmd = 0x0;
168
169 /* initialize the data buffer to store status */
170 reset_buf(denali);
171
172 /* initiate a device status read */
5bac3acf 173 cmd = MODE_11 | BANK(denali->flash_bank);
ce082596 174 index_addr(denali, cmd | COMMAND_CYCLE, 0x70);
24c3fa36 175 iowrite32(cmd | STATUS_CYCLE, denali->flash_mem);
ce082596
JR
176
177 /* update buffer with status value */
178 write_byte_to_buf(denali, ioread32(denali->flash_mem + 0x10));
ce082596
JR
179}
180
181/* resets a specific device connected to the core */
182static void reset_bank(struct denali_nand_info *denali)
183{
184 uint32_t irq_status = 0;
5bac3acf 185 uint32_t irq_mask = reset_complete[denali->flash_bank] |
ce082596
JR
186 operation_timeout[denali->flash_bank];
187 int bank = 0;
188
189 clear_interrupts(denali);
190
191 bank = device_reset_banks[denali->flash_bank];
24c3fa36 192 iowrite32(bank, denali->flash_reg + DEVICE_RESET);
ce082596
JR
193
194 irq_status = wait_for_irq(denali, irq_mask);
5bac3acf 195
ce082596 196 if (irq_status & operation_timeout[denali->flash_bank])
7cfffac0 197 dev_err(&denali->dev->dev, "reset bank failed.\n");
ce082596
JR
198}
199
200/* Reset the flash controller */
eda936ef 201static uint16_t denali_nand_reset(struct denali_nand_info *denali)
ce082596
JR
202{
203 uint32_t i;
204
7cfffac0 205 dev_dbg(&denali->dev->dev, "%s, Line %d, Function: %s\n",
ce082596
JR
206 __FILE__, __LINE__, __func__);
207
208 for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++)
24c3fa36 209 iowrite32(reset_complete[i] | operation_timeout[i],
ce082596
JR
210 denali->flash_reg + intr_status_addresses[i]);
211
212 for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) {
24c3fa36 213 iowrite32(device_reset_banks[i],
bdca6dae
CD
214 denali->flash_reg + DEVICE_RESET);
215 while (!(ioread32(denali->flash_reg +
216 intr_status_addresses[i]) &
ce082596
JR
217 (reset_complete[i] | operation_timeout[i])))
218 ;
219 if (ioread32(denali->flash_reg + intr_status_addresses[i]) &
220 operation_timeout[i])
7cfffac0 221 dev_dbg(&denali->dev->dev,
ce082596
JR
222 "NAND Reset operation timed out on bank %d\n", i);
223 }
224
225 for (i = 0; i < LLD_MAX_FLASH_BANKS; i++)
24c3fa36 226 iowrite32(reset_complete[i] | operation_timeout[i],
ce082596
JR
227 denali->flash_reg + intr_status_addresses[i]);
228
229 return PASS;
230}
231
bdca6dae
CD
232/* this routine calculates the ONFI timing values for a given mode and
233 * programs the clocking register accordingly. The mode is determined by
234 * the get_onfi_nand_para routine.
ce082596 235 */
eda936ef 236static void nand_onfi_timing_set(struct denali_nand_info *denali,
bdca6dae 237 uint16_t mode)
ce082596
JR
238{
239 uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
240 uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
241 uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
242 uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
243 uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
244 uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
245 uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
246 uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
247 uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
248 uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
249 uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
250 uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
251
252 uint16_t TclsRising = 1;
253 uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
254 uint16_t dv_window = 0;
255 uint16_t en_lo, en_hi;
256 uint16_t acc_clks;
257 uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
258
7cfffac0 259 dev_dbg(&denali->dev->dev, "%s, Line %d, Function: %s\n",
ce082596
JR
260 __FILE__, __LINE__, __func__);
261
262 en_lo = CEIL_DIV(Trp[mode], CLK_X);
263 en_hi = CEIL_DIV(Treh[mode], CLK_X);
264#if ONFI_BLOOM_TIME
265 if ((en_hi * CLK_X) < (Treh[mode] + 2))
266 en_hi++;
267#endif
268
269 if ((en_lo + en_hi) * CLK_X < Trc[mode])
270 en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
271
272 if ((en_lo + en_hi) < CLK_MULTI)
273 en_lo += CLK_MULTI - en_lo - en_hi;
274
275 while (dv_window < 8) {
276 data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
277
278 data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
279
280 data_invalid =
281 data_invalid_rhoh <
282 data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;
283
284 dv_window = data_invalid - Trea[mode];
285
286 if (dv_window < 8)
287 en_lo++;
288 }
289
290 acc_clks = CEIL_DIV(Trea[mode], CLK_X);
291
292 while (((acc_clks * CLK_X) - Trea[mode]) < 3)
293 acc_clks++;
294
295 if ((data_invalid - acc_clks * CLK_X) < 2)
7cfffac0 296 dev_warn(&denali->dev->dev, "%s, Line %d: Warning!\n",
ce082596
JR
297 __FILE__, __LINE__);
298
299 addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
300 re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
301 re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
302 we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
303 cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
304 if (!TclsRising)
305 cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
306 if (cs_cnt == 0)
307 cs_cnt = 1;
308
309 if (Tcea[mode]) {
310 while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
311 cs_cnt++;
312 }
313
314#if MODE5_WORKAROUND
315 if (mode == 5)
316 acc_clks = 5;
317#endif
318
319 /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
320 if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
321 (ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
322 acc_clks = 6;
323
24c3fa36
CD
324 iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
325 iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
326 iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
327 iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
328 iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
329 iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
330 iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
331 iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
ce082596
JR
332}
333
ce082596
JR
334/* queries the NAND device to see what ONFI modes it supports. */
335static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
336{
337 int i;
4c03bbdf
CD
338 /* we needn't to do a reset here because driver has already
339 * reset all the banks before
340 * */
ce082596
JR
341 if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
342 ONFI_TIMING_MODE__VALUE))
343 return FAIL;
344
345 for (i = 5; i > 0; i--) {
bdca6dae
CD
346 if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
347 (0x01 << i))
ce082596
JR
348 break;
349 }
350
eda936ef 351 nand_onfi_timing_set(denali, i);
ce082596
JR
352
353 /* By now, all the ONFI devices we know support the page cache */
354 /* rw feature. So here we enable the pipeline_rw_ahead feature */
355 /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
356 /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */
357
358 return PASS;
359}
360
4c03bbdf
CD
361static void get_samsung_nand_para(struct denali_nand_info *denali,
362 uint8_t device_id)
ce082596 363{
4c03bbdf 364 if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
ce082596 365 /* Set timing register values according to datasheet */
24c3fa36
CD
366 iowrite32(5, denali->flash_reg + ACC_CLKS);
367 iowrite32(20, denali->flash_reg + RE_2_WE);
368 iowrite32(12, denali->flash_reg + WE_2_RE);
369 iowrite32(14, denali->flash_reg + ADDR_2_DATA);
370 iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
371 iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
372 iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
ce082596 373 }
ce082596
JR
374}
375
376static void get_toshiba_nand_para(struct denali_nand_info *denali)
377{
ce082596
JR
378 uint32_t tmp;
379
380 /* Workaround to fix a controller bug which reports a wrong */
381 /* spare area size for some kind of Toshiba NAND device */
382 if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
383 (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
24c3fa36 384 iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
ce082596
JR
385 tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
386 ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
24c3fa36 387 iowrite32(tmp,
bdca6dae 388 denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
ce082596 389#if SUPPORT_15BITECC
24c3fa36 390 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
ce082596 391#elif SUPPORT_8BITECC
24c3fa36 392 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
ce082596
JR
393#endif
394 }
ce082596
JR
395}
396
ef41e1bb
CD
397static void get_hynix_nand_para(struct denali_nand_info *denali,
398 uint8_t device_id)
ce082596 399{
ce082596
JR
400 uint32_t main_size, spare_size;
401
ef41e1bb 402 switch (device_id) {
ce082596
JR
403 case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
404 case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
24c3fa36
CD
405 iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
406 iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
407 iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
bdca6dae
CD
408 main_size = 4096 *
409 ioread32(denali->flash_reg + DEVICES_CONNECTED);
410 spare_size = 224 *
411 ioread32(denali->flash_reg + DEVICES_CONNECTED);
24c3fa36 412 iowrite32(main_size,
bdca6dae 413 denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
24c3fa36 414 iowrite32(spare_size,
bdca6dae 415 denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
24c3fa36 416 iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
ce082596 417#if SUPPORT_15BITECC
24c3fa36 418 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
ce082596 419#elif SUPPORT_8BITECC
24c3fa36 420 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
ce082596 421#endif
ce082596
JR
422 break;
423 default:
7cfffac0 424 dev_warn(&denali->dev->dev,
ce082596
JR
425 "Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
426 "Will use default parameter values instead.\n",
66406524 427 device_id);
ce082596
JR
428 }
429}
430
431/* determines how many NAND chips are connected to the controller. Note for
b292c341 432 * Intel CE4100 devices we don't support more than one device.
