mtd: nand: set ECC algorithm in nand_dt_init
[deliverable/linux.git] / drivers / mtd / nand / nand_base.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Overview:
3 * This is the generic MTD driver for NAND flash devices. It should be
4 * capable of working with almost all NAND chips currently available.
61b03bd7 5 *
1da177e4 6 * Additional technical information is available on
8b2b403c 7 * http://www.linux-mtd.infradead.org/doc/nand.html
61b03bd7 8 *
1da177e4 9 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
ace4dfee 10 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
1da177e4 11 *
ace4dfee 12 * Credits:
61b03bd7
TG
13 * David Woodhouse for adding multichip support
14 *
1da177e4
LT
15 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
16 * rework for 2K page size chips
17 *
ace4dfee 18 * TODO:
1da177e4
LT
19 * Enable cached programming for 2k page size chips
20 * Check, if mtd->ecctype should be set to MTD_ECC_HW
7854d3f7 21 * if we have HW ECC support.
c0b8ba7b 22 * BBT table is not serialized, has to be fixed
1da177e4 23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License version 2 as
26 * published by the Free Software Foundation.
27 *
28 */
29
20171642
EG
30#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31
552d9205 32#include <linux/module.h>
1da177e4
LT
33#include <linux/delay.h>
34#include <linux/errno.h>
7aa65bfd 35#include <linux/err.h>
1da177e4
LT
36#include <linux/sched.h>
37#include <linux/slab.h>
66507c7b 38#include <linux/mm.h>
1da177e4
LT
39#include <linux/types.h>
40#include <linux/mtd/mtd.h>
41#include <linux/mtd/nand.h>
42#include <linux/mtd/nand_ecc.h>
193bd400 43#include <linux/mtd/nand_bch.h>
1da177e4
LT
44#include <linux/interrupt.h>
45#include <linux/bitops.h>
7351d3a5 46#include <linux/io.h>
1da177e4 47#include <linux/mtd/partitions.h>
5844feea 48#include <linux/of_mtd.h>
1da177e4
LT
49
50/* Define default oob placement schemes for large and small page devices */
5bd34c09 51static struct nand_ecclayout nand_oob_8 = {
1da177e4
LT
52 .eccbytes = 3,
53 .eccpos = {0, 1, 2},
5bd34c09
TG
54 .oobfree = {
55 {.offset = 3,
56 .length = 2},
57 {.offset = 6,
f8ac0414 58 .length = 2} }
1da177e4
LT
59};
60
5bd34c09 61static struct nand_ecclayout nand_oob_16 = {
1da177e4
LT
62 .eccbytes = 6,
63 .eccpos = {0, 1, 2, 3, 6, 7},
5bd34c09
TG
64 .oobfree = {
65 {.offset = 8,
f8ac0414 66 . length = 8} }
1da177e4
LT
67};
68
5bd34c09 69static struct nand_ecclayout nand_oob_64 = {
1da177e4
LT
70 .eccbytes = 24,
71 .eccpos = {
e0c7d767
DW
72 40, 41, 42, 43, 44, 45, 46, 47,
73 48, 49, 50, 51, 52, 53, 54, 55,
74 56, 57, 58, 59, 60, 61, 62, 63},
5bd34c09
TG
75 .oobfree = {
76 {.offset = 2,
f8ac0414 77 .length = 38} }
1da177e4
LT
78};
79
81ec5364
TG
80static struct nand_ecclayout nand_oob_128 = {
81 .eccbytes = 48,
82 .eccpos = {
83 80, 81, 82, 83, 84, 85, 86, 87,
84 88, 89, 90, 91, 92, 93, 94, 95,
85 96, 97, 98, 99, 100, 101, 102, 103,
86 104, 105, 106, 107, 108, 109, 110, 111,
87 112, 113, 114, 115, 116, 117, 118, 119,
88 120, 121, 122, 123, 124, 125, 126, 127},
89 .oobfree = {
90 {.offset = 2,
f8ac0414 91 .length = 78} }
81ec5364
TG
92};
93
6a8214aa 94static int nand_get_device(struct mtd_info *mtd, int new_state);
1da177e4 95
8593fbc6
TG
96static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
97 struct mtd_oob_ops *ops);
98
6fe5a6ac
VS
99static int check_offs_len(struct mtd_info *mtd,
100 loff_t ofs, uint64_t len)
101{
862eba51 102 struct nand_chip *chip = mtd_to_nand(mtd);
6fe5a6ac
VS
103 int ret = 0;
104
105 /* Start address must align on block boundary */
daae74ca 106 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
289c0522 107 pr_debug("%s: unaligned address\n", __func__);
6fe5a6ac
VS
108 ret = -EINVAL;
109 }
110
111 /* Length must align on block boundary */
daae74ca 112 if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
289c0522 113 pr_debug("%s: length not block aligned\n", __func__);
6fe5a6ac
VS
114 ret = -EINVAL;
115 }
116
6fe5a6ac
VS
117 return ret;
118}
119
1da177e4
LT
120/**
121 * nand_release_device - [GENERIC] release chip
8b6e50c9 122 * @mtd: MTD device structure
61b03bd7 123 *
b0bb6903 124 * Release chip lock and wake up anyone waiting on the device.
1da177e4 125 */
e0c7d767 126static void nand_release_device(struct mtd_info *mtd)
1da177e4 127{
862eba51 128 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 129
a36ed299 130 /* Release the controller and the chip */
ace4dfee
TG
131 spin_lock(&chip->controller->lock);
132 chip->controller->active = NULL;
133 chip->state = FL_READY;
134 wake_up(&chip->controller->wq);
135 spin_unlock(&chip->controller->lock);
1da177e4
LT
136}
137
138/**
139 * nand_read_byte - [DEFAULT] read one byte from the chip
8b6e50c9 140 * @mtd: MTD device structure
1da177e4 141 *
7854d3f7 142 * Default read function for 8bit buswidth
1da177e4 143 */
58dd8f2b 144static uint8_t nand_read_byte(struct mtd_info *mtd)
1da177e4 145{
862eba51 146 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee 147 return readb(chip->IO_ADDR_R);
1da177e4
LT
148}
149
1da177e4 150/**
7854d3f7 151 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
8b6e50c9 152 * @mtd: MTD device structure
1da177e4 153 *
7854d3f7
BN
154 * Default read function for 16bit buswidth with endianness conversion.
