mtd: nand: make use of nand_set/get_controller_data() helpers
[deliverable/linux.git] / drivers / mtd / nand / fsmc_nand.c
CommitLineData
6c009ab8
LW
1/*
2 * drivers/mtd/nand/fsmc_nand.c
3 *
4 * ST Microelectronics
5 * Flexible Static Memory Controller (FSMC)
6 * Driver for NAND portions
7 *
8 * Copyright © 2010 ST Microelectronics
9 * Vipin Kumar <vipin.kumar@st.com>
10 * Ashish Priyadarshi
11 *
12 * Based on drivers/mtd/nand/nomadik_nand.c
13 *
14 * This file is licensed under the terms of the GNU General Public
15 * License version 2. This program is licensed "as is" without any
16 * warranty of any kind, whether express or implied.
17 */
18
19#include <linux/clk.h>
4774fb0a
VK
20#include <linux/completion.h>
21#include <linux/dmaengine.h>
22#include <linux/dma-direction.h>
23#include <linux/dma-mapping.h>
6c009ab8
LW
24#include <linux/err.h>
25#include <linux/init.h>
26#include <linux/module.h>
27#include <linux/resource.h>
28#include <linux/sched.h>
29#include <linux/types.h>
30#include <linux/mtd/mtd.h>
31#include <linux/mtd/nand.h>
32#include <linux/mtd/nand_ecc.h>
33#include <linux/platform_device.h>
eea62819 34#include <linux/of.h>
6c009ab8
LW
35#include <linux/mtd/partitions.h>
36#include <linux/io.h>
37#include <linux/slab.h>
38#include <linux/mtd/fsmc.h>
593cd871 39#include <linux/amba/bus.h>
6c009ab8
LW
40#include <mtd/mtd-abi.h>
41
e29ee57b 42static struct nand_ecclayout fsmc_ecc1_128_layout = {
6c009ab8
LW
43 .eccbytes = 24,
44 .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52,
45 66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116},
46 .oobfree = {
47 {.offset = 8, .length = 8},
48 {.offset = 24, .length = 8},
49 {.offset = 40, .length = 8},
50 {.offset = 56, .length = 8},
51 {.offset = 72, .length = 8},
52 {.offset = 88, .length = 8},
53 {.offset = 104, .length = 8},
54 {.offset = 120, .length = 8}
55 }
56};
57
e29ee57b
BY
58static struct nand_ecclayout fsmc_ecc1_64_layout = {
59 .eccbytes = 12,
60 .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52},
61 .oobfree = {
62 {.offset = 8, .length = 8},
63 {.offset = 24, .length = 8},
64 {.offset = 40, .length = 8},
65 {.offset = 56, .length = 8},
66 }
67};
68
69static struct nand_ecclayout fsmc_ecc1_16_layout = {
70 .eccbytes = 3,
71 .eccpos = {2, 3, 4},
72 .oobfree = {
73 {.offset = 8, .length = 8},
74 }
75};
76
77/*
78 * ECC4 layout for NAND of pagesize 8192 bytes & OOBsize 256 bytes. 13*16 bytes
79 * of OB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block and 46
80 * bytes are free for use.
81 */
82static struct nand_ecclayout fsmc_ecc4_256_layout = {
83 .eccbytes = 208,
84 .eccpos = { 2, 3, 4, 5, 6, 7, 8,
85 9, 10, 11, 12, 13, 14,
86 18, 19, 20, 21, 22, 23, 24,
87 25, 26, 27, 28, 29, 30,
88 34, 35, 36, 37, 38, 39, 40,
89 41, 42, 43, 44, 45, 46,
90 50, 51, 52, 53, 54, 55, 56,
91 57, 58, 59, 60, 61, 62,
92 66, 67, 68, 69, 70, 71, 72,
93 73, 74, 75, 76, 77, 78,
94 82, 83, 84, 85, 86, 87, 88,
95 89, 90, 91, 92, 93, 94,
96 98, 99, 100, 101, 102, 103, 104,
97 105, 106, 107, 108, 109, 110,
98 114, 115, 116, 117, 118, 119, 120,
99 121, 122, 123, 124, 125, 126,
100 130, 131, 132, 133, 134, 135, 136,
101 137, 138, 139, 140, 141, 142,
102 146, 147, 148, 149, 150, 151, 152,
103 153, 154, 155, 156, 157, 158,
104 162, 163, 164, 165, 166, 167, 168,
105 169, 170, 171, 172, 173, 174,
106 178, 179, 180, 181, 182, 183, 184,
107 185, 186, 187, 188, 189, 190,
108 194, 195, 196, 197, 198, 199, 200,
109 201, 202, 203, 204, 205, 206,
110 210, 211, 212, 213, 214, 215, 216,
111 217, 218, 219, 220, 221, 222,
112 226, 227, 228, 229, 230, 231, 232,
113 233, 234, 235, 236, 237, 238,
114 242, 243, 244, 245, 246, 247, 248,
115 249, 250, 251, 252, 253, 254
116 },
117 .oobfree = {
118 {.offset = 15, .length = 3},
119 {.offset = 31, .length = 3},
120 {.offset = 47, .length = 3},
121 {.offset = 63, .length = 3},
122 {.offset = 79, .length = 3},
123 {.offset = 95, .length = 3},
124 {.offset = 111, .length = 3},
125 {.offset = 127, .length = 3},
126 {.offset = 143, .length = 3},
127 {.offset = 159, .length = 3},
128 {.offset = 175, .length = 3},
129 {.offset = 191, .length = 3},
130 {.offset = 207, .length = 3},
131 {.offset = 223, .length = 3},
132 {.offset = 239, .length = 3},
133 {.offset = 255, .length = 1}
134 }
135};
136
0c78e93b
AV
137/*
138 * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 224 bytes. 13*8 bytes
139 * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 118
140 * bytes are free for use.
