mtd: gpmi: fix kernel BUG due to racing DMA operations
[deliverable/linux.git] / drivers / mtd / nand / gpmi-nand / gpmi-nand.c
CommitLineData
10a2bcae
HS
1/*
2 * Freescale GPMI NAND Flash Driver
3 *
4 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
5 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20 */
3d10095a
FE
21
22#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
10a2bcae
HS
24#include <linux/clk.h>
25#include <linux/slab.h>
26#include <linux/interrupt.h>
df16c86a 27#include <linux/module.h>
10a2bcae 28#include <linux/mtd/partitions.h>
e10db1f0
HS
29#include <linux/of.h>
30#include <linux/of_device.h>
c50c6940 31#include <linux/of_mtd.h>
10a2bcae
HS
32#include "gpmi-nand.h"
33
5de0b52e
HS
34/* Resource names for the GPMI NAND driver. */
35#define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand"
36#define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch"
37#define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch"
5de0b52e 38
10a2bcae
HS
39/* add our owner bbt descriptor */
40static uint8_t scan_ff_pattern[] = { 0xff };
41static struct nand_bbt_descr gpmi_bbt_descr = {
42 .options = 0,
43 .offs = 0,
44 .len = 1,
45 .pattern = scan_ff_pattern
46};
47
7a2b89ac
HS
48/*
49 * We may change the layout if we can get the ECC info from the datasheet,
50 * else we will use all the (page + OOB).
51 */
10a2bcae
HS
52static struct nand_ecclayout gpmi_hw_ecclayout = {
53 .eccbytes = 0,
54 .eccpos = { 0, },
55 .oobfree = { {.offset = 0, .length = 0} }
56};
57
58static irqreturn_t bch_irq(int irq, void *cookie)
59{
60 struct gpmi_nand_data *this = cookie;
61
62 gpmi_clear_bch(this);
63 complete(&this->bch_done);
64 return IRQ_HANDLED;
65}
66
67/*
68 * Calculate the ECC strength by hand:
69 * E : The ECC strength.
70 * G : the length of Galois Field.
71 * N : The chunk count of per page.
72 * O : the oobsize of the NAND chip.
73 * M : the metasize of per page.
74 *
75 * The formula is :
76 * E * G * N
77 * ------------ <= (O - M)
78 * 8
79 *
80 * So, we get E by:
81 * (O - M) * 8
82 * E <= -------------
83 * G * N
84 */
85static inline int get_ecc_strength(struct gpmi_nand_data *this)
86{
87 struct bch_geometry *geo = &this->bch_geometry;
88 struct mtd_info *mtd = &this->mtd;
89 int ecc_strength;
90
91 ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
92 / (geo->gf_len * geo->ecc_chunk_count);
93
94 /* We need the minor even number. */
95 return round_down(ecc_strength, 2);
96}
97
92d0e09a
HS
98static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
99{
100 struct bch_geometry *geo = &this->bch_geometry;
101
102 /* Do the sanity check. */
103 if (GPMI_IS_MX23(this) || GPMI_IS_MX28(this)) {
104 /* The mx23/mx28 only support the GF13. */
105 if (geo->gf_len == 14)
106 return false;
107
108 if (geo->ecc_strength > MXS_ECC_STRENGTH_MAX)
109 return false;
110 } else if (GPMI_IS_MX6Q(this)) {
111 if (geo->ecc_strength > MX6_ECC_STRENGTH_MAX)
112 return false;
113 }
114 return true;
115}
116
2febcdf8
HS
117/*
118 * If we can get the ECC information from the nand chip, we do not
119 * need to calculate them ourselves.
120 *
121 * We may have available oob space in this case.
122 */
123static bool set_geometry_by_ecc_info(struct gpmi_nand_data *this)
124{
125 struct bch_geometry *geo = &this->bch_geometry;
126 struct mtd_info *mtd = &this->mtd;
127 struct nand_chip *chip = mtd->priv;
128 struct nand_oobfree *of = gpmi_hw_ecclayout.oobfree;
129 unsigned int block_mark_bit_offset;
130
131 if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0))
132 return false;
133
134 switch (chip->ecc_step_ds) {
135 case SZ_512:
136 geo->gf_len = 13;
137 break;
138 case SZ_1K:
139 geo->gf_len = 14;
140 break;
141 default:
142 dev_err(this->dev,
143 "unsupported nand chip. ecc bits : %d, ecc size : %d\n",
144 chip->ecc_strength_ds, chip->ecc_step_ds);
145 return false;
146 }
147 geo->ecc_chunk_size = chip->ecc_step_ds;
148 geo->ecc_strength = round_up(chip->ecc_strength_ds, 2);
149 if (!gpmi_check_ecc(this))
150 return false;
151
152 /* Keep the C >= O */
153 if (geo->ecc_chunk_size < mtd->oobsize) {
154 dev_err(this->dev,
155 "unsupported nand chip. ecc size: %d, oob size : %d\n",
156 chip->ecc_step_ds, mtd->oobsize);
157 return false;
158 }
159
160 /* The default value, see comment in the legacy_set_geometry(). */
161 geo->metadata_size = 10;
162
163 geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
164
165 /*
166 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
167 *
168 * | P |
169 * |<----------------------------------------------------->|
170 * | |
171 * | (Block Mark) |
172 * | P' | | | |
173 * |<-------------------------------------------->| D | | O' |
174 * | |<---->| |<--->|
175 * V V V V V
176 * +---+----------+-+----------+-+----------+-+----------+-+-----+
177 * | M | data |E| data |E| data |E| data |E| |
178 * +---+----------+-+----------+-+----------+-+----------+-+-----+
179 * ^ ^
180 * | O |
181 * |<------------>|
182 * | |
183 *
184 * P : the page size for BCH module.
185 * E : The ECC strength.
186 * G : the length of Galois Field.
187 * N : The chunk count of per page.
188 * M : the metasize of per page.
189 * C : the ecc chunk size, aka the "data" above.
190 * P': the nand chip's page size.
191 * O : the nand chip's oob size.
192 * O': the free oob.
193 *
194 * The formula for P is :
195 *
196 * E * G * N
197 * P = ------------ + P' + M
198 * 8
199 *
200 * The position of block mark moves forward in the ECC-based view
201 * of page, and the delta is:
202 *
203 * E * G * (N - 1)
204 * D = (---------------- + M)
205 * 8
206 *
207 * Please see the comment in legacy_set_geometry().
208 * With the condition C >= O , we still can get same result.
209 * So the bit position of the physical block mark within the ECC-based
210 * view of the page is :
211 * (P' - D) * 8
212 */
213 geo->page_size = mtd->writesize + geo->metadata_size +
214 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
215
216 /* The available oob size we have. */
217 if (geo->page_size < mtd->writesize + mtd->oobsize) {
218 of->offset = geo->page_size - mtd->writesize;
219 of->length = mtd->oobsize - of->offset;
2febcdf8
HS
220 }
221
222 geo->payload_size = mtd->writesize;
223
224 geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
225 geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
226 + ALIGN(geo->ecc_chunk_count, 4);
227
228 if (!this->swap_block_mark)
229 return true;
230
231 /* For bit swap. */
232 block_mark_bit_offset = mtd->writesize * 8 -
233 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
234 + geo->metadata_size * 8);
235
236 geo->block_mark_byte_offset = block_mark_bit_offset / 8;
237 geo->block_mark_bit_offset = block_mark_bit_offset % 8;
238 return true;
239}
240
241static int legacy_set_geometry(struct gpmi_nand_data *this)
10a2bcae
HS
242{
243 struct bch_geometry *geo = &this->bch_geometry;
244 struct mtd_info *mtd = &this->mtd;
245 unsigned int metadata_size;
246 unsigned int status_size;
247 unsigned int block_mark_bit_offset;
248
249 /*
250 * The size of the metadata can be changed, though we set it to 10
251 * bytes now. But it can't be too large, because we have to save
252 * enough space for BCH.