155 *
1da177e4 156 */
58dd8f2b 157static uint8_t nand_read_byte16(struct mtd_info *mtd)
1da177e4 158{
862eba51 159 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee 160 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
1da177e4
LT
161}
162
1da177e4
LT
163/**
164 * nand_read_word - [DEFAULT] read one word from the chip
8b6e50c9 165 * @mtd: MTD device structure
1da177e4 166 *
7854d3f7 167 * Default read function for 16bit buswidth without endianness conversion.
1da177e4
LT
168 */
169static u16 nand_read_word(struct mtd_info *mtd)
170{
862eba51 171 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee 172 return readw(chip->IO_ADDR_R);
1da177e4
LT
173}
174
1da177e4
LT
175/**
176 * nand_select_chip - [DEFAULT] control CE line
8b6e50c9
BN
177 * @mtd: MTD device structure
178 * @chipnr: chipnumber to select, -1 for deselect
1da177e4
LT
179 *
180 * Default select function for 1 chip devices.
181 */
ace4dfee 182static void nand_select_chip(struct mtd_info *mtd, int chipnr)
1da177e4 183{
862eba51 184 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee
TG
185
186 switch (chipnr) {
1da177e4 187 case -1:
ace4dfee 188 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
1da177e4
LT
189 break;
190 case 0:
1da177e4
LT
191 break;
192
193 default:
194 BUG();
195 }
196}
197
05f78359
UKK
198/**
199 * nand_write_byte - [DEFAULT] write single byte to chip
200 * @mtd: MTD device structure
201 * @byte: value to write
202 *
203 * Default function to write a byte to I/O[7:0]
204 */
205static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
206{
862eba51 207 struct nand_chip *chip = mtd_to_nand(mtd);
05f78359
UKK
208
209 chip->write_buf(mtd, &byte, 1);
210}
211
212/**
213 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
214 * @mtd: MTD device structure
215 * @byte: value to write
216 *
217 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
218 */
219static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
220{
862eba51 221 struct nand_chip *chip = mtd_to_nand(mtd);
05f78359
UKK
222 uint16_t word = byte;
223
224 /*
225 * It's not entirely clear what should happen to I/O[15:8] when writing
226 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
227 *
228 * When the host supports a 16-bit bus width, only data is
229 * transferred at the 16-bit width. All address and command line
230 * transfers shall use only the lower 8-bits of the data bus. During
231 * command transfers, the host may place any value on the upper
232 * 8-bits of the data bus. During address transfers, the host shall
233 * set the upper 8-bits of the data bus to 00h.
234 *
235 * One user of the write_byte callback is nand_onfi_set_features. The
236 * four parameters are specified to be written to I/O[7:0], but this is
237 * neither an address nor a command transfer. Let's assume a 0 on the
238 * upper I/O lines is OK.
239 */
240 chip->write_buf(mtd, (uint8_t *)&word, 2);
241}
242
1da177e4
LT
243/**
244 * nand_write_buf - [DEFAULT] write buffer to chip
8b6e50c9
BN
245 * @mtd: MTD device structure
246 * @buf: data buffer
247 * @len: number of bytes to write
1da177e4 248 *
7854d3f7 249 * Default write function for 8bit buswidth.
1da177e4 250 */
58dd8f2b 251static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4 252{
862eba51 253 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 254
76413839 255 iowrite8_rep(chip->IO_ADDR_W, buf, len);
1da177e4
LT
256}
257
258/**
61b03bd7 259 * nand_read_buf - [DEFAULT] read chip data into buffer
8b6e50c9
BN
260 * @mtd: MTD device structure
261 * @buf: buffer to store date
262 * @len: number of bytes to read
1da177e4 263 *
7854d3f7 264 * Default read function for 8bit buswidth.
1da177e4 265 */
58dd8f2b 266static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4 267{
862eba51 268 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 269
76413839 270 ioread8_rep(chip->IO_ADDR_R, buf, len);
1da177e4
LT
271}
272
1da177e4
LT
273/**
274 * nand_write_buf16 - [DEFAULT] write buffer to chip
8b6e50c9
BN
275 * @mtd: MTD device structure
276 * @buf: data buffer
277 * @len: number of bytes to write
1da177e4 278 *
7854d3f7 279 * Default write function for 16bit buswidth.
1da177e4 280 */
58dd8f2b 281static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4 282{
862eba51 283 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 284 u16 *p = (u16 *) buf;
61b03bd7 285
76413839 286 iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
1da177e4
LT
287}
288
289/**
61b03bd7 290 * nand_read_buf16 - [DEFAULT] read chip data into buffer
8b6e50c9
BN
291 * @mtd: MTD device structure
292 * @buf: buffer to store date
293 * @len: number of bytes to read
1da177e4 294 *
7854d3f7 295 * Default read function for 16bit buswidth.
1da177e4 296 */
58dd8f2b 297static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4 298{
862eba51 299 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 300 u16 *p = (u16 *) buf;
1da177e4 301
76413839 302 ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
1da177e4
LT
303}
304
1da177e4
LT
305/**
306 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
8b6e50c9
BN
307 * @mtd: MTD device structure
308 * @ofs: offset from device start
1da177e4 309 *
61b03bd7 310 * Check, if the block is bad.
1da177e4 311 */
9f3e0429 312static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
1da177e4 313{
9f3e0429 314 int page, res = 0, i = 0;
862eba51 315 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4
LT
316 u16 bad;
317
5fb1549d 318 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
b60b08b0
KC
319 ofs += mtd->erasesize - mtd->writesize;
320
1a12f46a
TK
321 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
322
cdbec050
BN
323 do {
324 if (chip->options & NAND_BUSWIDTH_16) {
325 chip->cmdfunc(mtd, NAND_CMD_READOOB,
326 chip->badblockpos & 0xFE, page);
327 bad = cpu_to_le16(chip->read_word(mtd));
328 if (chip->badblockpos & 0x1)
329 bad >>= 8;
330 else
331 bad &= 0xFF;
332 } else {
333 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
334 page);
335 bad = chip->read_byte(mtd);
336 }
337
338 if (likely(chip->badblockbits == 8))
339 res = bad != 0xFF;
e0b58d0a 340 else
cdbec050
BN
341 res = hweight8(bad) < chip->badblockbits;
342 ofs += mtd->writesize;
343 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
344 i++;
345 } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
e0b58d0a 346
1da177e4
LT
347 return res;
348}
349
350/**
5a0edb25 351 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
8b6e50c9
BN
352 * @mtd: MTD device structure
353 * @ofs: offset from device start
1da177e4 354 *
8b6e50c9 355 * This is the default implementation, which can be overridden by a hardware
5a0edb25
BN
356 * specific driver. It provides the details for writing a bad block marker to a
357 * block.
