mtd: davinci: relax a timeout for ECC-initialization
[deliverable/linux.git] / drivers / mtd / nand / nand_base.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
61b03bd7 8 *
1da177e4 9 * Additional technical information is available on
8b2b403c 10 * http://www.linux-mtd.infradead.org/doc/nand.html
61b03bd7 11 *
1da177e4 12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
ace4dfee 13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
1da177e4 14 *
ace4dfee 15 * Credits:
61b03bd7
TG
16 * David Woodhouse for adding multichip support
17 *
1da177e4
LT
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
20 *
ace4dfee 21 * TODO:
1da177e4
LT
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ecc support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
c0b8ba7b 27 * BBT table is not serialized, has to be fixed
1da177e4 28 *
1da177e4
LT
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License version 2 as
31 * published by the Free Software Foundation.
32 *
33 */
34
552d9205 35#include <linux/module.h>
1da177e4
LT
36#include <linux/delay.h>
37#include <linux/errno.h>
7aa65bfd 38#include <linux/err.h>
1da177e4
LT
39#include <linux/sched.h>
40#include <linux/slab.h>
41#include <linux/types.h>
42#include <linux/mtd/mtd.h>
43#include <linux/mtd/nand.h>
44#include <linux/mtd/nand_ecc.h>
1da177e4
LT
45#include <linux/interrupt.h>
46#include <linux/bitops.h>
8fe833c1 47#include <linux/leds.h>
1da177e4
LT
48#include <asm/io.h>
49
50#ifdef CONFIG_MTD_PARTITIONS
51#include <linux/mtd/partitions.h>
52#endif
53
54/* Define default oob placement schemes for large and small page devices */
5bd34c09 55static struct nand_ecclayout nand_oob_8 = {
1da177e4
LT
56 .eccbytes = 3,
57 .eccpos = {0, 1, 2},
5bd34c09
TG
58 .oobfree = {
59 {.offset = 3,
60 .length = 2},
61 {.offset = 6,
62 .length = 2}}
1da177e4
LT
63};
64
5bd34c09 65static struct nand_ecclayout nand_oob_16 = {
1da177e4
LT
66 .eccbytes = 6,
67 .eccpos = {0, 1, 2, 3, 6, 7},
5bd34c09
TG
68 .oobfree = {
69 {.offset = 8,
70 . length = 8}}
1da177e4
LT
71};
72
5bd34c09 73static struct nand_ecclayout nand_oob_64 = {
1da177e4
LT
74 .eccbytes = 24,
75 .eccpos = {
e0c7d767
DW
76 40, 41, 42, 43, 44, 45, 46, 47,
77 48, 49, 50, 51, 52, 53, 54, 55,
78 56, 57, 58, 59, 60, 61, 62, 63},
5bd34c09
TG
79 .oobfree = {
80 {.offset = 2,
81 .length = 38}}
1da177e4
LT
82};
83
81ec5364
TG
84static struct nand_ecclayout nand_oob_128 = {
85 .eccbytes = 48,
86 .eccpos = {
87 80, 81, 82, 83, 84, 85, 86, 87,
88 88, 89, 90, 91, 92, 93, 94, 95,
89 96, 97, 98, 99, 100, 101, 102, 103,
90 104, 105, 106, 107, 108, 109, 110, 111,
91 112, 113, 114, 115, 116, 117, 118, 119,
92 120, 121, 122, 123, 124, 125, 126, 127},
93 .oobfree = {
94 {.offset = 2,
95 .length = 78}}
96};
97
ace4dfee 98static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
2c0a2bed 99 int new_state);
1da177e4 100
8593fbc6
TG
101static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
102 struct mtd_oob_ops *ops);
103
d470a97c 104/*
8e87d782 105 * For devices which display every fart in the system on a separate LED. Is
d470a97c
TG
106 * compiled away when LED support is disabled.
107 */
108DEFINE_LED_TRIGGER(nand_led_trigger);
109
6fe5a6ac
VS
110static int check_offs_len(struct mtd_info *mtd,
111 loff_t ofs, uint64_t len)
112{
113 struct nand_chip *chip = mtd->priv;
114 int ret = 0;
115
116 /* Start address must align on block boundary */
117 if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
118 DEBUG(MTD_DEBUG_LEVEL0, "%s: Unaligned address\n", __func__);
119 ret = -EINVAL;
120 }
121
122 /* Length must align on block boundary */
123 if (len & ((1 << chip->phys_erase_shift) - 1)) {
124 DEBUG(MTD_DEBUG_LEVEL0, "%s: Length not block aligned\n",
125 __func__);
126 ret = -EINVAL;
127 }
128
129 /* Do not allow past end of device */
130 if (ofs + len > mtd->size) {
131 DEBUG(MTD_DEBUG_LEVEL0, "%s: Past end of device\n",
132 __func__);
133 ret = -EINVAL;
134 }
135
136 return ret;
137}
138
1da177e4
LT
139/**
140 * nand_release_device - [GENERIC] release chip
141 * @mtd: MTD device structure
61b03bd7
TG
142 *
143 * Deselect, release chip lock and wake up anyone waiting on the device
1da177e4 144 */
e0c7d767 145static void nand_release_device(struct mtd_info *mtd)
1da177e4 146{
ace4dfee 147 struct nand_chip *chip = mtd->priv;
1da177e4
LT
148
149 /* De-select the NAND device */
ace4dfee 150 chip->select_chip(mtd, -1);
0dfc6246 151
a36ed299 152 /* Release the controller and the chip */
ace4dfee
TG
153 spin_lock(&chip->controller->lock);
154 chip->controller->active = NULL;
155 chip->state = FL_READY;
156 wake_up(&chip->controller->wq);
157 spin_unlock(&chip->controller->lock);
1da177e4
LT
158}
159
160/**
161 * nand_read_byte - [DEFAULT] read one byte from the chip
162 * @mtd: MTD device structure
163 *
164 * Default read function for 8bit buswith
165 */
58dd8f2b 166static uint8_t nand_read_byte(struct mtd_info *mtd)
1da177e4 167{
ace4dfee
TG
168 struct nand_chip *chip = mtd->priv;
169 return readb(chip->IO_ADDR_R);
1da177e4
LT
170}
171
1da177e4
LT
172/**
173 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
174 * @mtd: MTD device structure
175 *
61b03bd7 176 * Default read function for 16bit buswith with
1da177e4
LT
177 * endianess conversion
178 */
58dd8f2b 179static uint8_t nand_read_byte16(struct mtd_info *mtd)
1da177e4 180{
ace4dfee
TG
181 struct nand_chip *chip = mtd->priv;
182 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
1da177e4
LT
183}
184
1da177e4
LT
185/**
186 * nand_read_word - [DEFAULT] read one word from the chip
187 * @mtd: MTD device structure
188 *
61b03bd7 189 * Default read function for 16bit buswith without
1da177e4
LT
190 * endianess conversion
191 */
192static u16 nand_read_word(struct mtd_info *mtd)
193{
ace4dfee
TG
194 struct nand_chip *chip = mtd->priv;
195 return readw(chip->IO_ADDR_R);
1da177e4
LT
196}
197
1da177e4
LT
198/**
199 * nand_select_chip - [DEFAULT] control CE line
200 * @mtd: MTD device structure
844d3b42 201 * @chipnr: chipnumber to select, -1 for deselect
1da177e4
LT
202 *
203 * Default select function for 1 chip devices.
204 */
ace4dfee 205static void nand_select_chip(struct mtd_info *mtd, int chipnr)
1da177e4 206{
ace4dfee
TG
207 struct nand_chip *chip = mtd->priv;
208
209 switch (chipnr) {
1da177e4 210 case -1:
ace4dfee 211 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
1da177e4
LT
212 break;
213 case 0:
1da177e4
LT
214 break;
215
216 default:
217 BUG();
218 }
219}
220
221/**
222 * nand_write_buf - [DEFAULT] write buffer to chip
223 * @mtd: MTD device structure
224 * @buf: data buffer
225 * @len: number of bytes to write
226 *
227 * Default write function for 8bit buswith
228 */
58dd8f2b 229static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4
LT
230{
231 int i;
ace4dfee 232 struct nand_chip *chip = mtd->priv;
1da177e4 233
e0c7d767 234 for (i = 0; i < len; i++)
ace4dfee 235 writeb(buf[i], chip->IO_ADDR_W);
1da177e4
LT
236}
237
238/**
61b03bd7 239 * nand_read_buf - [DEFAULT] read chip data into buffer
1da177e4
LT
240 * @mtd: MTD device structure
241 * @buf: buffer to store date
242 * @len: number of bytes to read
243 *
244 * Default read function for 8bit buswith
245 */
58dd8f2b 246static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4
LT
247{
248 int i;
ace4dfee 249 struct nand_chip *chip = mtd->priv;
1da177e4 250
e0c7d767 251 for (i = 0; i < len; i++)
ace4dfee 252 buf[i] = readb(chip->IO_ADDR_R);
1da177e4
LT
253}
254
255/**
61b03bd7 256 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
1da177e4
LT
257 * @mtd: MTD device structure
258 * @buf: buffer containing the data to compare
259 * @len: number of bytes to compare
260 *
261 * Default verify function for 8bit buswith
262 */
58dd8f2b 263static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4
LT
264{
265 int i;
ace4dfee 266 struct nand_chip *chip = mtd->priv;
1da177e4 267
e0c7d767 268 for (i = 0; i < len; i++)
ace4dfee 269 if (buf[i] != readb(chip->IO_ADDR_R))
1da177e4 270 return -EFAULT;
1da177e4
LT
271 return 0;
272}
273
274/**
275 * nand_write_buf16 - [DEFAULT] write buffer to chip
276 * @mtd: MTD device structure
277 * @buf: data buffer
278 * @len: number of bytes to write
279 *
280 * Default write function for 16bit buswith
281 */
58dd8f2b 282static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4
LT
283{
284 int i;
ace4dfee 285 struct nand_chip *chip = mtd->priv;
1da177e4
LT
286 u16 *p = (u16 *) buf;
287 len >>= 1;
61b03bd7 288
e0c7d767 289 for (i = 0; i < len; i++)
ace4dfee 290 writew(p[i], chip->IO_ADDR_W);
61b03bd7 291
1da177e4
LT
292}
293
294/**
61b03bd7 295 * nand_read_buf16 - [DEFAULT] read chip data into buffer
1da177e4
LT
296 * @mtd: MTD device structure
297 * @buf: buffer to store date
298 * @len: number of bytes to read
299 *
300 * Default read function for 16bit buswith
301 */
58dd8f2b 302static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4
LT
303{
304 int i;
ace4dfee 305 struct nand_chip *chip = mtd->priv;
1da177e4
LT
306 u16 *p = (u16 *) buf;
307 len >>= 1;
308
e0c7d767 309 for (i = 0; i < len; i++)
ace4dfee 310 p[i] = readw(chip->IO_ADDR_R);
1da177e4
LT
311}
312
313/**
61b03bd7 314 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
1da177e4
LT
315 * @mtd: MTD device structure
316 * @buf: buffer containing the data to compare
317 * @len: number of bytes to compare
318 *
319 * Default verify function for 16bit buswith
320 */
58dd8f2b 321static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4
LT
322{
323 int i;
ace4dfee 324 struct nand_chip *chip = mtd->priv;
1da177e4
LT
325 u16 *p = (u16 *) buf;
326 len >>= 1;
327
e0c7d767 328 for (i = 0; i < len; i++)
ace4dfee 329 if (p[i] != readw(chip->IO_ADDR_R))
1da177e4
LT
330 return -EFAULT;
331
332 return 0;
333}
334
335/**
336 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
337 * @mtd: MTD device structure
338 * @ofs: offset from device start
339 * @getchip: 0, if the chip is already selected
340 *
61b03bd7 341 * Check, if the block is bad.
1da177e4
LT
342 */
343static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
344{
345 int page, chipnr, res = 0;
ace4dfee 346 struct nand_chip *chip = mtd->priv;
1da177e4
LT
347 u16 bad;
348
30fe8115 349 if (chip->options & NAND_BBT_SCANLASTPAGE)
b60b08b0
KC
350 ofs += mtd->erasesize - mtd->writesize;
351
1a12f46a
TK
352 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
353
1da177e4 354 if (getchip) {
ace4dfee 355 chipnr = (int)(ofs >> chip->chip_shift);
1da177e4 356
ace4dfee 357 nand_get_device(chip, mtd, FL_READING);
1da177e4
LT
358
359 /* Select the NAND device */
ace4dfee 360 chip->select_chip(mtd, chipnr);
1a12f46a 361 }
1da177e4 362
ace4dfee
TG
363 if (chip->options & NAND_BUSWIDTH_16) {
364 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
1a12f46a 365 page);
ace4dfee
TG
366 bad = cpu_to_le16(chip->read_word(mtd));
367 if (chip->badblockpos & 0x1)
49196f33 368 bad >>= 8;
e0b58d0a
ML
369 else
370 bad &= 0xFF;
1da177e4 371 } else {
1a12f46a 372 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
e0b58d0a 373 bad = chip->read_byte(mtd);
1da177e4 374 }
61b03bd7 375
e0b58d0a
ML
376 if (likely(chip->badblockbits == 8))
377 res = bad != 0xFF;
378 else
379 res = hweight8(bad) < chip->badblockbits;
380
ace4dfee 381 if (getchip)
1da177e4 382 nand_release_device(mtd);
61b03bd7 383
1da177e4
LT
384 return res;
385}
386
387/**
388 * nand_default_block_markbad - [DEFAULT] mark a block bad
389 * @mtd: MTD device structure
390 * @ofs: offset from device start
391 *
392 * This is the default implementation, which can be overridden by
393 * a hardware specific driver.
394*/
395static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
396{
ace4dfee 397 struct nand_chip *chip = mtd->priv;
58dd8f2b 398 uint8_t buf[2] = { 0, 0 };
02ed70bb 399 int block, ret, i = 0;
61b03bd7 400
30fe8115 401 if (chip->options & NAND_BBT_SCANLASTPAGE)
b60b08b0
KC
402 ofs += mtd->erasesize - mtd->writesize;
403
1da177e4 404 /* Get block number */
4226b510 405 block = (int)(ofs >> chip->bbt_erase_shift);
ace4dfee
TG
406 if (chip->bbt)
407 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1da177e4
LT
408
409 /* Do we have a flash based bad block table ? */
ace4dfee 410 if (chip->options & NAND_USE_FLASH_BBT)
f1a28c02
TG
411 ret = nand_update_bbt(mtd, ofs);
412 else {
c0b8ba7b 413 nand_get_device(chip, mtd, FL_WRITING);
f1a28c02 414
02ed70bb
BN
415 /* Write to first two pages and to byte 1 and 6 if necessary.
416 * If we write to more than one location, the first error
417 * encountered quits the procedure. We write two bytes per
418 * location, so we dont have to mess with 16 bit access.
419 */
420 do {
421 chip->ops.len = chip->ops.ooblen = 2;
422 chip->ops.datbuf = NULL;
423 chip->ops.oobbuf = buf;
424 chip->ops.ooboffs = chip->badblockpos & ~0x01;
425
426 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
427
428 if (!ret && (chip->options & NAND_BBT_SCANBYTE1AND6)) {
429 chip->ops.ooboffs = NAND_SMALL_BADBLOCK_POS
430 & ~0x01;
431 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
432 }
433 i++;
434 ofs += mtd->writesize;
435 } while (!ret && (chip->options & NAND_BBT_SCAN2NDPAGE) &&
436 i < 2);
437
c0b8ba7b 438 nand_release_device(mtd);
f1a28c02
TG
439 }
440 if (!ret)
441 mtd->ecc_stats.badblocks++;
c0b8ba7b 442
f1a28c02 443 return ret;
1da177e4
LT
444}
445
61b03bd7 446/**
1da177e4
LT
447 * nand_check_wp - [GENERIC] check if the chip is write protected
448 * @mtd: MTD device structure
61b03bd7 449 * Check, if the device is write protected
1da177e4 450 *
61b03bd7 451 * The function expects, that the device is already selected
1da177e4 452 */
e0c7d767 453static int nand_check_wp(struct mtd_info *mtd)
1da177e4 454{
ace4dfee 455 struct nand_chip *chip = mtd->priv;
93edbad6
ML
456
457 /* broken xD cards report WP despite being writable */
458 if (chip->options & NAND_BROKEN_XD)
459 return 0;
460
1da177e4 461 /* Check the WP bit */
ace4dfee
TG
462 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
463 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
1da177e4
LT
464}
465
466/**
467 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
468 * @mtd: MTD device structure
469 * @ofs: offset from device start
470 * @getchip: 0, if the chip is already selected
471 * @allowbbt: 1, if its allowed to access the bbt area
472 *
473 * Check, if the block is bad. Either by reading the bad block table or
474 * calling of the scan function.