ce082596
JR
433 */
434static void find_valid_banks(struct denali_nand_info *denali)
435{
436 uint32_t id[LLD_MAX_FLASH_BANKS];
437 int i;
438
439 denali->total_used_banks = 1;
440 for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) {
441 index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
442 index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
bdca6dae
CD
443 index_addr_read_data(denali,
444 (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
ce082596 445
7cfffac0 446 dev_dbg(&denali->dev->dev,
ce082596
JR
447 "Return 1st ID for bank[%d]: %x\n", i, id[i]);
448
449 if (i == 0) {
450 if (!(id[i] & 0x0ff))
451 break; /* WTF? */
452 } else {
453 if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
454 denali->total_used_banks++;
455 else
456 break;
457 }
458 }
459
345b1d3b 460 if (denali->platform == INTEL_CE4100) {
ce082596
JR
461 /* Platform limitations of the CE4100 device limit
462 * users to a single chip solution for NAND.
5bac3acf
C
463 * Multichip support is not enabled.
464 */
345b1d3b 465 if (denali->total_used_banks != 1) {
7cfffac0
CD
466 dev_err(&denali->dev->dev,
467 "Sorry, Intel CE4100 only supports "
ce082596
JR
468 "a single NAND device.\n");
469 BUG();
470 }
471 }
7cfffac0 472 dev_dbg(&denali->dev->dev,
ce082596
JR
473 "denali->total_used_banks: %d\n", denali->total_used_banks);
474}
475
476static void detect_partition_feature(struct denali_nand_info *denali)
477{
66406524
CD
478 /* For MRST platform, denali->fwblks represent the
479 * number of blocks firmware is taken,
480 * FW is in protect partition and MTD driver has no
481 * permission to access it. So let driver know how many
482 * blocks it can't touch.
483 * */
ce082596
JR
484 if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
485 if ((ioread32(denali->flash_reg + PERM_SRC_ID_1) &
486 PERM_SRC_ID_1__SRCID) == SPECTRA_PARTITION_ID) {
66406524 487 denali->fwblks =
ce082596
JR
488 ((ioread32(denali->flash_reg + MIN_MAX_BANK_1) &
489 MIN_MAX_BANK_1__MIN_VALUE) *
66406524 490 denali->blksperchip)
ce082596
JR
491 +
492 (ioread32(denali->flash_reg + MIN_BLK_ADDR_1) &
493 MIN_BLK_ADDR_1__VALUE);
66406524
CD
494 } else
495 denali->fwblks = SPECTRA_START_BLOCK;
496 } else
497 denali->fwblks = SPECTRA_START_BLOCK;
ce082596
JR
498}
499
eda936ef 500static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
ce082596
JR
501{
502 uint16_t status = PASS;
ef41e1bb
CD
503 uint32_t id_bytes[5], addr;
504 uint8_t i, maf_id, device_id;
ce082596 505
7cfffac0
CD
506 dev_dbg(&denali->dev->dev,
507 "%s, Line %d, Function: %s\n",
508 __FILE__, __LINE__, __func__);
ce082596 509
ef41e1bb
CD
510 /* Use read id method to get device ID and other
511 * params. For some NAND chips, controller can't
512 * report the correct device ID by reading from
513 * DEVICE_ID register
514 * */
515 addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
516 index_addr(denali, (uint32_t)addr | 0, 0x90);
517 index_addr(denali, (uint32_t)addr | 1, 0);
518 for (i = 0; i < 5; i++)
519 index_addr_read_data(denali, addr | 2, &id_bytes[i]);
520 maf_id = id_bytes[0];
521 device_id = id_bytes[1];
ce082596
JR
522
523 if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
524 ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
525 if (FAIL == get_onfi_nand_para(denali))
526 return FAIL;
ef41e1bb 527 } else if (maf_id == 0xEC) { /* Samsung NAND */
4c03bbdf 528 get_samsung_nand_para(denali, device_id);
ef41e1bb 529 } else if (maf_id == 0x98) { /* Toshiba NAND */
ce082596 530 get_toshiba_nand_para(denali);
ef41e1bb
CD
531 } else if (maf_id == 0xAD) { /* Hynix NAND */
532 get_hynix_nand_para(denali, device_id);
ce082596
JR
533 }
534
7cfffac0
CD
535 dev_info(&denali->dev->dev,
536 "Dump timing register values:"
537 "acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
538 "we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
ce082596
JR
539 "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
540 ioread32(denali->flash_reg + ACC_CLKS),
541 ioread32(denali->flash_reg + RE_2_WE),
7cfffac0 542 ioread32(denali->flash_reg + RE_2_RE),
ce082596
JR
543 ioread32(denali->flash_reg + WE_2_RE),
544 ioread32(denali->flash_reg + ADDR_2_DATA),
545 ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
546 ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
547 ioread32(denali->flash_reg + CS_SETUP_CNT));
548
ce082596
JR
549 find_valid_banks(denali);
550
551 detect_partition_feature(denali);
552
ce082596 553 /* If the user specified to override the default timings
5bac3acf 554 * with a specific ONFI mode, we apply those changes here.