358 */
359static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
360{
862eba51 361 struct nand_chip *chip = mtd_to_nand(mtd);
5a0edb25
BN
362 struct mtd_oob_ops ops;
363 uint8_t buf[2] = { 0, 0 };
364 int ret = 0, res, i = 0;
365
0ec56dc4 366 memset(&ops, 0, sizeof(ops));
5a0edb25
BN
367 ops.oobbuf = buf;
368 ops.ooboffs = chip->badblockpos;
369 if (chip->options & NAND_BUSWIDTH_16) {
370 ops.ooboffs &= ~0x01;
371 ops.len = ops.ooblen = 2;
372 } else {
373 ops.len = ops.ooblen = 1;
374 }
375 ops.mode = MTD_OPS_PLACE_OOB;
376
377 /* Write to first/last page(s) if necessary */
378 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
379 ofs += mtd->erasesize - mtd->writesize;
380 do {
381 res = nand_do_write_oob(mtd, ofs, &ops);
382 if (!ret)
383 ret = res;
384
385 i++;
386 ofs += mtd->writesize;
387 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
388
389 return ret;
390}
391
392/**
393 * nand_block_markbad_lowlevel - mark a block bad
394 * @mtd: MTD device structure
395 * @ofs: offset from device start
396 *
397 * This function performs the generic NAND bad block marking steps (i.e., bad
398 * block table(s) and/or marker(s)). We only allow the hardware driver to
399 * specify how to write bad block markers to OOB (chip->block_markbad).
400 *
b32843b7 401 * We try operations in the following order:
e2414f4c 402 * (1) erase the affected block, to allow OOB marker to be written cleanly
b32843b7
BN
403 * (2) write bad block marker to OOB area of affected block (unless flag
404 * NAND_BBT_NO_OOB_BBM is present)
405 * (3) update the BBT
406 * Note that we retain the first error encountered in (2) or (3), finish the
e2414f4c 407 * procedures, and dump the error in the end.
1da177e4 408*/
5a0edb25 409static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
1da177e4 410{
862eba51 411 struct nand_chip *chip = mtd_to_nand(mtd);
b32843b7 412 int res, ret = 0;
61b03bd7 413
b32843b7 414 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
00918429
BN
415 struct erase_info einfo;
416
417 /* Attempt erase before marking OOB */
418 memset(&einfo, 0, sizeof(einfo));
419 einfo.mtd = mtd;
420 einfo.addr = ofs;
daae74ca 421 einfo.len = 1ULL << chip->phys_erase_shift;
00918429 422 nand_erase_nand(mtd, &einfo, 0);
1da177e4 423
b32843b7 424 /* Write bad block marker to OOB */
6a8214aa 425 nand_get_device(mtd, FL_WRITING);
5a0edb25 426 ret = chip->block_markbad(mtd, ofs);
c0b8ba7b 427 nand_release_device(mtd);
f1a28c02 428 }
e2414f4c 429
b32843b7
BN
430 /* Mark block bad in BBT */
431 if (chip->bbt) {
432 res = nand_markbad_bbt(mtd, ofs);
e2414f4c
BN
433 if (!ret)
434 ret = res;
435 }
436
f1a28c02
TG
437 if (!ret)
438 mtd->ecc_stats.badblocks++;
c0b8ba7b 439
f1a28c02 440 return ret;
1da177e4
LT
441}
442
61b03bd7 443/**
1da177e4 444 * nand_check_wp - [GENERIC] check if the chip is write protected
8b6e50c9 445 * @mtd: MTD device structure
1da177e4 446 *
8b6e50c9
BN
447 * Check, if the device is write protected. The function expects, that the
448 * device is already selected.
1da177e4 449 */
e0c7d767 450static int nand_check_wp(struct mtd_info *mtd)
1da177e4 451{
862eba51 452 struct nand_chip *chip = mtd_to_nand(mtd);
93edbad6 453
8b6e50c9 454 /* Broken xD cards report WP despite being writable */
93edbad6
ML
455 if (chip->options & NAND_BROKEN_XD)
456 return 0;
457
1da177e4 458 /* Check the WP bit */
ace4dfee
TG
459 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
460 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
1da177e4
LT
461}
462
8471bb73 463/**
c30e1f79 464 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
8471bb73
EG
465 * @mtd: MTD device structure
466 * @ofs: offset from device start
467 *
c30e1f79 468 * Check if the block is marked as reserved.
8471bb73
EG
469 */
470static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
471{
862eba51 472 struct nand_chip *chip = mtd_to_nand(mtd);
8471bb73
EG
473
474 if (!chip->bbt)
475 return 0;
476 /* Return info from the table */
477 return nand_isreserved_bbt(mtd, ofs);
478}
479
1da177e4
LT
480/**
481 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
8b6e50c9
BN
482 * @mtd: MTD device structure
483 * @ofs: offset from device start
8b6e50c9 484 * @allowbbt: 1, if its allowed to access the bbt area
1da177e4
LT
485 *
486 * Check, if the block is bad. Either by reading the bad block table or
487 * calling of the scan function.
488 */
9f3e0429 489static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
1da177e4 490{
862eba51 491 struct nand_chip *chip = mtd_to_nand(mtd);
61b03bd7 492
ace4dfee 493 if (!chip->bbt)
9f3e0429 494 return chip->block_bad(mtd, ofs);
61b03bd7 495
1da177e4 496 /* Return info from the table */
e0c7d767 497 return nand_isbad_bbt(mtd, ofs, allowbbt);
1da177e4
LT
498}
499
2af7c653
SK
500/**
501 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
8b6e50c9
BN
502 * @mtd: MTD device structure
503 * @timeo: Timeout
2af7c653
SK
504 *
505 * Helper function for nand_wait_ready used when needing to wait in interrupt
506 * context.