475 */
2c0a2bed
TG
476static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
477 int allowbbt)
1da177e4 478{
ace4dfee 479 struct nand_chip *chip = mtd->priv;
61b03bd7 480
ace4dfee
TG
481 if (!chip->bbt)
482 return chip->block_bad(mtd, ofs, getchip);
61b03bd7 483
1da177e4 484 /* Return info from the table */
e0c7d767 485 return nand_isbad_bbt(mtd, ofs, allowbbt);
1da177e4
LT
486}
487
2af7c653
SK
488/**
489 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
490 * @mtd: MTD device structure
491 * @timeo: Timeout
492 *
493 * Helper function for nand_wait_ready used when needing to wait in interrupt
494 * context.
495 */
496static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
497{
498 struct nand_chip *chip = mtd->priv;
499 int i;
500
501 /* Wait for the device to get ready */
502 for (i = 0; i < timeo; i++) {
503 if (chip->dev_ready(mtd))
504 break;
505 touch_softlockup_watchdog();
506 mdelay(1);
507 }
508}
509
61b03bd7 510/*
3b88775c
TG
511 * Wait for the ready pin, after a command
512 * The timeout is catched later.
513 */
4b648b02 514void nand_wait_ready(struct mtd_info *mtd)
3b88775c 515{
ace4dfee 516 struct nand_chip *chip = mtd->priv;
e0c7d767 517 unsigned long timeo = jiffies + 2;
3b88775c 518
2af7c653
SK
519 /* 400ms timeout */
520 if (in_interrupt() || oops_in_progress)
521 return panic_nand_wait_ready(mtd, 400);
522
8fe833c1 523 led_trigger_event(nand_led_trigger, LED_FULL);
3b88775c
TG
524 /* wait until command is processed or timeout occures */
525 do {
ace4dfee 526 if (chip->dev_ready(mtd))
8fe833c1 527 break;
8446f1d3 528 touch_softlockup_watchdog();
61b03bd7 529 } while (time_before(jiffies, timeo));
8fe833c1 530 led_trigger_event(nand_led_trigger, LED_OFF);
3b88775c 531}
4b648b02 532EXPORT_SYMBOL_GPL(nand_wait_ready);
3b88775c 533
1da177e4
LT
534/**
535 * nand_command - [DEFAULT] Send command to NAND device
536 * @mtd: MTD device structure
537 * @command: the command to be sent
538 * @column: the column address for this command, -1 if none
539 * @page_addr: the page address for this command, -1 if none
540 *
541 * Send command to NAND device. This function is used for small page
542 * devices (256/512 Bytes per page)
543 */
7abd3ef9
TG
544static void nand_command(struct mtd_info *mtd, unsigned int command,
545 int column, int page_addr)
1da177e4 546{
ace4dfee 547 register struct nand_chip *chip = mtd->priv;
7abd3ef9 548 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
1da177e4 549
1da177e4
LT
550 /*
551 * Write out the command to the device.
552 */
553 if (command == NAND_CMD_SEQIN) {
554 int readcmd;
555
28318776 556 if (column >= mtd->writesize) {
1da177e4 557 /* OOB area */
28318776 558 column -= mtd->writesize;
1da177e4
LT
559 readcmd = NAND_CMD_READOOB;
560 } else if (column < 256) {
561 /* First 256 bytes --> READ0 */
562 readcmd = NAND_CMD_READ0;
563 } else {
564 column -= 256;
565 readcmd = NAND_CMD_READ1;
566 }
ace4dfee 567 chip->cmd_ctrl(mtd, readcmd, ctrl);
7abd3ef9 568 ctrl &= ~NAND_CTRL_CHANGE;
1da177e4 569 }
ace4dfee 570 chip->cmd_ctrl(mtd, command, ctrl);
1da177e4 571
7abd3ef9
TG
572 /*
573 * Address cycle, when necessary
574 */
575 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
576 /* Serially input address */
577 if (column != -1) {
578 /* Adjust columns for 16 bit buswidth */
ace4dfee 579 if (chip->options & NAND_BUSWIDTH_16)
7abd3ef9 580 column >>= 1;
ace4dfee 581 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9
TG
582 ctrl &= ~NAND_CTRL_CHANGE;
583 }
584 if (page_addr != -1) {
ace4dfee 585 chip->cmd_ctrl(mtd, page_addr, ctrl);
7abd3ef9 586 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 587 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
7abd3ef9 588 /* One more address cycle for devices > 32MiB */
ace4dfee
TG
589 if (chip->chipsize > (32 << 20))
590 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
1da177e4 591 }
ace4dfee 592 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
593
594 /*
595 * program and erase have their own busy handlers
1da177e4 596 * status and sequential in needs no delay
e0c7d767 597 */
1da177e4 598 switch (command) {
61b03bd7 599
1da177e4
LT
600 case NAND_CMD_PAGEPROG:
601 case NAND_CMD_ERASE1:
602 case NAND_CMD_ERASE2:
603 case NAND_CMD_SEQIN:
604 case NAND_CMD_STATUS:
605 return;
606
607 case NAND_CMD_RESET:
ace4dfee 608 if (chip->dev_ready)
1da177e4 609 break;
ace4dfee
TG
610 udelay(chip->chip_delay);
611 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
7abd3ef9 612 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
12efdde3
TG
613 chip->cmd_ctrl(mtd,
614 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
ace4dfee 615 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
1da177e4
LT
616 return;
617
e0c7d767 618 /* This applies to read commands */
1da177e4 619 default:
61b03bd7 620 /*
1da177e4
LT
621 * If we don't have access to the busy pin, we apply the given
622 * command delay
e0c7d767 623 */
ace4dfee
TG
624 if (!chip->dev_ready) {
625 udelay(chip->chip_delay);
1da177e4 626 return;
61b03bd7 627 }
1da177e4 628 }
1da177e4
LT
629 /* Apply this short delay always to ensure that we do wait tWB in
630 * any case on any machine. */
e0c7d767 631 ndelay(100);
3b88775c
TG
632
633 nand_wait_ready(mtd);
1da177e4
LT
634}
635
636/**
637 * nand_command_lp - [DEFAULT] Send command to NAND large page device
638 * @mtd: MTD device structure
639 * @command: the command to be sent
640 * @column: the column address for this command, -1 if none
641 * @page_addr: the page address for this command, -1 if none
642 *
7abd3ef9
TG
643 * Send command to NAND device. This is the version for the new large page
644 * devices We dont have the separate regions as we have in the small page
645 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
1da177e4 646 */
7abd3ef9
TG
647static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
648 int column, int page_addr)
1da177e4 649{
ace4dfee 650 register struct nand_chip *chip = mtd->priv;
1da177e4
LT
651
652 /* Emulate NAND_CMD_READOOB */
653 if (command == NAND_CMD_READOOB) {
28318776 654 column += mtd->writesize;
1da177e4
LT
655 command = NAND_CMD_READ0;
656 }
61b03bd7 657
7abd3ef9 658 /* Command latch cycle */
ace4dfee 659 chip->cmd_ctrl(mtd, command & 0xff,
7abd3ef9 660 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
1da177e4
LT
661
662 if (column != -1 || page_addr != -1) {
7abd3ef9 663 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
1da177e4
LT
664
665 /* Serially input address */
666 if (column != -1) {
667 /* Adjust columns for 16 bit buswidth */
ace4dfee 668 if (chip->options & NAND_BUSWIDTH_16)
1da177e4 669 column >>= 1;
ace4dfee 670 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9 671 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 672 chip->cmd_ctrl(mtd, column >> 8, ctrl);
61b03bd7 673 }
1da177e4 674 if (page_addr != -1) {
ace4dfee
TG
675 chip->cmd_ctrl(mtd, page_addr, ctrl);
676 chip->cmd_ctrl(mtd, page_addr >> 8,
7abd3ef9 677 NAND_NCE | NAND_ALE);
1da177e4 678 /* One more address cycle for devices > 128MiB */
ace4dfee
TG
679 if (chip->chipsize > (128 << 20))
680 chip->cmd_ctrl(mtd, page_addr >> 16,
7abd3ef9 681 NAND_NCE | NAND_ALE);
1da177e4 682 }
1da177e4 683 }
ace4dfee 684 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
685
686 /*
687 * program and erase have their own busy handlers
30f464b7
DM
688 * status, sequential in, and deplete1 need no delay
689 */
1da177e4 690 switch (command) {
61b03bd7 691
1da177e4
LT
692 case NAND_CMD_CACHEDPROG:
693 case NAND_CMD_PAGEPROG:
694 case NAND_CMD_ERASE1:
695 case NAND_CMD_ERASE2:
696 case NAND_CMD_SEQIN:
7bc3312b 697 case NAND_CMD_RNDIN:
1da177e4 698 case NAND_CMD_STATUS:
30f464b7 699 case NAND_CMD_DEPLETE1:
1da177e4
LT
700 return;
701
e0c7d767
DW
702 /*
703 * read error status commands require only a short delay
704 */
30f464b7
DM
705 case NAND_CMD_STATUS_ERROR:
706 case NAND_CMD_STATUS_ERROR0:
707 case NAND_CMD_STATUS_ERROR1:
708 case NAND_CMD_STATUS_ERROR2:
709 case NAND_CMD_STATUS_ERROR3:
ace4dfee 710 udelay(chip->chip_delay);
30f464b7 711 return;
1da177e4
LT
712
713 case NAND_CMD_RESET:
ace4dfee 714 if (chip->dev_ready)
1da177e4 715 break;
ace4dfee 716 udelay(chip->chip_delay);
12efdde3
TG
717 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
718 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
719 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
720 NAND_NCE | NAND_CTRL_CHANGE);
ace4dfee 721 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
1da177e4
LT
722 return;
723
7bc3312b
TG
724 case NAND_CMD_RNDOUT:
725 /* No ready / busy check necessary */
726 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
727 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
728 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
729 NAND_NCE | NAND_CTRL_CHANGE);
730 return;
731
1da177e4 732 case NAND_CMD_READ0:
12efdde3
TG
733 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
734 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
735 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
736 NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7 737
e0c7d767 738 /* This applies to read commands */
1da177e4 739 default:
61b03bd7 740 /*
1da177e4
LT
741 * If we don't have access to the busy pin, we apply the given
742 * command delay
e0c7d767 743 */
ace4dfee
TG
744 if (!chip->dev_ready) {
745 udelay(chip->chip_delay);
1da177e4 746 return;
61b03bd7 747 }
1da177e4 748 }
3b88775c 749
1da177e4
LT
750 /* Apply this short delay always to ensure that we do wait tWB in
751 * any case on any machine. */
e0c7d767 752 ndelay(100);
3b88775c
TG
753
754 nand_wait_ready(mtd);
1da177e4
LT
755}
756
2af7c653
SK
757/**
758 * panic_nand_get_device - [GENERIC] Get chip for selected access
759 * @chip: the nand chip descriptor
760 * @mtd: MTD device structure
761 * @new_state: the state which is requested
762 *
763 * Used when in panic, no locks are taken.
764 */
765static void panic_nand_get_device(struct nand_chip *chip,
766 struct mtd_info *mtd, int new_state)
767{
768 /* Hardware controller shared among independend devices */
769 chip->controller->active = chip;
770 chip->state = new_state;
771}
772
1da177e4
LT
773/**
774 * nand_get_device - [GENERIC] Get chip for selected access
844d3b42 775 * @chip: the nand chip descriptor
1da177e4 776 * @mtd: MTD device structure
61b03bd7 777 * @new_state: the state which is requested
1da177e4
LT
778 *
779 * Get the device and lock it for exclusive access
780 */
2c0a2bed 781static int
ace4dfee 782nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
1da177e4 783{
ace4dfee
TG
784 spinlock_t *lock = &chip->controller->lock;
785 wait_queue_head_t *wq = &chip->controller->wq;
e0c7d767 786 DECLARE_WAITQUEUE(wait, current);
e0c7d767 787 retry:
0dfc6246
TG
788 spin_lock(lock);
789
b8b3ee9a 790 /* Hardware controller shared among independent devices */
ace4dfee
TG
791 if (!chip->controller->active)
792 chip->controller->active = chip;
a36ed299 793
ace4dfee
TG
794 if (chip->controller->active == chip && chip->state == FL_READY) {
795 chip->state = new_state;
0dfc6246 796 spin_unlock(lock);
962034f4
VW
797 return 0;
798 }
799 if (new_state == FL_PM_SUSPENDED) {
6b0d9a84
LY
800 if (chip->controller->active->state == FL_PM_SUSPENDED) {
801 chip->state = FL_PM_SUSPENDED;
802 spin_unlock(lock);
803 return 0;
6b0d9a84 804 }
0dfc6246
TG
805 }
806 set_current_state(TASK_UNINTERRUPTIBLE);
807 add_wait_queue(wq, &wait);
808 spin_unlock(lock);
809 schedule();
810 remove_wait_queue(wq, &wait);
1da177e4
LT
811 goto retry;
812}
813
2af7c653
SK
814/**
815 * panic_nand_wait - [GENERIC] wait until the command is done
816 * @mtd: MTD device structure
817 * @chip: NAND chip structure
818 * @timeo: Timeout
819 *
820 * Wait for command done. This is a helper function for nand_wait used when
821 * we are in interrupt context. May happen when in panic and trying to write
822 * an oops trough mtdoops.
823 */
824static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
825 unsigned long timeo)
826{
827 int i;
828 for (i = 0; i < timeo; i++) {
829 if (chip->dev_ready) {
830 if (chip->dev_ready(mtd))
831 break;
832 } else {
833 if (chip->read_byte(mtd) & NAND_STATUS_READY)
834 break;
835 }
836 mdelay(1);
837 }
838}
839
1da177e4
LT
840/**
841 * nand_wait - [DEFAULT] wait until the command is done
842 * @mtd: MTD device structure
844d3b42 843 * @chip: NAND chip structure
1da177e4
LT
844 *
845 * Wait for command done. This applies to erase and program only
61b03bd7 846 * Erase can take up to 400ms and program up to 20ms according to
1da177e4 847 * general NAND and SmartMedia specs
844d3b42 848 */
7bc3312b 849static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
1da177e4
LT
850{
851
e0c7d767 852 unsigned long timeo = jiffies;
7bc3312b 853 int status, state = chip->state;
61b03bd7 854
1da177e4 855 if (state == FL_ERASING)
e0c7d767 856 timeo += (HZ * 400) / 1000;
1da177e4 857 else
e0c7d767 858 timeo += (HZ * 20) / 1000;
1da177e4 859
8fe833c1
RP
860 led_trigger_event(nand_led_trigger, LED_FULL);
861
1da177e4
LT
862 /* Apply this short delay always to ensure that we do wait tWB in
863 * any case on any machine. */
e0c7d767 864 ndelay(100);
1da177e4 865
ace4dfee
TG
866 if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
867 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
61b03bd7 868 else
ace4dfee 869 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
1da177e4 870
2af7c653
SK
871 if (in_interrupt() || oops_in_progress)
872 panic_nand_wait(mtd, chip, timeo);
873 else {
874 while (time_before(jiffies, timeo)) {
875 if (chip->dev_ready) {
876 if (chip->dev_ready(mtd))
877 break;
878 } else {
879 if (chip->read_byte(mtd) & NAND_STATUS_READY)
880 break;
881 }
882 cond_resched();
1da177e4 883 }
1da177e4 884 }
8fe833c1
RP
885 led_trigger_event(nand_led_trigger, LED_OFF);
886
ace4dfee 887 status = (int)chip->read_byte(mtd);
1da177e4
LT
888 return status;
889}
890
7d70f334 891/**
b6d676db 892 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
7d70f334 893 *
b6d676db
RD
894 * @mtd: mtd info
895 * @ofs: offset to start unlock from
896 * @len: length to unlock
897 * @invert: when = 0, unlock the range of blocks within the lower and
7d70f334 898 * upper boundary address
b6d676db 899 * when = 1, unlock the range of blocks outside the boundaries
7d70f334
VS
900 * of the lower and upper boundary address
901 *
b6d676db 902 * return - unlock status
7d70f334
VS
903 */
904static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
905 uint64_t len, int invert)
906{
907 int ret = 0;
908 int status, page;
909 struct nand_chip *chip = mtd->priv;
910
911 /* Submit address of first page to unlock */
912 page = ofs >> chip->page_shift;
913 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
914
915 /* Submit address of last page to unlock */
916 page = (ofs + len) >> chip->page_shift;
917 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
918 (page | invert) & chip->pagemask);
919
920 /* Call wait ready function */
921 status = chip->waitfunc(mtd, chip);
922 udelay(1000);
923 /* See if device thinks it succeeded */
924 if (status & 0x01) {
925 DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
926 __func__, status);
927 ret = -EIO;
928 }
929
930 return ret;
931}
932
933/**
b6d676db 934 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
7d70f334 935 *
b6d676db
RD
936 * @mtd: mtd info
937 * @ofs: offset to start unlock from
938 * @len: length to unlock
7d70f334 939 *
b6d676db 940 * return - unlock status
7d70f334
VS
941 */
942int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
943{
944 int ret = 0;
945 int chipnr;
946 struct nand_chip *chip = mtd->priv;
947
948 DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
949 __func__, (unsigned long long)ofs, len);
950
951 if (check_offs_len(mtd, ofs, len))
952 ret = -EINVAL;
953
954 /* Align to last block address if size addresses end of the device */
955 if (ofs + len == mtd->size)
956 len -= mtd->erasesize;
957
958 nand_get_device(chip, mtd, FL_UNLOCKING);
959
960 /* Shift to get chip number */
961 chipnr = ofs >> chip->chip_shift;
962
963 chip->select_chip(mtd, chipnr);
964
965 /* Check, if it is write protected */
966 if (nand_check_wp(mtd)) {
967 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
968 __func__);
969 ret = -EIO;
970 goto out;
971 }
972
973 ret = __nand_unlock(mtd, ofs, len, 0);
974
975out:
976 /* de-select the NAND device */
977 chip->select_chip(mtd, -1);
978
979 nand_release_device(mtd);
980
981 return ret;
982}
983
984/**
b6d676db 985 * nand_lock - [REPLACEABLE] locks all blocks present in the device
7d70f334 986 *
b6d676db
RD
987 * @mtd: mtd info
988 * @ofs: offset to start unlock from
989 * @len: length to unlock
7d70f334 990 *
b6d676db 991 * return - lock status
7d70f334 992 *
b6d676db
RD
993 * This feature is not supported in many NAND parts. 'Micron' NAND parts
994 * do have this feature, but it allows only to lock all blocks, not for
7d70f334
VS
995 * specified range for block.