141 */
142static struct nand_ecclayout fsmc_ecc4_224_layout = {
143 .eccbytes = 104,
144 .eccpos = { 2, 3, 4, 5, 6, 7, 8,
145 9, 10, 11, 12, 13, 14,
146 18, 19, 20, 21, 22, 23, 24,
147 25, 26, 27, 28, 29, 30,
148 34, 35, 36, 37, 38, 39, 40,
149 41, 42, 43, 44, 45, 46,
150 50, 51, 52, 53, 54, 55, 56,
151 57, 58, 59, 60, 61, 62,
152 66, 67, 68, 69, 70, 71, 72,
153 73, 74, 75, 76, 77, 78,
154 82, 83, 84, 85, 86, 87, 88,
155 89, 90, 91, 92, 93, 94,
156 98, 99, 100, 101, 102, 103, 104,
157 105, 106, 107, 108, 109, 110,
158 114, 115, 116, 117, 118, 119, 120,
159 121, 122, 123, 124, 125, 126
160 },
161 .oobfree = {
162 {.offset = 15, .length = 3},
163 {.offset = 31, .length = 3},
164 {.offset = 47, .length = 3},
165 {.offset = 63, .length = 3},
166 {.offset = 79, .length = 3},
167 {.offset = 95, .length = 3},
168 {.offset = 111, .length = 3},
169 {.offset = 127, .length = 97}
170 }
171};
172
e29ee57b
BY
173/*
174 * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 128 bytes. 13*8 bytes
175 * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 22
176 * bytes are free for use.
177 */
178static struct nand_ecclayout fsmc_ecc4_128_layout = {
6c009ab8
LW
179 .eccbytes = 104,
180 .eccpos = { 2, 3, 4, 5, 6, 7, 8,
181 9, 10, 11, 12, 13, 14,
182 18, 19, 20, 21, 22, 23, 24,
183 25, 26, 27, 28, 29, 30,
184 34, 35, 36, 37, 38, 39, 40,
185 41, 42, 43, 44, 45, 46,
186 50, 51, 52, 53, 54, 55, 56,
187 57, 58, 59, 60, 61, 62,
188 66, 67, 68, 69, 70, 71, 72,
189 73, 74, 75, 76, 77, 78,
190 82, 83, 84, 85, 86, 87, 88,
191 89, 90, 91, 92, 93, 94,
192 98, 99, 100, 101, 102, 103, 104,
193 105, 106, 107, 108, 109, 110,
194 114, 115, 116, 117, 118, 119, 120,
195 121, 122, 123, 124, 125, 126
196 },
197 .oobfree = {
198 {.offset = 15, .length = 3},
199 {.offset = 31, .length = 3},
200 {.offset = 47, .length = 3},
201 {.offset = 63, .length = 3},
202 {.offset = 79, .length = 3},
203 {.offset = 95, .length = 3},
204 {.offset = 111, .length = 3},
205 {.offset = 127, .length = 1}
206 }
207};
208
e29ee57b
BY
209/*
210 * ECC4 layout for NAND of pagesize 2048 bytes & OOBsize 64 bytes. 13*4 bytes of
211 * OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block and 10
212 * bytes are free for use.
213 */
214static struct nand_ecclayout fsmc_ecc4_64_layout = {
215 .eccbytes = 52,
216 .eccpos = { 2, 3, 4, 5, 6, 7, 8,
217 9, 10, 11, 12, 13, 14,
218 18, 19, 20, 21, 22, 23, 24,
219 25, 26, 27, 28, 29, 30,
220 34, 35, 36, 37, 38, 39, 40,
221 41, 42, 43, 44, 45, 46,
222 50, 51, 52, 53, 54, 55, 56,
223 57, 58, 59, 60, 61, 62,
224 },
225 .oobfree = {
226 {.offset = 15, .length = 3},
227 {.offset = 31, .length = 3},
228 {.offset = 47, .length = 3},
229 {.offset = 63, .length = 1},
230 }
231};
232
233/*
234 * ECC4 layout for NAND of pagesize 512 bytes & OOBsize 16 bytes. 13 bytes of
235 * OOB size is reserved for ECC, Byte no. 4 & 5 reserved for bad block and One
236 * byte is free for use.
237 */
238static struct nand_ecclayout fsmc_ecc4_16_layout = {
239 .eccbytes = 13,
240 .eccpos = { 0, 1, 2, 3, 6, 7, 8,
241 9, 10, 11, 12, 13, 14
242 },
243 .oobfree = {
244 {.offset = 15, .length = 1},
245 }
246};
247
6c009ab8
LW
248/*
249 * ECC placement definitions in oobfree type format.
250 * There are 13 bytes of ecc for every 512 byte block and it has to be read
251 * consecutively and immediately after the 512 byte data block for hardware to
252 * generate the error bit offsets in 512 byte data.
253 * Managing the ecc bytes in the following way makes it easier for software to
254 * read ecc bytes consecutive to data bytes. This way is similar to
255 * oobfree structure maintained already in generic nand driver
256 */
257static struct fsmc_eccplace fsmc_ecc4_lp_place = {
258 .eccplace = {
259 {.offset = 2, .length = 13},
260 {.offset = 18, .length = 13},
261 {.offset = 34, .length = 13},
262 {.offset = 50, .length = 13},
263 {.offset = 66, .length = 13},
264 {.offset = 82, .length = 13},
265 {.offset = 98, .length = 13},
266 {.offset = 114, .length = 13}
267 }
268};
269
6c009ab8
LW
270static struct fsmc_eccplace fsmc_ecc4_sp_place = {
271 .eccplace = {
272 {.offset = 0, .length = 4},
273 {.offset = 6, .length = 9}
274 }
275};
276
6c009ab8 277/**
593cd871 278 * struct fsmc_nand_data - structure for FSMC NAND device state
6c009ab8 279 *
593cd871 280 * @pid: Part ID on the AMBA PrimeCell format
6c009ab8
LW
281 * @mtd: MTD info for a NAND flash.
282 * @nand: Chip related info for a NAND flash.
71470324
VK
283 * @partitions: Partition info for a NAND Flash.
284 * @nr_partitions: Total number of partition of a NAND flash.
6c009ab8
LW
285 *
286 * @ecc_place: ECC placing locations in oobfree type format.
287 * @bank: Bank number for probed device.
288 * @clk: Clock structure for FSMC.
289 *
4774fb0a
VK
290 * @read_dma_chan: DMA channel for read access
291 * @write_dma_chan: DMA channel for write access to NAND
292 * @dma_access_complete: Completion structure
293 *
294 * @data_pa: NAND Physical port for Data.
6c009ab8
LW
295 * @data_va: NAND port for Data.
296 * @cmd_va: NAND port for Command.
297 * @addr_va: NAND port for Address.