ce082596
JR
555 */
556 if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
eda936ef 557 nand_onfi_timing_set(denali, onfi_timing_mode);
ce082596
JR
558
559 return status;
560}
561
eda936ef 562static void denali_set_intr_modes(struct denali_nand_info *denali,
ce082596
JR
563 uint16_t INT_ENABLE)
564{
7cfffac0 565 dev_dbg(&denali->dev->dev, "%s, Line %d, Function: %s\n",
ce082596
JR
566 __FILE__, __LINE__, __func__);
567
568 if (INT_ENABLE)
24c3fa36 569 iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
ce082596 570 else
24c3fa36 571 iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
ce082596
JR
572}
573
574/* validation function to verify that the controlling software is making
b292c341 575 * a valid request
ce082596
JR
576 */
577static inline bool is_flash_bank_valid(int flash_bank)
578{
5bac3acf 579 return (flash_bank >= 0 && flash_bank < 4);
ce082596
JR
580}
581
582static void denali_irq_init(struct denali_nand_info *denali)
583{
584 uint32_t int_mask = 0;
585
586 /* Disable global interrupts */
eda936ef 587 denali_set_intr_modes(denali, false);
ce082596
JR
588
589 int_mask = DENALI_IRQ_ALL;
590
591 /* Clear all status bits */
24c3fa36
CD
592 iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS0);
593 iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS1);
594 iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS2);
595 iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS3);
ce082596
JR
596
597 denali_irq_enable(denali, int_mask);
598}
599
600static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
601{
eda936ef 602 denali_set_intr_modes(denali, false);
ce082596
JR
603 free_irq(irqnum, denali);
604}
605
bdca6dae
CD
606static void denali_irq_enable(struct denali_nand_info *denali,
607 uint32_t int_mask)
ce082596 608{
24c3fa36
CD
609 iowrite32(int_mask, denali->flash_reg + INTR_EN0);
610 iowrite32(int_mask, denali->flash_reg + INTR_EN1);
611 iowrite32(int_mask, denali->flash_reg + INTR_EN2);
612 iowrite32(int_mask, denali->flash_reg + INTR_EN3);
ce082596
JR
613}
614
615/* This function only returns when an interrupt that this driver cares about
5bac3acf 616 * occurs. This is to reduce the overhead of servicing interrupts
ce082596
JR
617 */
618static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
619{
a99d1796 620 return read_interrupt_status(denali) & DENALI_IRQ_ALL;
ce082596
JR
621}
622
623/* Interrupts are cleared by writing a 1 to the appropriate status bit */
bdca6dae
CD
624static inline void clear_interrupt(struct denali_nand_info *denali,
625 uint32_t irq_mask)
ce082596
JR
626{
627 uint32_t intr_status_reg = 0;
628
629 intr_status_reg = intr_status_addresses[denali->flash_bank];
630
24c3fa36 631 iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
ce082596
JR
632}
633
634static void clear_interrupts(struct denali_nand_info *denali)
635{
636 uint32_t status = 0x0;
637 spin_lock_irq(&denali->irq_lock);
638
639 status = read_interrupt_status(denali);
8ae61ebd 640 clear_interrupt(denali, status);
ce082596 641
ce082596
JR
642 denali->irq_status = 0x0;
643 spin_unlock_irq(&denali->irq_lock);
644}
645
646static uint32_t read_interrupt_status(struct denali_nand_info *denali)
647{
648 uint32_t intr_status_reg = 0;
649
650 intr_status_reg = intr_status_addresses[denali->flash_bank];
651
652 return ioread32(denali->flash_reg + intr_status_reg);
653}
654
5bac3acf
C
655/* This is the interrupt service routine. It handles all interrupts
656 * sent to this device. Note that on CE4100, this is a shared
657 * interrupt.
ce082596
JR
658 */
659static irqreturn_t denali_isr(int irq, void *dev_id)
660{
661 struct denali_nand_info *denali = dev_id;
662 uint32_t irq_status = 0x0;
663 irqreturn_t result = IRQ_NONE;
664
665 spin_lock(&denali->irq_lock);
666
5bac3acf
C
667 /* check to see if a valid NAND chip has
668 * been selected.
ce082596 669 */
345b1d3b 670 if (is_flash_bank_valid(denali->flash_bank)) {
5bac3acf 671 /* check to see if controller generated
ce082596 672 * the interrupt, since this is a shared interrupt */
bdca6dae
CD
673 irq_status = denali_irq_detected(denali);
674 if (irq_status != 0) {
ce082596
JR
675 /* handle interrupt */
676 /* first acknowledge it */
677 clear_interrupt(denali, irq_status);
678 /* store the status in the device context for someone
679 to read */
680 denali->irq_status |= irq_status;
681 /* notify anyone who cares that it happened */
682 complete(&denali->complete);
683 /* tell the OS that we've handled this */
684 result = IRQ_HANDLED;
685 }
686 }
687 spin_unlock(&denali->irq_lock);
688 return result;
689}
690#define BANK(x) ((x) << 24)
691
692static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
693{
694 unsigned long comp_res = 0;
695 uint32_t intr_status = 0;
696 bool retry = false;
697 unsigned long timeout = msecs_to_jiffies(1000);
698
345b1d3b 699 do {
bdca6dae
CD
700 comp_res =
701 wait_for_completion_timeout(&denali->complete, timeout);
ce082596
JR
702 spin_lock_irq(&denali->irq_lock);
703 intr_status = denali->irq_status;
704
345b1d3b 705 if (intr_status & irq_mask) {
ce082596
JR
706 denali->irq_status &= ~irq_mask;
707 spin_unlock_irq(&denali->irq_lock);
ce082596
JR
708 /* our interrupt was detected */
709 break;
345b1d3b 710 } else {
5bac3acf
C
711 /* these are not the interrupts you are looking for -
712 * need to wait again */
ce082596 713 spin_unlock_irq(&denali->irq_lock);
ce082596
JR
714 retry = true;
715 }
716 } while (comp_res != 0);
717
345b1d3b 718 if (comp_res == 0) {
ce082596 719 /* timeout */
5bac3acf
C
720 printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n",
721 intr_status, irq_mask);
ce082596
JR
722
723 intr_status = 0;
724 }
725 return intr_status;
726}
727
5bac3acf 728/* This helper function setups the registers for ECC and whether or not
b292c341 729 * the spare area will be transfered. */
5bac3acf 730static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
ce082596
JR
731 bool transfer_spare)
732{
5bac3acf 733 int ecc_en_flag = 0, transfer_spare_flag = 0;
ce082596
JR
734
735 /* set ECC, transfer spare bits if needed */
736 ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
737 transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
738
739 /* Enable spare area/ECC per user's request. */
24c3fa36
CD
740 iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
741 iowrite32(transfer_spare_flag,
bdca6dae 742 denali->flash_reg + TRANSFER_SPARE_REG);
ce082596
JR
743}
744
5bac3acf 745/* sends a pipeline command operation to the controller. See the Denali NAND
b292c341 746 * controller's user guide for more information (section 4.2.3.6).
ce082596 747 */
bdca6dae
CD
748static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
749 bool ecc_en,
750 bool transfer_spare,
751 int access_type,
752 int op)
ce082596
JR
753{
754 int status = PASS;
5bac3acf 755 uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
ce082596
JR
756 irq_mask = 0;
757
a99d1796
CD
758 if (op == DENALI_READ)
759 irq_mask = INTR_STATUS0__LOAD_COMP;
760 else if (op == DENALI_WRITE)
761 irq_mask = 0;
762 else
763 BUG();
ce082596
JR
764
765 setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
766
ce082596 767 /* clear interrupts */
5bac3acf 768 clear_interrupts(denali);
ce082596
JR
769
770 addr = BANK(denali->flash_bank) | denali->page;
771
345b1d3b 772 if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
5bac3acf 773 cmd = MODE_01 | addr;
24c3fa36 774 iowrite32(cmd, denali->flash_mem);
345b1d3b 775 } else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
ce082596 776 /* read spare area */
5bac3acf 777 cmd = MODE_10 | addr;
ce082596
JR
778 index_addr(denali, (uint32_t)cmd, access_type);
779
5bac3acf 780 cmd = MODE_01 | addr;
24c3fa36 781 iowrite32(cmd, denali->flash_mem);
345b1d3b 782 } else if (op == DENALI_READ) {
ce082596 783 /* setup page read request for access type */
5bac3acf 784 cmd = MODE_10 | addr;
ce082596
JR
785 index_addr(denali, (uint32_t)cmd, access_type);
786
787 /* page 33 of the NAND controller spec indicates we should not
5bac3acf 788 use the pipeline commands in Spare area only mode. So we
ce082596
JR
789 don't.