996 *
997 * Implementing 'lock' feature by making use of 'unlock', for now.
998 */
999int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1000{
1001 int ret = 0;
1002 int chipnr, status, page;
1003 struct nand_chip *chip = mtd->priv;
1004
1005 DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
1006 __func__, (unsigned long long)ofs, len);
1007
1008 if (check_offs_len(mtd, ofs, len))
1009 ret = -EINVAL;
1010
1011 nand_get_device(chip, mtd, FL_LOCKING);
1012
1013 /* Shift to get chip number */
1014 chipnr = ofs >> chip->chip_shift;
1015
1016 chip->select_chip(mtd, chipnr);
1017
1018 /* Check, if it is write protected */
1019 if (nand_check_wp(mtd)) {
1020 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
1021 __func__);
1022 status = MTD_ERASE_FAILED;
1023 ret = -EIO;
1024 goto out;
1025 }
1026
1027 /* Submit address of first page to lock */
1028 page = ofs >> chip->page_shift;
1029 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1030
1031 /* Call wait ready function */
1032 status = chip->waitfunc(mtd, chip);
1033 udelay(1000);
1034 /* See if device thinks it succeeded */
1035 if (status & 0x01) {
1036 DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
1037 __func__, status);
1038 ret = -EIO;
1039 goto out;
1040 }
1041
1042 ret = __nand_unlock(mtd, ofs, len, 0x1);
1043
1044out:
1045 /* de-select the NAND device */
1046 chip->select_chip(mtd, -1);
1047
1048 nand_release_device(mtd);
1049
1050 return ret;
1051}
1052
8593fbc6
TG
1053/**
1054 * nand_read_page_raw - [Intern] read raw page data without ecc
1055 * @mtd: mtd info structure
1056 * @chip: nand chip info structure
1057 * @buf: buffer to store read data
58475fb9 1058 * @page: page number to read
52ff49df
DB
1059 *
1060 * Not for syndrome calculating ecc controllers, which use a special oob layout
8593fbc6
TG
1061 */
1062static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
46a8cf2d 1063 uint8_t *buf, int page)
8593fbc6
TG
1064{
1065 chip->read_buf(mtd, buf, mtd->writesize);
1066 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1067 return 0;
1068}
1069
52ff49df
DB
1070/**
1071 * nand_read_page_raw_syndrome - [Intern] read raw page data without ecc
1072 * @mtd: mtd info structure
1073 * @chip: nand chip info structure
1074 * @buf: buffer to store read data
58475fb9 1075 * @page: page number to read
52ff49df
DB
1076 *
1077 * We need a special oob layout and handling even when OOB isn't used.
1078 */
1079static int nand_read_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
46a8cf2d 1080 uint8_t *buf, int page)
52ff49df
DB
1081{
1082 int eccsize = chip->ecc.size;
1083 int eccbytes = chip->ecc.bytes;
1084 uint8_t *oob = chip->oob_poi;
1085 int steps, size;
1086
1087 for (steps = chip->ecc.steps; steps > 0; steps--) {
1088 chip->read_buf(mtd, buf, eccsize);
1089 buf += eccsize;
1090
1091 if (chip->ecc.prepad) {
1092 chip->read_buf(mtd, oob, chip->ecc.prepad);
1093 oob += chip->ecc.prepad;
1094 }
1095
1096 chip->read_buf(mtd, oob, eccbytes);
1097 oob += eccbytes;
1098
1099 if (chip->ecc.postpad) {
1100 chip->read_buf(mtd, oob, chip->ecc.postpad);
1101 oob += chip->ecc.postpad;
1102 }
1103 }
1104
1105 size = mtd->oobsize - (oob - chip->oob_poi);
1106 if (size)
1107 chip->read_buf(mtd, oob, size);
1108
1109 return 0;
1110}
1111
1da177e4 1112/**
d29ebdbe 1113 * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
f5bbdacc
TG
1114 * @mtd: mtd info structure
1115 * @chip: nand chip info structure
1116 * @buf: buffer to store read data
58475fb9 1117 * @page: page number to read
068e3c0a 1118 */
f5bbdacc 1119static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
46a8cf2d 1120 uint8_t *buf, int page)
1da177e4 1121{
f5bbdacc
TG
1122 int i, eccsize = chip->ecc.size;
1123 int eccbytes = chip->ecc.bytes;
1124 int eccsteps = chip->ecc.steps;
1125 uint8_t *p = buf;
4bf63fcb
DW
1126 uint8_t *ecc_calc = chip->buffers->ecccalc;
1127 uint8_t *ecc_code = chip->buffers->ecccode;
8b099a39 1128 uint32_t *eccpos = chip->ecc.layout->eccpos;
f5bbdacc 1129
46a8cf2d 1130 chip->ecc.read_page_raw(mtd, chip, buf, page);
f5bbdacc
TG
1131
1132 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1133 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1134
1135 for (i = 0; i < chip->ecc.total; i++)
f75e5097 1136 ecc_code[i] = chip->oob_poi[eccpos[i]];
f5bbdacc
TG
1137
1138 eccsteps = chip->ecc.steps;
1139 p = buf;
1140
1141 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1142 int stat;
1143
1144 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
c32b8dcc 1145 if (stat < 0)
f5bbdacc
TG
1146 mtd->ecc_stats.failed++;
1147 else
1148 mtd->ecc_stats.corrected += stat;
1149 }
1150 return 0;
22c60f5f 1151}
1da177e4 1152
3d459559
AK
1153/**
1154 * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
1155 * @mtd: mtd info structure
1156 * @chip: nand chip info structure
17c1d2be
AK
1157 * @data_offs: offset of requested data within the page
1158 * @readlen: data length
1159 * @bufpoi: buffer to store read data
3d459559
AK
1160 */
1161static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
1162{
1163 int start_step, end_step, num_steps;
1164 uint32_t *eccpos = chip->ecc.layout->eccpos;
1165 uint8_t *p;
1166 int data_col_addr, i, gaps = 0;
1167 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1168 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1169
1170 /* Column address wihin the page aligned to ECC size (256bytes). */
1171 start_step = data_offs / chip->ecc.size;
1172 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1173 num_steps = end_step - start_step + 1;
1174
1175 /* Data size aligned to ECC ecc.size*/
1176 datafrag_len = num_steps * chip->ecc.size;
1177 eccfrag_len = num_steps * chip->ecc.bytes;
1178
1179 data_col_addr = start_step * chip->ecc.size;
1180 /* If we read not a page aligned data */
1181 if (data_col_addr != 0)
1182 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1183
1184 p = bufpoi + data_col_addr;
1185 chip->read_buf(mtd, p, datafrag_len);
1186
1187 /* Calculate ECC */
1188 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1189 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1190
1191 /* The performance is faster if to position offsets
1192 according to ecc.pos. Let make sure here that
1193 there are no gaps in ecc positions */
1194 for (i = 0; i < eccfrag_len - 1; i++) {
1195 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1196 eccpos[i + start_step * chip->ecc.bytes + 1]) {
1197 gaps = 1;
1198 break;
1199 }
1200 }
1201 if (gaps) {
1202 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1203 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1204 } else {
1205 /* send the command to read the particular ecc bytes */
1206 /* take care about buswidth alignment in read_buf */
1207 aligned_pos = eccpos[start_step * chip->ecc.bytes] & ~(busw - 1);
1208 aligned_len = eccfrag_len;
1209 if (eccpos[start_step * chip->ecc.bytes] & (busw - 1))
1210 aligned_len++;
1211 if (eccpos[(start_step + num_steps) * chip->ecc.bytes] & (busw - 1))
1212 aligned_len++;
1213
1214 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize + aligned_pos, -1);
1215 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1216 }
1217
1218 for (i = 0; i < eccfrag_len; i++)
1219 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + start_step * chip->ecc.bytes]];
1220
1221 p = bufpoi + data_col_addr;
1222 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1223 int stat;
1224
1225 stat = chip->ecc.correct(mtd, p, &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
12c8eb98 1226 if (stat < 0)
3d459559
AK
1227 mtd->ecc_stats.failed++;
1228 else
1229 mtd->ecc_stats.corrected += stat;
1230 }
1231 return 0;
1232}
1233
068e3c0a 1234/**
d29ebdbe 1235 * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
f5bbdacc
TG
1236 * @mtd: mtd info structure
1237 * @chip: nand chip info structure
1238 * @buf: buffer to store read data
58475fb9 1239 * @page: page number to read
068e3c0a 1240 *
f5bbdacc 1241 * Not for syndrome calculating ecc controllers which need a special oob layout
068e3c0a 1242 */
f5bbdacc 1243static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
46a8cf2d 1244 uint8_t *buf, int page)
1da177e4 1245{
f5bbdacc
TG
1246 int i, eccsize = chip->ecc.size;
1247 int eccbytes = chip->ecc.bytes;
1248 int eccsteps = chip->ecc.steps;
1249 uint8_t *p = buf;
4bf63fcb
DW
1250 uint8_t *ecc_calc = chip->buffers->ecccalc;
1251 uint8_t *ecc_code = chip->buffers->ecccode;
8b099a39 1252 uint32_t *eccpos = chip->ecc.layout->eccpos;
f5bbdacc
TG
1253
1254 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1255 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1256 chip->read_buf(mtd, p, eccsize);
1257 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1da177e4 1258 }
f75e5097 1259 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1da177e4 1260
f5bbdacc 1261 for (i = 0; i < chip->ecc.total; i++)
f75e5097 1262 ecc_code[i] = chip->oob_poi[eccpos[i]];
1da177e4 1263
f5bbdacc
TG
1264 eccsteps = chip->ecc.steps;
1265 p = buf;
61b03bd7 1266
f5bbdacc
TG
1267 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1268 int stat;
1da177e4 1269
f5bbdacc 1270 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
c32b8dcc 1271 if (stat < 0)
f5bbdacc
TG
1272 mtd->ecc_stats.failed++;
1273 else
1274 mtd->ecc_stats.corrected += stat;
1275 }
1276 return 0;
1277}
1da177e4 1278
6e0cb135
SN
1279/**
1280 * nand_read_page_hwecc_oob_first - [REPLACABLE] hw ecc, read oob first
1281 * @mtd: mtd info structure
1282 * @chip: nand chip info structure
1283 * @buf: buffer to store read data
58475fb9 1284 * @page: page number to read
6e0cb135
SN
1285 *
1286 * Hardware ECC for large page chips, require OOB to be read first.
1287 * For this ECC mode, the write_page method is re-used from ECC_HW.
1288 * These methods read/write ECC from the OOB area, unlike the
1289 * ECC_HW_SYNDROME support with multiple ECC steps, follows the
1290 * "infix ECC" scheme and reads/writes ECC from the data area, by
1291 * overwriting the NAND manufacturer bad block markings.
1292 */
1293static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1294 struct nand_chip *chip, uint8_t *buf, int page)
1295{
1296 int i, eccsize = chip->ecc.size;
1297 int eccbytes = chip->ecc.bytes;
1298 int eccsteps = chip->ecc.steps;
1299 uint8_t *p = buf;
1300 uint8_t *ecc_code = chip->buffers->ecccode;
1301 uint32_t *eccpos = chip->ecc.layout->eccpos;
1302 uint8_t *ecc_calc = chip->buffers->ecccalc;
1303
1304 /* Read the OOB area first */
1305 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1306 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1307 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1308
1309 for (i = 0; i < chip->ecc.total; i++)
1310 ecc_code[i] = chip->oob_poi[eccpos[i]];
1311
1312 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1313 int stat;
1314
1315 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1316 chip->read_buf(mtd, p, eccsize);
1317 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1318
1319 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1320 if (stat < 0)
1321 mtd->ecc_stats.failed++;
1322 else
1323 mtd->ecc_stats.corrected += stat;
1324 }
1325 return 0;
1326}
1327
f5bbdacc 1328/**
d29ebdbe 1329 * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
f5bbdacc
TG
1330 * @mtd: mtd info structure
1331 * @chip: nand chip info structure
1332 * @buf: buffer to store read data
58475fb9 1333 * @page: page number to read
f5bbdacc
TG
1334 *
1335 * The hw generator calculates the error syndrome automatically. Therefor
f75e5097 1336 * we need a special oob layout and handling.
f5bbdacc
TG
1337 */
1338static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
46a8cf2d 1339 uint8_t *buf, int page)
f5bbdacc
TG
1340{
1341 int i, eccsize = chip->ecc.size;
1342 int eccbytes = chip->ecc.bytes;
1343 int eccsteps = chip->ecc.steps;
1344 uint8_t *p = buf;
f75e5097 1345 uint8_t *oob = chip->oob_poi;
1da177e4 1346
f5bbdacc
TG
1347 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1348 int stat;
61b03bd7 1349
f5bbdacc
TG
1350 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1351 chip->read_buf(mtd, p, eccsize);
1da177e4 1352
f5bbdacc
TG
1353 if (chip->ecc.prepad) {
1354 chip->read_buf(mtd, oob, chip->ecc.prepad);
1355 oob += chip->ecc.prepad;
1356 }
1da177e4 1357
f5bbdacc
TG
1358 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1359 chip->read_buf(mtd, oob, eccbytes);
1360 stat = chip->ecc.correct(mtd, p, oob, NULL);
61b03bd7 1361
c32b8dcc 1362 if (stat < 0)
f5bbdacc 1363 mtd->ecc_stats.failed++;
61b03bd7 1364 else
f5bbdacc 1365 mtd->ecc_stats.corrected += stat;
61b03bd7 1366
f5bbdacc 1367 oob += eccbytes;
1da177e4 1368
f5bbdacc
TG
1369 if (chip->ecc.postpad) {
1370 chip->read_buf(mtd, oob, chip->ecc.postpad);
1371 oob += chip->ecc.postpad;
61b03bd7 1372 }
f5bbdacc 1373 }
1da177e4 1374
f5bbdacc 1375 /* Calculate remaining oob bytes */
7e4178f9 1376 i = mtd->oobsize - (oob - chip->oob_poi);
f5bbdacc
TG
1377 if (i)
1378 chip->read_buf(mtd, oob, i);
61b03bd7 1379
f5bbdacc
TG
1380 return 0;
1381}
1da177e4 1382
f5bbdacc 1383/**
8593fbc6
TG
1384 * nand_transfer_oob - [Internal] Transfer oob to client buffer
1385 * @chip: nand chip structure
844d3b42 1386 * @oob: oob destination address
8593fbc6 1387 * @ops: oob ops structure
7014568b 1388 * @len: size of oob to transfer
8593fbc6
TG
1389 */
1390static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
7014568b 1391 struct mtd_oob_ops *ops, size_t len)
8593fbc6 1392{
8593fbc6
TG
1393 switch(ops->mode) {
1394
1395 case MTD_OOB_PLACE:
1396 case MTD_OOB_RAW:
1397 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1398 return oob + len;
1399
1400 case MTD_OOB_AUTO: {
1401 struct nand_oobfree *free = chip->ecc.layout->oobfree;
7bc3312b
TG
1402 uint32_t boffs = 0, roffs = ops->ooboffs;
1403 size_t bytes = 0;
8593fbc6
TG
1404
1405 for(; free->length && len; free++, len -= bytes) {
7bc3312b
TG
1406 /* Read request not from offset 0 ? */
1407 if (unlikely(roffs)) {
1408 if (roffs >= free->length) {
1409 roffs -= free->length;
1410 continue;
1411 }
1412 boffs = free->offset + roffs;
1413 bytes = min_t(size_t, len,
1414 (free->length - roffs));
1415 roffs = 0;
1416 } else {
1417 bytes = min_t(size_t, len, free->length);
1418 boffs = free->offset;
1419 }
1420 memcpy(oob, chip->oob_poi + boffs, bytes);
8593fbc6
TG
1421 oob += bytes;
1422 }
1423 return oob;
1424 }
1425 default:
1426 BUG();
1427 }
1428 return NULL;
1429}
1430
1431/**
1432 * nand_do_read_ops - [Internal] Read data with ECC
f5bbdacc
TG
1433 *
1434 * @mtd: MTD device structure
1435 * @from: offset to read from
844d3b42 1436 * @ops: oob ops structure
f5bbdacc
TG
1437 *
1438 * Internal function. Called with chip held.