298 * @regs_va: FSMC regs base address.
299 */
300struct fsmc_nand_data {
593cd871 301 u32 pid;
6c009ab8 302 struct nand_chip nand;
71470324
VK
303 struct mtd_partition *partitions;
304 unsigned int nr_partitions;
6c009ab8
LW
305
306 struct fsmc_eccplace *ecc_place;
307 unsigned int bank;
712c4add 308 struct device *dev;
4774fb0a 309 enum access_mode mode;
6c009ab8
LW
310 struct clk *clk;
311
4774fb0a
VK
312 /* DMA related objects */
313 struct dma_chan *read_dma_chan;
314 struct dma_chan *write_dma_chan;
315 struct completion dma_access_complete;
316
e2f6bce8
VK
317 struct fsmc_nand_timings *dev_timings;
318
4774fb0a 319 dma_addr_t data_pa;
6c009ab8
LW
320 void __iomem *data_va;
321 void __iomem *cmd_va;
322 void __iomem *addr_va;
323 void __iomem *regs_va;
324
325 void (*select_chip)(uint32_t bank, uint32_t busw);
326};
327
277af429
BB
328static inline struct fsmc_nand_data *mtd_to_fsmc(struct mtd_info *mtd)
329{
bdf3a555 330 return container_of(mtd_to_nand(mtd), struct fsmc_nand_data, nand);
277af429
BB
331}
332
6c009ab8
LW
333/* Assert CS signal based on chipnr */
334static void fsmc_select_chip(struct mtd_info *mtd, int chipnr)
335{
4bd4ebcc 336 struct nand_chip *chip = mtd_to_nand(mtd);
6c009ab8
LW
337 struct fsmc_nand_data *host;
338
277af429 339 host = mtd_to_fsmc(mtd);
6c009ab8
LW
340
341 switch (chipnr) {
342 case -1:
343 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
344 break;
345 case 0:
346 case 1:
347 case 2:
348 case 3:
349 if (host->select_chip)
350 host->select_chip(chipnr,
351 chip->options & NAND_BUSWIDTH_16);
352 break;
353
354 default:
6efadcf9 355 dev_err(host->dev, "unsupported chip-select %d\n", chipnr);
6c009ab8
LW
356 }
357}
358
359/*
360 * fsmc_cmd_ctrl - For facilitaing Hardware access
361 * This routine allows hardware specific access to control-lines(ALE,CLE)
362 */
363static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
364{
4bd4ebcc 365 struct nand_chip *this = mtd_to_nand(mtd);
277af429 366 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
605add7d 367 void __iomem *regs = host->regs_va;
6c009ab8
LW
368 unsigned int bank = host->bank;
369
370 if (ctrl & NAND_CTRL_CHANGE) {
2a5dbead
VK
371 u32 pc;
372
6c009ab8 373 if (ctrl & NAND_CLE) {
2a5dbead
VK
374 this->IO_ADDR_R = host->cmd_va;
375 this->IO_ADDR_W = host->cmd_va;
6c009ab8 376 } else if (ctrl & NAND_ALE) {
2a5dbead
VK
377 this->IO_ADDR_R = host->addr_va;
378 this->IO_ADDR_W = host->addr_va;
6c009ab8 379 } else {
2a5dbead
VK
380 this->IO_ADDR_R = host->data_va;
381 this->IO_ADDR_W = host->data_va;
6c009ab8
LW
382 }
383
2a5dbead
VK
384 pc = readl(FSMC_NAND_REG(regs, bank, PC));
385 if (ctrl & NAND_NCE)
386 pc |= FSMC_ENABLE;
387 else
388 pc &= ~FSMC_ENABLE;
a4742d51 389 writel_relaxed(pc, FSMC_NAND_REG(regs, bank, PC));
6c009ab8
LW
390 }
391
392 mb();
393
394 if (cmd != NAND_CMD_NONE)
a4742d51 395 writeb_relaxed(cmd, this->IO_ADDR_W);
6c009ab8
LW
396}
397
398/*
399 * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
400 *
401 * This routine initializes timing parameters related to NAND memory access in
402 * FSMC registers
403 */
2a5dbead 404static void fsmc_nand_setup(void __iomem *regs, uint32_t bank,
e2f6bce8 405 uint32_t busw, struct fsmc_nand_timings *timings)
6c009ab8
LW
406{
407 uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
e2f6bce8
VK
408 uint32_t tclr, tar, thiz, thold, twait, tset;
409 struct fsmc_nand_timings *tims;
410 struct fsmc_nand_timings default_timings = {
411 .tclr = FSMC_TCLR_1,
412 .tar = FSMC_TAR_1,
413 .thiz = FSMC_THIZ_1,
414 .thold = FSMC_THOLD_4,
415 .twait = FSMC_TWAIT_6,
416 .tset = FSMC_TSET_0,
417 };
418
419 if (timings)
420 tims = timings;
421 else
422 tims = &default_timings;
423
424 tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
425 tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
426 thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
427 thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
428 twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
429 tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
6c009ab8
LW
430
431 if (busw)
a4742d51
VK
432 writel_relaxed(value | FSMC_DEVWID_16,
433 FSMC_NAND_REG(regs, bank, PC));
6c009ab8 434 else
a4742d51
VK
435 writel_relaxed(value | FSMC_DEVWID_8,
436 FSMC_NAND_REG(regs, bank, PC));
6c009ab8 437
a4742d51 438 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar,
2a5dbead 439 FSMC_NAND_REG(regs, bank, PC));
a4742d51
VK
440 writel_relaxed(thiz | thold | twait | tset,
441 FSMC_NAND_REG(regs, bank, COMM));
442 writel_relaxed(thiz | thold | twait | tset,
443 FSMC_NAND_REG(regs, bank, ATTRIB));
6c009ab8
LW
444}
445
446/*
447 * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
448 */
449static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
450{
277af429 451 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
2a5dbead 452 void __iomem *regs = host->regs_va;
6c009ab8
LW
453 uint32_t bank = host->bank;
454
a4742d51 455 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256,
2a5dbead 456 FSMC_NAND_REG(regs, bank, PC));
a4742d51 457 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN,
2a5dbead 458 FSMC_NAND_REG(regs, bank, PC));
a4742d51 459 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN,
2a5dbead 460 FSMC_NAND_REG(regs, bank, PC));
6c009ab8
LW
461}
462
463/*
464 * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
25985edc 465 * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