790 */
345b1d3b 791 if (access_type == SPARE_ACCESS) {
ce082596 792 cmd = MODE_01 | addr;
24c3fa36 793 iowrite32(cmd, denali->flash_mem);
345b1d3b 794 } else {
bdca6dae
CD
795 index_addr(denali, (uint32_t)cmd,
796 0x2000 | op | page_count);
5bac3acf
C
797
798 /* wait for command to be accepted
bdca6dae
CD
799 * can always use status0 bit as the
800 * mask is identical for each
ce082596
JR
801 * bank. */
802 irq_status = wait_for_irq(denali, irq_mask);
803
345b1d3b 804 if (irq_status == 0) {
7cfffac0
CD
805 dev_err(&denali->dev->dev,
806 "cmd, page, addr on timeout "
807 "(0x%x, 0x%x, 0x%x)\n",
808 cmd, denali->page, addr);
ce082596 809 status = FAIL;
345b1d3b 810 } else {
ce082596 811 cmd = MODE_01 | addr;
24c3fa36 812 iowrite32(cmd, denali->flash_mem);
ce082596
JR
813 }
814 }
815 }
816 return status;
817}
818
819/* helper function that simply writes a buffer to the flash */
bdca6dae
CD
820static int write_data_to_flash_mem(struct denali_nand_info *denali,
821 const uint8_t *buf,
822 int len)
ce082596
JR
823{
824 uint32_t i = 0, *buf32;
825
5bac3acf
C
826 /* verify that the len is a multiple of 4. see comment in
827 * read_data_from_flash_mem() */
ce082596
JR
828 BUG_ON((len % 4) != 0);
829
830 /* write the data to the flash memory */
831 buf32 = (uint32_t *)buf;
832 for (i = 0; i < len / 4; i++)
24c3fa36 833 iowrite32(*buf32++, denali->flash_mem + 0x10);
5bac3acf 834 return i*4; /* intent is to return the number of bytes read */
ce082596
JR
835}
836
837/* helper function that simply reads a buffer from the flash */
bdca6dae
CD
838static int read_data_from_flash_mem(struct denali_nand_info *denali,
839 uint8_t *buf,
840 int len)
ce082596
JR
841{
842 uint32_t i = 0, *buf32;
843
844 /* we assume that len will be a multiple of 4, if not
845 * it would be nice to know about it ASAP rather than
5bac3acf
C
846 * have random failures...
847 * This assumption is based on the fact that this
848 * function is designed to be used to read flash pages,
ce082596
JR
849 * which are typically multiples of 4...
850 */
851
852 BUG_ON((len % 4) != 0);
853
854 /* transfer the data from the flash */
855 buf32 = (uint32_t *)buf;
856 for (i = 0; i < len / 4; i++)
ce082596 857 *buf32++ = ioread32(denali->flash_mem + 0x10);
5bac3acf 858 return i*4; /* intent is to return the number of bytes read */
ce082596
JR
859}
860
861/* writes OOB data to the device */
862static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
863{
864 struct denali_nand_info *denali = mtd_to_denali(mtd);
865 uint32_t irq_status = 0;
5bac3acf 866 uint32_t irq_mask = INTR_STATUS0__PROGRAM_COMP |
ce082596
JR
867 INTR_STATUS0__PROGRAM_FAIL;
868 int status = 0;
869
870 denali->page = page;
871
5bac3acf 872 if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
345b1d3b 873 DENALI_WRITE) == PASS) {
ce082596
JR
874 write_data_to_flash_mem(denali, buf, mtd->oobsize);
875
ce082596
JR
876 /* wait for operation to complete */
877 irq_status = wait_for_irq(denali, irq_mask);
878
345b1d3b 879 if (irq_status == 0) {
7cfffac0 880 dev_err(&denali->dev->dev, "OOB write failed\n");
ce082596
JR
881 status = -EIO;
882 }
345b1d3b 883 } else {
7cfffac0 884 dev_err(&denali->dev->dev, "unable to send pipeline command\n");
5bac3acf 885 status = -EIO;
ce082596
JR
886 }
887 return status;
888}
889
890/* reads OOB data from the device */
891static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
892{
893 struct denali_nand_info *denali = mtd_to_denali(mtd);
bdca6dae
CD
894 uint32_t irq_mask = INTR_STATUS0__LOAD_COMP,
895 irq_status = 0, addr = 0x0, cmd = 0x0;
ce082596
JR
896
897 denali->page = page;
898
5bac3acf 899 if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
345b1d3b 900 DENALI_READ) == PASS) {
5bac3acf 901 read_data_from_flash_mem(denali, buf, mtd->oobsize);
ce082596 902
5bac3acf 903 /* wait for command to be accepted
ce082596
JR
904 * can always use status0 bit as the mask is identical for each
905 * bank. */
906 irq_status = wait_for_irq(denali, irq_mask);
907
908 if (irq_status == 0)
7cfffac0 909 dev_err(&denali->dev->dev, "page on OOB timeout %d\n",
bdca6dae 910 denali->page);
ce082596
JR
911
912 /* We set the device back to MAIN_ACCESS here as I observed
913 * instability with the controller if you do a block erase
914 * and the last transaction was a SPARE_ACCESS. Block erase
915 * is reliable (according to the MTD test infrastructure)
5bac3acf 916 * if you are in MAIN_ACCESS.
ce082596
JR
917 */
918 addr = BANK(denali->flash_bank) | denali->page;
5bac3acf 919 cmd = MODE_10 | addr;
ce082596 920 index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
ce082596
JR
921 }
922}
923
5bac3acf 924/* this function examines buffers to see if they contain data that
ce082596
JR
925 * indicate that the buffer is part of an erased region of flash.
926 */
927bool is_erased(uint8_t *buf, int len)
928{
929 int i = 0;
930 for (i = 0; i < len; i++)
ce082596 931 if (buf[i] != 0xFF)
ce082596 932 return false;
ce082596
JR
933 return true;
934}
935#define ECC_SECTOR_SIZE 512
936
937#define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
938#define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
939#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
8ae61ebd
CD
940#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
941#define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
ce082596
JR
942#define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
943
5bac3acf 944static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
8ae61ebd 945 uint32_t irq_status)
ce082596
JR
946{
947 bool check_erased_page = false;
948
345b1d3b 949 if (irq_status & INTR_STATUS0__ECC_ERR) {
ce082596
JR
950 /* read the ECC errors. we'll ignore them for now */
951 uint32_t err_address = 0, err_correction_info = 0;
952 uint32_t err_byte = 0, err_sector = 0, err_device = 0;
953 uint32_t err_correction_value = 0;
8ae61ebd 954 denali_set_intr_modes(denali, false);
ce082596 955
345b1d3b 956 do {
5bac3acf 957 err_address = ioread32(denali->flash_reg +
ce082596
JR
958 ECC_ERROR_ADDRESS);
959 err_sector = ECC_SECTOR(err_address);
960 err_byte = ECC_BYTE(err_address);
961
5bac3acf 962 err_correction_info = ioread32(denali->flash_reg +
ce082596 963 ERR_CORRECTION_INFO);
5bac3acf 964 err_correction_value =
ce082596
JR
965 ECC_CORRECTION_VALUE(err_correction_info);
966 err_device = ECC_ERR_DEVICE(err_correction_info);
967
345b1d3b 968 if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
8ae61ebd
CD
969 /* If err_byte is larger than ECC_SECTOR_SIZE,
970 * means error happend in OOB, so we ignore
971 * it. It's no need for us to correct it
972 * err_device is represented the NAND error
973 * bits are happened in if there are more
974 * than one NAND connected.