1439 */
8593fbc6
TG
1440static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1441 struct mtd_oob_ops *ops)
f5bbdacc
TG
1442{
1443 int chipnr, page, realpage, col, bytes, aligned;
1444 struct nand_chip *chip = mtd->priv;
1445 struct mtd_ecc_stats stats;
1446 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1447 int sndcmd = 1;
1448 int ret = 0;
8593fbc6 1449 uint32_t readlen = ops->len;
7014568b 1450 uint32_t oobreadlen = ops->ooblen;
9aca334e
ML
1451 uint32_t max_oobsize = ops->mode == MTD_OOB_AUTO ?
1452 mtd->oobavail : mtd->oobsize;
1453
8593fbc6 1454 uint8_t *bufpoi, *oob, *buf;
1da177e4 1455
f5bbdacc 1456 stats = mtd->ecc_stats;
1da177e4 1457
f5bbdacc
TG
1458 chipnr = (int)(from >> chip->chip_shift);
1459 chip->select_chip(mtd, chipnr);
61b03bd7 1460
f5bbdacc
TG
1461 realpage = (int)(from >> chip->page_shift);
1462 page = realpage & chip->pagemask;
1da177e4 1463
f5bbdacc 1464 col = (int)(from & (mtd->writesize - 1));
61b03bd7 1465
8593fbc6
TG
1466 buf = ops->datbuf;
1467 oob = ops->oobbuf;
1468
f5bbdacc
TG
1469 while(1) {
1470 bytes = min(mtd->writesize - col, readlen);
1471 aligned = (bytes == mtd->writesize);
61b03bd7 1472
f5bbdacc 1473 /* Is the current page in the buffer ? */
8593fbc6 1474 if (realpage != chip->pagebuf || oob) {
4bf63fcb 1475 bufpoi = aligned ? buf : chip->buffers->databuf;
61b03bd7 1476
f5bbdacc
TG
1477 if (likely(sndcmd)) {
1478 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1479 sndcmd = 0;
1da177e4 1480 }
1da177e4 1481
f5bbdacc 1482 /* Now read the page into the buffer */
956e944c 1483 if (unlikely(ops->mode == MTD_OOB_RAW))
46a8cf2d
SN
1484 ret = chip->ecc.read_page_raw(mtd, chip,
1485 bufpoi, page);
3d459559
AK
1486 else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
1487 ret = chip->ecc.read_subpage(mtd, chip, col, bytes, bufpoi);
956e944c 1488 else
46a8cf2d
SN
1489 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1490 page);
f5bbdacc 1491 if (ret < 0)
1da177e4 1492 break;
f5bbdacc
TG
1493
1494 /* Transfer not aligned data */
1495 if (!aligned) {
3d459559
AK
1496 if (!NAND_SUBPAGE_READ(chip) && !oob)
1497 chip->pagebuf = realpage;
4bf63fcb 1498 memcpy(buf, chip->buffers->databuf + col, bytes);
f5bbdacc
TG
1499 }
1500
8593fbc6
TG
1501 buf += bytes;
1502
1503 if (unlikely(oob)) {
9aca334e 1504
b64d39d8
ML
1505 int toread = min(oobreadlen, max_oobsize);
1506
1507 if (toread) {
1508 oob = nand_transfer_oob(chip,
1509 oob, ops, toread);
1510 oobreadlen -= toread;
1511 }
8593fbc6
TG
1512 }
1513
f5bbdacc
TG
1514 if (!(chip->options & NAND_NO_READRDY)) {
1515 /*
1516 * Apply delay or wait for ready/busy pin. Do
1517 * this before the AUTOINCR check, so no
1518 * problems arise if a chip which does auto
1519 * increment is marked as NOAUTOINCR by the
1520 * board driver.
1521 */
1522 if (!chip->dev_ready)
1523 udelay(chip->chip_delay);
1524 else
1525 nand_wait_ready(mtd);
1da177e4 1526 }
8593fbc6 1527 } else {
4bf63fcb 1528 memcpy(buf, chip->buffers->databuf + col, bytes);
8593fbc6
TG
1529 buf += bytes;
1530 }
1da177e4 1531
f5bbdacc 1532 readlen -= bytes;
61b03bd7 1533
f5bbdacc 1534 if (!readlen)
61b03bd7 1535 break;
1da177e4
LT
1536
1537 /* For subsequent reads align to page boundary. */
1538 col = 0;
1539 /* Increment page address */
1540 realpage++;
1541
ace4dfee 1542 page = realpage & chip->pagemask;
1da177e4
LT
1543 /* Check, if we cross a chip boundary */
1544 if (!page) {
1545 chipnr++;
ace4dfee
TG
1546 chip->select_chip(mtd, -1);
1547 chip->select_chip(mtd, chipnr);
1da177e4 1548 }
f5bbdacc 1549
61b03bd7
TG
1550 /* Check, if the chip supports auto page increment
1551 * or if we have hit a block boundary.
e0c7d767 1552 */
f5bbdacc 1553 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
61b03bd7 1554 sndcmd = 1;
1da177e4
LT
1555 }
1556
8593fbc6 1557 ops->retlen = ops->len - (size_t) readlen;
7014568b
VW
1558 if (oob)
1559 ops->oobretlen = ops->ooblen - oobreadlen;
1da177e4 1560
f5bbdacc
TG
1561 if (ret)
1562 return ret;
1563
9a1fcdfd
TG
1564 if (mtd->ecc_stats.failed - stats.failed)
1565 return -EBADMSG;
1566
1567 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
f5bbdacc
TG
1568}
1569
1570/**
1571 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1572 * @mtd: MTD device structure
1573 * @from: offset to read from
1574 * @len: number of bytes to read
1575 * @retlen: pointer to variable to store the number of read bytes
1576 * @buf: the databuffer to put data
1577 *
1578 * Get hold of the chip and call nand_do_read
1579 */
1580static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1581 size_t *retlen, uint8_t *buf)
1582{
8593fbc6 1583 struct nand_chip *chip = mtd->priv;
f5bbdacc
TG
1584 int ret;
1585
f5bbdacc
TG
1586 /* Do not allow reads past end of device */
1587 if ((from + len) > mtd->size)
1588 return -EINVAL;
1589 if (!len)
1590 return 0;
1591
8593fbc6 1592 nand_get_device(chip, mtd, FL_READING);
f5bbdacc 1593
8593fbc6
TG
1594 chip->ops.len = len;
1595 chip->ops.datbuf = buf;
1596 chip->ops.oobbuf = NULL;
1597
1598 ret = nand_do_read_ops(mtd, from, &chip->ops);
f5bbdacc 1599
7fd5aecc
RP
1600 *retlen = chip->ops.retlen;
1601
f5bbdacc
TG
1602 nand_release_device(mtd);
1603
1604 return ret;
1da177e4
LT
1605}
1606
7bc3312b
TG
1607/**
1608 * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1609 * @mtd: mtd info structure
1610 * @chip: nand chip info structure
1611 * @page: page number to read
1612 * @sndcmd: flag whether to issue read command or not
1613 */
1614static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1615 int page, int sndcmd)
1616{
1617 if (sndcmd) {
1618 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1619 sndcmd = 0;
1620 }
1621 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1622 return sndcmd;
1623}
1624
1625/**
1626 * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1627 * with syndromes
1628 * @mtd: mtd info structure
1629 * @chip: nand chip info structure
1630 * @page: page number to read
1631 * @sndcmd: flag whether to issue read command or not
1632 */
1633static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1634 int page, int sndcmd)
1635{
1636 uint8_t *buf = chip->oob_poi;
1637 int length = mtd->oobsize;
1638 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1639 int eccsize = chip->ecc.size;
1640 uint8_t *bufpoi = buf;
1641 int i, toread, sndrnd = 0, pos;
1642
1643 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1644 for (i = 0; i < chip->ecc.steps; i++) {
1645 if (sndrnd) {
1646 pos = eccsize + i * (eccsize + chunk);
1647 if (mtd->writesize > 512)
1648 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1649 else
1650 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1651 } else
1652 sndrnd = 1;
1653 toread = min_t(int, length, chunk);
1654 chip->read_buf(mtd, bufpoi, toread);
1655 bufpoi += toread;
1656 length -= toread;
1657 }
1658 if (length > 0)
1659 chip->read_buf(mtd, bufpoi, length);
1660
1661 return 1;
1662}
1663
1664/**
1665 * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1666 * @mtd: mtd info structure
1667 * @chip: nand chip info structure
1668 * @page: page number to write
1669 */
1670static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1671 int page)
1672{
1673 int status = 0;
1674 const uint8_t *buf = chip->oob_poi;
1675 int length = mtd->oobsize;
1676
1677 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1678 chip->write_buf(mtd, buf, length);
1679 /* Send command to program the OOB data */
1680 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1681
1682 status = chip->waitfunc(mtd, chip);
1683
0d420f9d 1684 return status & NAND_STATUS_FAIL ? -EIO : 0;
7bc3312b
TG
1685}
1686
1687/**
1688 * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1689 * with syndrome - only for large page flash !
1690 * @mtd: mtd info structure
1691 * @chip: nand chip info structure
1692 * @page: page number to write
1693 */
1694static int nand_write_oob_syndrome(struct mtd_info *mtd,
1695 struct nand_chip *chip, int page)
1696{
1697 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1698 int eccsize = chip->ecc.size, length = mtd->oobsize;
1699 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1700 const uint8_t *bufpoi = chip->oob_poi;
1701
1702 /*
1703 * data-ecc-data-ecc ... ecc-oob
1704 * or
1705 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1706 */
1707 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1708 pos = steps * (eccsize + chunk);
1709 steps = 0;
1710 } else
8b0036ee 1711 pos = eccsize;
7bc3312b
TG
1712
1713 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1714 for (i = 0; i < steps; i++) {
1715 if (sndcmd) {
1716 if (mtd->writesize <= 512) {
1717 uint32_t fill = 0xFFFFFFFF;
1718
1719 len = eccsize;
1720 while (len > 0) {
1721 int num = min_t(int, len, 4);
1722 chip->write_buf(mtd, (uint8_t *)&fill,
1723 num);
1724 len -= num;
1725 }
1726 } else {
1727 pos = eccsize + i * (eccsize + chunk);
1728 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1729 }
1730 } else
1731 sndcmd = 1;
1732 len = min_t(int, length, chunk);
1733 chip->write_buf(mtd, bufpoi, len);
1734 bufpoi += len;
1735 length -= len;
1736 }
1737 if (length > 0)
1738 chip->write_buf(mtd, bufpoi, length);
1739
1740 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1741 status = chip->waitfunc(mtd, chip);
1742
1743 return status & NAND_STATUS_FAIL ? -EIO : 0;
1744}
1745
1da177e4 1746/**
8593fbc6 1747 * nand_do_read_oob - [Intern] NAND read out-of-band
1da177e4
LT
1748 * @mtd: MTD device structure
1749 * @from: offset to read from
8593fbc6 1750 * @ops: oob operations description structure
1da177e4
LT
1751 *
1752 * NAND read out-of-band data from the spare area
1753 */
8593fbc6
TG
1754static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1755 struct mtd_oob_ops *ops)
1da177e4 1756{
7bc3312b 1757 int page, realpage, chipnr, sndcmd = 1;
ace4dfee 1758 struct nand_chip *chip = mtd->priv;
7314e9e7 1759 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
7014568b
VW
1760 int readlen = ops->ooblen;
1761 int len;
7bc3312b 1762 uint8_t *buf = ops->oobbuf;
61b03bd7 1763
20d8e248 1764 DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08Lx, len = %i\n",
1765 __func__, (unsigned long long)from, readlen);
1da177e4 1766
03736155 1767 if (ops->mode == MTD_OOB_AUTO)
7014568b 1768 len = chip->ecc.layout->oobavail;
03736155
AH
1769 else
1770 len = mtd->oobsize;
1771
1772 if (unlikely(ops->ooboffs >= len)) {
20d8e248 1773 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start read "
1774 "outside oob\n", __func__);
03736155
AH
1775 return -EINVAL;
1776 }
1777
1778 /* Do not allow reads past end of device */
1779 if (unlikely(from >= mtd->size ||
1780 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1781 (from >> chip->page_shift)) * len)) {
20d8e248 1782 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read beyond end "
1783 "of device\n", __func__);
03736155
AH
1784 return -EINVAL;
1785 }
7014568b 1786
7314e9e7 1787 chipnr = (int)(from >> chip->chip_shift);
ace4dfee 1788 chip->select_chip(mtd, chipnr);
1da177e4 1789
7314e9e7
TG
1790 /* Shift to get page */
1791 realpage = (int)(from >> chip->page_shift);
1792 page = realpage & chip->pagemask;
1da177e4 1793
7314e9e7 1794 while(1) {
7bc3312b 1795 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
7014568b
VW
1796
1797 len = min(len, readlen);
1798 buf = nand_transfer_oob(chip, buf, ops, len);
8593fbc6 1799
7314e9e7
TG
1800 if (!(chip->options & NAND_NO_READRDY)) {
1801 /*
1802 * Apply delay or wait for ready/busy pin. Do this
1803 * before the AUTOINCR check, so no problems arise if a
1804 * chip which does auto increment is marked as
1805 * NOAUTOINCR by the board driver.
19870da7 1806 */
ace4dfee
TG
1807 if (!chip->dev_ready)
1808 udelay(chip->chip_delay);
19870da7
TG
1809 else
1810 nand_wait_ready(mtd);
7314e9e7 1811 }
19870da7 1812
7014568b 1813 readlen -= len;
0d420f9d
SZ
1814 if (!readlen)
1815 break;
1816
7314e9e7
TG
1817 /* Increment page address */
1818 realpage++;
1819
1820 page = realpage & chip->pagemask;
1821 /* Check, if we cross a chip boundary */
1822 if (!page) {
1823 chipnr++;
1824 chip->select_chip(mtd, -1);
1825 chip->select_chip(mtd, chipnr);
1da177e4 1826 }
7314e9e7
TG
1827
1828 /* Check, if the chip supports auto page increment
1829 * or if we have hit a block boundary.