507 */
508static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
509{
862eba51 510 struct nand_chip *chip = mtd_to_nand(mtd);
2af7c653
SK
511 int i;
512
513 /* Wait for the device to get ready */
514 for (i = 0; i < timeo; i++) {
515 if (chip->dev_ready(mtd))
516 break;
517 touch_softlockup_watchdog();
518 mdelay(1);
519 }
520}
521
b70af9be
AS
522/**
523 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
524 * @mtd: MTD device structure
525 *
526 * Wait for the ready pin after a command, and warn if a timeout occurs.
527 */
4b648b02 528void nand_wait_ready(struct mtd_info *mtd)
3b88775c 529{
862eba51 530 struct nand_chip *chip = mtd_to_nand(mtd);
b70af9be 531 unsigned long timeo = 400;
3b88775c 532
2af7c653 533 if (in_interrupt() || oops_in_progress)
b70af9be 534 return panic_nand_wait_ready(mtd, timeo);
2af7c653 535
7854d3f7 536 /* Wait until command is processed or timeout occurs */
b70af9be 537 timeo = jiffies + msecs_to_jiffies(timeo);
3b88775c 538 do {
ace4dfee 539 if (chip->dev_ready(mtd))
4c7e054f 540 return;
b70af9be 541 cond_resched();
61b03bd7 542 } while (time_before(jiffies, timeo));
b70af9be 543
9ebfdf5b
BN
544 if (!chip->dev_ready(mtd))
545 pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
3b88775c 546}
4b648b02 547EXPORT_SYMBOL_GPL(nand_wait_ready);
3b88775c 548
60c70d66
RQ
549/**
550 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
551 * @mtd: MTD device structure
552 * @timeo: Timeout in ms
553 *
554 * Wait for status ready (i.e. command done) or timeout.
555 */
556static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
557{
862eba51 558 register struct nand_chip *chip = mtd_to_nand(mtd);
60c70d66
RQ
559
560 timeo = jiffies + msecs_to_jiffies(timeo);
561 do {
562 if ((chip->read_byte(mtd) & NAND_STATUS_READY))
563 break;
564 touch_softlockup_watchdog();
565 } while (time_before(jiffies, timeo));
566};
567
1da177e4
LT
568/**
569 * nand_command - [DEFAULT] Send command to NAND device
8b6e50c9
BN
570 * @mtd: MTD device structure
571 * @command: the command to be sent
572 * @column: the column address for this command, -1 if none
573 * @page_addr: the page address for this command, -1 if none
1da177e4 574 *
8b6e50c9 575 * Send command to NAND device. This function is used for small page devices
51148f1f 576 * (512 Bytes per page).
1da177e4 577 */
7abd3ef9
TG
578static void nand_command(struct mtd_info *mtd, unsigned int command,
579 int column, int page_addr)
1da177e4 580{
862eba51 581 register struct nand_chip *chip = mtd_to_nand(mtd);
7abd3ef9 582 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
1da177e4 583
8b6e50c9 584 /* Write out the command to the device */
1da177e4
LT
585 if (command == NAND_CMD_SEQIN) {
586 int readcmd;
587
28318776 588 if (column >= mtd->writesize) {
1da177e4 589 /* OOB area */
28318776 590 column -= mtd->writesize;
1da177e4
LT
591 readcmd = NAND_CMD_READOOB;
592 } else if (column < 256) {
593 /* First 256 bytes --> READ0 */
594 readcmd = NAND_CMD_READ0;
595 } else {
596 column -= 256;
597 readcmd = NAND_CMD_READ1;
598 }
ace4dfee 599 chip->cmd_ctrl(mtd, readcmd, ctrl);
7abd3ef9 600 ctrl &= ~NAND_CTRL_CHANGE;
1da177e4 601 }
ace4dfee 602 chip->cmd_ctrl(mtd, command, ctrl);
1da177e4 603
8b6e50c9 604 /* Address cycle, when necessary */
7abd3ef9
TG
605 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
606 /* Serially input address */
607 if (column != -1) {
608 /* Adjust columns for 16 bit buswidth */
3dad2344
BN
609 if (chip->options & NAND_BUSWIDTH_16 &&
610 !nand_opcode_8bits(command))
7abd3ef9 611 column >>= 1;
ace4dfee 612 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9
TG
613 ctrl &= ~NAND_CTRL_CHANGE;
614 }
615 if (page_addr != -1) {
ace4dfee 616 chip->cmd_ctrl(mtd, page_addr, ctrl);
7abd3ef9 617 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 618 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
7abd3ef9 619 /* One more address cycle for devices > 32MiB */
ace4dfee
TG
620 if (chip->chipsize > (32 << 20))
621 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
1da177e4 622 }
ace4dfee 623 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
624
625 /*
8b6e50c9
BN
626 * Program and erase have their own busy handlers status and sequential
627 * in needs no delay
e0c7d767 628 */
1da177e4 629 switch (command) {
61b03bd7 630
1da177e4
LT
631 case NAND_CMD_PAGEPROG:
632 case NAND_CMD_ERASE1:
633 case NAND_CMD_ERASE2:
634 case NAND_CMD_SEQIN:
635 case NAND_CMD_STATUS:
636 return;
637
638 case NAND_CMD_RESET:
ace4dfee 639 if (chip->dev_ready)
1da177e4 640 break;
ace4dfee
TG
641 udelay(chip->chip_delay);
642 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
7abd3ef9 643 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
12efdde3
TG
644 chip->cmd_ctrl(mtd,
645 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
60c70d66
RQ
646 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
647 nand_wait_status_ready(mtd, 250);
1da177e4
LT
648 return;
649
e0c7d767 650 /* This applies to read commands */
1da177e4 651 default:
61b03bd7 652 /*
1da177e4
LT
653 * If we don't have access to the busy pin, we apply the given
654 * command delay
e0c7d767 655 */
ace4dfee
TG
656 if (!chip->dev_ready) {
657 udelay(chip->chip_delay);
1da177e4 658 return;
61b03bd7 659 }
1da177e4 660 }
8b6e50c9
BN
661 /*
662 * Apply this short delay always to ensure that we do wait tWB in
663 * any case on any machine.