975 * */
976 if (err_byte < ECC_SECTOR_SIZE) {
977 int offset;
978 offset = (err_sector *
979 ECC_SECTOR_SIZE +
980 err_byte) *
981 denali->devnum +
982 err_device;
ce082596
JR
983 /* correct the ECC error */
984 buf[offset] ^= err_correction_value;
985 denali->mtd.ecc_stats.corrected++;
ce082596 986 }
345b1d3b 987 } else {
5bac3acf 988 /* if the error is not correctable, need to
bdca6dae
CD
989 * look at the page to see if it is an erased
990 * page. if so, then it's not a real ECC error
991 * */
ce082596
JR
992 check_erased_page = true;
993 }
ce082596 994 } while (!ECC_LAST_ERR(err_correction_info));
8ae61ebd
CD
995 /* Once handle all ecc errors, controller will triger
996 * a ECC_TRANSACTION_DONE interrupt, so here just wait
997 * for a while for this interrupt
998 * */
999 while (!(read_interrupt_status(denali) &
1000 INTR_STATUS0__ECC_TRANSACTION_DONE))
1001 cpu_relax();
1002 clear_interrupts(denali);
1003 denali_set_intr_modes(denali, true);
ce082596
JR
1004 }
1005 return check_erased_page;
1006}
1007
1008/* programs the controller to either enable/disable DMA transfers */
aadff49c 1009static void denali_enable_dma(struct denali_nand_info *denali, bool en)
ce082596
JR
1010{
1011 uint32_t reg_val = 0x0;
1012
a99d1796
CD
1013 if (en)
1014 reg_val = DMA_ENABLE__FLAG;
ce082596 1015
24c3fa36 1016 iowrite32(reg_val, denali->flash_reg + DMA_ENABLE);
ce082596
JR
1017 ioread32(denali->flash_reg + DMA_ENABLE);
1018}
1019
1020/* setups the HW to perform the data DMA */
aadff49c 1021static void denali_setup_dma(struct denali_nand_info *denali, int op)
ce082596
JR
1022{
1023 uint32_t mode = 0x0;
1024 const int page_count = 1;
1025 dma_addr_t addr = denali->buf.dma_buf;
1026
1027 mode = MODE_10 | BANK(denali->flash_bank);
1028
1029 /* DMA is a four step process */
1030
1031 /* 1. setup transfer type and # of pages */
1032 index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
1033
1034 /* 2. set memory high address bits 23:8 */
1035 index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);
1036
1037 /* 3. set memory low address bits 23:8 */
1038 index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);
1039
1040 /* 4. interrupt when complete, burst len = 64 bytes*/
1041 index_addr(denali, mode | 0x14000, 0x2400);
1042}
1043
5bac3acf 1044/* writes a page. user specifies type, and this function handles the
b292c341 1045 * configuration details. */
5bac3acf 1046static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
ce082596
JR
1047 const uint8_t *buf, bool raw_xfer)
1048{
1049 struct denali_nand_info *denali = mtd_to_denali(mtd);
1050 struct pci_dev *pci_dev = denali->dev;
1051
1052 dma_addr_t addr = denali->buf.dma_buf;
1053 size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1054
1055 uint32_t irq_status = 0;
5bac3acf 1056 uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP |
ce082596
JR
1057 INTR_STATUS0__PROGRAM_FAIL;
1058
1059 /* if it is a raw xfer, we want to disable ecc, and send
1060 * the spare area.
1061 * !raw_xfer - enable ecc
1062 * raw_xfer - transfer spare
1063 */
1064 setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
1065
1066 /* copy buffer into DMA buffer */
1067 memcpy(denali->buf.buf, buf, mtd->writesize);
1068
345b1d3b 1069 if (raw_xfer) {
ce082596 1070 /* transfer the data to the spare area */
5bac3acf
C
1071 memcpy(denali->buf.buf + mtd->writesize,
1072 chip->oob_poi,
1073 mtd->oobsize);
ce082596
JR
1074 }
1075
1076 pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_TODEVICE);
1077
1078 clear_interrupts(denali);
5bac3acf 1079 denali_enable_dma(denali, true);
ce082596 1080
aadff49c 1081 denali_setup_dma(denali, DENALI_WRITE);
ce082596
JR
1082
1083 /* wait for operation to complete */
1084 irq_status = wait_for_irq(denali, irq_mask);
1085
345b1d3b 1086 if (irq_status == 0) {
7cfffac0
CD
1087 dev_err(&denali->dev->dev,
1088 "timeout on write_page (type = %d)\n",
1089 raw_xfer);
5bac3acf 1090 denali->status =
bdca6dae
CD
1091 (irq_status & INTR_STATUS0__PROGRAM_FAIL) ?
1092 NAND_STATUS_FAIL : PASS;
ce082596
JR
1093 }
1094
5bac3acf 1095 denali_enable_dma(denali, false);
ce082596
JR
1096 pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_TODEVICE);
1097}
1098
1099/* NAND core entry points */
1100
5bac3acf 1101/* this is the callback that the NAND core calls to write a page. Since
b292c341
CD
1102 * writing a page with ECC or without is similar, all the work is done
1103 * by write_page above.
1104 * */
5bac3acf 1105static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
ce082596
JR
1106 const uint8_t *buf)
1107{
1108 /* for regular page writes, we let HW handle all the ECC
5bac3acf 1109 * data written to the device. */
ce082596
JR
1110 write_page(mtd, chip, buf, false);
1111}
1112
5bac3acf 1113/* This is the callback that the NAND core calls to write a page without ECC.
b292c341
CD
1114 * raw access is similiar to ECC page writes, so all the work is done in the
1115 * write_page() function above.