1830 */
1831 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1832 sndcmd = 1;
1da177e4
LT
1833 }
1834
7014568b 1835 ops->oobretlen = ops->ooblen;
1da177e4
LT
1836 return 0;
1837}
1838
1839/**
8593fbc6 1840 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1da177e4 1841 * @mtd: MTD device structure
1da177e4 1842 * @from: offset to read from
8593fbc6 1843 * @ops: oob operation description structure
1da177e4 1844 *
8593fbc6 1845 * NAND read data and/or out-of-band data
1da177e4 1846 */
8593fbc6
TG
1847static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1848 struct mtd_oob_ops *ops)
1da177e4 1849{
ace4dfee 1850 struct nand_chip *chip = mtd->priv;
8593fbc6
TG
1851 int ret = -ENOTSUPP;
1852
1853 ops->retlen = 0;
1da177e4
LT
1854
1855 /* Do not allow reads past end of device */
7014568b 1856 if (ops->datbuf && (from + ops->len) > mtd->size) {
20d8e248 1857 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read "
1858 "beyond end of device\n", __func__);
1da177e4
LT
1859 return -EINVAL;
1860 }
1861
ace4dfee 1862 nand_get_device(chip, mtd, FL_READING);
1da177e4 1863
8593fbc6
TG
1864 switch(ops->mode) {
1865 case MTD_OOB_PLACE:
1866 case MTD_OOB_AUTO:
8593fbc6 1867 case MTD_OOB_RAW:
8593fbc6 1868 break;
1da177e4 1869
8593fbc6
TG
1870 default:
1871 goto out;
1872 }
1da177e4 1873
8593fbc6
TG
1874 if (!ops->datbuf)
1875 ret = nand_do_read_oob(mtd, from, ops);
1876 else
1877 ret = nand_do_read_ops(mtd, from, ops);
61b03bd7 1878
8593fbc6
TG
1879 out:
1880 nand_release_device(mtd);
1881 return ret;
1882}
61b03bd7 1883
1da177e4 1884
8593fbc6
TG
1885/**
1886 * nand_write_page_raw - [Intern] raw page write function
1887 * @mtd: mtd info structure
1888 * @chip: nand chip info structure
1889 * @buf: data buffer
52ff49df
DB
1890 *
1891 * Not for syndrome calculating ecc controllers, which use a special oob layout
8593fbc6
TG
1892 */
1893static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1894 const uint8_t *buf)
1895{
1896 chip->write_buf(mtd, buf, mtd->writesize);
1897 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1da177e4
LT
1898}
1899
52ff49df
DB
1900/**
1901 * nand_write_page_raw_syndrome - [Intern] raw page write function
1902 * @mtd: mtd info structure
1903 * @chip: nand chip info structure
1904 * @buf: data buffer
1905 *
1906 * We need a special oob layout and handling even when ECC isn't checked.
1907 */
1908static void nand_write_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1909 const uint8_t *buf)
1910{
1911 int eccsize = chip->ecc.size;
1912 int eccbytes = chip->ecc.bytes;
1913 uint8_t *oob = chip->oob_poi;
1914 int steps, size;
1915
1916 for (steps = chip->ecc.steps; steps > 0; steps--) {
1917 chip->write_buf(mtd, buf, eccsize);
1918 buf += eccsize;
1919
1920 if (chip->ecc.prepad) {
1921 chip->write_buf(mtd, oob, chip->ecc.prepad);
1922 oob += chip->ecc.prepad;
1923 }
1924
1925 chip->read_buf(mtd, oob, eccbytes);
1926 oob += eccbytes;
1927
1928 if (chip->ecc.postpad) {
1929 chip->write_buf(mtd, oob, chip->ecc.postpad);
1930 oob += chip->ecc.postpad;
1931 }
1932 }
1933
1934 size = mtd->oobsize - (oob - chip->oob_poi);
1935 if (size)
1936 chip->write_buf(mtd, oob, size);
1937}
9223a456 1938/**
d29ebdbe 1939 * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
f75e5097
TG
1940 * @mtd: mtd info structure
1941 * @chip: nand chip info structure
1942 * @buf: data buffer
9223a456 1943 */
f75e5097
TG
1944static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1945 const uint8_t *buf)
9223a456 1946{
f75e5097
TG
1947 int i, eccsize = chip->ecc.size;
1948 int eccbytes = chip->ecc.bytes;
1949 int eccsteps = chip->ecc.steps;
4bf63fcb 1950 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 1951 const uint8_t *p = buf;
8b099a39 1952 uint32_t *eccpos = chip->ecc.layout->eccpos;
9223a456 1953
8593fbc6
TG
1954 /* Software ecc calculation */
1955 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1956 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456 1957
8593fbc6
TG
1958 for (i = 0; i < chip->ecc.total; i++)
1959 chip->oob_poi[eccpos[i]] = ecc_calc[i];
9223a456 1960
90424de8 1961 chip->ecc.write_page_raw(mtd, chip, buf);
f75e5097 1962}
9223a456 1963
f75e5097 1964/**
d29ebdbe 1965 * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
f75e5097
TG
1966 * @mtd: mtd info structure
1967 * @chip: nand chip info structure
1968 * @buf: data buffer
1969 */
1970static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1971 const uint8_t *buf)
1972{
1973 int i, eccsize = chip->ecc.size;
1974 int eccbytes = chip->ecc.bytes;
1975 int eccsteps = chip->ecc.steps;
4bf63fcb 1976 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 1977 const uint8_t *p = buf;
8b099a39 1978 uint32_t *eccpos = chip->ecc.layout->eccpos;
9223a456 1979
f75e5097
TG
1980 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1981 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
29da9cea 1982 chip->write_buf(mtd, p, eccsize);
f75e5097 1983 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456
TG
1984 }
1985
f75e5097
TG
1986 for (i = 0; i < chip->ecc.total; i++)
1987 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1988
1989 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
9223a456
TG
1990}
1991
61b03bd7 1992/**
d29ebdbe 1993 * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
f75e5097
TG
1994 * @mtd: mtd info structure
1995 * @chip: nand chip info structure
1996 * @buf: data buffer
1da177e4 1997 *
f75e5097
TG
1998 * The hw generator calculates the error syndrome automatically. Therefor
1999 * we need a special oob layout and handling.
2000 */
2001static void nand_write_page_syndrome(struct mtd_info *mtd,
2002 struct nand_chip *chip, const uint8_t *buf)
1da177e4 2003{
f75e5097
TG
2004 int i, eccsize = chip->ecc.size;
2005 int eccbytes = chip->ecc.bytes;
2006 int eccsteps = chip->ecc.steps;
2007 const uint8_t *p = buf;
2008 uint8_t *oob = chip->oob_poi;
1da177e4 2009
f75e5097 2010 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1da177e4 2011
f75e5097
TG
2012 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2013 chip->write_buf(mtd, p, eccsize);
61b03bd7 2014
f75e5097
TG
2015 if (chip->ecc.prepad) {
2016 chip->write_buf(mtd, oob, chip->ecc.prepad);
2017 oob += chip->ecc.prepad;
2018 }
2019
2020 chip->ecc.calculate(mtd, p, oob);
2021 chip->write_buf(mtd, oob, eccbytes);
2022 oob += eccbytes;
2023
2024 if (chip->ecc.postpad) {
2025 chip->write_buf(mtd, oob, chip->ecc.postpad);
2026 oob += chip->ecc.postpad;
1da177e4 2027 }
1da177e4 2028 }
f75e5097
TG
2029
2030 /* Calculate remaining oob bytes */
7e4178f9 2031 i = mtd->oobsize - (oob - chip->oob_poi);
f75e5097
TG
2032 if (i)
2033 chip->write_buf(mtd, oob, i);
2034}
2035
2036/**
956e944c 2037 * nand_write_page - [REPLACEABLE] write one page
f75e5097
TG
2038 * @mtd: MTD device structure
2039 * @chip: NAND chip descriptor
2040 * @buf: the data to write
2041 * @page: page number to write
2042 * @cached: cached programming
efbfe96c 2043 * @raw: use _raw version of write_page
f75e5097
TG
2044 */
2045static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
956e944c 2046 const uint8_t *buf, int page, int cached, int raw)
f75e5097
TG
2047{
2048 int status;
2049
2050 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2051
956e944c
DW
2052 if (unlikely(raw))
2053 chip->ecc.write_page_raw(mtd, chip, buf);
2054 else
2055 chip->ecc.write_page(mtd, chip, buf);
f75e5097
TG
2056
2057 /*
2058 * Cached progamming disabled for now, Not sure if its worth the
2059 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
2060 */
2061 cached = 0;
2062
2063 if (!cached || !(chip->options & NAND_CACHEPRG)) {
2064
2065 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
7bc3312b 2066 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2067 /*
2068 * See if operation failed and additional status checks are
2069 * available
2070 */
2071 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2072 status = chip->errstat(mtd, chip, FL_WRITING, status,
2073 page);
2074
2075 if (status & NAND_STATUS_FAIL)
2076 return -EIO;
2077 } else {
2078 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
7bc3312b 2079 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2080 }
2081
2082#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
2083 /* Send command to read back the data */
2084 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
2085
2086 if (chip->verify_buf(mtd, buf, mtd->writesize))
2087 return -EIO;
2088#endif
2089 return 0;
1da177e4
LT
2090}
2091
8593fbc6
TG
2092/**
2093 * nand_fill_oob - [Internal] Transfer client buffer to oob
2094 * @chip: nand chip structure
2095 * @oob: oob data buffer
b6d676db 2096 * @len: oob data write length
8593fbc6
TG
2097 * @ops: oob ops structure
2098 */
782ce79a
ML
2099static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
2100 struct mtd_oob_ops *ops)
8593fbc6 2101{
8593fbc6
TG
2102 switch(ops->mode) {
2103
2104 case MTD_OOB_PLACE:
2105 case MTD_OOB_RAW:
2106 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2107 return oob + len;
2108
2109 case MTD_OOB_AUTO: {
2110 struct nand_oobfree *free = chip->ecc.layout->oobfree;
7bc3312b
TG
2111 uint32_t boffs = 0, woffs = ops->ooboffs;
2112 size_t bytes = 0;
8593fbc6
TG
2113
2114 for(; free->length && len; free++, len -= bytes) {
7bc3312b
TG
2115 /* Write request not from offset 0 ? */
2116 if (unlikely(woffs)) {
2117 if (woffs >= free->length) {
2118 woffs -= free->length;
2119 continue;
2120 }
2121 boffs = free->offset + woffs;
2122 bytes = min_t(size_t, len,
2123 (free->length - woffs));
2124 woffs = 0;
2125 } else {
2126 bytes = min_t(size_t, len, free->length);
2127 boffs = free->offset;
2128 }
8b0036ee 2129 memcpy(chip->oob_poi + boffs, oob, bytes);
8593fbc6
TG
2130 oob += bytes;
2131 }
2132 return oob;
2133 }
2134 default:
2135 BUG();
2136 }
2137 return NULL;
2138}
2139
29072b96 2140#define NOTALIGNED(x) (x & (chip->subpagesize - 1)) != 0
1da177e4
LT
2141
2142/**
8593fbc6 2143 * nand_do_write_ops - [Internal] NAND write with ECC
1da177e4
LT
2144 * @mtd: MTD device structure
2145 * @to: offset to write to
8593fbc6 2146 * @ops: oob operations description structure
1da177e4
LT
2147 *
2148 * NAND write with ECC
2149 */
8593fbc6
TG
2150static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2151 struct mtd_oob_ops *ops)
1da177e4 2152{
29072b96 2153 int chipnr, realpage, page, blockmask, column;
ace4dfee 2154 struct nand_chip *chip = mtd->priv;
8593fbc6 2155 uint32_t writelen = ops->len;
782ce79a
ML
2156
2157 uint32_t oobwritelen = ops->ooblen;
2158 uint32_t oobmaxlen = ops->mode == MTD_OOB_AUTO ?
2159 mtd->oobavail : mtd->oobsize;
2160
8593fbc6
TG
2161 uint8_t *oob = ops->oobbuf;
2162 uint8_t *buf = ops->datbuf;
29072b96 2163 int ret, subpage;
1da177e4 2164
8593fbc6 2165 ops->retlen = 0;
29072b96
TG
2166 if (!writelen)
2167 return 0;
1da177e4 2168
61b03bd7 2169 /* reject writes, which are not page aligned */
8593fbc6 2170 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
20d8e248 2171 printk(KERN_NOTICE "%s: Attempt to write not "
2172 "page aligned data\n", __func__);
1da177e4
LT
2173 return -EINVAL;
2174 }
2175
29072b96
TG
2176 column = to & (mtd->writesize - 1);
2177 subpage = column || (writelen & (mtd->writesize - 1));
2178
2179 if (subpage && oob)
2180 return -EINVAL;
1da177e4 2181
6a930961
TG
2182 chipnr = (int)(to >> chip->chip_shift);
2183 chip->select_chip(mtd, chipnr);
2184
1da177e4
LT
2185 /* Check, if it is write protected */
2186 if (nand_check_wp(mtd))
8593fbc6 2187 return -EIO;
1da177e4 2188
f75e5097
TG
2189 realpage = (int)(to >> chip->page_shift);
2190 page = realpage & chip->pagemask;
2191 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2192
2193 /* Invalidate the page cache, when we write to the cached page */
2194 if (to <= (chip->pagebuf << chip->page_shift) &&
8593fbc6 2195 (chip->pagebuf << chip->page_shift) < (to + ops->len))
ace4dfee 2196 chip->pagebuf = -1;
61b03bd7 2197
7dcdcbef
DW
2198 /* If we're not given explicit OOB data, let it be 0xFF */
2199 if (likely(!oob))
2200 memset(chip->oob_poi, 0xff, mtd->oobsize);
61b03bd7 2201
782ce79a
ML
2202 /* Don't allow multipage oob writes with offset */
2203 if (ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen))
2204 return -EINVAL;
2205
f75e5097 2206 while(1) {
29072b96 2207 int bytes = mtd->writesize;
f75e5097 2208 int cached = writelen > bytes && page != blockmask;
29072b96
TG
2209 uint8_t *wbuf = buf;
2210
2211 /* Partial page write ? */
2212 if (unlikely(column || writelen < (mtd->writesize - 1))) {
2213 cached = 0;
2214 bytes = min_t(int, bytes - column, (int) writelen);
2215 chip->pagebuf = -1;
2216 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2217 memcpy(&chip->buffers->databuf[column], buf, bytes);
2218 wbuf = chip->buffers->databuf;
2219 }
1da177e4 2220
782ce79a
ML
2221 if (unlikely(oob)) {
2222 size_t len = min(oobwritelen, oobmaxlen);
2223 oob = nand_fill_oob(chip, oob, len, ops);
2224 oobwritelen -= len;
2225 }
8593fbc6 2226
29072b96 2227 ret = chip->write_page(mtd, chip, wbuf, page, cached,
956e944c 2228 (ops->mode == MTD_OOB_RAW));
f75e5097
TG
2229 if (ret)
2230 break;
2231
2232 writelen -= bytes;
2233 if (!writelen)
2234 break;
2235
29072b96 2236 column = 0;
f75e5097
TG
2237 buf += bytes;
2238 realpage++;
2239
2240 page = realpage & chip->pagemask;
2241 /* Check, if we cross a chip boundary */
2242 if (!page) {
2243 chipnr++;
2244 chip->select_chip(mtd, -1);
2245 chip->select_chip(mtd, chipnr);
1da177e4
LT
2246 }
2247 }
8593fbc6 2248
8593fbc6 2249 ops->retlen = ops->len - writelen;
7014568b
VW
2250 if (unlikely(oob))
2251 ops->oobretlen = ops->ooblen;
1da177e4
LT
2252 return ret;
2253}
2254
2af7c653
SK
2255/**
2256 * panic_nand_write - [MTD Interface] NAND write with ECC
2257 * @mtd: MTD device structure
2258 * @to: offset to write to
2259 * @len: number of bytes to write
2260 * @retlen: pointer to variable to store the number of written bytes
2261 * @buf: the data to write
2262 *
2263 * NAND write with ECC. Used when performing writes in interrupt context, this
2264 * may for example be called by mtdoops when writing an oops while in panic.