6c009ab8
LW
466 * max of 8-bits)
467 */
468static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
469 uint8_t *ecc)
470{
277af429 471 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
2a5dbead 472 void __iomem *regs = host->regs_va;
6c009ab8
LW
473 uint32_t bank = host->bank;
474 uint32_t ecc_tmp;
475 unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
476
477 do {
a4742d51 478 if (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY)
6c009ab8
LW
479 break;
480 else
481 cond_resched();
482 } while (!time_after_eq(jiffies, deadline));
483
712c4add
VK
484 if (time_after_eq(jiffies, deadline)) {
485 dev_err(host->dev, "calculate ecc timed out\n");
486 return -ETIMEDOUT;
487 }
488
a4742d51 489 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
6c009ab8
LW
490 ecc[0] = (uint8_t) (ecc_tmp >> 0);
491 ecc[1] = (uint8_t) (ecc_tmp >> 8);
492 ecc[2] = (uint8_t) (ecc_tmp >> 16);
493 ecc[3] = (uint8_t) (ecc_tmp >> 24);
494
a4742d51 495 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
6c009ab8
LW
496 ecc[4] = (uint8_t) (ecc_tmp >> 0);
497 ecc[5] = (uint8_t) (ecc_tmp >> 8);
498 ecc[6] = (uint8_t) (ecc_tmp >> 16);
499 ecc[7] = (uint8_t) (ecc_tmp >> 24);
500
a4742d51 501 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
6c009ab8
LW
502 ecc[8] = (uint8_t) (ecc_tmp >> 0);
503 ecc[9] = (uint8_t) (ecc_tmp >> 8);
504 ecc[10] = (uint8_t) (ecc_tmp >> 16);
505 ecc[11] = (uint8_t) (ecc_tmp >> 24);
506
a4742d51 507 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
6c009ab8
LW
508 ecc[12] = (uint8_t) (ecc_tmp >> 16);
509
510 return 0;
511}
512
513/*
514 * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
25985edc 515 * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
6c009ab8
LW
516 * max of 1-bit)
517 */
518static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
519 uint8_t *ecc)
520{
277af429 521 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
2a5dbead 522 void __iomem *regs = host->regs_va;
6c009ab8
LW
523 uint32_t bank = host->bank;
524 uint32_t ecc_tmp;
525
a4742d51 526 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
6c009ab8
LW
527 ecc[0] = (uint8_t) (ecc_tmp >> 0);
528 ecc[1] = (uint8_t) (ecc_tmp >> 8);
529 ecc[2] = (uint8_t) (ecc_tmp >> 16);
530
531 return 0;
532}
533
519300cf
VK
534/* Count the number of 0's in buff upto a max of max_bits */
535static int count_written_bits(uint8_t *buff, int size, int max_bits)
536{
537 int k, written_bits = 0;
538
539 for (k = 0; k < size; k++) {
540 written_bits += hweight8(~buff[k]);
541 if (written_bits > max_bits)
542 break;
543 }
544
545 return written_bits;
546}
547
4774fb0a
VK
548static void dma_complete(void *param)
549{
550 struct fsmc_nand_data *host = param;
551
552 complete(&host->dma_access_complete);
553}
554
555static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
556 enum dma_data_direction direction)
557{
558 struct dma_chan *chan;
559 struct dma_device *dma_dev;
560 struct dma_async_tx_descriptor *tx;
561 dma_addr_t dma_dst, dma_src, dma_addr;
562 dma_cookie_t cookie;
563 unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
564 int ret;
818a45b1 565 unsigned long time_left;
4774fb0a
VK
566
567 if (direction == DMA_TO_DEVICE)
568 chan = host->write_dma_chan;
569 else if (direction == DMA_FROM_DEVICE)
570 chan = host->read_dma_chan;
571 else
572 return -EINVAL;
573
574 dma_dev = chan->device;
575 dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
576
577 if (direction == DMA_TO_DEVICE) {
578 dma_src = dma_addr;
579 dma_dst = host->data_pa;
4774fb0a
VK
580 } else {
581 dma_src = host->data_pa;
582 dma_dst = dma_addr;
4774fb0a
VK
583 }
584
585 tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
586 len, flags);
4774fb0a
VK
587 if (!tx) {
588 dev_err(host->dev, "device_prep_dma_memcpy error\n");
d1806a5c
BZ
589 ret = -EIO;
590 goto unmap_dma;
4774fb0a
VK
591 }
592
593 tx->callback = dma_complete;
594 tx->callback_param = host;
595 cookie = tx->tx_submit(tx);
596
597 ret = dma_submit_error(cookie);
598 if (ret) {
599 dev_err(host->dev, "dma_submit_error %d\n", cookie);
d1806a5c 600 goto unmap_dma;
4774fb0a
VK
601 }
602
603 dma_async_issue_pending(chan);
604
818a45b1 605 time_left =
928aa2ae 606 wait_for_completion_timeout(&host->dma_access_complete,
4774fb0a 607 msecs_to_jiffies(3000));
818a45b1 608 if (time_left == 0) {
b177ea34 609 dmaengine_terminate_all(chan);
4774fb0a 610 dev_err(host->dev, "wait_for_completion_timeout\n");
0bda3e19 611 ret = -ETIMEDOUT;
d1806a5c 612 goto unmap_dma;
4774fb0a
VK
613 }
614
d1806a5c
BZ
615 ret = 0;
616
617unmap_dma:
618 dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
619
620 return ret;
4774fb0a
VK
621}
622
604e7544
VK
623/*
624 * fsmc_write_buf - write buffer to chip
625 * @mtd: MTD device structure
626 * @buf: data buffer
627 * @len: number of bytes to write
628 */
629static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
630{
631 int i;
4bd4ebcc 632 struct nand_chip *chip = mtd_to_nand(mtd);
604e7544
VK
633
634 if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
635 IS_ALIGNED(len, sizeof(uint32_t))) {
636 uint32_t *p = (uint32_t *)buf;
637 len = len >> 2;
638 for (i = 0; i < len; i++)
a4742d51 639 writel_relaxed(p[i], chip->IO_ADDR_W);
604e7544
VK
640 } else {
641 for (i = 0; i < len; i++)
a4742d51 642 writeb_relaxed(buf[i], chip->IO_ADDR_W);
604e7544
VK
643 }
644}
645
646/*
647 * fsmc_read_buf - read chip data into buffer