ce082596 1116 */
5bac3acf 1117static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
ce082596
JR
1118 const uint8_t *buf)
1119{
5bac3acf 1120 /* for raw page writes, we want to disable ECC and simply write
ce082596
JR
1121 whatever data is in the buffer. */
1122 write_page(mtd, chip, buf, true);
1123}
1124
5bac3acf 1125static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
ce082596
JR
1126 int page)
1127{
5bac3acf 1128 return write_oob_data(mtd, chip->oob_poi, page);
ce082596
JR
1129}
1130
5bac3acf 1131static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
ce082596
JR
1132 int page, int sndcmd)
1133{
1134 read_oob_data(mtd, chip->oob_poi, page);
1135
5bac3acf
C
1136 return 0; /* notify NAND core to send command to
1137 NAND device. */
ce082596
JR
1138}
1139
1140static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1141 uint8_t *buf, int page)
1142{
1143 struct denali_nand_info *denali = mtd_to_denali(mtd);
1144 struct pci_dev *pci_dev = denali->dev;
1145
1146 dma_addr_t addr = denali->buf.dma_buf;
1147 size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1148
1149 uint32_t irq_status = 0;
5bac3acf 1150 uint32_t irq_mask = INTR_STATUS0__ECC_TRANSACTION_DONE |
ce082596
JR
1151 INTR_STATUS0__ECC_ERR;
1152 bool check_erased_page = false;
1153
1154 setup_ecc_for_xfer(denali, true, false);
1155
aadff49c 1156 denali_enable_dma(denali, true);
ce082596
JR
1157 pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
1158
1159 clear_interrupts(denali);
aadff49c 1160 denali_setup_dma(denali, DENALI_READ);
ce082596
JR
1161
1162 /* wait for operation to complete */
1163 irq_status = wait_for_irq(denali, irq_mask);
1164
1165 pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
1166
1167 memcpy(buf, denali->buf.buf, mtd->writesize);
5bac3acf 1168
8ae61ebd 1169 check_erased_page = handle_ecc(denali, buf, irq_status);
aadff49c 1170 denali_enable_dma(denali, false);
ce082596 1171
345b1d3b 1172 if (check_erased_page) {
ce082596
JR
1173 read_oob_data(&denali->mtd, chip->oob_poi, denali->page);
1174
1175 /* check ECC failures that may have occurred on erased pages */
345b1d3b 1176 if (check_erased_page) {
ce082596 1177 if (!is_erased(buf, denali->mtd.writesize))
ce082596 1178 denali->mtd.ecc_stats.failed++;
ce082596 1179 if (!is_erased(buf, denali->mtd.oobsize))
ce082596 1180 denali->mtd.ecc_stats.failed++;
5bac3acf 1181 }
ce082596
JR
1182 }
1183 return 0;
1184}
1185
1186static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1187 uint8_t *buf, int page)
1188{
1189 struct denali_nand_info *denali = mtd_to_denali(mtd);
1190 struct pci_dev *pci_dev = denali->dev;
1191
1192 dma_addr_t addr = denali->buf.dma_buf;
1193 size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1194
1195 uint32_t irq_status = 0;
1196 uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP;
5bac3acf 1197
ce082596 1198 setup_ecc_for_xfer(denali, false, true);
aadff49c 1199 denali_enable_dma(denali, true);
ce082596
JR
1200
1201 pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
1202
1203 clear_interrupts(denali);
aadff49c 1204 denali_setup_dma(denali, DENALI_READ);
ce082596
JR
1205
1206 /* wait for operation to complete */
1207 irq_status = wait_for_irq(denali, irq_mask);
1208
1209 pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
1210
aadff49c 1211 denali_enable_dma(denali, false);
ce082596
JR
1212
1213 memcpy(buf, denali->buf.buf, mtd->writesize);
1214 memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
1215
1216 return 0;
1217}
1218
1219static uint8_t denali_read_byte(struct mtd_info *mtd)
1220{
1221 struct denali_nand_info *denali = mtd_to_denali(mtd);
1222 uint8_t result = 0xff;
1223
1224 if (denali->buf.head < denali->buf.tail)
ce082596 1225 result = denali->buf.buf[denali->buf.head++];
ce082596 1226
ce082596
JR
1227 return result;
1228}
1229
1230static void denali_select_chip(struct mtd_info *mtd, int chip)
1231{
1232 struct denali_nand_info *denali = mtd_to_denali(mtd);
7cfffac0 1233
ce082596
JR
1234 spin_lock_irq(&denali->irq_lock);
1235 denali->flash_bank = chip;
1236 spin_unlock_irq(&denali->irq_lock);
1237}
1238
1239static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
1240{
1241 struct denali_nand_info *denali = mtd_to_denali(mtd);
1242 int status = denali->status;
1243 denali->status = 0;
1244
ce082596
JR
1245 return status;
1246}
1247
1248static void denali_erase(struct mtd_info *mtd, int page)
1249{
1250 struct denali_nand_info *denali = mtd_to_denali(mtd);
1251
1252 uint32_t cmd = 0x0, irq_status = 0;
1253
ce082596 1254 /* clear interrupts */
5bac3acf 1255 clear_interrupts(denali);
ce082596
JR
1256
1257 /* setup page read request for access type */
1258 cmd = MODE_10 | BANK(denali->flash_bank) | page;
1259 index_addr(denali, (uint32_t)cmd, 0x1);
1260
1261 /* wait for erase to complete or failure to occur */
5bac3acf 1262 irq_status = wait_for_irq(denali, INTR_STATUS0__ERASE_COMP |
ce082596
JR
1263 INTR_STATUS0__ERASE_FAIL);
1264
bdca6dae
CD
1265 denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ?
1266 NAND_STATUS_FAIL : PASS;
ce082596
JR
1267}
1268
5bac3acf 1269static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
ce082596
JR
1270 int page)
1271{
1272 struct denali_nand_info *denali = mtd_to_denali(mtd);
ef41e1bb
CD
1273 uint32_t addr, id;
1274 int i;
ce082596 1275
345b1d3b 1276 switch (cmd) {
a99d1796
CD
1277 case NAND_CMD_PAGEPROG:
1278 break;
1279 case NAND_CMD_STATUS:
1280 read_status(denali);
1281 break;
1282 case NAND_CMD_READID:
1283 reset_buf(denali);
ef41e1bb
CD
1284 /*sometimes ManufactureId read from register is not right
1285 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
1286 * So here we send READID cmd to NAND insteand
1287 * */
1288 addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
1289 index_addr(denali, (uint32_t)addr | 0, 0x90);
1290 index_addr(denali, (uint32_t)addr | 1, 0);
1291 for (i = 0; i < 5; i++) {
1292 index_addr_read_data(denali,
1293 (uint32_t)addr | 2,
1294 &id);
1295 write_byte_to_buf(denali, id);
a99d1796
CD
1296 }
1297 break;
1298 case NAND_CMD_READ0:
1299 case NAND_CMD_SEQIN:
1300 denali->page = page;
1301 break;
1302 case NAND_CMD_RESET:
1303 reset_bank(denali);
1304 break;
1305 case NAND_CMD_READOOB:
1306 /* TODO: Read OOB data */
1307 break;
1308 default:
1309 printk(KERN_ERR ": unsupported command"
1310 " received 0x%x\n", cmd);
1311 break;
ce082596
JR
1312 }
1313}
1314
1315/* stubs for ECC functions not used by the NAND core */
5bac3acf 1316static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
ce082596
JR
1317 uint8_t *ecc_code)
1318{
7cfffac0
CD
1319 struct denali_nand_info *denali = mtd_to_denali(mtd);
1320 dev_err(&denali->dev->dev,
1321 "denali_ecc_calculate called unexpectedly\n");
ce082596
JR
1322 BUG();
1323 return -EIO;
1324}
1325
5bac3acf 1326static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
ce082596
JR
1327 uint8_t *read_ecc, uint8_t *calc_ecc)
1328{
7cfffac0
CD
1329 struct denali_nand_info *denali = mtd_to_denali(mtd);
1330 dev_err(&denali->dev->dev,
1331 "denali_ecc_correct called unexpectedly\n");
ce082596
JR
1332 BUG();
1333 return -EIO;
1334}
1335
1336static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
1337{
7cfffac0
CD
1338 struct denali_nand_info *denali = mtd_to_denali(mtd);
1339 dev_err(&denali->dev->dev,
1340 "denali_ecc_hwctl called unexpectedly\n");
ce082596
JR
1341 BUG();
1342}
1343/* end NAND core entry points */
1344
1345/* Initialization code to bring the device up to a known good state */
1346static void denali_hw_init(struct denali_nand_info *denali)
1347{
db9a3210
CD
1348 /* tell driver how many bit controller will skip before
1349 * writing ECC code in OOB, this register may be already
1350 * set by firmware. So we read this value out.
1351 * if this value is 0, just let it be.