2265 */
2266static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2267 size_t *retlen, const uint8_t *buf)
2268{
2269 struct nand_chip *chip = mtd->priv;
2270 int ret;
2271
2272 /* Do not allow reads past end of device */
2273 if ((to + len) > mtd->size)
2274 return -EINVAL;
2275 if (!len)
2276 return 0;
2277
2278 /* Wait for the device to get ready. */
2279 panic_nand_wait(mtd, chip, 400);
2280
2281 /* Grab the device. */
2282 panic_nand_get_device(chip, mtd, FL_WRITING);
2283
2284 chip->ops.len = len;
2285 chip->ops.datbuf = (uint8_t *)buf;
2286 chip->ops.oobbuf = NULL;
2287
2288 ret = nand_do_write_ops(mtd, to, &chip->ops);
2289
2290 *retlen = chip->ops.retlen;
2291 return ret;
2292}
2293
f75e5097 2294/**
8593fbc6 2295 * nand_write - [MTD Interface] NAND write with ECC
f75e5097 2296 * @mtd: MTD device structure
f75e5097
TG
2297 * @to: offset to write to
2298 * @len: number of bytes to write
8593fbc6
TG
2299 * @retlen: pointer to variable to store the number of written bytes
2300 * @buf: the data to write
f75e5097 2301 *
8593fbc6 2302 * NAND write with ECC
f75e5097 2303 */
8593fbc6
TG
2304static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2305 size_t *retlen, const uint8_t *buf)
f75e5097
TG
2306{
2307 struct nand_chip *chip = mtd->priv;
f75e5097
TG
2308 int ret;
2309
8593fbc6
TG
2310 /* Do not allow reads past end of device */
2311 if ((to + len) > mtd->size)
f75e5097 2312 return -EINVAL;
8593fbc6
TG
2313 if (!len)
2314 return 0;
f75e5097 2315
7bc3312b 2316 nand_get_device(chip, mtd, FL_WRITING);
f75e5097 2317
8593fbc6
TG
2318 chip->ops.len = len;
2319 chip->ops.datbuf = (uint8_t *)buf;
2320 chip->ops.oobbuf = NULL;
f75e5097 2321
8593fbc6 2322 ret = nand_do_write_ops(mtd, to, &chip->ops);
f75e5097 2323
7fd5aecc
RP
2324 *retlen = chip->ops.retlen;
2325
f75e5097 2326 nand_release_device(mtd);
8593fbc6 2327
8593fbc6 2328 return ret;
f75e5097 2329}
7314e9e7 2330
1da177e4 2331/**
8593fbc6 2332 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
1da177e4
LT
2333 * @mtd: MTD device structure
2334 * @to: offset to write to
8593fbc6 2335 * @ops: oob operation description structure
1da177e4
LT
2336 *
2337 * NAND write out-of-band
2338 */
8593fbc6
TG
2339static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2340 struct mtd_oob_ops *ops)
1da177e4 2341{
03736155 2342 int chipnr, page, status, len;
ace4dfee 2343 struct nand_chip *chip = mtd->priv;
1da177e4 2344
20d8e248 2345 DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
2346 __func__, (unsigned int)to, (int)ops->ooblen);
1da177e4 2347
03736155
AH
2348 if (ops->mode == MTD_OOB_AUTO)
2349 len = chip->ecc.layout->oobavail;
2350 else
2351 len = mtd->oobsize;
2352
1da177e4 2353 /* Do not allow write past end of page */
03736155 2354 if ((ops->ooboffs + ops->ooblen) > len) {
20d8e248 2355 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to write "
2356 "past end of page\n", __func__);
1da177e4
LT
2357 return -EINVAL;
2358 }
2359
03736155 2360 if (unlikely(ops->ooboffs >= len)) {
20d8e248 2361 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start "
2362 "write outside oob\n", __func__);
03736155
AH
2363 return -EINVAL;
2364 }
2365
2366 /* Do not allow reads past end of device */
2367 if (unlikely(to >= mtd->size ||
2368 ops->ooboffs + ops->ooblen >
2369 ((mtd->size >> chip->page_shift) -
2370 (to >> chip->page_shift)) * len)) {
20d8e248 2371 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2372 "end of device\n", __func__);
03736155
AH
2373 return -EINVAL;
2374 }
2375
7314e9e7 2376 chipnr = (int)(to >> chip->chip_shift);
ace4dfee 2377 chip->select_chip(mtd, chipnr);
1da177e4 2378
7314e9e7
TG
2379 /* Shift to get page */
2380 page = (int)(to >> chip->page_shift);
2381
2382 /*
2383 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2384 * of my DiskOnChip 2000 test units) will clear the whole data page too
2385 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2386 * it in the doc2000 driver in August 1999. dwmw2.
2387 */
ace4dfee 2388 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4
LT
2389
2390 /* Check, if it is write protected */
2391 if (nand_check_wp(mtd))
8593fbc6 2392 return -EROFS;
61b03bd7 2393
1da177e4 2394 /* Invalidate the page cache, if we write to the cached page */
ace4dfee
TG
2395 if (page == chip->pagebuf)
2396 chip->pagebuf = -1;
1da177e4 2397
7bc3312b 2398 memset(chip->oob_poi, 0xff, mtd->oobsize);
782ce79a 2399 nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
7bc3312b
TG
2400 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2401 memset(chip->oob_poi, 0xff, mtd->oobsize);
1da177e4 2402
7bc3312b
TG
2403 if (status)
2404 return status;
1da177e4 2405
7014568b 2406 ops->oobretlen = ops->ooblen;
1da177e4 2407
7bc3312b 2408 return 0;
8593fbc6
TG
2409}
2410
2411/**
2412 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2413 * @mtd: MTD device structure
844d3b42 2414 * @to: offset to write to
8593fbc6
TG
2415 * @ops: oob operation description structure
2416 */
2417static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2418 struct mtd_oob_ops *ops)
2419{
8593fbc6
TG
2420 struct nand_chip *chip = mtd->priv;
2421 int ret = -ENOTSUPP;
2422
2423 ops->retlen = 0;
2424
2425 /* Do not allow writes past end of device */
7014568b 2426 if (ops->datbuf && (to + ops->len) > mtd->size) {
20d8e248 2427 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2428 "end of device\n", __func__);
8593fbc6
TG
2429 return -EINVAL;
2430 }
2431
7bc3312b 2432 nand_get_device(chip, mtd, FL_WRITING);
8593fbc6
TG
2433
2434 switch(ops->mode) {
2435 case MTD_OOB_PLACE:
2436 case MTD_OOB_AUTO:
8593fbc6 2437 case MTD_OOB_RAW:
8593fbc6
TG
2438 break;
2439
2440 default:
2441 goto out;
2442 }
2443
2444 if (!ops->datbuf)
2445 ret = nand_do_write_oob(mtd, to, ops);
2446 else
2447 ret = nand_do_write_ops(mtd, to, ops);
2448
e0c7d767 2449 out:
1da177e4 2450 nand_release_device(mtd);
1da177e4
LT
2451 return ret;
2452}
2453
1da177e4
LT
2454/**
2455 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2456 * @mtd: MTD device structure
2457 * @page: the page address of the block which will be erased
2458 *
2459 * Standard erase command for NAND chips
2460 */
e0c7d767 2461static void single_erase_cmd(struct mtd_info *mtd, int page)
1da177e4 2462{
ace4dfee 2463 struct nand_chip *chip = mtd->priv;
1da177e4 2464 /* Send commands to erase a block */
ace4dfee
TG
2465 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2466 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1da177e4
LT
2467}
2468
2469/**
2470 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2471 * @mtd: MTD device structure
2472 * @page: the page address of the block which will be erased
2473 *
2474 * AND multi block erase command function
2475 * Erase 4 consecutive blocks
2476 */
e0c7d767 2477static void multi_erase_cmd(struct mtd_info *mtd, int page)
1da177e4 2478{
ace4dfee 2479 struct nand_chip *chip = mtd->priv;
1da177e4 2480 /* Send commands to erase a block */
ace4dfee
TG
2481 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2482 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2483 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2484 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2485 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1da177e4
LT
2486}
2487
2488/**
2489 * nand_erase - [MTD Interface] erase block(s)
2490 * @mtd: MTD device structure
2491 * @instr: erase instruction
2492 *
2493 * Erase one ore more blocks
2494 */
e0c7d767 2495static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1da177e4 2496{
e0c7d767 2497 return nand_erase_nand(mtd, instr, 0);
1da177e4 2498}
61b03bd7 2499
30f464b7 2500#define BBT_PAGE_MASK 0xffffff3f
1da177e4 2501/**
ace4dfee 2502 * nand_erase_nand - [Internal] erase block(s)
1da177e4
LT
2503 * @mtd: MTD device structure
2504 * @instr: erase instruction
2505 * @allowbbt: allow erasing the bbt area
2506 *
2507 * Erase one ore more blocks
2508 */
ace4dfee
TG
2509int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2510 int allowbbt)
1da177e4 2511{
69423d99 2512 int page, status, pages_per_block, ret, chipnr;
ace4dfee 2513 struct nand_chip *chip = mtd->priv;
69423d99 2514 loff_t rewrite_bbt[NAND_MAX_CHIPS]={0};
ace4dfee 2515 unsigned int bbt_masked_page = 0xffffffff;
69423d99 2516 loff_t len;
1da177e4 2517
20d8e248 2518 DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
2519 __func__, (unsigned long long)instr->addr,
2520 (unsigned long long)instr->len);
1da177e4 2521
6fe5a6ac 2522 if (check_offs_len(mtd, instr->addr, instr->len))
1da177e4 2523 return -EINVAL;
1da177e4 2524
bb0eb217 2525 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1da177e4
LT
2526
2527 /* Grab the lock and see if the device is available */
ace4dfee 2528 nand_get_device(chip, mtd, FL_ERASING);
1da177e4
LT
2529
2530 /* Shift to get first page */
ace4dfee
TG
2531 page = (int)(instr->addr >> chip->page_shift);
2532 chipnr = (int)(instr->addr >> chip->chip_shift);
1da177e4
LT
2533
2534 /* Calculate pages in each block */
ace4dfee 2535 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1da177e4
LT
2536
2537 /* Select the NAND device */
ace4dfee 2538 chip->select_chip(mtd, chipnr);
1da177e4 2539
1da177e4
LT
2540 /* Check, if it is write protected */
2541 if (nand_check_wp(mtd)) {
20d8e248 2542 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
2543 __func__);
1da177e4
LT
2544 instr->state = MTD_ERASE_FAILED;
2545 goto erase_exit;
2546 }
2547
ace4dfee
TG
2548 /*
2549 * If BBT requires refresh, set the BBT page mask to see if the BBT
2550 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2551 * can not be matched. This is also done when the bbt is actually
2552 * erased to avoid recusrsive updates
2553 */
2554 if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2555 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
30f464b7 2556
1da177e4
LT
2557 /* Loop through the pages */
2558 len = instr->len;
2559
2560 instr->state = MTD_ERASING;
2561
2562 while (len) {
ace4dfee
TG
2563 /*
2564 * heck if we have a bad block, we do not erase bad blocks !
2565 */
2566 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2567 chip->page_shift, 0, allowbbt)) {
20d8e248 2568 printk(KERN_WARNING "%s: attempt to erase a bad block "
2569 "at page 0x%08x\n", __func__, page);
1da177e4
LT
2570 instr->state = MTD_ERASE_FAILED;
2571 goto erase_exit;
2572 }
61b03bd7 2573
ace4dfee
TG
2574 /*
2575 * Invalidate the page cache, if we erase the block which
2576 * contains the current cached page
2577 */
2578 if (page <= chip->pagebuf && chip->pagebuf <
2579 (page + pages_per_block))
2580 chip->pagebuf = -1;
1da177e4 2581
ace4dfee 2582 chip->erase_cmd(mtd, page & chip->pagemask);
61b03bd7 2583
7bc3312b 2584 status = chip->waitfunc(mtd, chip);
1da177e4 2585
ace4dfee
TG
2586 /*
2587 * See if operation failed and additional status checks are
2588 * available
2589 */
2590 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2591 status = chip->errstat(mtd, chip, FL_ERASING,
2592 status, page);
068e3c0a 2593
1da177e4 2594 /* See if block erase succeeded */
a4ab4c5d 2595 if (status & NAND_STATUS_FAIL) {
20d8e248 2596 DEBUG(MTD_DEBUG_LEVEL0, "%s: Failed erase, "
2597 "page 0x%08x\n", __func__, page);
1da177e4 2598 instr->state = MTD_ERASE_FAILED;
69423d99
AH
2599 instr->fail_addr =
2600 ((loff_t)page << chip->page_shift);
1da177e4
LT
2601 goto erase_exit;
2602 }
30f464b7 2603
ace4dfee
TG
2604 /*
2605 * If BBT requires refresh, set the BBT rewrite flag to the
2606 * page being erased
2607 */
2608 if (bbt_masked_page != 0xffffffff &&
2609 (page & BBT_PAGE_MASK) == bbt_masked_page)
69423d99
AH
2610 rewrite_bbt[chipnr] =
2611 ((loff_t)page << chip->page_shift);
61b03bd7 2612
1da177e4 2613 /* Increment page address and decrement length */
ace4dfee 2614 len -= (1 << chip->phys_erase_shift);
1da177e4
LT
2615 page += pages_per_block;
2616
2617 /* Check, if we cross a chip boundary */
ace4dfee 2618 if (len && !(page & chip->pagemask)) {
1da177e4 2619 chipnr++;
ace4dfee
TG
2620 chip->select_chip(mtd, -1);
2621 chip->select_chip(mtd, chipnr);
30f464b7 2622
ace4dfee
TG
2623 /*
2624 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2625 * page mask to see if this BBT should be rewritten
2626 */
2627 if (bbt_masked_page != 0xffffffff &&
2628 (chip->bbt_td->options & NAND_BBT_PERCHIP))
2629 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2630 BBT_PAGE_MASK;
1da177e4
LT
2631 }
2632 }
2633 instr->state = MTD_ERASE_DONE;
2634
e0c7d767 2635 erase_exit:
1da177e4
LT
2636
2637 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1da177e4
LT
2638
2639 /* Deselect and wake up anyone waiting on the device */
2640 nand_release_device(mtd);
2641
49defc01
DW
2642 /* Do call back function */
2643 if (!ret)
2644 mtd_erase_callback(instr);
2645
ace4dfee
TG
2646 /*
2647 * If BBT requires refresh and erase was successful, rewrite any
2648 * selected bad block tables
2649 */
2650 if (bbt_masked_page == 0xffffffff || ret)
2651 return ret;
2652
2653 for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2654 if (!rewrite_bbt[chipnr])
2655 continue;
2656 /* update the BBT for chip */
20d8e248 2657 DEBUG(MTD_DEBUG_LEVEL0, "%s: nand_update_bbt "
2658 "(%d:0x%0llx 0x%0x)\n", __func__, chipnr,
2659 rewrite_bbt[chipnr], chip->bbt_td->pages[chipnr]);
ace4dfee 2660 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
30f464b7
DM
2661 }
2662
1da177e4
LT
2663 /* Return more or less happy */
2664 return ret;
2665}
2666
2667/**
2668 * nand_sync - [MTD Interface] sync
2669 * @mtd: MTD device structure
2670 *
2671 * Sync is actually a wait for chip ready function
2672 */
e0c7d767 2673static void nand_sync(struct mtd_info *mtd)
1da177e4 2674{
ace4dfee 2675 struct nand_chip *chip = mtd->priv;
1da177e4 2676
20d8e248 2677 DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__);
1da177e4
LT
2678
2679 /* Grab the lock and see if the device is available */
ace4dfee 2680 nand_get_device(chip, mtd, FL_SYNCING);
1da177e4 2681 /* Release it and go back */
e0c7d767 2682 nand_release_device(mtd);
1da177e4
LT
2683}
2684
1da177e4 2685/**
ace4dfee 2686 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
1da177e4 2687 * @mtd: MTD device structure
844d3b42 2688 * @offs: offset relative to mtd start
1da177e4 2689 */
ace4dfee 2690static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
1da177e4
LT
2691{
2692 /* Check for invalid offset */
ace4dfee 2693 if (offs > mtd->size)
1da177e4 2694 return -EINVAL;
61b03bd7 2695
ace4dfee 2696 return nand_block_checkbad(mtd, offs, 1, 0);
1da177e4
LT
2697}
2698
2699/**
ace4dfee 2700 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
1da177e4
LT
2701 * @mtd: MTD device structure
2702 * @ofs: offset relative to mtd start
2703 */
e0c7d767 2704static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1da177e4 2705{
ace4dfee 2706 struct nand_chip *chip = mtd->priv;
1da177e4
LT
2707 int ret;
2708
e0c7d767
DW
2709 if ((ret = nand_block_isbad(mtd, ofs))) {
2710 /* If it was bad already, return success and do nothing. */
1da177e4
LT
2711 if (ret > 0)
2712 return 0;
e0c7d767
DW