253 */
254 geo->metadata_size = 10;
255
256 /* The default for the length of Galois Field. */
257 geo->gf_len = 13;
258
9ff16f08 259 /* The default for chunk size. */
10a2bcae 260 geo->ecc_chunk_size = 512;
9ff16f08 261 while (geo->ecc_chunk_size < mtd->oobsize) {
10a2bcae 262 geo->ecc_chunk_size *= 2; /* keep C >= O */
9ff16f08
HS
263 geo->gf_len = 14;
264 }
10a2bcae
HS
265
266 geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
267
268 /* We use the same ECC strength for all chunks. */
269 geo->ecc_strength = get_ecc_strength(this);
92d0e09a
HS
270 if (!gpmi_check_ecc(this)) {
271 dev_err(this->dev,
272 "We can not support this nand chip."
273 " Its required ecc strength(%d) is beyond our"
274 " capability(%d).\n", geo->ecc_strength,
275 (GPMI_IS_MX6Q(this) ? MX6_ECC_STRENGTH_MAX
276 : MXS_ECC_STRENGTH_MAX));
10a2bcae
HS
277 return -EINVAL;
278 }
279
280 geo->page_size = mtd->writesize + mtd->oobsize;
281 geo->payload_size = mtd->writesize;
282
283 /*
284 * The auxiliary buffer contains the metadata and the ECC status. The
285 * metadata is padded to the nearest 32-bit boundary. The ECC status
286 * contains one byte for every ECC chunk, and is also padded to the
287 * nearest 32-bit boundary.
288 */
289 metadata_size = ALIGN(geo->metadata_size, 4);
290 status_size = ALIGN(geo->ecc_chunk_count, 4);
291
292 geo->auxiliary_size = metadata_size + status_size;
293 geo->auxiliary_status_offset = metadata_size;
294
295 if (!this->swap_block_mark)
296 return 0;
297
298 /*
299 * We need to compute the byte and bit offsets of
300 * the physical block mark within the ECC-based view of the page.
301 *
302 * NAND chip with 2K page shows below:
303 * (Block Mark)
304 * | |
305 * | D |
306 * |<---->|
307 * V V
308 * +---+----------+-+----------+-+----------+-+----------+-+
309 * | M | data |E| data |E| data |E| data |E|
310 * +---+----------+-+----------+-+----------+-+----------+-+
311 *
312 * The position of block mark moves forward in the ECC-based view
313 * of page, and the delta is:
314 *
315 * E * G * (N - 1)
316 * D = (---------------- + M)
317 * 8
318 *
319 * With the formula to compute the ECC strength, and the condition
320 * : C >= O (C is the ecc chunk size)
321 *
322 * It's easy to deduce to the following result:
323 *
324 * E * G (O - M) C - M C - M
325 * ----------- <= ------- <= -------- < ---------
326 * 8 N N (N - 1)
327 *
328 * So, we get:
329 *
330 * E * G * (N - 1)
331 * D = (---------------- + M) < C
332 * 8
333 *
334 * The above inequality means the position of block mark
335 * within the ECC-based view of the page is still in the data chunk,
336 * and it's NOT in the ECC bits of the chunk.
337 *
338 * Use the following to compute the bit position of the
339 * physical block mark within the ECC-based view of the page:
340 * (page_size - D) * 8
341 *
342 * --Huang Shijie
343 */
344 block_mark_bit_offset = mtd->writesize * 8 -
345 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
346 + geo->metadata_size * 8);
347
348 geo->block_mark_byte_offset = block_mark_bit_offset / 8;
349 geo->block_mark_bit_offset = block_mark_bit_offset % 8;
350 return 0;
351}
352
2febcdf8
HS
353int common_nfc_set_geometry(struct gpmi_nand_data *this)
354{
031e2777 355 return legacy_set_geometry(this);
2febcdf8
HS
356}
357
10a2bcae
HS
358struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
359{
a7c12d01
HS
360 /* We use the DMA channel 0 to access all the nand chips. */
361 return this->dma_chans[0];
10a2bcae
HS
362}
363
364/* Can we use the upper's buffer directly for DMA? */
365void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr)
366{
367 struct scatterlist *sgl = &this->data_sgl;
368 int ret;
369
370 this->direct_dma_map_ok = true;
371
372 /* first try to map the upper buffer directly */
373 sg_init_one(sgl, this->upper_buf, this->upper_len);
374 ret = dma_map_sg(this->dev, sgl, 1, dr);
375 if (ret == 0) {
376 /* We have to use our own DMA buffer. */
377 sg_init_one(sgl, this->data_buffer_dma, PAGE_SIZE);
378
379 if (dr == DMA_TO_DEVICE)
380 memcpy(this->data_buffer_dma, this->upper_buf,
381 this->upper_len);
382
383 ret = dma_map_sg(this->dev, sgl, 1, dr);
384 if (ret == 0)
2d350e5a 385 pr_err("DMA mapping failed.\n");
10a2bcae
HS
386
387 this->direct_dma_map_ok = false;
388 }
389}
390
391/* This will be called after the DMA operation is finished. */
392static void dma_irq_callback(void *param)
393{
394 struct gpmi_nand_data *this = param;
395 struct completion *dma_c = &this->dma_done;
396
10a2bcae
HS
397 switch (this->dma_type) {
398 case DMA_FOR_COMMAND:
399 dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE);
400 break;
401
402 case DMA_FOR_READ_DATA:
403 dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE);
404 if (this->direct_dma_map_ok == false)
405 memcpy(this->upper_buf, this->data_buffer_dma,
406 this->upper_len);
407 break;
408
409 case DMA_FOR_WRITE_DATA:
410 dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE);
411 break;
412
413 case DMA_FOR_READ_ECC_PAGE:
414 case DMA_FOR_WRITE_ECC_PAGE:
415 /* We have to wait the BCH interrupt to finish. */
416 break;
417
418 default:
419 pr_err("in wrong DMA operation.\n");
420 }
7b3d2fb9
HS
421
422 complete(dma_c);
10a2bcae
HS
423}
424
425int start_dma_without_bch_irq(struct gpmi_nand_data *this,
426 struct dma_async_tx_descriptor *desc)
427{
428 struct completion *dma_c = &this->dma_done;
429 int err;
430
431 init_completion(dma_c);
432
433 desc->callback = dma_irq_callback;
434 desc->callback_param = this;
435 dmaengine_submit(desc);
d04525ed 436 dma_async_issue_pending(get_dma_chan(this));
10a2bcae
HS
437
438 /* Wait for the interrupt from the DMA block. */
439 err = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000));
440 if (!err) {
441 pr_err("DMA timeout, last DMA :%d\n", this->last_dma_type);
442 gpmi_dump_info(this);
443 return -ETIMEDOUT;
444 }
445 return 0;
446}
447
448/*
449 * This function is used in BCH reading or BCH writing pages.
450 * It will wait for the BCH interrupt as long as ONE second.
451 * Actually, we must wait for two interrupts :
452 * [1] firstly the DMA interrupt and
453 * [2] secondly the BCH interrupt.