1352 * */
1353 denali->bbtskipbytes = ioread32(denali->flash_reg +
1354 SPARE_AREA_SKIP_BYTES);
ce082596 1355 denali_irq_init(denali);
eda936ef 1356 denali_nand_reset(denali);
24c3fa36
CD
1357 iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
1358 iowrite32(CHIP_EN_DONT_CARE__FLAG,
bdca6dae 1359 denali->flash_reg + CHIP_ENABLE_DONT_CARE);
ce082596 1360
24c3fa36
CD
1361 iowrite32(0x0, denali->flash_reg + SPARE_AREA_SKIP_BYTES);
1362 iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
ce082596
JR
1363
1364 /* Should set value for these registers when init */
24c3fa36
CD
1365 iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
1366 iowrite32(1, denali->flash_reg + ECC_ENABLE);
ce082596
JR
1367}
1368
db9a3210
CD
1369/* Althogh controller spec said SLC ECC is forceb to be 4bit,
1370 * but denali controller in MRST only support 15bit and 8bit ECC
1371 * correction
1372 * */
1373#define ECC_8BITS 14
1374static struct nand_ecclayout nand_8bit_oob = {
1375 .eccbytes = 14,
ce082596
JR
1376};
1377
db9a3210
CD
1378#define ECC_15BITS 26
1379static struct nand_ecclayout nand_15bit_oob = {
1380 .eccbytes = 26,
ce082596
JR
1381};
1382
1383static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
1384static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
1385
1386static struct nand_bbt_descr bbt_main_descr = {
1387 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1388 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1389 .offs = 8,
1390 .len = 4,
1391 .veroffs = 12,
1392 .maxblocks = 4,
1393 .pattern = bbt_pattern,
1394};
1395
1396static struct nand_bbt_descr bbt_mirror_descr = {
1397 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1398 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1399 .offs = 8,
1400 .len = 4,
1401 .veroffs = 12,
1402 .maxblocks = 4,
1403 .pattern = mirror_pattern,
1404};
1405
421f91d2 1406/* initialize driver data structures */
ce082596
JR
1407void denali_drv_init(struct denali_nand_info *denali)
1408{
1409 denali->idx = 0;
1410
1411 /* setup interrupt handler */
5bac3acf 1412 /* the completion object will be used to notify
ce082596
JR
1413 * the callee that the interrupt is done */
1414 init_completion(&denali->complete);
1415
1416 /* the spinlock will be used to synchronize the ISR
5bac3acf 1417 * with any element that might be access shared
ce082596
JR
1418 * data (interrupt status) */
1419 spin_lock_init(&denali->irq_lock);
1420
1421 /* indicate that MTD has not selected a valid bank yet */
1422 denali->flash_bank = CHIP_SELECT_INVALID;
1423
1424 /* initialize our irq_status variable to indicate no interrupts */
1425 denali->irq_status = 0;
1426}
1427
1428/* driver entry point */
1429static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
1430{
1431 int ret = -ENODEV;
1432 resource_size_t csr_base, mem_base;
1433 unsigned long csr_len, mem_len;
1434 struct denali_nand_info *denali;
1435
ce082596
JR
1436 denali = kzalloc(sizeof(*denali), GFP_KERNEL);
1437 if (!denali)
1438 return -ENOMEM;
1439
1440 ret = pci_enable_device(dev);
1441 if (ret) {
1442 printk(KERN_ERR "Spectra: pci_enable_device failed.\n");
5c0eb900 1443 goto failed_alloc_memery;
ce082596
JR
1444 }
1445
1446 if (id->driver_data == INTEL_CE4100) {
5bac3acf
C
1447 /* Due to a silicon limitation, we can only support
1448 * ONFI timing mode 1 and below.
1449 */
345b1d3b 1450 if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
bdca6dae
CD
1451 printk(KERN_ERR "Intel CE4100 only supports"
1452 " ONFI timing mode 1 or below\n");
ce082596 1453 ret = -EINVAL;
5c0eb900 1454 goto failed_enable_dev;
ce082596
JR
1455 }
1456 denali->platform = INTEL_CE4100;
1457 mem_base = pci_resource_start(dev, 0);
1458 mem_len = pci_resource_len(dev, 1);
1459 csr_base = pci_resource_start(dev, 1);
1460 csr_len = pci_resource_len(dev, 1);
1461 } else {
1462 denali->platform = INTEL_MRST;
1463 csr_base = pci_resource_start(dev, 0);
5c0eb900 1464 csr_len = pci_resource_len(dev, 0);
ce082596
JR
1465 mem_base = pci_resource_start(dev, 1);
1466 mem_len = pci_resource_len(dev, 1);
1467 if (!mem_len) {
1468 mem_base = csr_base + csr_len;
1469 mem_len = csr_len;
ce082596
JR
1470 }
1471 }
1472
1473 /* Is 32-bit DMA supported? */
1474 ret = pci_set_dma_mask(dev, DMA_BIT_MASK(32));
1475
345b1d3b 1476 if (ret) {
ce082596 1477 printk(KERN_ERR "Spectra: no usable DMA configuration\n");
5c0eb900 1478 goto failed_enable_dev;
ce082596 1479 }
bdca6dae
CD
1480 denali->buf.dma_buf =
1481 pci_map_single(dev, denali->buf.buf,
1482 DENALI_BUF_SIZE,
1483 PCI_DMA_BIDIRECTIONAL);
ce082596 1484
345b1d3b 1485 if (pci_dma_mapping_error(dev, denali->buf.dma_buf)) {
7cfffac0 1486 dev_err(&dev->dev, "Spectra: failed to map DMA buffer\n");
5c0eb900 1487 goto failed_enable_dev;
ce082596
JR
1488 }
1489
1490 pci_set_master(dev);
1491 denali->dev = dev;
1492
1493 ret = pci_request_regions(dev, DENALI_NAND_NAME);
1494 if (ret) {
1495 printk(KERN_ERR "Spectra: Unable to request memory regions\n");
5c0eb900 1496 goto failed_dma_map;
ce082596
JR
1497 }
1498
1499 denali->flash_reg = ioremap_nocache(csr_base, csr_len);
1500 if (!denali->flash_reg) {
1501 printk(KERN_ERR "Spectra: Unable to remap memory region\n");
1502 ret = -ENOMEM;
5c0eb900 1503 goto failed_req_regions;
ce082596 1504 }
ce082596
JR
1505
1506 denali->flash_mem = ioremap_nocache(mem_base, mem_len);
1507 if (!denali->flash_mem) {
1508 printk(KERN_ERR "Spectra: ioremap_nocache failed!");
ce082596 1509 ret = -ENOMEM;
5c0eb900 1510 goto failed_remap_reg;
ce082596
JR
1511 }
1512
ce082596
JR
1513 denali_hw_init(denali);
1514 denali_drv_init(denali);
1515
ce082596
JR
1516 if (request_irq(dev->irq, denali_isr, IRQF_SHARED,
1517 DENALI_NAND_NAME, denali)) {
1518 printk(KERN_ERR "Spectra: Unable to allocate IRQ\n");
1519 ret = -ENODEV;
5c0eb900 1520 goto failed_remap_mem;
ce082596
JR
1521 }
1522
1523 /* now that our ISR is registered, we can enable interrupts */
eda936ef 1524 denali_set_intr_modes(denali, true);
ce082596
JR
1525
1526 pci_set_drvdata(dev, denali);
1527
eda936ef 1528 denali_nand_timing_set(denali);
ce082596 1529
ce082596
JR
1530 denali->mtd.name = "Denali NAND";
1531 denali->mtd.owner = THIS_MODULE;
1532 denali->mtd.priv = &denali->nand;
1533
1534 /* register the driver with the NAND core subsystem */
1535 denali->nand.select_chip = denali_select_chip;
1536 denali->nand.cmdfunc = denali_cmdfunc;
1537 denali->nand.read_byte = denali_read_byte;
1538 denali->nand.waitfunc = denali_waitfunc;
1539
5bac3acf 1540 /* scan for NAND devices attached to the controller
ce082596 1541 * this is the first stage in a two step process to register
5bac3acf 1542 * with the nand subsystem */
345b1d3b 1543 if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL)) {
ce082596 1544 ret = -ENXIO;
5c0eb900 1545 goto failed_req_irq;
ce082596 1546 }
5bac3acf 1547
66406524
CD
1548 /* MTD supported page sizes vary by kernel. We validate our
1549 * kernel supports the device here.