664 */
e0c7d767 665 ndelay(100);
3b88775c
TG
666
667 nand_wait_ready(mtd);
1da177e4
LT
668}
669
670/**
671 * nand_command_lp - [DEFAULT] Send command to NAND large page device
8b6e50c9
BN
672 * @mtd: MTD device structure
673 * @command: the command to be sent
674 * @column: the column address for this command, -1 if none
675 * @page_addr: the page address for this command, -1 if none
1da177e4 676 *
7abd3ef9 677 * Send command to NAND device. This is the version for the new large page
7854d3f7
BN
678 * devices. We don't have the separate regions as we have in the small page
679 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
1da177e4 680 */
7abd3ef9
TG
681static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
682 int column, int page_addr)
1da177e4 683{
862eba51 684 register struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4
LT
685
686 /* Emulate NAND_CMD_READOOB */
687 if (command == NAND_CMD_READOOB) {
28318776 688 column += mtd->writesize;
1da177e4
LT
689 command = NAND_CMD_READ0;
690 }
61b03bd7 691
7abd3ef9 692 /* Command latch cycle */
fb066ada 693 chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
1da177e4
LT
694
695 if (column != -1 || page_addr != -1) {
7abd3ef9 696 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
1da177e4
LT
697
698 /* Serially input address */
699 if (column != -1) {
700 /* Adjust columns for 16 bit buswidth */
3dad2344
BN
701 if (chip->options & NAND_BUSWIDTH_16 &&
702 !nand_opcode_8bits(command))
1da177e4 703 column >>= 1;
ace4dfee 704 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9 705 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 706 chip->cmd_ctrl(mtd, column >> 8, ctrl);
61b03bd7 707 }
1da177e4 708 if (page_addr != -1) {
ace4dfee
TG
709 chip->cmd_ctrl(mtd, page_addr, ctrl);
710 chip->cmd_ctrl(mtd, page_addr >> 8,
7abd3ef9 711 NAND_NCE | NAND_ALE);
1da177e4 712 /* One more address cycle for devices > 128MiB */
ace4dfee
TG
713 if (chip->chipsize > (128 << 20))
714 chip->cmd_ctrl(mtd, page_addr >> 16,
7abd3ef9 715 NAND_NCE | NAND_ALE);
1da177e4 716 }
1da177e4 717 }
ace4dfee 718 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
719
720 /*
8b6e50c9 721 * Program and erase have their own busy handlers status, sequential
7a442f17 722 * in and status need no delay.
30f464b7 723 */
1da177e4 724 switch (command) {
61b03bd7 725
1da177e4
LT
726 case NAND_CMD_CACHEDPROG:
727 case NAND_CMD_PAGEPROG:
728 case NAND_CMD_ERASE1:
729 case NAND_CMD_ERASE2:
730 case NAND_CMD_SEQIN:
7bc3312b 731 case NAND_CMD_RNDIN:
1da177e4 732 case NAND_CMD_STATUS:
30f464b7 733 return;
1da177e4
LT
734
735 case NAND_CMD_RESET:
ace4dfee 736 if (chip->dev_ready)
1da177e4 737 break;
ace4dfee 738 udelay(chip->chip_delay);
12efdde3
TG
739 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
740 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
741 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
742 NAND_NCE | NAND_CTRL_CHANGE);
60c70d66
RQ
743 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
744 nand_wait_status_ready(mtd, 250);
1da177e4
LT
745 return;
746
7bc3312b
TG
747 case NAND_CMD_RNDOUT:
748 /* No ready / busy check necessary */
749 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
750 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
751 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
752 NAND_NCE | NAND_CTRL_CHANGE);
753 return;
754
1da177e4 755 case NAND_CMD_READ0:
12efdde3
TG
756 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
757 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
758 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
759 NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7 760
e0c7d767 761 /* This applies to read commands */
1da177e4 762 default:
61b03bd7 763 /*
1da177e4 764 * If we don't have access to the busy pin, we apply the given
8b6e50c9 765 * command delay.
e0c7d767 766 */
ace4dfee
TG
767 if (!chip->dev_ready) {
768 udelay(chip->chip_delay);
1da177e4 769 return;
61b03bd7 770 }
1da177e4 771 }
3b88775c 772
8b6e50c9
BN
773 /*
774 * Apply this short delay always to ensure that we do wait tWB in
775 * any case on any machine.
776 */
e0c7d767 777 ndelay(100);
3b88775c
TG
778
779 nand_wait_ready(mtd);
1da177e4
LT
780}
781
2af7c653
SK
782/**
783 * panic_nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
784 * @chip: the nand chip descriptor
785 * @mtd: MTD device structure
786 * @new_state: the state which is requested
2af7c653
SK
787 *
788 * Used when in panic, no locks are taken.
789 */
790static void panic_nand_get_device(struct nand_chip *chip,
791 struct mtd_info *mtd, int new_state)
792{
7854d3f7 793 /* Hardware controller shared among independent devices */
2af7c653
SK
794 chip->controller->active = chip;
795 chip->state = new_state;
796}
797
1da177e4
LT
798/**
799 * nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
800 * @mtd: MTD device structure
801 * @new_state: the state which is requested
1da177e4
LT
802 *
803 * Get the device and lock it for exclusive access
804 */
2c0a2bed 805static int
6a8214aa 806nand_get_device(struct mtd_info *mtd, int new_state)
1da177e4 807{
862eba51 808 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee
TG
809 spinlock_t *lock = &chip->controller->lock;
810 wait_queue_head_t *wq = &chip->controller->wq;
e0c7d767 811 DECLARE_WAITQUEUE(wait, current);
7351d3a5 812retry:
0dfc6246
TG
813 spin_lock(lock);
814
b8b3ee9a 815 /* Hardware controller shared among independent devices */
ace4dfee
TG
816 if (!chip->controller->active)
817 chip->controller->active = chip;
a36ed299 818
ace4dfee
TG
819 if (chip->controller->active == chip && chip->state == FL_READY) {
820 chip->state = new_state;
0dfc6246 821 spin_unlock(lock);
962034f4
VW
822 return 0;
823 }
824 if (new_state == FL_PM_SUSPENDED) {
6b0d9a84
LY
825 if (chip->controller->active->state == FL_PM_SUSPENDED) {
826 chip->state = FL_PM_SUSPENDED;
827 spin_unlock(lock);
828 return 0;
6b0d9a84 829 }
0dfc6246
TG
830 }
831 set_current_state(TASK_UNINTERRUPTIBLE);
832 add_wait_queue(wq, &wait);
833 spin_unlock(lock);
834 schedule();
835 remove_wait_queue(wq, &wait);
1da177e4
LT
836 goto retry;
837}
838
2af7c653 839/**
8b6e50c9
BN
840 * panic_nand_wait - [GENERIC] wait until the command is done
841 * @mtd: MTD device structure
842 * @chip: NAND chip structure
843 * @timeo: timeout
2af7c653
SK
844 *
845 * Wait for command done. This is a helper function for nand_wait used when
846 * we are in interrupt context. May happen when in panic and trying to write
b595076a 847 * an oops through mtdoops.