2713 return ret;
2714 }
1da177e4 2715
ace4dfee 2716 return chip->block_markbad(mtd, ofs);
1da177e4
LT
2717}
2718
962034f4
VW
2719/**
2720 * nand_suspend - [MTD Interface] Suspend the NAND flash
2721 * @mtd: MTD device structure
2722 */
2723static int nand_suspend(struct mtd_info *mtd)
2724{
ace4dfee 2725 struct nand_chip *chip = mtd->priv;
962034f4 2726
ace4dfee 2727 return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
962034f4
VW
2728}
2729
2730/**
2731 * nand_resume - [MTD Interface] Resume the NAND flash
2732 * @mtd: MTD device structure
2733 */
2734static void nand_resume(struct mtd_info *mtd)
2735{
ace4dfee 2736 struct nand_chip *chip = mtd->priv;
962034f4 2737
ace4dfee 2738 if (chip->state == FL_PM_SUSPENDED)
962034f4
VW
2739 nand_release_device(mtd);
2740 else
20d8e248 2741 printk(KERN_ERR "%s called for a chip which is not "
2742 "in suspended state\n", __func__);
962034f4
VW
2743}
2744
7aa65bfd
TG
2745/*
2746 * Set default functions
2747 */
ace4dfee 2748static void nand_set_defaults(struct nand_chip *chip, int busw)
7aa65bfd 2749{
1da177e4 2750 /* check for proper chip_delay setup, set 20us if not */
ace4dfee
TG
2751 if (!chip->chip_delay)
2752 chip->chip_delay = 20;
1da177e4
LT
2753
2754 /* check, if a user supplied command function given */
ace4dfee
TG
2755 if (chip->cmdfunc == NULL)
2756 chip->cmdfunc = nand_command;
1da177e4
LT
2757
2758 /* check, if a user supplied wait function given */
ace4dfee
TG
2759 if (chip->waitfunc == NULL)
2760 chip->waitfunc = nand_wait;
2761
2762 if (!chip->select_chip)
2763 chip->select_chip = nand_select_chip;
2764 if (!chip->read_byte)
2765 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2766 if (!chip->read_word)
2767 chip->read_word = nand_read_word;
2768 if (!chip->block_bad)
2769 chip->block_bad = nand_block_bad;
2770 if (!chip->block_markbad)
2771 chip->block_markbad = nand_default_block_markbad;
2772 if (!chip->write_buf)
2773 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2774 if (!chip->read_buf)
2775 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2776 if (!chip->verify_buf)
2777 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2778 if (!chip->scan_bbt)
2779 chip->scan_bbt = nand_default_bbt;
f75e5097
TG
2780
2781 if (!chip->controller) {
2782 chip->controller = &chip->hwcontrol;
2783 spin_lock_init(&chip->controller->lock);
2784 init_waitqueue_head(&chip->controller->wq);
2785 }
2786
7aa65bfd
TG
2787}
2788
d1e1f4e4
FF
2789/*
2790 * sanitize ONFI strings so we can safely print them
2791 */
2792static void sanitize_string(uint8_t *s, size_t len)
2793{
2794 ssize_t i;
2795
2796 /* null terminate */
2797 s[len - 1] = 0;
2798
2799 /* remove non printable chars */
2800 for (i = 0; i < len - 1; i++) {
2801 if (s[i] < ' ' || s[i] > 127)
2802 s[i] = '?';
2803 }
2804
2805 /* remove trailing spaces */
2806 strim(s);
2807}
2808
2809static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2810{
2811 int i;
2812 while (len--) {
2813 crc ^= *p++ << 8;
2814 for (i = 0; i < 8; i++)
2815 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2816 }
2817
2818 return crc;
2819}
2820
6fb277ba
FF
2821/*
2822 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise
2823 */
2824static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
2825 int busw)
2826{
2827 struct nand_onfi_params *p = &chip->onfi_params;
2828 int i;
2829 int val;
2830
2831 /* try ONFI for unknow chip or LP */
2832 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
2833 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
2834 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
2835 return 0;
2836
2837 printk(KERN_INFO "ONFI flash detected\n");
2838 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2839 for (i = 0; i < 3; i++) {
2840 chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
2841 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
2842 le16_to_cpu(p->crc)) {
2843 printk(KERN_INFO "ONFI param page %d valid\n", i);
2844 break;
2845 }
2846 }
2847
2848 if (i == 3)
2849 return 0;
2850
2851 /* check version */
2852 val = le16_to_cpu(p->revision);
2853 if (val == 1 || val > (1 << 4)) {
2854 printk(KERN_INFO "%s: unsupported ONFI version: %d\n",
2855 __func__, val);
2856 return 0;
2857 }
2858
2859 if (val & (1 << 4))
2860 chip->onfi_version = 22;
2861 else if (val & (1 << 3))
2862 chip->onfi_version = 21;
2863 else if (val & (1 << 2))
2864 chip->onfi_version = 20;
2865 else
2866 chip->onfi_version = 10;
2867
2868 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
2869 sanitize_string(p->model, sizeof(p->model));
2870 if (!mtd->name)
2871 mtd->name = p->model;
2872 mtd->writesize = le32_to_cpu(p->byte_per_page);
2873 mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
2874 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
2875 chip->chipsize = le32_to_cpu(p->blocks_per_lun) * mtd->erasesize;
2876 busw = 0;
2877 if (le16_to_cpu(p->features) & 1)
2878 busw = NAND_BUSWIDTH_16;
2879
2880 chip->options &= ~NAND_CHIPOPTIONS_MSK;
2881 chip->options |= (NAND_NO_READRDY |
2882 NAND_NO_AUTOINCR) & NAND_CHIPOPTIONS_MSK;
2883
2884 return 1;
2885}
2886
7aa65bfd 2887/*
ace4dfee 2888 * Get the flash and manufacturer id and lookup if the type is supported
7aa65bfd
TG
2889 */
2890static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
ace4dfee 2891 struct nand_chip *chip,
d1e1f4e4 2892 int busw, int *maf_id, int *dev_id,
5e81e88a 2893 struct nand_flash_dev *type)
7aa65bfd 2894{
d1e1f4e4 2895 int i, maf_idx;
426c457a 2896 u8 id_data[8];
6fb277ba 2897 int ret;
1da177e4
LT
2898
2899 /* Select the device */
ace4dfee 2900 chip->select_chip(mtd, 0);
1da177e4 2901
ef89a880
KB
2902 /*
2903 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2904 * after power-up
2905 */
2906 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2907
1da177e4 2908 /* Send the command for reading device ID */
ace4dfee 2909 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4
LT
2910
2911 /* Read manufacturer and device IDs */
ace4dfee 2912 *maf_id = chip->read_byte(mtd);
d1e1f4e4 2913 *dev_id = chip->read_byte(mtd);
1da177e4 2914
ed8165c7
BD
2915 /* Try again to make sure, as some systems the bus-hold or other
2916 * interface concerns can cause random data which looks like a
2917 * possibly credible NAND flash to appear. If the two results do
2918 * not match, ignore the device completely.
2919 */
2920
2921 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2922
d1e1f4e4 2923 for (i = 0; i < 2; i++)
426c457a 2924 id_data[i] = chip->read_byte(mtd);
ed8165c7 2925
d1e1f4e4 2926 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
ed8165c7
BD
2927 printk(KERN_INFO "%s: second ID read did not match "
2928 "%02x,%02x against %02x,%02x\n", __func__,
d1e1f4e4 2929 *maf_id, *dev_id, id_data[0], id_data[1]);
ed8165c7
BD
2930 return ERR_PTR(-ENODEV);
2931 }
2932
7aa65bfd 2933 if (!type)
5e81e88a
DW
2934 type = nand_flash_ids;
2935
2936 for (; type->name != NULL; type++)
d1e1f4e4 2937 if (*dev_id == type->id)
5e81e88a
DW
2938 break;
2939
d1e1f4e4
FF
2940 chip->onfi_version = 0;
2941 if (!type->name || !type->pagesize) {
6fb277ba
FF
2942 /* Check is chip is ONFI compliant */
2943 ret = nand_flash_detect_onfi(mtd, chip, busw);
2944 if (ret)
2945 goto ident_done;
d1e1f4e4
FF
2946 }
2947
2948 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2949
2950 /* Read entire ID string */
2951
2952 for (i = 0; i < 8; i++)
2953 id_data[i] = chip->read_byte(mtd);
2954
5e81e88a 2955 if (!type->name)
7aa65bfd
TG
2956 return ERR_PTR(-ENODEV);
2957
ba0251fe
TG
2958 if (!mtd->name)
2959 mtd->name = type->name;
2960
69423d99 2961 chip->chipsize = (uint64_t)type->chipsize << 20;
7aa65bfd
TG
2962
2963 /* Newer devices have all the information in additional id bytes */
ba0251fe 2964 if (!type->pagesize) {
7aa65bfd 2965 int extid;
29072b96 2966 /* The 3rd id byte holds MLC / multichip data */
426c457a 2967 chip->cellinfo = id_data[2];
7aa65bfd 2968 /* The 4th id byte is the important one */
426c457a 2969 extid = id_data[3];
61b03bd7 2970
426c457a
KC
2971 /*
2972 * Field definitions are in the following datasheets:
2973 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
34c5bf6c 2974 * New style (6 byte ID): Samsung K9GBG08U0M (p.40)
426c457a
KC
2975 *
2976 * Check for wraparound + Samsung ID + nonzero 6th byte
2977 * to decide what to do.
2978 */
2979 if (id_data[0] == id_data[6] && id_data[1] == id_data[7] &&
2980 id_data[0] == NAND_MFR_SAMSUNG &&
cfe3fdad 2981 (chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
426c457a
KC
2982 id_data[5] != 0x00) {
2983 /* Calc pagesize */
2984 mtd->writesize = 2048 << (extid & 0x03);
2985 extid >>= 2;
2986 /* Calc oobsize */
34c5bf6c
BN
2987 switch (extid & 0x03) {
2988 case 1:
2989 mtd->oobsize = 128;
2990 break;
2991 case 2:
2992 mtd->oobsize = 218;
2993 break;
2994 case 3:
2995 mtd->oobsize = 400;
2996 break;
2997 default:
2998 mtd->oobsize = 436;
2999 break;
3000 }
426c457a
KC
3001 extid >>= 2;
3002 /* Calc blocksize */
3003 mtd->erasesize = (128 * 1024) <<
3004 (((extid >> 1) & 0x04) | (extid & 0x03));
3005 busw = 0;
3006 } else {
3007 /* Calc pagesize */
3008 mtd->writesize = 1024 << (extid & 0x03);
3009 extid >>= 2;
3010 /* Calc oobsize */
3011 mtd->oobsize = (8 << (extid & 0x01)) *
3012 (mtd->writesize >> 9);
3013 extid >>= 2;
3014 /* Calc blocksize. Blocksize is multiples of 64KiB */
3015 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3016 extid >>= 2;
3017 /* Get buswidth information */
3018 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3019 }
7aa65bfd
TG
3020 } else {
3021 /*
ace4dfee 3022 * Old devices have chip data hardcoded in the device id table
7aa65bfd 3023 */
ba0251fe
TG
3024 mtd->erasesize = type->erasesize;
3025 mtd->writesize = type->pagesize;
4cbb9b80 3026 mtd->oobsize = mtd->writesize / 32;
ba0251fe 3027 busw = type->options & NAND_BUSWIDTH_16;
2173bae8
BN
3028
3029 /*
3030 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3031 * some Spansion chips have erasesize that conflicts with size
3032 * listed in nand_ids table
3033 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3034 */
3035 if (*maf_id == NAND_MFR_AMD && id_data[4] != 0x00 &&
3036 id_data[5] == 0x00 && id_data[6] == 0x00 &&
3037 id_data[7] == 0x00 && mtd->writesize == 512) {
3038 mtd->erasesize = 128 * 1024;
3039 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3040 }
7aa65bfd 3041 }
d1e1f4e4
FF
3042 /* Get chip options, preserve non chip based options */
3043 chip->options &= ~NAND_CHIPOPTIONS_MSK;
3044 chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
3045
3046 /* Check if chip is a not a samsung device. Do not clear the
3047 * options for chips which are not having an extended id.
3048 */
3049 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3050 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3051ident_done:
3052
3053 /*
3054 * Set chip as a default. Board drivers can override it, if necessary
3055 */
3056 chip->options |= NAND_NO_AUTOINCR;
1da177e4 3057
7aa65bfd 3058 /* Try to identify manufacturer */
9a909867 3059 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
7aa65bfd
TG
3060 if (nand_manuf_ids[maf_idx].id == *maf_id)
3061 break;
3062 }
0ea4a755 3063
7aa65bfd
TG
3064 /*
3065 * Check, if buswidth is correct. Hardware drivers should set
ace4dfee 3066 * chip correct !
7aa65bfd 3067 */
ace4dfee 3068 if (busw != (chip->options & NAND_BUSWIDTH_16)) {
7aa65bfd
TG
3069 printk(KERN_INFO "NAND device: Manufacturer ID:"
3070 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
d1e1f4e4 3071 *dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
7aa65bfd 3072 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
ace4dfee 3073 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
7aa65bfd
TG
3074 busw ? 16 : 8);
3075 return ERR_PTR(-EINVAL);
3076 }
61b03bd7 3077
7aa65bfd 3078 /* Calculate the address shift from the page size */
ace4dfee 3079 chip->page_shift = ffs(mtd->writesize) - 1;
7aa65bfd 3080 /* Convert chipsize to number of pages per chip -1. */
ace4dfee 3081 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
61b03bd7 3082
ace4dfee 3083 chip->bbt_erase_shift = chip->phys_erase_shift =
7aa65bfd 3084 ffs(mtd->erasesize) - 1;
69423d99
AH
3085 if (chip->chipsize & 0xffffffff)
3086 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3087 else
3088 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32)) + 32 - 1;
1da177e4 3089
7aa65bfd 3090 /* Set the bad block position */
065a1ed8 3091 if (mtd->writesize > 512 || (busw & NAND_BUSWIDTH_16))
c7b28e25 3092 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
065a1ed8
BN
3093 else
3094 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
61b03bd7 3095
b60b08b0
KC
3096 /*
3097 * Bad block marker is stored in the last page of each block
c7b28e25
BN
3098 * on Samsung and Hynix MLC devices; stored in first two pages
3099 * of each block on Micron devices with 2KiB pages and on
13ed7aed
BN
3100 * SLC Samsung, Hynix, Toshiba and AMD/Spansion. All others scan
3101 * only the first page.
b60b08b0
KC
3102 */
3103 if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3104 (*maf_id == NAND_MFR_SAMSUNG ||
3105 *maf_id == NAND_MFR_HYNIX))
30fe8115 3106 chip->options |= NAND_BBT_SCANLASTPAGE;
c7b28e25
BN
3107 else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3108 (*maf_id == NAND_MFR_SAMSUNG ||
3109 *maf_id == NAND_MFR_HYNIX ||
13ed7aed 3110 *maf_id == NAND_MFR_TOSHIBA ||
c7b28e25
BN
3111 *maf_id == NAND_MFR_AMD)) ||
3112 (mtd->writesize == 2048 &&
3113 *maf_id == NAND_MFR_MICRON))
3114 chip->options |= NAND_BBT_SCAN2NDPAGE;
3115
58373ff0
BN
3116 /*
3117 * Numonyx/ST 2K pages, x8 bus use BOTH byte 1 and 6
3118 */
3119 if (!(busw & NAND_BUSWIDTH_16) &&
3120 *maf_id == NAND_MFR_STMICRO &&
3121 mtd->writesize == 2048) {
3122 chip->options |= NAND_BBT_SCANBYTE1AND6;
3123 chip->badblockpos = 0;
3124 }
b60b08b0 3125
7aa65bfd 3126 /* Check for AND chips with 4 page planes */
ace4dfee
TG
3127 if (chip->options & NAND_4PAGE_ARRAY)
3128 chip->erase_cmd = multi_erase_cmd;
7aa65bfd 3129 else
ace4dfee 3130 chip->erase_cmd = single_erase_cmd;
7aa65bfd
TG
3131
3132 /* Do not replace user supplied command function ! */
ace4dfee
TG
3133 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3134 chip->cmdfunc = nand_command_lp;
7aa65bfd 3135
d1e1f4e4 3136 /* TODO onfi flash name */
7aa65bfd 3137 printk(KERN_INFO "NAND device: Manufacturer ID:"
d1e1f4e4
FF
3138 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, *dev_id,
3139 nand_manuf_ids[maf_idx].name,
3140 chip->onfi_version ? type->name:chip->onfi_params.model);
7aa65bfd
TG
3141
3142 return type;
3143}
3144
7aa65bfd 3145/**
3b85c321
DW
3146 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3147 * @mtd: MTD device structure
3148 * @maxchips: Number of chips to scan for
5e81e88a 3149 * @table: Alternative NAND ID table
7aa65bfd 3150 *
3b85c321
DW
3151 * This is the first phase of the normal nand_scan() function. It
3152 * reads the flash ID and sets up MTD fields accordingly.
7aa65bfd 3153 *
3b85c321 3154 * The mtd->owner field must be set to the module of the caller.