454 */
455int start_dma_with_bch_irq(struct gpmi_nand_data *this,
456 struct dma_async_tx_descriptor *desc)
457{
458 struct completion *bch_c = &this->bch_done;
459 int err;
460
461 /* Prepare to receive an interrupt from the BCH block. */
462 init_completion(bch_c);
463
464 /* start the DMA */
465 start_dma_without_bch_irq(this, desc);
466
467 /* Wait for the interrupt from the BCH block. */
468 err = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000));
469 if (!err) {
470 pr_err("BCH timeout, last DMA :%d\n", this->last_dma_type);
471 gpmi_dump_info(this);
472 return -ETIMEDOUT;
473 }
474 return 0;
475}
476
d8929942
GKH
477static int acquire_register_block(struct gpmi_nand_data *this,
478 const char *res_name)
10a2bcae
HS
479{
480 struct platform_device *pdev = this->pdev;
481 struct resources *res = &this->resources;
482 struct resource *r;
513d57e1 483 void __iomem *p;
10a2bcae
HS
484
485 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
486 if (!r) {
487 pr_err("Can't get resource for %s\n", res_name);
52a073bd 488 return -ENODEV;
10a2bcae
HS
489 }
490
491 p = ioremap(r->start, resource_size(r));
492 if (!p) {
493 pr_err("Can't remap %s\n", res_name);
494 return -ENOMEM;
495 }
496
497 if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
498 res->gpmi_regs = p;
499 else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
500 res->bch_regs = p;
501 else
502 pr_err("unknown resource name : %s\n", res_name);
503
504 return 0;
505}
506
507static void release_register_block(struct gpmi_nand_data *this)
508{
509 struct resources *res = &this->resources;
510 if (res->gpmi_regs)
511 iounmap(res->gpmi_regs);
512 if (res->bch_regs)
513 iounmap(res->bch_regs);
514 res->gpmi_regs = NULL;
515 res->bch_regs = NULL;
516}
517
d8929942 518static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
10a2bcae
HS
519{
520 struct platform_device *pdev = this->pdev;
521 struct resources *res = &this->resources;
522 const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
523 struct resource *r;
524 int err;
525
526 r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
527 if (!r) {
528 pr_err("Can't get resource for %s\n", res_name);
52a073bd 529 return -ENODEV;
10a2bcae
HS
530 }
531
532 err = request_irq(r->start, irq_h, 0, res_name, this);
533 if (err) {
534 pr_err("Can't own %s\n", res_name);
535 return err;
536 }
537
538 res->bch_low_interrupt = r->start;
539 res->bch_high_interrupt = r->end;
540 return 0;
541}
542
543static void release_bch_irq(struct gpmi_nand_data *this)
544{
545 struct resources *res = &this->resources;
546 int i = res->bch_low_interrupt;
547
548 for (; i <= res->bch_high_interrupt; i++)
549 free_irq(i, this);
550}
551
10a2bcae
HS
552static void release_dma_channels(struct gpmi_nand_data *this)
553{
554 unsigned int i;
555 for (i = 0; i < DMA_CHANS; i++)
556 if (this->dma_chans[i]) {
557 dma_release_channel(this->dma_chans[i]);
558 this->dma_chans[i] = NULL;
559 }
560}
561
06f25510 562static int acquire_dma_channels(struct gpmi_nand_data *this)
10a2bcae
HS
563{
564 struct platform_device *pdev = this->pdev;
e10db1f0 565 struct dma_chan *dma_chan;
10a2bcae 566
e10db1f0 567 /* request dma channel */
5fac0e18 568 dma_chan = dma_request_slave_channel(&pdev->dev, "rx-tx");
e10db1f0 569 if (!dma_chan) {
2d350e5a 570 pr_err("Failed to request DMA channel.\n");
e10db1f0 571 goto acquire_err;
10a2bcae
HS
572 }
573
e10db1f0 574 this->dma_chans[0] = dma_chan;
10a2bcae
HS
575 return 0;
576
577acquire_err:
10a2bcae
HS
578 release_dma_channels(this);
579 return -EINVAL;
580}
581
ff506172
HS
582static void gpmi_put_clks(struct gpmi_nand_data *this)
583{
584 struct resources *r = &this->resources;
585 struct clk *clk;
586 int i;
587
588 for (i = 0; i < GPMI_CLK_MAX; i++) {
589 clk = r->clock[i];
590 if (clk) {
591 clk_put(clk);
592 r->clock[i] = NULL;
593 }
594 }
595}
596
597static char *extra_clks_for_mx6q[GPMI_CLK_MAX] = {
598 "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
599};
600
06f25510 601static int gpmi_get_clks(struct gpmi_nand_data *this)
ff506172
HS
602{
603 struct resources *r = &this->resources;
604 char **extra_clks = NULL;
605 struct clk *clk;
d1cb556c 606 int err, i;
ff506172
HS
607
608 /* The main clock is stored in the first. */
609 r->clock[0] = clk_get(this->dev, "gpmi_io");
d1cb556c
MM
610 if (IS_ERR(r->clock[0])) {
611 err = PTR_ERR(r->clock[0]);
ff506172 612 goto err_clock;
d1cb556c 613 }
ff506172
HS
614
615 /* Get extra clocks */
616 if (GPMI_IS_MX6Q(this))
617 extra_clks = extra_clks_for_mx6q;
618 if (!extra_clks)
619 return 0;
620
621 for (i = 1; i < GPMI_CLK_MAX; i++) {
622 if (extra_clks[i - 1] == NULL)
623 break;
624
625 clk = clk_get(this->dev, extra_clks[i - 1]);
d1cb556c
MM
626 if (IS_ERR(clk)) {
627 err = PTR_ERR(clk);
ff506172 628 goto err_clock;
d1cb556c 629 }
ff506172
HS
630
631 r->clock[i] = clk;
632 }
633
e1ca95e3 634 if (GPMI_IS_MX6Q(this))
ff506172 635 /*
e1ca95e3 636 * Set the default value for the gpmi clock in mx6q:
ff506172 637 *
e1ca95e3
HS
638 * If you want to use the ONFI nand which is in the
639 * Synchronous Mode, you should change the clock as you need.
ff506172
HS
640 */
641 clk_set_rate(r->clock[0], 22000000);
e1ca95e3 642
ff506172
HS
643 return 0;
644
645err_clock:
646 dev_dbg(this->dev, "failed in finding the clocks.\n");
647 gpmi_put_clks(this);
d1cb556c 648 return err;
ff506172
HS
649}
650
06f25510 651static int acquire_resources(struct gpmi_nand_data *this)
10a2bcae 652{
10a2bcae
HS
653 int ret;
654
655 ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
656 if (ret)
657 goto exit_regs;
658
659 ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
660 if (ret)
661 goto exit_regs;
662
663 ret = acquire_bch_irq(this, bch_irq);
664 if (ret)
665 goto exit_regs;
666
667 ret = acquire_dma_channels(this);
668 if (ret)
669 goto exit_dma_channels;
670
ff506172
HS
671 ret = gpmi_get_clks(this);
672 if (ret)
10a2bcae 673 goto exit_clock;
10a2bcae
HS
674 return 0;
675
676exit_clock:
677 release_dma_channels(this);
678exit_dma_channels:
679 release_bch_irq(this);
680exit_regs:
681 release_register_block(this);
682 return ret;
683}
684
685static void release_resources(struct gpmi_nand_data *this)
686{
ff506172 687 gpmi_put_clks(this);
10a2bcae
HS
688 release_register_block(this);
689 release_bch_irq(this);
690 release_dma_channels(this);
691}
692
06f25510 693static int init_hardware(struct gpmi_nand_data *this)
10a2bcae
HS
694{
695 int ret;
696
697 /*
698 * This structure contains the "safe" GPMI timing that should succeed
699 * with any NAND Flash device
700 * (although, with less-than-optimal performance).