648 * @mtd: MTD device structure
649 * @buf: buffer to store date
650 * @len: number of bytes to read
651 */
652static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
653{
654 int i;
4bd4ebcc 655 struct nand_chip *chip = mtd_to_nand(mtd);
604e7544
VK
656
657 if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
658 IS_ALIGNED(len, sizeof(uint32_t))) {
659 uint32_t *p = (uint32_t *)buf;
660 len = len >> 2;
661 for (i = 0; i < len; i++)
a4742d51 662 p[i] = readl_relaxed(chip->IO_ADDR_R);
604e7544
VK
663 } else {
664 for (i = 0; i < len; i++)
a4742d51 665 buf[i] = readb_relaxed(chip->IO_ADDR_R);
604e7544
VK
666 }
667}
668
4774fb0a
VK
669/*
670 * fsmc_read_buf_dma - read chip data into buffer
671 * @mtd: MTD device structure
672 * @buf: buffer to store date
673 * @len: number of bytes to read
674 */
675static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len)
676{
277af429 677 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
4774fb0a 678
4774fb0a
VK
679 dma_xfer(host, buf, len, DMA_FROM_DEVICE);
680}
681
682/*
683 * fsmc_write_buf_dma - write buffer to chip
684 * @mtd: MTD device structure
685 * @buf: data buffer
686 * @len: number of bytes to write
687 */
688static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf,
689 int len)
690{
277af429 691 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
4774fb0a 692
4774fb0a
VK
693 dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
694}
695
6c009ab8
LW
696/*
697 * fsmc_read_page_hwecc
698 * @mtd: mtd info structure
699 * @chip: nand chip info structure
700 * @buf: buffer to store read data
1fbb938d 701 * @oob_required: caller expects OOB data read to chip->oob_poi
6c009ab8
LW
702 * @page: page number to read
703 *
25985edc 704 * This routine is needed for fsmc version 8 as reading from NAND chip has to be
6c009ab8
LW
705 * performed in a strict sequence as follows:
706 * data(512 byte) -> ecc(13 byte)
25985edc 707 * After this read, fsmc hardware generates and reports error data bits(up to a
6c009ab8
LW
708 * max of 8 bits)
709 */
710static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 711 uint8_t *buf, int oob_required, int page)
6c009ab8 712{
277af429 713 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
6c009ab8
LW
714 struct fsmc_eccplace *ecc_place = host->ecc_place;
715 int i, j, s, stat, eccsize = chip->ecc.size;
716 int eccbytes = chip->ecc.bytes;
717 int eccsteps = chip->ecc.steps;
718 uint8_t *p = buf;
719 uint8_t *ecc_calc = chip->buffers->ecccalc;
720 uint8_t *ecc_code = chip->buffers->ecccode;
721 int off, len, group = 0;
722 /*
723 * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we
724 * end up reading 14 bytes (7 words) from oob. The local array is
725 * to maintain word alignment
726 */
727 uint16_t ecc_oob[7];
728 uint8_t *oob = (uint8_t *)&ecc_oob[0];
3f91e94f 729 unsigned int max_bitflips = 0;
6c009ab8
LW
730
731 for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
6c009ab8
LW
732 chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page);
733 chip->ecc.hwctl(mtd, NAND_ECC_READ);
734 chip->read_buf(mtd, p, eccsize);
735
736 for (j = 0; j < eccbytes;) {
737 off = ecc_place->eccplace[group].offset;
738 len = ecc_place->eccplace[group].length;
739 group++;
740
741 /*
4cbe1bf0
VK
742 * length is intentionally kept a higher multiple of 2
743 * to read at least 13 bytes even in case of 16 bit NAND
744 * devices
745 */
aea686b4
VK
746 if (chip->options & NAND_BUSWIDTH_16)
747 len = roundup(len, 2);
748
6c009ab8
LW
749 chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page);
750 chip->read_buf(mtd, oob + j, len);
751 j += len;
752 }
753
519300cf 754 memcpy(&ecc_code[i], oob, chip->ecc.bytes);
6c009ab8
LW
755 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
756
757 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3f91e94f 758 if (stat < 0) {
6c009ab8 759 mtd->ecc_stats.failed++;
3f91e94f 760 } else {
6c009ab8 761 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
762 max_bitflips = max_t(unsigned int, max_bitflips, stat);
763 }
6c009ab8
LW
764 }
765
3f91e94f 766 return max_bitflips;
6c009ab8
LW
767}
768
769/*
753e0139 770 * fsmc_bch8_correct_data
6c009ab8
LW
771 * @mtd: mtd info structure
772 * @dat: buffer of read data
773 * @read_ecc: ecc read from device spare area
774 * @calc_ecc: ecc calculated from read data
775 *
776 * calc_ecc is a 104 bit information containing maximum of 8 error
777 * offset informations of 13 bits each in 512 bytes of read data.
778 */
753e0139 779static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat,
6c009ab8
LW
780 uint8_t *read_ecc, uint8_t *calc_ecc)
781{
4bd4ebcc 782 struct nand_chip *chip = mtd_to_nand(mtd);
277af429 783 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
2a5dbead 784 void __iomem *regs = host->regs_va;
6c009ab8 785 unsigned int bank = host->bank;
a612c2ae 786 uint32_t err_idx[8];
6c009ab8 787 uint32_t num_err, i;
753e0139 788 uint32_t ecc1, ecc2, ecc3, ecc4;
6c009ab8 789
a4742d51 790 num_err = (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF;
519300cf
VK
791
792 /* no bit flipping */
793 if (likely(num_err == 0))
794 return 0;
795
796 /* too many errors */
797 if (unlikely(num_err > 8)) {
798 /*
799 * This is a temporary erase check. A newly erased page read
800 * would result in an ecc error because the oob data is also
801 * erased to FF and the calculated ecc for an FF data is not
802 * FF..FF.