7aa65bfd 3155 */
5e81e88a
DW
3156int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3157 struct nand_flash_dev *table)
7aa65bfd 3158{
d1e1f4e4 3159 int i, busw, nand_maf_id, nand_dev_id;
ace4dfee 3160 struct nand_chip *chip = mtd->priv;
7aa65bfd
TG
3161 struct nand_flash_dev *type;
3162
7aa65bfd 3163 /* Get buswidth to select the correct functions */
ace4dfee 3164 busw = chip->options & NAND_BUSWIDTH_16;
7aa65bfd 3165 /* Set the default functions */
ace4dfee 3166 nand_set_defaults(chip, busw);
7aa65bfd
TG
3167
3168 /* Read the flash type */
d1e1f4e4 3169 type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id, &nand_dev_id, table);
7aa65bfd
TG
3170
3171 if (IS_ERR(type)) {
b1c6e6db
BD
3172 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3173 printk(KERN_WARNING "No NAND device found.\n");
ace4dfee 3174 chip->select_chip(mtd, -1);
7aa65bfd 3175 return PTR_ERR(type);
1da177e4
LT
3176 }
3177
7aa65bfd 3178 /* Check for a chip array */
e0c7d767 3179 for (i = 1; i < maxchips; i++) {
ace4dfee 3180 chip->select_chip(mtd, i);
ef89a880
KB
3181 /* See comment in nand_get_flash_type for reset */
3182 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4 3183 /* Send the command for reading device ID */
ace4dfee 3184 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4 3185 /* Read manufacturer and device IDs */
ace4dfee 3186 if (nand_maf_id != chip->read_byte(mtd) ||
d1e1f4e4 3187 nand_dev_id != chip->read_byte(mtd))
1da177e4
LT
3188 break;
3189 }
3190 if (i > 1)
3191 printk(KERN_INFO "%d NAND chips detected\n", i);
61b03bd7 3192
1da177e4 3193 /* Store the number of chips and calc total size for mtd */
ace4dfee
TG
3194 chip->numchips = i;
3195 mtd->size = i * chip->chipsize;
7aa65bfd 3196
3b85c321
DW
3197 return 0;
3198}
3199
3200
3201/**
3202 * nand_scan_tail - [NAND Interface] Scan for the NAND device
3203 * @mtd: MTD device structure
3b85c321
DW
3204 *
3205 * This is the second phase of the normal nand_scan() function. It
3206 * fills out all the uninitialized function pointers with the defaults
3207 * and scans for a bad block table if appropriate.
3208 */
3209int nand_scan_tail(struct mtd_info *mtd)
3210{
3211 int i;
3212 struct nand_chip *chip = mtd->priv;
3213
4bf63fcb
DW
3214 if (!(chip->options & NAND_OWN_BUFFERS))
3215 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3216 if (!chip->buffers)
3217 return -ENOMEM;
3218
7dcdcbef 3219 /* Set the internal oob buffer location, just after the page data */
784f4d5e 3220 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
1da177e4 3221
7aa65bfd
TG
3222 /*
3223 * If no default placement scheme is given, select an appropriate one
3224 */
5bd34c09 3225 if (!chip->ecc.layout) {
61b03bd7 3226 switch (mtd->oobsize) {
1da177e4 3227 case 8:
5bd34c09 3228 chip->ecc.layout = &nand_oob_8;
1da177e4
LT
3229 break;
3230 case 16:
5bd34c09 3231 chip->ecc.layout = &nand_oob_16;
1da177e4
LT
3232 break;
3233 case 64:
5bd34c09 3234 chip->ecc.layout = &nand_oob_64;
1da177e4 3235 break;
81ec5364
TG
3236 case 128:
3237 chip->ecc.layout = &nand_oob_128;
3238 break;
1da177e4 3239 default:
7aa65bfd
TG
3240 printk(KERN_WARNING "No oob scheme defined for "
3241 "oobsize %d\n", mtd->oobsize);
1da177e4
LT
3242 BUG();
3243 }
3244 }
61b03bd7 3245
956e944c
DW
3246 if (!chip->write_page)
3247 chip->write_page = nand_write_page;
3248
61b03bd7 3249 /*
7aa65bfd
TG
3250 * check ECC mode, default to software if 3byte/512byte hardware ECC is
3251 * selected and we have 256 byte pagesize fallback to software ECC
e0c7d767 3252 */
956e944c 3253
ace4dfee 3254 switch (chip->ecc.mode) {
6e0cb135
SN
3255 case NAND_ECC_HW_OOB_FIRST:
3256 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3257 if (!chip->ecc.calculate || !chip->ecc.correct ||
3258 !chip->ecc.hwctl) {
3259 printk(KERN_WARNING "No ECC functions supplied; "
3260 "Hardware ECC not possible\n");
3261 BUG();
3262 }
3263 if (!chip->ecc.read_page)
3264 chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3265
6dfc6d25 3266 case NAND_ECC_HW:
f5bbdacc
TG
3267 /* Use standard hwecc read page function ? */
3268 if (!chip->ecc.read_page)
3269 chip->ecc.read_page = nand_read_page_hwecc;
f75e5097
TG
3270 if (!chip->ecc.write_page)
3271 chip->ecc.write_page = nand_write_page_hwecc;
52ff49df
DB
3272 if (!chip->ecc.read_page_raw)
3273 chip->ecc.read_page_raw = nand_read_page_raw;
3274 if (!chip->ecc.write_page_raw)
3275 chip->ecc.write_page_raw = nand_write_page_raw;
7bc3312b
TG
3276 if (!chip->ecc.read_oob)
3277 chip->ecc.read_oob = nand_read_oob_std;
3278 if (!chip->ecc.write_oob)
3279 chip->ecc.write_oob = nand_write_oob_std;
f5bbdacc 3280
6dfc6d25 3281 case NAND_ECC_HW_SYNDROME:
78b65179
SW
3282 if ((!chip->ecc.calculate || !chip->ecc.correct ||
3283 !chip->ecc.hwctl) &&
3284 (!chip->ecc.read_page ||
1c45f604 3285 chip->ecc.read_page == nand_read_page_hwecc ||
78b65179 3286 !chip->ecc.write_page ||
1c45f604 3287 chip->ecc.write_page == nand_write_page_hwecc)) {
6e0cb135 3288 printk(KERN_WARNING "No ECC functions supplied; "
6dfc6d25
TG
3289 "Hardware ECC not possible\n");
3290 BUG();
3291 }
f75e5097 3292 /* Use standard syndrome read/write page function ? */
f5bbdacc
TG
3293 if (!chip->ecc.read_page)
3294 chip->ecc.read_page = nand_read_page_syndrome;
f75e5097
TG
3295 if (!chip->ecc.write_page)
3296 chip->ecc.write_page = nand_write_page_syndrome;
52ff49df
DB
3297 if (!chip->ecc.read_page_raw)
3298 chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3299 if (!chip->ecc.write_page_raw)
3300 chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
7bc3312b
TG
3301 if (!chip->ecc.read_oob)
3302 chip->ecc.read_oob = nand_read_oob_syndrome;
3303 if (!chip->ecc.write_oob)
3304 chip->ecc.write_oob = nand_write_oob_syndrome;
f5bbdacc 3305
ace4dfee 3306 if (mtd->writesize >= chip->ecc.size)
6dfc6d25
TG
3307 break;
3308 printk(KERN_WARNING "%d byte HW ECC not possible on "
3309 "%d byte page size, fallback to SW ECC\n",
ace4dfee
TG
3310 chip->ecc.size, mtd->writesize);
3311 chip->ecc.mode = NAND_ECC_SOFT;
61b03bd7 3312
6dfc6d25 3313 case NAND_ECC_SOFT:
ace4dfee
TG
3314 chip->ecc.calculate = nand_calculate_ecc;
3315 chip->ecc.correct = nand_correct_data;
f5bbdacc 3316 chip->ecc.read_page = nand_read_page_swecc;
3d459559 3317 chip->ecc.read_subpage = nand_read_subpage;
f75e5097 3318 chip->ecc.write_page = nand_write_page_swecc;
52ff49df
DB
3319 chip->ecc.read_page_raw = nand_read_page_raw;
3320 chip->ecc.write_page_raw = nand_write_page_raw;
7bc3312b
TG
3321 chip->ecc.read_oob = nand_read_oob_std;
3322 chip->ecc.write_oob = nand_write_oob_std;
9a73290d
SV
3323 if (!chip->ecc.size)
3324 chip->ecc.size = 256;
ace4dfee 3325 chip->ecc.bytes = 3;
1da177e4 3326 break;
61b03bd7
TG
3327
3328 case NAND_ECC_NONE:
7aa65bfd
TG
3329 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
3330 "This is not recommended !!\n");
8593fbc6
TG
3331 chip->ecc.read_page = nand_read_page_raw;
3332 chip->ecc.write_page = nand_write_page_raw;
7bc3312b 3333 chip->ecc.read_oob = nand_read_oob_std;
52ff49df
DB
3334 chip->ecc.read_page_raw = nand_read_page_raw;
3335 chip->ecc.write_page_raw = nand_write_page_raw;
7bc3312b 3336 chip->ecc.write_oob = nand_write_oob_std;
ace4dfee
TG
3337 chip->ecc.size = mtd->writesize;
3338 chip->ecc.bytes = 0;
1da177e4 3339 break;
956e944c 3340
1da177e4 3341 default:
7aa65bfd 3342 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
ace4dfee 3343 chip->ecc.mode);
61b03bd7 3344 BUG();
1da177e4 3345 }
61b03bd7 3346
5bd34c09
TG
3347 /*
3348 * The number of bytes available for a client to place data into
3349 * the out of band area
3350 */
3351 chip->ecc.layout->oobavail = 0;
81d19b04
DB
3352 for (i = 0; chip->ecc.layout->oobfree[i].length
3353 && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
5bd34c09
TG
3354 chip->ecc.layout->oobavail +=
3355 chip->ecc.layout->oobfree[i].length;
1f92267c 3356 mtd->oobavail = chip->ecc.layout->oobavail;
5bd34c09 3357
7aa65bfd
TG
3358 /*
3359 * Set the number of read / write steps for one page depending on ECC
3360 * mode
3361 */
ace4dfee
TG
3362 chip->ecc.steps = mtd->writesize / chip->ecc.size;
3363 if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
6dfc6d25
TG
3364 printk(KERN_WARNING "Invalid ecc parameters\n");
3365 BUG();
1da177e4 3366 }
f5bbdacc 3367 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
61b03bd7 3368
29072b96
TG
3369 /*
3370 * Allow subpage writes up to ecc.steps. Not possible for MLC
3371 * FLASH.
3372 */
3373 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3374 !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3375 switch(chip->ecc.steps) {
3376 case 2:
3377 mtd->subpage_sft = 1;
3378 break;
3379 case 4:
3380 case 8:
81ec5364 3381 case 16:
29072b96
TG
3382 mtd->subpage_sft = 2;
3383 break;
3384 }
3385 }
3386 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3387
04bbd0ea 3388 /* Initialize state */
ace4dfee 3389 chip->state = FL_READY;
1da177e4
LT
3390
3391 /* De-select the device */
ace4dfee 3392 chip->select_chip(mtd, -1);
1da177e4
LT
3393
3394 /* Invalidate the pagebuffer reference */
ace4dfee 3395 chip->pagebuf = -1;
1da177e4
LT
3396
3397 /* Fill in remaining MTD driver data */
3398 mtd->type = MTD_NANDFLASH;
93edbad6
ML
3399 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3400 MTD_CAP_NANDFLASH;
1da177e4
LT
3401 mtd->erase = nand_erase;
3402 mtd->point = NULL;
3403 mtd->unpoint = NULL;
3404 mtd->read = nand_read;
3405 mtd->write = nand_write;
2af7c653 3406 mtd->panic_write = panic_nand_write;
1da177e4
LT
3407 mtd->read_oob = nand_read_oob;
3408 mtd->write_oob = nand_write_oob;
1da177e4
LT
3409 mtd->sync = nand_sync;
3410 mtd->lock = NULL;
3411 mtd->unlock = NULL;
962034f4
VW
3412 mtd->suspend = nand_suspend;
3413 mtd->resume = nand_resume;
1da177e4
LT
3414 mtd->block_isbad = nand_block_isbad;
3415 mtd->block_markbad = nand_block_markbad;
3416
5bd34c09
TG
3417 /* propagate ecc.layout to mtd_info */
3418 mtd->ecclayout = chip->ecc.layout;
1da177e4 3419
0040bf38 3420 /* Check, if we should skip the bad block table scan */
ace4dfee 3421 if (chip->options & NAND_SKIP_BBTSCAN)
0040bf38 3422 return 0;
1da177e4
LT
3423
3424 /* Build bad block table */
ace4dfee 3425 return chip->scan_bbt(mtd);
1da177e4
LT
3426}
3427
a6e6abd5 3428/* is_module_text_address() isn't exported, and it's mostly a pointless
3b85c321
DW
3429 test if this is a module _anyway_ -- they'd have to try _really_ hard
3430 to call us from in-kernel code if the core NAND support is modular. */
3431#ifdef MODULE
3432#define caller_is_module() (1)
3433#else
3434#define caller_is_module() \
a6e6abd5 3435 is_module_text_address((unsigned long)__builtin_return_address(0))
3b85c321
DW
3436#endif
3437
3438/**
3439 * nand_scan - [NAND Interface] Scan for the NAND device
3440 * @mtd: MTD device structure
3441 * @maxchips: Number of chips to scan for
3442 *
3443 * This fills out all the uninitialized function pointers
3444 * with the defaults.
3445 * The flash ID is read and the mtd/chip structures are
3446 * filled with the appropriate values.
3447 * The mtd->owner field must be set to the module of the caller
3448 *
3449 */
3450int nand_scan(struct mtd_info *mtd, int maxchips)
3451{
3452 int ret;
3453
3454 /* Many callers got this wrong, so check for it for a while... */
3455 if (!mtd->owner && caller_is_module()) {
20d8e248 3456 printk(KERN_CRIT "%s called with NULL mtd->owner!\n",
3457 __func__);
3b85c321
DW
3458 BUG();
3459 }
3460
5e81e88a 3461 ret = nand_scan_ident(mtd, maxchips, NULL);
3b85c321
DW
3462 if (!ret)
3463 ret = nand_scan_tail(mtd);
3464 return ret;
3465}
3466
1da177e4 3467/**
61b03bd7 3468 * nand_release - [NAND Interface] Free resources held by the NAND device
1da177e4
LT
3469 * @mtd: MTD device structure
3470*/
e0c7d767 3471void nand_release(struct mtd_info *mtd)
1da177e4 3472{
ace4dfee 3473 struct nand_chip *chip = mtd->priv;
1da177e4
LT
3474
3475#ifdef CONFIG_MTD_PARTITIONS
3476 /* Deregister partitions */
e0c7d767 3477 del_mtd_partitions(mtd);
1da177e4
LT
3478#endif
3479 /* Deregister the device */
e0c7d767 3480 del_mtd_device(mtd);
1da177e4 3481
fa671646 3482 /* Free bad block table memory */
ace4dfee 3483 kfree(chip->bbt);
4bf63fcb
DW
3484 if (!(chip->options & NAND_OWN_BUFFERS))
3485 kfree(chip->buffers);
58373ff0
BN
3486
3487 /* Free bad block descriptor memory */
3488 if (chip->badblock_pattern && chip->badblock_pattern->options
3489 & NAND_BBT_DYNAMICSTRUCT)
3490 kfree(chip->badblock_pattern);
1da177e4
LT
3491}
3492
7d70f334
VS
3493EXPORT_SYMBOL_GPL(nand_lock);
3494EXPORT_SYMBOL_GPL(nand_unlock);
e0c7d767 3495EXPORT_SYMBOL_GPL(nand_scan);
3b85c321
DW
3496EXPORT_SYMBOL_GPL(nand_scan_ident);
3497EXPORT_SYMBOL_GPL(nand_scan_tail);
e0c7d767 3498EXPORT_SYMBOL_GPL(nand_release);
8fe833c1
RP
3499
3500static int __init nand_base_init(void)
3501{
3502 led_trigger_register_simple("nand-disk", &nand_led_trigger);
3503 return 0;
3504}
3505
3506static void __exit nand_base_exit(void)
3507{
3508 led_trigger_unregister_simple(nand_led_trigger);
3509}
3510
3511module_init(nand_base_init);
3512module_exit(nand_base_exit);
3513
e0c7d767
DW
3514MODULE_LICENSE("GPL");
3515MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
3516MODULE_DESCRIPTION("Generic NAND flash driver code");
This page took 0.510211 seconds and 5 git commands to generate.