701 */
702 struct nand_timing safe_timing = {
703 .data_setup_in_ns = 80,
704 .data_hold_in_ns = 60,
705 .address_setup_in_ns = 25,
706 .gpmi_sample_delay_in_ns = 6,
707 .tREA_in_ns = -1,
708 .tRLOH_in_ns = -1,
709 .tRHOH_in_ns = -1,
710 };
711
712 /* Initialize the hardwares. */
713 ret = gpmi_init(this);
714 if (ret)
715 return ret;
716
717 this->timing = safe_timing;
718 return 0;
719}
720
721static int read_page_prepare(struct gpmi_nand_data *this,
722 void *destination, unsigned length,
723 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
724 void **use_virt, dma_addr_t *use_phys)
725{
726 struct device *dev = this->dev;
727
728 if (virt_addr_valid(destination)) {
729 dma_addr_t dest_phys;
730
731 dest_phys = dma_map_single(dev, destination,
732 length, DMA_FROM_DEVICE);
733 if (dma_mapping_error(dev, dest_phys)) {
734 if (alt_size < length) {
2d350e5a
VN
735 pr_err("%s, Alternate buffer is too small\n",
736 __func__);
10a2bcae
HS
737 return -ENOMEM;
738 }
739 goto map_failed;
740 }
741 *use_virt = destination;
742 *use_phys = dest_phys;
743 this->direct_dma_map_ok = true;
744 return 0;
745 }
746
747map_failed:
748 *use_virt = alt_virt;
749 *use_phys = alt_phys;
750 this->direct_dma_map_ok = false;
751 return 0;
752}
753
754static inline void read_page_end(struct gpmi_nand_data *this,
755 void *destination, unsigned length,
756 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
757 void *used_virt, dma_addr_t used_phys)
758{
759 if (this->direct_dma_map_ok)
760 dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE);
761}
762
763static inline void read_page_swap_end(struct gpmi_nand_data *this,
764 void *destination, unsigned length,
765 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
766 void *used_virt, dma_addr_t used_phys)
767{
768 if (!this->direct_dma_map_ok)
769 memcpy(destination, alt_virt, length);
770}
771
772static int send_page_prepare(struct gpmi_nand_data *this,
773 const void *source, unsigned length,
774 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
775 const void **use_virt, dma_addr_t *use_phys)
776{
777 struct device *dev = this->dev;
778
779 if (virt_addr_valid(source)) {
780 dma_addr_t source_phys;
781
782 source_phys = dma_map_single(dev, (void *)source, length,
783 DMA_TO_DEVICE);
784 if (dma_mapping_error(dev, source_phys)) {
785 if (alt_size < length) {
2d350e5a
VN
786 pr_err("%s, Alternate buffer is too small\n",
787 __func__);
10a2bcae
HS
788 return -ENOMEM;
789 }
790 goto map_failed;
791 }
792 *use_virt = source;
793 *use_phys = source_phys;
794 return 0;
795 }
796map_failed:
797 /*
798 * Copy the content of the source buffer into the alternate
799 * buffer and set up the return values accordingly.
800 */
801 memcpy(alt_virt, source, length);
802
803 *use_virt = alt_virt;
804 *use_phys = alt_phys;
805 return 0;
806}
807
808static void send_page_end(struct gpmi_nand_data *this,
809 const void *source, unsigned length,
810 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
811 const void *used_virt, dma_addr_t used_phys)
812{
813 struct device *dev = this->dev;
814 if (used_virt == source)
815 dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
816}
817
818static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
819{
820 struct device *dev = this->dev;
821
822 if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt))
823 dma_free_coherent(dev, this->page_buffer_size,
824 this->page_buffer_virt,
825 this->page_buffer_phys);
826 kfree(this->cmd_buffer);
827 kfree(this->data_buffer_dma);
828
829 this->cmd_buffer = NULL;
830 this->data_buffer_dma = NULL;
831 this->page_buffer_virt = NULL;
832 this->page_buffer_size = 0;
833}
834
835/* Allocate the DMA buffers */
836static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
837{
838 struct bch_geometry *geo = &this->bch_geometry;
839 struct device *dev = this->dev;
840
841 /* [1] Allocate a command buffer. PAGE_SIZE is enough. */
513d57e1 842 this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
10a2bcae
HS
843 if (this->cmd_buffer == NULL)
844 goto error_alloc;
845
846 /* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */
513d57e1 847 this->data_buffer_dma = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
10a2bcae
HS
848 if (this->data_buffer_dma == NULL)
849 goto error_alloc;
850
851 /*
852 * [3] Allocate the page buffer.
853 *
854 * Both the payload buffer and the auxiliary buffer must appear on
855 * 32-bit boundaries. We presume the size of the payload buffer is a
856 * power of two and is much larger than four, which guarantees the
857 * auxiliary buffer will appear on a 32-bit boundary.
858 */
859 this->page_buffer_size = geo->payload_size + geo->auxiliary_size;
860 this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size,
861 &this->page_buffer_phys, GFP_DMA);
862 if (!this->page_buffer_virt)
863 goto error_alloc;
864
865
866 /* Slice up the page buffer. */
867 this->payload_virt = this->page_buffer_virt;
868 this->payload_phys = this->page_buffer_phys;
869 this->auxiliary_virt = this->payload_virt + geo->payload_size;
870 this->auxiliary_phys = this->payload_phys + geo->payload_size;
871 return 0;
872
873error_alloc:
874 gpmi_free_dma_buffer(this);
2d350e5a 875 pr_err("Error allocating DMA buffers!\n");
10a2bcae
HS
876 return -ENOMEM;
877}
878
879static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
880{
881 struct nand_chip *chip = mtd->priv;
882 struct gpmi_nand_data *this = chip->priv;
883 int ret;
884
885 /*
886 * Every operation begins with a command byte and a series of zero or
887 * more address bytes. These are distinguished by either the Address
888 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
889 * asserted. When MTD is ready to execute the command, it will deassert
890 * both latch enables.
891 *
892 * Rather than run a separate DMA operation for every single byte, we
893 * queue them up and run a single DMA operation for the entire series
894 * of command and data bytes. NAND_CMD_NONE means the END of the queue.
895 */
896 if ((ctrl & (NAND_ALE | NAND_CLE))) {
897 if (data != NAND_CMD_NONE)
898 this->cmd_buffer[this->command_length++] = data;
899 return;
900 }
901
902 if (!this->command_length)
903 return;
904
905 ret = gpmi_send_command(this);
906 if (ret)
907 pr_err("Chip: %u, Error %d\n", this->current_chip, ret);
908
909 this->command_length = 0;
910}
911
912static int gpmi_dev_ready(struct mtd_info *mtd)
913{
914 struct nand_chip *chip = mtd->priv;
915 struct gpmi_nand_data *this = chip->priv;
916
917 return gpmi_is_ready(this, this->current_chip);
918}
919
920static void gpmi_select_chip(struct mtd_info *mtd, int chipnr)
921{
922 struct nand_chip *chip = mtd->priv;
923 struct gpmi_nand_data *this = chip->priv;
924
925 if ((this->current_chip < 0) && (chipnr >= 0))
926 gpmi_begin(this);
927 else if ((this->current_chip >= 0) && (chipnr < 0))
928 gpmi_end(this);
929
930 this->current_chip = chipnr;
931}
932
933static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
934{
935 struct nand_chip *chip = mtd->priv;
936 struct gpmi_nand_data *this = chip->priv;
937
938 pr_debug("len is %d\n", len);
939 this->upper_buf = buf;
940 this->upper_len = len;
941
942 gpmi_read_data(this);
943}
944
945static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
946{
947 struct nand_chip *chip = mtd->priv;
948 struct gpmi_nand_data *this = chip->priv;
949
950 pr_debug("len is %d\n", len);
951 this->upper_buf = (uint8_t *)buf;
952 this->upper_len = len;
953
954 gpmi_send_data(this);
955}
956
957static uint8_t gpmi_read_byte(struct mtd_info *mtd)
958{
959 struct nand_chip *chip = mtd->priv;
960 struct gpmi_nand_data *this = chip->priv;
961 uint8_t *buf = this->data_buffer_dma;
962
963 gpmi_read_buf(mtd, buf, 1);
964 return buf[0];
965}
966
967/*
968 * Handles block mark swapping.
969 * It can be called in swapping the block mark, or swapping it back,
970 * because the the operations are the same.
971 */
972static void block_mark_swapping(struct gpmi_nand_data *this,
973 void *payload, void *auxiliary)
974{
975 struct bch_geometry *nfc_geo = &this->bch_geometry;
976 unsigned char *p;
977 unsigned char *a;
978 unsigned int bit;
979 unsigned char mask;
980 unsigned char from_data;
981 unsigned char from_oob;
982
983 if (!this->swap_block_mark)
984 return;
985
986 /*
987 * If control arrives here, we're swapping. Make some convenience
988 * variables.