803 * This is a workaround to skip performing correction in case
804 * data is FF..FF
805 *
806 * Logic:
807 * For every page, each bit written as 0 is counted until these
808 * number of bits are greater than 8 (the maximum correction
809 * capability of FSMC for each 512 + 13 bytes)
810 */
811
812 int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
813 int bits_data = count_written_bits(dat, chip->ecc.size, 8);
814
815 if ((bits_ecc + bits_data) <= 8) {
816 if (bits_data)
817 memset(dat, 0xff, chip->ecc.size);
818 return bits_data;
819 }
820
821 return -EBADMSG;
822 }
823
6c009ab8
LW
824 /*
825 * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
826 * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
827 *
828 * calc_ecc is a 104 bit information containing maximum of 8 error
829 * offset informations of 13 bits each. calc_ecc is copied into a
830 * uint64_t array and error offset indexes are populated in err_idx
831 * array
832 */
a4742d51
VK
833 ecc1 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
834 ecc2 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
835 ecc3 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
836 ecc4 = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
753e0139
AV
837
838 err_idx[0] = (ecc1 >> 0) & 0x1FFF;
839 err_idx[1] = (ecc1 >> 13) & 0x1FFF;
840 err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
841 err_idx[3] = (ecc2 >> 7) & 0x1FFF;
842 err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
843 err_idx[5] = (ecc3 >> 1) & 0x1FFF;
844 err_idx[6] = (ecc3 >> 14) & 0x1FFF;
845 err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
6c009ab8
LW
846
847 i = 0;
848 while (num_err--) {
849 change_bit(0, (unsigned long *)&err_idx[i]);
850 change_bit(1, (unsigned long *)&err_idx[i]);
851
b533f8d8 852 if (err_idx[i] < chip->ecc.size * 8) {
6c009ab8
LW
853 change_bit(err_idx[i], (unsigned long *)dat);
854 i++;
855 }
856 }
857 return i;
858}
859
4774fb0a
VK
860static bool filter(struct dma_chan *chan, void *slave)
861{
862 chan->private = slave;
863 return true;
864}
865
eea62819 866#ifdef CONFIG_OF
06f25510 867static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
d8929942 868 struct device_node *np)
eea62819
SR
869{
870 struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
871 u32 val;
62b57f4c 872 int ret;
eea62819
SR
873
874 /* Set default NAND width to 8 bits */
875 pdata->width = 8;
876 if (!of_property_read_u32(np, "bank-width", &val)) {
877 if (val == 2) {
878 pdata->width = 16;
879 } else if (val != 1) {
880 dev_err(&pdev->dev, "invalid bank-width %u\n", val);
881 return -EINVAL;
882 }
883 }
eea62819
SR
884 if (of_get_property(np, "nand-skip-bbtscan", NULL))
885 pdata->options = NAND_SKIP_BBTSCAN;
886
64ddba4d
MYK
887 pdata->nand_timings = devm_kzalloc(&pdev->dev,
888 sizeof(*pdata->nand_timings), GFP_KERNEL);
d9a21ae8 889 if (!pdata->nand_timings)
64ddba4d 890 return -ENOMEM;
62b57f4c 891 ret = of_property_read_u8_array(np, "timings", (u8 *)pdata->nand_timings,
64ddba4d 892 sizeof(*pdata->nand_timings));
62b57f4c
SR
893 if (ret) {
894 dev_info(&pdev->dev, "No timings in dts specified, using default timings!\n");
895 pdata->nand_timings = NULL;
896 }
64ddba4d
MYK
897
898 /* Set default NAND bank to 0 */
899 pdata->bank = 0;
900 if (!of_property_read_u32(np, "bank", &val)) {
901 if (val > 3) {
902 dev_err(&pdev->dev, "invalid bank %u\n", val);
903 return -EINVAL;
904 }
905 pdata->bank = val;
906 }
eea62819
SR
907 return 0;
908}
909#else
06f25510 910static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
d8929942 911 struct device_node *np)
eea62819
SR
912{
913 return -ENOSYS;
914}
915#endif
916
6c009ab8
LW
917/*
918 * fsmc_nand_probe - Probe function
919 * @pdev: platform device structure
920 */
921static int __init fsmc_nand_probe(struct platform_device *pdev)
922{
923 struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
eea62819 924 struct device_node __maybe_unused *np = pdev->dev.of_node;
6c009ab8
LW
925 struct fsmc_nand_data *host;
926 struct mtd_info *mtd;
927 struct nand_chip *nand;
6c009ab8 928 struct resource *res;
4774fb0a 929 dma_cap_mask_t mask;
4ad916bc 930 int ret = 0;
593cd871
LW
931 u32 pid;
932 int i;
6c009ab8 933
eea62819
SR
934 if (np) {
935 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
936 pdev->dev.platform_data = pdata;
937 ret = fsmc_nand_probe_config_dt(pdev, np);
938 if (ret) {
939 dev_err(&pdev->dev, "no platform data\n");
940 return -ENODEV;
941 }
942 }
943
6c009ab8
LW
944 if (!pdata) {
945 dev_err(&pdev->dev, "platform data is NULL\n");
946 return -EINVAL;
947 }
948
949 /* Allocate memory for the device structure (and zero it) */
82b9dbe2 950 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
d9a21ae8 951 if (!host)
6c009ab8 952 return -ENOMEM;
6c009ab8
LW
953
954 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
b0de774c
TR
955 host->data_va = devm_ioremap_resource(&pdev->dev, res);
956 if (IS_ERR(host->data_va))
957 return PTR_ERR(host->data_va);
cbf29b83 958
6d7b42a4 959 host->data_pa = (dma_addr_t)res->start;
6c009ab8 960
6d7b42a4 961 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
b0de774c
TR
962 host->addr_va = devm_ioremap_resource(&pdev->dev, res);
963 if (IS_ERR(host->addr_va))
964 return PTR_ERR(host->addr_va);
6c009ab8 965
6d7b42a4 966 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
b0de774c
TR
967 host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
968 if (IS_ERR(host->cmd_va))
969 return PTR_ERR(host->cmd_va);
6c009ab8
LW
970
971 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
b0de774c
TR
972 host->regs_va = devm_ioremap_resource(&pdev->dev, res);
973 if (IS_ERR(host->regs_va))
974 return PTR_ERR(host->regs_va);
6c009ab8
LW
975
976 host->clk = clk_get(&pdev->dev, NULL);
977 if (IS_ERR(host->clk)) {
978 dev_err(&pdev->dev, "failed to fetch block clock\n");
82b9dbe2 979 return PTR_ERR(host->clk);
6c009ab8
LW
980 }
981
e25da1c0 982 ret = clk_prepare_enable(host->clk);
6c009ab8 983 if (ret)
e25da1c0 984 goto err_clk_prepare_enable;
6c009ab8 985
593cd871
LW
986 /*
987 * This device ID is actually a common AMBA ID as used on the
988 * AMBA PrimeCell bus. However it is not a PrimeCell.