2af7c653
SK
848 */
849static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
850 unsigned long timeo)
851{
852 int i;
853 for (i = 0; i < timeo; i++) {
854 if (chip->dev_ready) {
855 if (chip->dev_ready(mtd))
856 break;
857 } else {
858 if (chip->read_byte(mtd) & NAND_STATUS_READY)
859 break;
860 }
861 mdelay(1);
f8ac0414 862 }
2af7c653
SK
863}
864
1da177e4 865/**
8b6e50c9
BN
866 * nand_wait - [DEFAULT] wait until the command is done
867 * @mtd: MTD device structure
868 * @chip: NAND chip structure
1da177e4 869 *
b70af9be 870 * Wait for command done. This applies to erase and program only.
844d3b42 871 */
7bc3312b 872static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
1da177e4
LT
873{
874
b70af9be
AS
875 int status;
876 unsigned long timeo = 400;
1da177e4 877
8b6e50c9
BN
878 /*
879 * Apply this short delay always to ensure that we do wait tWB in any
880 * case on any machine.
881 */
e0c7d767 882 ndelay(100);
1da177e4 883
14c65786 884 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
1da177e4 885
2af7c653
SK
886 if (in_interrupt() || oops_in_progress)
887 panic_nand_wait(mtd, chip, timeo);
888 else {
6d2559f8 889 timeo = jiffies + msecs_to_jiffies(timeo);
b70af9be 890 do {
2af7c653
SK
891 if (chip->dev_ready) {
892 if (chip->dev_ready(mtd))
893 break;
894 } else {
895 if (chip->read_byte(mtd) & NAND_STATUS_READY)
896 break;
897 }
898 cond_resched();
b70af9be 899 } while (time_before(jiffies, timeo));
1da177e4 900 }
8fe833c1 901
ace4dfee 902 status = (int)chip->read_byte(mtd);
f251b8df
MC
903 /* This can happen if in case of timeout or buggy dev_ready */
904 WARN_ON(!(status & NAND_STATUS_READY));
1da177e4
LT
905 return status;
906}
907
7d70f334 908/**
b6d676db 909 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
b6d676db
RD
910 * @mtd: mtd info
911 * @ofs: offset to start unlock from
912 * @len: length to unlock
8b6e50c9
BN
913 * @invert: when = 0, unlock the range of blocks within the lower and
914 * upper boundary address
915 * when = 1, unlock the range of blocks outside the boundaries
916 * of the lower and upper boundary address
7d70f334 917 *
8b6e50c9 918 * Returs unlock status.
7d70f334
VS
919 */
920static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
921 uint64_t len, int invert)
922{
923 int ret = 0;
924 int status, page;
862eba51 925 struct nand_chip *chip = mtd_to_nand(mtd);
7d70f334
VS
926
927 /* Submit address of first page to unlock */
928 page = ofs >> chip->page_shift;
929 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
930
931 /* Submit address of last page to unlock */
932 page = (ofs + len) >> chip->page_shift;
933 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
934 (page | invert) & chip->pagemask);
935
936 /* Call wait ready function */
937 status = chip->waitfunc(mtd, chip);
7d70f334 938 /* See if device thinks it succeeded */
74830966 939 if (status & NAND_STATUS_FAIL) {
289c0522 940 pr_debug("%s: error status = 0x%08x\n",
7d70f334
VS
941 __func__, status);
942 ret = -EIO;
943 }
944
945 return ret;
946}
947
948/**
b6d676db 949 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
b6d676db
RD
950 * @mtd: mtd info
951 * @ofs: offset to start unlock from
952 * @len: length to unlock
7d70f334 953 *
8b6e50c9 954 * Returns unlock status.
7d70f334
VS
955 */
956int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
957{
958 int ret = 0;
959 int chipnr;
862eba51 960 struct nand_chip *chip = mtd_to_nand(mtd);
7d70f334 961
289c0522 962 pr_debug("%s: start = 0x%012llx, len = %llu\n",
7d70f334
VS
963 __func__, (unsigned long long)ofs, len);
964
965 if (check_offs_len(mtd, ofs, len))
b1a2348a 966 return -EINVAL;
7d70f334
VS
967
968 /* Align to last block address if size addresses end of the device */
969 if (ofs + len == mtd->size)
970 len -= mtd->erasesize;
971
6a8214aa 972 nand_get_device(mtd, FL_UNLOCKING);
7d70f334
VS
973
974 /* Shift to get chip number */
975 chipnr = ofs >> chip->chip_shift;
976
977 chip->select_chip(mtd, chipnr);
978
57d3a9a8
WD
979 /*
980 * Reset the chip.
981 * If we want to check the WP through READ STATUS and check the bit 7
982 * we must reset the chip
983 * some operation can also clear the bit 7 of status register
984 * eg. erase/program a locked block
985 */
986 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
987
7d70f334
VS
988 /* Check, if it is write protected */
989 if (nand_check_wp(mtd)) {
289c0522 990 pr_debug("%s: device is write protected!\n",
7d70f334
VS
991 __func__);
992 ret = -EIO;
993 goto out;
994 }
995
996 ret = __nand_unlock(mtd, ofs, len, 0);
997
998out:
b0bb6903 999 chip->select_chip(mtd, -1);
7d70f334
VS
1000 nand_release_device(mtd);
1001
1002 return ret;
1003}
7351d3a5 1004EXPORT_SYMBOL(nand_unlock);
7d70f334
VS
1005
1006/**
b6d676db 1007 * nand_lock - [REPLACEABLE] locks all blocks present in the device
b6d676db
RD
1008 * @mtd: mtd info
1009 * @ofs: offset to start unlock from
1010 * @len: length to unlock
7d70f334 1011 *
8b6e50c9
BN
1012 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
1013 * have this feature, but it allows only to lock all blocks, not for specified
1014 * range for block. Implementing 'lock' feature by making use of 'unlock', for
1015 * now.