989 */
990 bit = nfc_geo->block_mark_bit_offset;
991 p = payload + nfc_geo->block_mark_byte_offset;
992 a = auxiliary;
993
994 /*
995 * Get the byte from the data area that overlays the block mark. Since
996 * the ECC engine applies its own view to the bits in the page, the
997 * physical block mark won't (in general) appear on a byte boundary in
998 * the data.
999 */
1000 from_data = (p[0] >> bit) | (p[1] << (8 - bit));
1001
1002 /* Get the byte from the OOB. */
1003 from_oob = a[0];
1004
1005 /* Swap them. */
1006 a[0] = from_data;
1007
1008 mask = (0x1 << bit) - 1;
1009 p[0] = (p[0] & mask) | (from_oob << bit);
1010
1011 mask = ~0 << bit;
1012 p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
1013}
1014
1015static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1016 uint8_t *buf, int oob_required, int page)
10a2bcae
HS
1017{
1018 struct gpmi_nand_data *this = chip->priv;
1019 struct bch_geometry *nfc_geo = &this->bch_geometry;
1020 void *payload_virt;
1021 dma_addr_t payload_phys;
1022 void *auxiliary_virt;
1023 dma_addr_t auxiliary_phys;
1024 unsigned int i;
1025 unsigned char *status;
b23b746c 1026 unsigned int max_bitflips = 0;
10a2bcae
HS
1027 int ret;
1028
1029 pr_debug("page number is : %d\n", page);
1030 ret = read_page_prepare(this, buf, mtd->writesize,
1031 this->payload_virt, this->payload_phys,
1032 nfc_geo->payload_size,
1033 &payload_virt, &payload_phys);
1034 if (ret) {
1035 pr_err("Inadequate DMA buffer\n");
1036 ret = -ENOMEM;
1037 return ret;
1038 }
1039 auxiliary_virt = this->auxiliary_virt;
1040 auxiliary_phys = this->auxiliary_phys;
1041
1042 /* go! */
1043 ret = gpmi_read_page(this, payload_phys, auxiliary_phys);
1044 read_page_end(this, buf, mtd->writesize,
1045 this->payload_virt, this->payload_phys,
1046 nfc_geo->payload_size,
1047 payload_virt, payload_phys);
1048 if (ret) {
1049 pr_err("Error in ECC-based read: %d\n", ret);
b23b746c 1050 return ret;
10a2bcae
HS
1051 }
1052
1053 /* handle the block mark swapping */
1054 block_mark_swapping(this, payload_virt, auxiliary_virt);
1055
1056 /* Loop over status bytes, accumulating ECC status. */
b23b746c 1057 status = auxiliary_virt + nfc_geo->auxiliary_status_offset;
10a2bcae
HS
1058
1059 for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
1060 if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
1061 continue;
1062
1063 if (*status == STATUS_UNCORRECTABLE) {
b23b746c 1064 mtd->ecc_stats.failed++;
10a2bcae
HS
1065 continue;
1066 }
b23b746c
ZS
1067 mtd->ecc_stats.corrected += *status;
1068 max_bitflips = max_t(unsigned int, max_bitflips, *status);
10a2bcae
HS
1069 }
1070
7725cc85
BN
1071 if (oob_required) {
1072 /*
1073 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
1074 * for details about our policy for delivering the OOB.
1075 *
1076 * We fill the caller's buffer with set bits, and then copy the
1077 * block mark to th caller's buffer. Note that, if block mark
1078 * swapping was necessary, it has already been done, so we can
1079 * rely on the first byte of the auxiliary buffer to contain
1080 * the block mark.
1081 */
1082 memset(chip->oob_poi, ~0, mtd->oobsize);
1083 chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0];
7725cc85 1084 }
6023813a
SH
1085
1086 read_page_swap_end(this, buf, mtd->writesize,
1087 this->payload_virt, this->payload_phys,
1088 nfc_geo->payload_size,
1089 payload_virt, payload_phys);
b23b746c
ZS
1090
1091 return max_bitflips;
10a2bcae
HS
1092}
1093
fdbad98d 1094static int gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1095 const uint8_t *buf, int oob_required)
10a2bcae
HS
1096{
1097 struct gpmi_nand_data *this = chip->priv;
1098 struct bch_geometry *nfc_geo = &this->bch_geometry;
1099 const void *payload_virt;
1100 dma_addr_t payload_phys;
1101 const void *auxiliary_virt;
1102 dma_addr_t auxiliary_phys;
1103 int ret;
1104
1105 pr_debug("ecc write page.\n");
1106 if (this->swap_block_mark) {
1107 /*
1108 * If control arrives here, we're doing block mark swapping.
1109 * Since we can't modify the caller's buffers, we must copy them
1110 * into our own.
1111 */
1112 memcpy(this->payload_virt, buf, mtd->writesize);
1113 payload_virt = this->payload_virt;
1114 payload_phys = this->payload_phys;
1115
1116 memcpy(this->auxiliary_virt, chip->oob_poi,
1117 nfc_geo->auxiliary_size);
1118 auxiliary_virt = this->auxiliary_virt;
1119 auxiliary_phys = this->auxiliary_phys;
1120
1121 /* Handle block mark swapping. */
1122 block_mark_swapping(this,
1123 (void *) payload_virt, (void *) auxiliary_virt);
1124 } else {
1125 /*
1126 * If control arrives here, we're not doing block mark swapping,
1127 * so we can to try and use the caller's buffers.
1128 */
1129 ret = send_page_prepare(this,
1130 buf, mtd->writesize,
1131 this->payload_virt, this->payload_phys,
1132 nfc_geo->payload_size,
1133 &payload_virt, &payload_phys);
1134 if (ret) {
1135 pr_err("Inadequate payload DMA buffer\n");
fdbad98d 1136 return 0;
10a2bcae
HS
1137 }
1138
1139 ret = send_page_prepare(this,
1140 chip->oob_poi, mtd->oobsize,
1141 this->auxiliary_virt, this->auxiliary_phys,
1142 nfc_geo->auxiliary_size,
1143 &auxiliary_virt, &auxiliary_phys);
1144 if (ret) {
1145 pr_err("Inadequate auxiliary DMA buffer\n");
1146 goto exit_auxiliary;
1147 }
1148 }
1149
1150 /* Ask the NFC. */
1151 ret = gpmi_send_page(this, payload_phys, auxiliary_phys);
1152 if (ret)
1153 pr_err("Error in ECC-based write: %d\n", ret);
1154
1155 if (!this->swap_block_mark) {
1156 send_page_end(this, chip->oob_poi, mtd->oobsize,
1157 this->auxiliary_virt, this->auxiliary_phys,
1158 nfc_geo->auxiliary_size,
1159 auxiliary_virt, auxiliary_phys);
1160exit_auxiliary:
1161 send_page_end(this, buf, mtd->writesize,
1162 this->payload_virt, this->payload_phys,
1163 nfc_geo->payload_size,
1164 payload_virt, payload_phys);
1165 }
fdbad98d
JW
1166
1167 return 0;
10a2bcae
HS
1168}
1169
1170/*
1171 * There are several places in this driver where we have to handle the OOB and
1172 * block marks. This is the function where things are the most complicated, so
1173 * this is where we try to explain it all. All the other places refer back to
1174 * here.
1175 *
1176 * These are the rules, in order of decreasing importance:
1177 *
1178 * 1) Nothing the caller does can be allowed to imperil the block mark.
1179 *
1180 * 2) In read operations, the first byte of the OOB we return must reflect the
1181 * true state of the block mark, no matter where that block mark appears in
1182 * the physical page.
1183 *
1184 * 3) ECC-based read operations return an OOB full of set bits (since we never
1185 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1186 * return).