989 */
990 for (pid = 0, i = 0; i < 4; i++)
991 pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
992 host->pid = pid;
993 dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, "
994 "revision %02x, config %02x\n",
995 AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
996 AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
997
6c009ab8
LW
998 host->bank = pdata->bank;
999 host->select_chip = pdata->select_bank;
71470324
VK
1000 host->partitions = pdata->partitions;
1001 host->nr_partitions = pdata->nr_partitions;
712c4add 1002 host->dev = &pdev->dev;
e2f6bce8 1003 host->dev_timings = pdata->nand_timings;
4774fb0a
VK
1004 host->mode = pdata->mode;
1005
1006 if (host->mode == USE_DMA_ACCESS)
1007 init_completion(&host->dma_access_complete);
1008
6c009ab8 1009 /* Link all private pointers */
bdf3a555 1010 mtd = nand_to_mtd(&host->nand);
6c009ab8 1011 nand = &host->nand;
d699ed25 1012 nand_set_controller_data(nand, host);
a61ae81a 1013 nand_set_flash_node(nand, np);
6c009ab8 1014
bdf3a555 1015 mtd->dev.parent = &pdev->dev;
6c009ab8
LW
1016 nand->IO_ADDR_R = host->data_va;
1017 nand->IO_ADDR_W = host->data_va;
1018 nand->cmd_ctrl = fsmc_cmd_ctrl;
1019 nand->chip_delay = 30;
1020
e278fc71
SR
1021 /*
1022 * Setup default ECC mode. nand_dt_init() called from nand_scan_ident()
1023 * can overwrite this value if the DT provides a different value.
1024 */
6c009ab8
LW
1025 nand->ecc.mode = NAND_ECC_HW;
1026 nand->ecc.hwctl = fsmc_enable_hwecc;
1027 nand->ecc.size = 512;
1028 nand->options = pdata->options;
1029 nand->select_chip = fsmc_select_chip;
467e6e7b 1030 nand->badblockbits = 7;
63752199 1031 nand_set_flash_node(nand, np);
6c009ab8
LW
1032
1033 if (pdata->width == FSMC_NAND_BW16)
1034 nand->options |= NAND_BUSWIDTH_16;
1035
4774fb0a
VK
1036 switch (host->mode) {
1037 case USE_DMA_ACCESS:
1038 dma_cap_zero(mask);
1039 dma_cap_set(DMA_MEMCPY, mask);
1040 host->read_dma_chan = dma_request_channel(mask, filter,
1041 pdata->read_dma_priv);
1042 if (!host->read_dma_chan) {
1043 dev_err(&pdev->dev, "Unable to get read dma channel\n");
1044 goto err_req_read_chnl;
1045 }
1046 host->write_dma_chan = dma_request_channel(mask, filter,
1047 pdata->write_dma_priv);
1048 if (!host->write_dma_chan) {
1049 dev_err(&pdev->dev, "Unable to get write dma channel\n");
1050 goto err_req_write_chnl;
1051 }
1052 nand->read_buf = fsmc_read_buf_dma;
1053 nand->write_buf = fsmc_write_buf_dma;
1054 break;
1055
1056 default:
1057 case USE_WORD_ACCESS:
604e7544
VK
1058 nand->read_buf = fsmc_read_buf;
1059 nand->write_buf = fsmc_write_buf;
4774fb0a 1060 break;
604e7544
VK
1061 }
1062
2a5dbead
VK
1063 fsmc_nand_setup(host->regs_va, host->bank,
1064 nand->options & NAND_BUSWIDTH_16,
e2f6bce8 1065 host->dev_timings);
6c009ab8 1066
593cd871 1067 if (AMBA_REV_BITS(host->pid) >= 8) {
6c009ab8
LW
1068 nand->ecc.read_page = fsmc_read_page_hwecc;
1069 nand->ecc.calculate = fsmc_read_hwecc_ecc4;
753e0139 1070 nand->ecc.correct = fsmc_bch8_correct_data;
6c009ab8 1071 nand->ecc.bytes = 13;
6a918bad 1072 nand->ecc.strength = 8;
6c009ab8
LW
1073 }
1074
1075 /*
25985edc 1076 * Scan to find existence of the device
6c009ab8 1077 */
bdf3a555 1078 if (nand_scan_ident(mtd, 1, NULL)) {
6c009ab8
LW
1079 ret = -ENXIO;
1080 dev_err(&pdev->dev, "No NAND Device found!\n");
82b9dbe2 1081 goto err_scan_ident;
6c009ab8
LW
1082 }
1083
593cd871 1084 if (AMBA_REV_BITS(host->pid) >= 8) {
bdf3a555 1085 switch (mtd->oobsize) {
e29ee57b
BY
1086 case 16:
1087 nand->ecc.layout = &fsmc_ecc4_16_layout;
6c009ab8 1088 host->ecc_place = &fsmc_ecc4_sp_place;
e29ee57b
BY
1089 break;
1090 case 64:
1091 nand->ecc.layout = &fsmc_ecc4_64_layout;
1092 host->ecc_place = &fsmc_ecc4_lp_place;
1093 break;
1094 case 128:
1095 nand->ecc.layout = &fsmc_ecc4_128_layout;
1096 host->ecc_place = &fsmc_ecc4_lp_place;
1097 break;
0c78e93b
AV
1098 case 224:
1099 nand->ecc.layout = &fsmc_ecc4_224_layout;
1100 host->ecc_place = &fsmc_ecc4_lp_place;
1101 break;
e29ee57b
BY
1102 case 256:
1103 nand->ecc.layout = &fsmc_ecc4_256_layout;
6c009ab8 1104 host->ecc_place = &fsmc_ecc4_lp_place;
e29ee57b
BY
1105 break;
1106 default:
67b19a63
JH
1107 dev_warn(&pdev->dev, "No oob scheme defined for oobsize %d\n",
1108 mtd->oobsize);
6efadcf9
SR
1109 ret = -EINVAL;
1110 goto err_probe;
6c009ab8
LW
1111 }
1112 } else {
e278fc71
SR
1113 switch (nand->ecc.mode) {
1114 case NAND_ECC_HW:
1115 dev_info(&pdev->dev, "Using 1-bit HW ECC scheme\n");
1116 nand->ecc.calculate = fsmc_read_hwecc_ecc1;
1117 nand->ecc.correct = nand_correct_data;
1118 nand->ecc.bytes = 3;
1119 nand->ecc.strength = 1;
e29ee57b 1120 break;
e278fc71
SR
1121
1122 case NAND_ECC_SOFT_BCH:
1123 dev_info(&pdev->dev, "Using 4-bit SW BCH ECC scheme\n");
e29ee57b 1124 break;
e278fc71 1125
e29ee57b 1126 default:
e278fc71 1127 dev_err(&pdev->dev, "Unsupported ECC mode!\n");
6efadcf9 1128 goto err_probe;
e29ee57b 1129 }
e278fc71
SR
1130
1131 /*
1132 * Don't set layout for BCH4 SW ECC. This will be
1133 * generated later in nand_bch_init() later.