7d70f334 1016 *
8b6e50c9 1017 * Returns lock status.
7d70f334
VS
1018 */
1019int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1020{
1021 int ret = 0;
1022 int chipnr, status, page;
862eba51 1023 struct nand_chip *chip = mtd_to_nand(mtd);
7d70f334 1024
289c0522 1025 pr_debug("%s: start = 0x%012llx, len = %llu\n",
7d70f334
VS
1026 __func__, (unsigned long long)ofs, len);
1027
1028 if (check_offs_len(mtd, ofs, len))
b1a2348a 1029 return -EINVAL;
7d70f334 1030
6a8214aa 1031 nand_get_device(mtd, FL_LOCKING);
7d70f334
VS
1032
1033 /* Shift to get chip number */
1034 chipnr = ofs >> chip->chip_shift;
1035
1036 chip->select_chip(mtd, chipnr);
1037
57d3a9a8
WD
1038 /*
1039 * Reset the chip.
1040 * If we want to check the WP through READ STATUS and check the bit 7
1041 * we must reset the chip
1042 * some operation can also clear the bit 7 of status register
1043 * eg. erase/program a locked block
1044 */
1045 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1046
7d70f334
VS
1047 /* Check, if it is write protected */
1048 if (nand_check_wp(mtd)) {
289c0522 1049 pr_debug("%s: device is write protected!\n",
7d70f334
VS
1050 __func__);
1051 status = MTD_ERASE_FAILED;
1052 ret = -EIO;
1053 goto out;
1054 }
1055
1056 /* Submit address of first page to lock */
1057 page = ofs >> chip->page_shift;
1058 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1059
1060 /* Call wait ready function */
1061 status = chip->waitfunc(mtd, chip);
7d70f334 1062 /* See if device thinks it succeeded */
74830966 1063 if (status & NAND_STATUS_FAIL) {
289c0522 1064 pr_debug("%s: error status = 0x%08x\n",
7d70f334
VS
1065 __func__, status);
1066 ret = -EIO;
1067 goto out;
1068 }
1069
1070 ret = __nand_unlock(mtd, ofs, len, 0x1);
1071
1072out:
b0bb6903 1073 chip->select_chip(mtd, -1);
7d70f334
VS
1074 nand_release_device(mtd);
1075
1076 return ret;
1077}
7351d3a5 1078EXPORT_SYMBOL(nand_lock);
7d70f334 1079
730a43fb
BB
1080/**
1081 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
1082 * @buf: buffer to test
1083 * @len: buffer length
1084 * @bitflips_threshold: maximum number of bitflips
1085 *
1086 * Check if a buffer contains only 0xff, which means the underlying region
1087 * has been erased and is ready to be programmed.
1088 * The bitflips_threshold specify the maximum number of bitflips before
1089 * considering the region is not erased.
1090 * Note: The logic of this function has been extracted from the memweight
1091 * implementation, except that nand_check_erased_buf function exit before
1092 * testing the whole buffer if the number of bitflips exceed the
1093 * bitflips_threshold value.
1094 *
1095 * Returns a positive number of bitflips less than or equal to
1096 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1097 * threshold.
1098 */
1099static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
1100{
1101 const unsigned char *bitmap = buf;
1102 int bitflips = 0;
1103 int weight;
1104
1105 for (; len && ((uintptr_t)bitmap) % sizeof(long);
1106 len--, bitmap++) {
1107 weight = hweight8(*bitmap);
1108 bitflips += BITS_PER_BYTE - weight;
1109 if (unlikely(bitflips > bitflips_threshold))
1110 return -EBADMSG;
1111 }
1112
1113 for (; len >= sizeof(long);
1114 len -= sizeof(long), bitmap += sizeof(long)) {
1115 weight = hweight_long(*((unsigned long *)bitmap));
1116 bitflips += BITS_PER_LONG - weight;
1117 if (unlikely(bitflips > bitflips_threshold))
1118 return -EBADMSG;
1119 }
1120
1121 for (; len > 0; len--, bitmap++) {
1122 weight = hweight8(*bitmap);
1123 bitflips += BITS_PER_BYTE - weight;
1124 if (unlikely(bitflips > bitflips_threshold))
1125 return -EBADMSG;
1126 }
1127
1128 return bitflips;
1129}
1130
1131/**
1132 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
1133 * 0xff data
1134 * @data: data buffer to test
1135 * @datalen: data length
1136 * @ecc: ECC buffer
1137 * @ecclen: ECC length
1138 * @extraoob: extra OOB buffer
1139 * @extraooblen: extra OOB length
1140 * @bitflips_threshold: maximum number of bitflips
1141 *
1142 * Check if a data buffer and its associated ECC and OOB data contains only
1143 * 0xff pattern, which means the underlying region has been erased and is
1144 * ready to be programmed.
1145 * The bitflips_threshold specify the maximum number of bitflips before
1146 * considering the region as not erased.
1147 *
1148 * Note:
1149 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
1150 * different from the NAND page size. When fixing bitflips, ECC engines will
1151 * report the number of errors per chunk, and the NAND core infrastructure
1152 * expect you to return the maximum number of bitflips for the whole page.
1153 * This is why you should always use this function on a single chunk and
1154 * not on the whole page. After checking each chunk you should update your
1155 * max_bitflips value accordingly.
1156 * 2/ When checking for bitflips in erased pages you should not only check
1157 * the payload data but also their associated ECC data, because a user might
1158 * have programmed almost all bits to 1 but a few. In this case, we
1159 * shouldn't consider the chunk as erased, and checking ECC bytes prevent
1160 * this case.
1161 * 3/ The extraoob argument is optional, and should be used if some of your OOB
1162 * data are protected by the ECC engine.
1163 * It could also be used if you support subpages and want to attach some
1164 * extra OOB data to an ECC chunk.
1165 *
1166 * Returns a positive number of bitflips less than or equal to
1167 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1168 * threshold. In case of success, the passed buffers are filled with 0xff.