1187 *
1188 * 4) "Raw" read operations return a direct view of the physical bytes in the
1189 * page, using the conventional definition of which bytes are data and which
1190 * are OOB. This gives the caller a way to see the actual, physical bytes
1191 * in the page, without the distortions applied by our ECC engine.
1192 *
1193 *
1194 * What we do for this specific read operation depends on two questions:
1195 *
1196 * 1) Are we doing a "raw" read, or an ECC-based read?
1197 *
1198 * 2) Are we using block mark swapping or transcription?
1199 *
1200 * There are four cases, illustrated by the following Karnaugh map:
1201 *
1202 * | Raw | ECC-based |
1203 * -------------+-------------------------+-------------------------+
1204 * | Read the conventional | |
1205 * | OOB at the end of the | |
1206 * Swapping | page and return it. It | |
1207 * | contains exactly what | |
1208 * | we want. | Read the block mark and |
1209 * -------------+-------------------------+ return it in a buffer |
1210 * | Read the conventional | full of set bits. |
1211 * | OOB at the end of the | |
1212 * | page and also the block | |
1213 * Transcribing | mark in the metadata. | |
1214 * | Copy the block mark | |
1215 * | into the first byte of | |
1216 * | the OOB. | |
1217 * -------------+-------------------------+-------------------------+
1218 *
1219 * Note that we break rule #4 in the Transcribing/Raw case because we're not
1220 * giving an accurate view of the actual, physical bytes in the page (we're
1221 * overwriting the block mark). That's OK because it's more important to follow
1222 * rule #2.
1223 *
1224 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1225 * easy. When reading a page, for example, the NAND Flash MTD code calls our
1226 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1227 * ECC-based or raw view of the page is implicit in which function it calls
1228 * (there is a similar pair of ECC-based/raw functions for writing).
1229 *
271b874b
BN
1230 * FIXME: The following paragraph is incorrect, now that there exist
1231 * ecc.read_oob_raw and ecc.write_oob_raw functions.
1232 *
10a2bcae
HS
1233 * Since MTD assumes the OOB is not covered by ECC, there is no pair of
1234 * ECC-based/raw functions for reading or or writing the OOB. The fact that the
1235 * caller wants an ECC-based or raw view of the page is not propagated down to
1236 * this driver.
1237 */
1238static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
5c2ffb11 1239 int page)
10a2bcae
HS
1240{
1241 struct gpmi_nand_data *this = chip->priv;
1242
1243 pr_debug("page number is %d\n", page);
1244 /* clear the OOB buffer */
1245 memset(chip->oob_poi, ~0, mtd->oobsize);
1246
1247 /* Read out the conventional OOB. */
1248 chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
1249 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1250
1251 /*
1252 * Now, we want to make sure the block mark is correct. In the
1253 * Swapping/Raw case, we already have it. Otherwise, we need to
1254 * explicitly read it.
1255 */
1256 if (!this->swap_block_mark) {
1257 /* Read the block mark into the first byte of the OOB buffer. */
1258 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1259 chip->oob_poi[0] = chip->read_byte(mtd);
1260 }
1261
5c2ffb11 1262 return 0;
10a2bcae
HS
1263}
1264
1265static int
1266gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page)
1267{
7a2b89ac
HS
1268 struct nand_oobfree *of = mtd->ecclayout->oobfree;
1269 int status = 0;
1270
1271 /* Do we have available oob area? */
1272 if (!of->length)
1273 return -EPERM;
1274
1275 if (!nand_is_slc(chip))
1276 return -EPERM;
1277
1278 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize + of->offset, page);
1279 chip->write_buf(mtd, chip->oob_poi + of->offset, of->length);
1280 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1281
1282 status = chip->waitfunc(mtd, chip);
1283 return status & NAND_STATUS_FAIL ? -EIO : 0;
10a2bcae
HS
1284}
1285
1286static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs)
1287{
1288 struct nand_chip *chip = mtd->priv;
1289 struct gpmi_nand_data *this = chip->priv;
5a0edb25 1290 int ret = 0;
10a2bcae
HS
1291 uint8_t *block_mark;
1292 int column, page, status, chipnr;
1293
5a0edb25
BN
1294 chipnr = (int)(ofs >> chip->chip_shift);
1295 chip->select_chip(mtd, chipnr);
10a2bcae 1296
5a0edb25 1297 column = this->swap_block_mark ? mtd->writesize : 0;
10a2bcae 1298
5a0edb25
BN
1299 /* Write the block mark. */
1300 block_mark = this->data_buffer_dma;
1301 block_mark[0] = 0; /* bad block marker */
10a2bcae 1302
5a0edb25
BN
1303 /* Shift to get page */
1304 page = (int)(ofs >> chip->page_shift);
10a2bcae 1305
5a0edb25
BN
1306 chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page);
1307 chip->write_buf(mtd, block_mark, 1);
1308 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
10a2bcae 1309
5a0edb25
BN
1310 status = chip->waitfunc(mtd, chip);
1311 if (status & NAND_STATUS_FAIL)
1312 ret = -EIO;
10a2bcae 1313
5a0edb25 1314 chip->select_chip(mtd, -1);
10a2bcae
HS
1315
1316 return ret;
1317}
1318
a78da287 1319static int nand_boot_set_geometry(struct gpmi_nand_data *this)
10a2bcae
HS
1320{
1321 struct boot_rom_geometry *geometry = &this->rom_geometry;
1322
1323 /*
1324 * Set the boot block stride size.
1325 *
1326 * In principle, we should be reading this from the OTP bits, since
1327 * that's where the ROM is going to get it. In fact, we don't have any
1328 * way to read the OTP bits, so we go with the default and hope for the
1329 * best.
1330 */
1331 geometry->stride_size_in_pages = 64;
1332
1333 /*
1334 * Set the search area stride exponent.
1335 *
1336 * In principle, we should be reading this from the OTP bits, since
1337 * that's where the ROM is going to get it. In fact, we don't have any
1338 * way to read the OTP bits, so we go with the default and hope for the
1339 * best.
1340 */
1341 geometry->search_area_stride_exponent = 2;
1342 return 0;
1343}
1344
1345static const char *fingerprint = "STMP";
a78da287 1346static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
10a2bcae
HS
1347{
1348 struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1349 struct device *dev = this->dev;
1350 struct mtd_info *mtd = &this->mtd;
1351 struct nand_chip *chip = &this->nand;
1352 unsigned int search_area_size_in_strides;
1353 unsigned int stride;
1354 unsigned int page;
10a2bcae
HS
1355 uint8_t *buffer = chip->buffers->databuf;
1356 int saved_chip_number;
1357 int found_an_ncb_fingerprint = false;
1358
1359 /* Compute the number of strides in a search area. */
1360 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1361
1362 saved_chip_number = this->current_chip;
1363 chip->select_chip(mtd, 0);
1364
1365 /*
1366 * Loop through the first search area, looking for the NCB fingerprint.
1367 */
1368 dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
1369
1370 for (stride = 0; stride < search_area_size_in_strides; stride++) {
513d57e1 1371 /* Compute the page addresses. */
10a2bcae 1372 page = stride * rom_geo->stride_size_in_pages;
10a2bcae
HS
1373
1374 dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
1375
1376 /*
1377 * Read the NCB fingerprint. The fingerprint is four bytes long
1378 * and starts in the 12th byte of the page.