1550 */
1551 if (denali->mtd.writesize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) {
1552 ret = -ENODEV;
1553 printk(KERN_ERR "Spectra: device size not supported by this "
1554 "version of MTD.");
5c0eb900 1555 goto failed_req_irq;
66406524
CD
1556 }
1557
08b9ab99
CD
1558 /* support for multi nand
1559 * MTD known nothing about multi nand,
1560 * so we should tell it the real pagesize
1561 * and anything necessery
1562 */
1563 denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
1564 denali->nand.chipsize <<= (denali->devnum - 1);
1565 denali->nand.page_shift += (denali->devnum - 1);
1566 denali->nand.pagemask = (denali->nand.chipsize >>
1567 denali->nand.page_shift) - 1;
1568 denali->nand.bbt_erase_shift += (denali->devnum - 1);
1569 denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
1570 denali->nand.chip_shift += (denali->devnum - 1);
1571 denali->mtd.writesize <<= (denali->devnum - 1);
1572 denali->mtd.oobsize <<= (denali->devnum - 1);
1573 denali->mtd.erasesize <<= (denali->devnum - 1);
1574 denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
1575 denali->bbtskipbytes *= denali->devnum;
1576
5bac3acf
C
1577 /* second stage of the NAND scan
1578 * this stage requires information regarding ECC and
1579 * bad block management. */
ce082596
JR
1580
1581 /* Bad block management */
1582 denali->nand.bbt_td = &bbt_main_descr;
1583 denali->nand.bbt_md = &bbt_mirror_descr;
1584
1585 /* skip the scan for now until we have OOB read and write support */
1586 denali->nand.options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN;
1587 denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
1588
db9a3210
CD
1589 /* Denali Controller only support 15bit and 8bit ECC in MRST,
1590 * so just let controller do 15bit ECC for MLC and 8bit ECC for
1591 * SLC if possible.
1592 * */
1593 if (denali->nand.cellinfo & 0xc &&
1594 (denali->mtd.oobsize > (denali->bbtskipbytes +
1595 ECC_15BITS * (denali->mtd.writesize /
1596 ECC_SECTOR_SIZE)))) {
1597 /* if MLC OOB size is large enough, use 15bit ECC*/
1598 denali->nand.ecc.layout = &nand_15bit_oob;
1599 denali->nand.ecc.bytes = ECC_15BITS;
24c3fa36 1600 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
db9a3210
CD
1601 } else if (denali->mtd.oobsize < (denali->bbtskipbytes +
1602 ECC_8BITS * (denali->mtd.writesize /
1603 ECC_SECTOR_SIZE))) {
1604 printk(KERN_ERR "Your NAND chip OOB is not large enough to"
1605 " contain 8bit ECC correction codes");
5c0eb900 1606 goto failed_req_irq;
db9a3210
CD
1607 } else {
1608 denali->nand.ecc.layout = &nand_8bit_oob;
1609 denali->nand.ecc.bytes = ECC_8BITS;
24c3fa36 1610 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
ce082596
JR
1611 }
1612
08b9ab99 1613 denali->nand.ecc.bytes *= denali->devnum;
db9a3210
CD
1614 denali->nand.ecc.layout->eccbytes *=
1615 denali->mtd.writesize / ECC_SECTOR_SIZE;
1616 denali->nand.ecc.layout->oobfree[0].offset =
1617 denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
1618 denali->nand.ecc.layout->oobfree[0].length =
1619 denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
1620 denali->bbtskipbytes;
1621
66406524
CD
1622 /* Let driver know the total blocks number and
1623 * how many blocks contained by each nand chip.
1624 * blksperchip will help driver to know how many
1625 * blocks is taken by FW.
1626 * */
1627 denali->totalblks = denali->mtd.size >>
1628 denali->nand.phys_erase_shift;
1629 denali->blksperchip = denali->totalblks / denali->nand.numchips;
1630
5bac3acf
C
1631 /* These functions are required by the NAND core framework, otherwise,
1632 * the NAND core will assert. However, we don't need them, so we'll stub
1633 * them out. */
ce082596
JR
1634 denali->nand.ecc.calculate = denali_ecc_calculate;
1635 denali->nand.ecc.correct = denali_ecc_correct;
1636 denali->nand.ecc.hwctl = denali_ecc_hwctl;
1637
1638 /* override the default read operations */
08b9ab99 1639 denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
ce082596
JR
1640 denali->nand.ecc.read_page = denali_read_page;
1641 denali->nand.ecc.read_page_raw = denali_read_page_raw;
1642 denali->nand.ecc.write_page = denali_write_page;
1643 denali->nand.ecc.write_page_raw = denali_write_page_raw;
1644 denali->nand.ecc.read_oob = denali_read_oob;
1645 denali->nand.ecc.write_oob = denali_write_oob;
1646 denali->nand.erase_cmd = denali_erase;
1647
345b1d3b 1648 if (nand_scan_tail(&denali->mtd)) {
ce082596 1649 ret = -ENXIO;
5c0eb900 1650 goto failed_req_irq;
ce082596
JR
1651 }
1652
1653 ret = add_mtd_device(&denali->mtd);
1654 if (ret) {
7cfffac0
CD
1655 dev_err(&dev->dev, "Spectra: Failed to register MTD: %d\n",
1656 ret);
5c0eb900 1657 goto failed_req_irq;
ce082596
JR
1658 }
1659 return 0;
1660
5c0eb900 1661failed_req_irq:
ce082596 1662 denali_irq_cleanup(dev->irq, denali);
5c0eb900 1663failed_remap_mem:
ce082596 1664 iounmap(denali->flash_mem);
5c0eb900
CD
1665failed_remap_reg:
1666 iounmap(denali->flash_reg);
1667failed_req_regions:
ce082596 1668 pci_release_regions(dev);
5c0eb900 1669failed_dma_map:
5bac3acf 1670 pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
ce082596 1671 PCI_DMA_BIDIRECTIONAL);
5c0eb900
CD
1672failed_enable_dev:
1673 pci_disable_device(dev);
1674failed_alloc_memery:
ce082596
JR
1675 kfree(denali);
1676 return ret;
1677}
1678
1679/* driver exit point */
1680static void denali_pci_remove(struct pci_dev *dev)
1681{
1682 struct denali_nand_info *denali = pci_get_drvdata(dev);
1683
ce082596
JR
1684 nand_release(&denali->mtd);
1685 del_mtd_device(&denali->mtd);
1686
1687 denali_irq_cleanup(dev->irq, denali);
1688
1689 iounmap(denali->flash_reg);
1690 iounmap(denali->flash_mem);
1691 pci_release_regions(dev);
1692 pci_disable_device(dev);
5bac3acf 1693 pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
ce082596
JR
1694 PCI_DMA_BIDIRECTIONAL);
1695 pci_set_drvdata(dev, NULL);
1696 kfree(denali);
1697}
1698
1699MODULE_DEVICE_TABLE(pci, denali_pci_ids);
1700
1701static struct pci_driver denali_pci_driver = {
1702 .name = DENALI_NAND_NAME,
1703 .id_table = denali_pci_ids,
1704 .probe = denali_pci_probe,
1705 .remove = denali_pci_remove,
1706};
1707
1708static int __devinit denali_init(void)
1709{
bdca6dae
CD
1710 printk(KERN_INFO "Spectra MTD driver built on %s @ %s\n",
1711 __DATE__, __TIME__);
ce082596
JR
1712 return pci_register_driver(&denali_pci_driver);
1713}
1714
1715/* Free memory */
1716static void __devexit denali_exit(void)
1717{
1718 pci_unregister_driver(&denali_pci_driver);
1719}
1720
1721module_init(denali_init);
1722module_exit(denali_exit);
This page took 0.117906 seconds and 5 git commands to generate.