1134 */
1135 if (nand->ecc.mode != NAND_ECC_SOFT_BCH) {
bdf3a555 1136 switch (mtd->oobsize) {
e278fc71
SR
1137 case 16:
1138 nand->ecc.layout = &fsmc_ecc1_16_layout;
1139 break;
1140 case 64:
1141 nand->ecc.layout = &fsmc_ecc1_64_layout;
1142 break;
1143 case 128:
1144 nand->ecc.layout = &fsmc_ecc1_128_layout;
1145 break;
1146 default:
1147 dev_warn(&pdev->dev,
1148 "No oob scheme defined for oobsize %d\n",
1149 mtd->oobsize);
1150 ret = -EINVAL;
1151 goto err_probe;
1152 }
1153 }
6c009ab8
LW
1154 }
1155
1156 /* Second stage of scan to fill MTD data-structures */
bdf3a555 1157 if (nand_scan_tail(mtd)) {
6c009ab8
LW
1158 ret = -ENXIO;
1159 goto err_probe;
1160 }
1161
1162 /*
1163 * The partition information can is accessed by (in the same precedence)
1164 *
1165 * command line through Bootloader,
1166 * platform data,
1167 * default partition information present in driver.
1168 */
6c009ab8 1169 /*
8d3f8bb8 1170 * Check for partition info passed
6c009ab8 1171 */
bdf3a555
BB
1172 mtd->name = "nand";
1173 ret = mtd_device_register(mtd, host->partitions, host->nr_partitions);
99335d00 1174 if (ret)
6c009ab8 1175 goto err_probe;
6c009ab8
LW
1176
1177 platform_set_drvdata(pdev, host);
1178 dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
1179 return 0;
1180
1181err_probe:
82b9dbe2 1182err_scan_ident:
4774fb0a
VK
1183 if (host->mode == USE_DMA_ACCESS)
1184 dma_release_channel(host->write_dma_chan);
1185err_req_write_chnl:
1186 if (host->mode == USE_DMA_ACCESS)
1187 dma_release_channel(host->read_dma_chan);
1188err_req_read_chnl:
e25da1c0
VK
1189 clk_disable_unprepare(host->clk);
1190err_clk_prepare_enable:
82b9dbe2 1191 clk_put(host->clk);
6c009ab8
LW
1192 return ret;
1193}
1194
1195/*
1196 * Clean up routine
1197 */
1198static int fsmc_nand_remove(struct platform_device *pdev)
1199{
1200 struct fsmc_nand_data *host = platform_get_drvdata(pdev);
1201
6c009ab8 1202 if (host) {
bdf3a555 1203 nand_release(nand_to_mtd(&host->nand));
4774fb0a
VK
1204
1205 if (host->mode == USE_DMA_ACCESS) {
1206 dma_release_channel(host->write_dma_chan);
1207 dma_release_channel(host->read_dma_chan);
1208 }
e25da1c0 1209 clk_disable_unprepare(host->clk);
6c009ab8 1210 clk_put(host->clk);
6c009ab8 1211 }
82b9dbe2 1212
6c009ab8
LW
1213 return 0;
1214}
1215
80ce4dde 1216#ifdef CONFIG_PM_SLEEP
6c009ab8
LW
1217static int fsmc_nand_suspend(struct device *dev)
1218{
1219 struct fsmc_nand_data *host = dev_get_drvdata(dev);
1220 if (host)
e25da1c0 1221 clk_disable_unprepare(host->clk);
6c009ab8
LW
1222 return 0;
1223}
1224
1225static int fsmc_nand_resume(struct device *dev)
1226{
1227 struct fsmc_nand_data *host = dev_get_drvdata(dev);
f63acb75 1228 if (host) {
e25da1c0 1229 clk_prepare_enable(host->clk);
f63acb75 1230 fsmc_nand_setup(host->regs_va, host->bank,
e2f6bce8
VK
1231 host->nand.options & NAND_BUSWIDTH_16,
1232 host->dev_timings);
f63acb75 1233 }
6c009ab8
LW
1234 return 0;
1235}
80ce4dde 1236#endif
6c009ab8 1237
f63acb75 1238static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
6c009ab8 1239
eea62819
SR
1240#ifdef CONFIG_OF
1241static const struct of_device_id fsmc_nand_id_table[] = {
1242 { .compatible = "st,spear600-fsmc-nand" },
ba785205 1243 { .compatible = "stericsson,fsmc-nand" },
eea62819
SR
1244 {}
1245};
1246MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
1247#endif
1248
6c009ab8
LW
1249static struct platform_driver fsmc_nand_driver = {
1250 .remove = fsmc_nand_remove,
1251 .driver = {
6c009ab8 1252 .name = "fsmc-nand",
eea62819 1253 .of_match_table = of_match_ptr(fsmc_nand_id_table),
6c009ab8 1254 .pm = &fsmc_nand_pm_ops,
6c009ab8
LW
1255 },
1256};
1257
307d2a51 1258module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
6c009ab8
LW
1259
1260MODULE_LICENSE("GPL");
1261MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
1262MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");
This page took 0.473381 seconds and 5 git commands to generate.