1379 */
1380 chip->cmdfunc(mtd, NAND_CMD_READ0, 12, page);
1381 chip->read_buf(mtd, buffer, strlen(fingerprint));
1382
1383 /* Look for the fingerprint. */
1384 if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
1385 found_an_ncb_fingerprint = true;
1386 break;
1387 }
1388
1389 }
1390
1391 chip->select_chip(mtd, saved_chip_number);
1392
1393 if (found_an_ncb_fingerprint)
1394 dev_dbg(dev, "\tFound a fingerprint\n");
1395 else
1396 dev_dbg(dev, "\tNo fingerprint found\n");
1397 return found_an_ncb_fingerprint;
1398}
1399
1400/* Writes a transcription stamp. */
a78da287 1401static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
10a2bcae
HS
1402{
1403 struct device *dev = this->dev;
1404 struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1405 struct mtd_info *mtd = &this->mtd;
1406 struct nand_chip *chip = &this->nand;
1407 unsigned int block_size_in_pages;
1408 unsigned int search_area_size_in_strides;
1409 unsigned int search_area_size_in_pages;
1410 unsigned int search_area_size_in_blocks;
1411 unsigned int block;
1412 unsigned int stride;
1413 unsigned int page;
10a2bcae
HS
1414 uint8_t *buffer = chip->buffers->databuf;
1415 int saved_chip_number;
1416 int status;
1417
1418 /* Compute the search area geometry. */
1419 block_size_in_pages = mtd->erasesize / mtd->writesize;
1420 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1421 search_area_size_in_pages = search_area_size_in_strides *
1422 rom_geo->stride_size_in_pages;
1423 search_area_size_in_blocks =
1424 (search_area_size_in_pages + (block_size_in_pages - 1)) /
1425 block_size_in_pages;
1426
1427 dev_dbg(dev, "Search Area Geometry :\n");
1428 dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
1429 dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
1430 dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages);
1431
1432 /* Select chip 0. */
1433 saved_chip_number = this->current_chip;
1434 chip->select_chip(mtd, 0);
1435
1436 /* Loop over blocks in the first search area, erasing them. */
1437 dev_dbg(dev, "Erasing the search area...\n");
1438
1439 for (block = 0; block < search_area_size_in_blocks; block++) {
1440 /* Compute the page address. */
1441 page = block * block_size_in_pages;
1442
1443 /* Erase this block. */
1444 dev_dbg(dev, "\tErasing block 0x%x\n", block);
1445 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1446 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1447
1448 /* Wait for the erase to finish. */
1449 status = chip->waitfunc(mtd, chip);
1450 if (status & NAND_STATUS_FAIL)
1451 dev_err(dev, "[%s] Erase failed.\n", __func__);
1452 }
1453
1454 /* Write the NCB fingerprint into the page buffer. */
1455 memset(buffer, ~0, mtd->writesize);
1456 memset(chip->oob_poi, ~0, mtd->oobsize);
1457 memcpy(buffer + 12, fingerprint, strlen(fingerprint));
1458
1459 /* Loop through the first search area, writing NCB fingerprints. */
1460 dev_dbg(dev, "Writing NCB fingerprints...\n");
1461 for (stride = 0; stride < search_area_size_in_strides; stride++) {
513d57e1 1462 /* Compute the page addresses. */
10a2bcae 1463 page = stride * rom_geo->stride_size_in_pages;
10a2bcae
HS
1464
1465 /* Write the first page of the current stride. */
1466 dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
1467 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1fbb938d 1468 chip->ecc.write_page_raw(mtd, chip, buffer, 0);
10a2bcae
HS
1469 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1470
1471 /* Wait for the write to finish. */
1472 status = chip->waitfunc(mtd, chip);
1473 if (status & NAND_STATUS_FAIL)
1474 dev_err(dev, "[%s] Write failed.\n", __func__);
1475 }
1476
1477 /* Deselect chip 0. */
1478 chip->select_chip(mtd, saved_chip_number);
1479 return 0;
1480}
1481
a78da287 1482static int mx23_boot_init(struct gpmi_nand_data *this)
10a2bcae
HS
1483{
1484 struct device *dev = this->dev;
1485 struct nand_chip *chip = &this->nand;
1486 struct mtd_info *mtd = &this->mtd;
1487 unsigned int block_count;
1488 unsigned int block;
1489 int chipnr;
1490 int page;
1491 loff_t byte;
1492 uint8_t block_mark;
1493 int ret = 0;
1494
1495 /*
1496 * If control arrives here, we can't use block mark swapping, which
1497 * means we're forced to use transcription. First, scan for the
1498 * transcription stamp. If we find it, then we don't have to do
1499 * anything -- the block marks are already transcribed.
1500 */
1501 if (mx23_check_transcription_stamp(this))
1502 return 0;
1503
1504 /*
1505 * If control arrives here, we couldn't find a transcription stamp, so
1506 * so we presume the block marks are in the conventional location.
1507 */
1508 dev_dbg(dev, "Transcribing bad block marks...\n");
1509
1510 /* Compute the number of blocks in the entire medium. */
1511 block_count = chip->chipsize >> chip->phys_erase_shift;
1512
1513 /*
1514 * Loop over all the blocks in the medium, transcribing block marks as
1515 * we go.
1516 */
1517 for (block = 0; block < block_count; block++) {
1518 /*
1519 * Compute the chip, page and byte addresses for this block's
1520 * conventional mark.
1521 */
1522 chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
1523 page = block << (chip->phys_erase_shift - chip->page_shift);
1524 byte = block << chip->phys_erase_shift;
1525
1526 /* Send the command to read the conventional block mark. */
1527 chip->select_chip(mtd, chipnr);
1528 chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
1529 block_mark = chip->read_byte(mtd);
1530 chip->select_chip(mtd, -1);
1531
1532 /*
1533 * Check if the block is marked bad. If so, we need to mark it
1534 * again, but this time the result will be a mark in the
1535 * location where we transcribe block marks.
1536 */
1537 if (block_mark != 0xff) {
1538 dev_dbg(dev, "Transcribing mark in block %u\n", block);
1539 ret = chip->block_markbad(mtd, byte);
1540 if (ret)
1541 dev_err(dev, "Failed to mark block bad with "
1542 "ret %d\n", ret);
1543 }
1544 }
1545
1546 /* Write the stamp that indicates we've transcribed the block marks. */
1547 mx23_write_transcription_stamp(this);
1548 return 0;
1549}
1550
a78da287 1551static int nand_boot_init(struct gpmi_nand_data *this)
10a2bcae
HS
1552{
1553 nand_boot_set_geometry(this);
1554
1555 /* This is ROM arch-specific initilization before the BBT scanning. */
1556 if (GPMI_IS_MX23(this))
1557 return mx23_boot_init(this);
1558 return 0;
1559}
1560
a78da287 1561static int gpmi_set_geometry(struct gpmi_nand_data *this)
10a2bcae
HS
1562{
1563 int ret;
1564
1565 /* Free the temporary DMA memory for reading ID. */
1566 gpmi_free_dma_buffer(this);
1567
1568 /* Set up the NFC geometry which is used by BCH. */
1569 ret = bch_set_geometry(this);
1570 if (ret) {
2d350e5a 1571 pr_err("Error setting BCH geometry : %d\n", ret);
10a2bcae
HS
1572 return ret;
1573 }
1574
1575 /* Alloc the new DMA buffers according to the pagesize and oobsize */
1576 return gpmi_alloc_dma_buffer(this);
1577}
1578
1579static int gpmi_pre_bbt_scan(struct gpmi_nand_data *this)
1580{
1581 int ret;
1582
1583 /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
1584 if (GPMI_IS_MX23(this))
1585 this->swap_block_mark = false;
1586 else
1587 this->swap_block_mark = true;
1588
1589 /* Set up the medium geometry */
1590 ret = gpmi_set_geometry(this);
1591 if (ret)
1592 return ret;
1593
1594 /* NAND boot init, depends on the gpmi_set_geometry(). */
1595 return nand_boot_init(this);
1596}
1597
f720e7ce
HS
1598static void gpmi_nfc_exit(struct gpmi_nand_data *this)
1599{
1600 nand_release(&this->mtd);
1601 gpmi_free_dma_buffer(this);
1602}
1603
1604static int gpmi_init_last(struct gpmi_nand_data *this)
10a2bcae 1605{
f720e7ce 1606 struct mtd_info *mtd = &this->mtd;
10a2bcae 1607 struct nand_chip *chip = mtd->priv;
f720e7ce
HS
1608 struct nand_ecc_ctrl *ecc = &chip->ecc;
1609 struct bch_geometry *bch_geo = &this->bch_geometry;
10a2bcae
HS
1610 int ret;
1611
1612 /* Prepare for the BBT scan. */
1613 ret = gpmi_pre_bbt_scan(this);
1614 if (ret)
1615 return ret;
1616
f720e7ce
HS
1617 /* Init the nand_ecc_ctrl{} */
1618 ecc->read_page = gpmi_ecc_read_page;
1619 ecc->write_page = gpmi_ecc_write_page;
1620 ecc->read_oob = gpmi_ecc_read_oob;
1621 ecc->write_oob = gpmi_ecc_write_oob;
1622 ecc->mode = NAND_ECC_HW;
1623 ecc->size = bch_geo->ecc_chunk_size;
1624 ecc->strength = bch_geo->ecc_strength;
1625 ecc->layout = &gpmi_hw_ecclayout;
1626
995fbbf5
HS
1627 /*
1628 * Can we enable the extra features? such as EDO or Sync mode.
1629 *
1630 * We do not check the return value now. That's means if we fail in
1631 * enable the extra features, we still can run in the normal way.
1632 */
1633 gpmi_extra_init(this);
1634
f720e7ce 1635 return 0;
10a2bcae
HS
1636}
1637
06f25510 1638static int gpmi_nfc_init(struct gpmi_nand_data *this)
10a2bcae 1639{
10a2bcae
HS
1640 struct mtd_info *mtd = &this->mtd;
1641 struct nand_chip *chip = &this->nand;
e10db1f0 1642 struct mtd_part_parser_data ppdata = {};
10a2bcae
HS
1643 int ret;
1644
1645 /* init current chip */
1646 this->current_chip = -1;
1647
1648 /* init the MTD data structures */
1649 mtd->priv = chip;
1650 mtd->name = "gpmi-nand";
1651 mtd->owner = THIS_MODULE;
1652
1653 /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
1654 chip->priv = this;
1655 chip->select_chip = gpmi_select_chip;
1656 chip->cmd_ctrl = gpmi_cmd_ctrl;
1657 chip->dev_ready = gpmi_dev_ready;
1658 chip->read_byte = gpmi_read_byte;
1659 chip->read_buf = gpmi_read_buf;
1660 chip->write_buf = gpmi_write_buf;
10a2bcae
HS
1661 chip->badblock_pattern = &gpmi_bbt_descr;
1662 chip->block_markbad = gpmi_block_markbad;
1663 chip->options |= NAND_NO_SUBPAGE_WRITE;
c50c6940
HS
1664 if (of_get_nand_on_flash_bbt(this->dev->of_node))
1665 chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
10a2bcae 1666
f720e7ce
HS
1667 /*
1668 * Allocate a temporary DMA buffer for reading ID in the
1669 * nand_scan_ident().
1670 */
10a2bcae
HS
1671 this->bch_geometry.payload_size = 1024;
1672 this->bch_geometry.auxiliary_size = 128;
1673 ret = gpmi_alloc_dma_buffer(this);
1674 if (ret)
1675 goto err_out;
1676
80bd33ac 1677 ret = nand_scan_ident(mtd, GPMI_IS_MX6Q(this) ? 2 : 1, NULL);
f720e7ce
HS
1678 if (ret)
1679 goto err_out;
1680
1681 ret = gpmi_init_last(this);
1682 if (ret)
1683 goto err_out;
1684
1685 ret = nand_scan_tail(mtd);
1686 if (ret)
10a2bcae 1687 goto err_out;
10a2bcae 1688
e10db1f0
HS
1689 ppdata.of_node = this->pdev->dev.of_node;
1690 ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
10a2bcae
HS
1691 if (ret)
1692 goto err_out;
1693 return 0;
1694
1695err_out:
1696 gpmi_nfc_exit(this);
1697 return ret;
1698}
1699
e10db1f0
HS
1700static const struct platform_device_id gpmi_ids[] = {
1701 { .name = "imx23-gpmi-nand", .driver_data = IS_MX23, },
1702 { .name = "imx28-gpmi-nand", .driver_data = IS_MX28, },
9013bb40 1703 { .name = "imx6q-gpmi-nand", .driver_data = IS_MX6Q, },
d41f950e 1704 {}
e10db1f0
HS
1705};
1706
1707static const struct of_device_id gpmi_nand_id_table[] = {
1708 {
1709 .compatible = "fsl,imx23-gpmi-nand",
d41f950e 1710 .data = (void *)&gpmi_ids[IS_MX23],
e10db1f0
HS
1711 }, {
1712 .compatible = "fsl,imx28-gpmi-nand",
d41f950e 1713 .data = (void *)&gpmi_ids[IS_MX28],
9013bb40
HS
1714 }, {
1715 .compatible = "fsl,imx6q-gpmi-nand",
d41f950e 1716 .data = (void *)&gpmi_ids[IS_MX6Q],
e10db1f0
HS
1717 }, {}
1718};
1719MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
1720
06f25510 1721static int gpmi_nand_probe(struct platform_device *pdev)
10a2bcae 1722{
10a2bcae 1723 struct gpmi_nand_data *this;
e10db1f0 1724 const struct of_device_id *of_id;
10a2bcae
HS
1725 int ret;
1726
e10db1f0
HS
1727 of_id = of_match_device(gpmi_nand_id_table, &pdev->dev);
1728 if (of_id) {
1729 pdev->id_entry = of_id->data;
1730 } else {
1731 pr_err("Failed to find the right device id.\n");
52a073bd 1732 return -ENODEV;
e10db1f0
HS
1733 }
1734
edaf4d4a 1735 this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
10a2bcae
HS
1736 if (!this) {
1737 pr_err("Failed to allocate per-device memory\n");
1738 return -ENOMEM;
1739 }
1740
1741 platform_set_drvdata(pdev, this);
1742 this->pdev = pdev;
1743 this->dev = &pdev->dev;
10a2bcae
HS
1744
1745 ret = acquire_resources(this);
1746 if (ret)
1747 goto exit_acquire_resources;
1748
1749 ret = init_hardware(this);
1750 if (ret)
1751 goto exit_nfc_init;
1752
1753 ret = gpmi_nfc_init(this);
1754 if (ret)
1755 goto exit_nfc_init;
1756
490e280a
FE
1757 dev_info(this->dev, "driver registered.\n");
1758
10a2bcae
HS
1759 return 0;
1760
1761exit_nfc_init:
1762 release_resources(this);
10a2bcae 1763exit_acquire_resources:
490e280a
FE
1764 dev_err(this->dev, "driver registration failed: %d\n", ret);
1765
10a2bcae
HS
1766 return ret;
1767}
1768
810b7e06 1769static int gpmi_nand_remove(struct platform_device *pdev)
10a2bcae
HS
1770{
1771 struct gpmi_nand_data *this = platform_get_drvdata(pdev);
1772
1773 gpmi_nfc_exit(this);
1774 release_resources(this);
10a2bcae
HS
1775 return 0;
1776}
1777
10a2bcae
HS
1778static struct platform_driver gpmi_nand_driver = {
1779 .driver = {
1780 .name = "gpmi-nand",
e10db1f0 1781 .of_match_table = gpmi_nand_id_table,
10a2bcae
HS
1782 },
1783 .probe = gpmi_nand_probe,
5153b88c 1784 .remove = gpmi_nand_remove,
10a2bcae
HS
1785 .id_table = gpmi_ids,
1786};
490e280a 1787module_platform_driver(gpmi_nand_driver);
10a2bcae
HS
1788
1789MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1790MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
1791MODULE_LICENSE("GPL");
This page took 0.327319 seconds and 5 git commands to generate.