1169 */
1170int nand_check_erased_ecc_chunk(void *data, int datalen,
1171 void *ecc, int ecclen,
1172 void *extraoob, int extraooblen,
1173 int bitflips_threshold)
1174{
1175 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
1176
1177 data_bitflips = nand_check_erased_buf(data, datalen,
1178 bitflips_threshold);
1179 if (data_bitflips < 0)
1180 return data_bitflips;
1181
1182 bitflips_threshold -= data_bitflips;
1183
1184 ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
1185 if (ecc_bitflips < 0)
1186 return ecc_bitflips;
1187
1188 bitflips_threshold -= ecc_bitflips;
1189
1190 extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
1191 bitflips_threshold);
1192 if (extraoob_bitflips < 0)
1193 return extraoob_bitflips;
1194
1195 if (data_bitflips)
1196 memset(data, 0xff, datalen);
1197
1198 if (ecc_bitflips)
1199 memset(ecc, 0xff, ecclen);
1200
1201 if (extraoob_bitflips)
1202 memset(extraoob, 0xff, extraooblen);
1203
1204 return data_bitflips + ecc_bitflips + extraoob_bitflips;
1205}
1206EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
1207
8593fbc6 1208/**
7854d3f7 1209 * nand_read_page_raw - [INTERN] read raw page data without ecc
8b6e50c9
BN
1210 * @mtd: mtd info structure
1211 * @chip: nand chip info structure
1212 * @buf: buffer to store read data
1fbb938d 1213 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1214 * @page: page number to read
52ff49df 1215 *
7854d3f7 1216 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6
TG
1217 */
1218static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1219 uint8_t *buf, int oob_required, int page)
8593fbc6
TG
1220{
1221 chip->read_buf(mtd, buf, mtd->writesize);
279f08d4
BN
1222 if (oob_required)
1223 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
8593fbc6
TG
1224 return 0;
1225}
1226
52ff49df 1227/**
7854d3f7 1228 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
8b6e50c9
BN
1229 * @mtd: mtd info structure
1230 * @chip: nand chip info structure
1231 * @buf: buffer to store read data
1fbb938d 1232 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1233 * @page: page number to read
52ff49df
DB
1234 *
1235 * We need a special oob layout and handling even when OOB isn't used.
1236 */
7351d3a5 1237static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1fbb938d
BN
1238 struct nand_chip *chip, uint8_t *buf,
1239 int oob_required, int page)
52ff49df
DB
1240{
1241 int eccsize = chip->ecc.size;
1242 int eccbytes = chip->ecc.bytes;
1243 uint8_t *oob = chip->oob_poi;
1244 int steps, size;
1245
1246 for (steps = chip->ecc.steps; steps > 0; steps--) {
1247 chip->read_buf(mtd, buf, eccsize);
1248 buf += eccsize;
1249
1250 if (chip->ecc.prepad) {
1251 chip->read_buf(mtd, oob, chip->ecc.prepad);
1252 oob += chip->ecc.prepad;
1253 }
1254
1255 chip->read_buf(mtd, oob, eccbytes);
1256 oob += eccbytes;
1257
1258 if (chip->ecc.postpad) {
1259 chip->read_buf(mtd, oob, chip->ecc.postpad);
1260 oob += chip->ecc.postpad;
1261 }
1262 }
1263
1264 size = mtd->oobsize - (oob - chip->oob_poi);
1265 if (size)
1266 chip->read_buf(mtd, oob, size);
1267
1268 return 0;
1269}
1270
1da177e4 1271/**
7854d3f7 1272 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
8b6e50c9
BN
1273 * @mtd: mtd info structure
1274 * @chip: nand chip info structure
1275 * @buf: buffer to store read data
1fbb938d 1276 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1277 * @page: page number to read
068e3c0a 1278 */
f5bbdacc 1279static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1280 uint8_t *buf, int oob_required, int page)
1da177e4 1281{
f5bbdacc
TG
1282 int i, eccsize = chip->ecc.size;
1283 int eccbytes = chip->ecc.bytes;
1284 int eccsteps = chip->ecc.steps;
1285 uint8_t *p = buf;
4bf63fcb
DW
1286 uint8_t *ecc_calc = chip->buffers->ecccalc;
1287 uint8_t *ecc_code = chip->buffers->ecccode;
8b099a39 1288 uint32_t *eccpos = chip->ecc.layout->eccpos;
3f91e94f 1289 unsigned int max_bitflips = 0;
f5bbdacc 1290
1fbb938d 1291 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
f5bbdacc
TG
1292
1293 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1294 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1295
1296 for (i = 0; i < chip->ecc.total; i++)
f75e5097 1297 ecc_code[i] = chip->oob_poi[eccpos[i]];
f5bbdacc
TG
1298
1299 eccsteps = chip->ecc.steps;
1300 p = buf;
1301
1302 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1303 int stat;
1304
1305 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3f91e94f 1306 if (stat < 0) {
f5bbdacc 1307 mtd->ecc_stats.failed++;
3f91e94f 1308 } else {
f5bbdacc 1309 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1310 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1311 }
f5bbdacc 1312 }
3f91e94f 1313 return max_bitflips;
22c60f5f 1314}
1da177e4 1315
3d459559 1316/**
837a6ba4 1317 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
8b6e50c9
BN
1318 * @mtd: mtd info structure
1319 * @chip: nand chip info structure
1320 * @data_offs: offset of requested data within the page
1321 * @readlen: data length
1322 * @bufpoi: buffer to store read data
e004debd 1323 * @page: page number to read
3d459559 1324 */
7351d3a5 1325static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
e004debd
HS
1326 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1327 int page)
3d459559
AK
1328{
1329 int start_step, end_step, num_steps;
1330 uint32_t *eccpos = chip->ecc.layout->eccpos;
1331 uint8_t *p;
1332 int data_col_addr, i, gaps = 0;
1333 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1334 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
4a4163ca 1335 int index;
3f91e94f 1336 unsigned int max_bitflips = 0;
3d459559 1337
7854d3f7 1338 /* Column address within the page aligned to ECC size (256bytes) */
3d459559
AK
1339 start_step = data_offs / chip->ecc.size;
1340 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1341 num_steps = end_step - start_step + 1;
4a4163ca 1342 index = start_step * chip->ecc.bytes;
3d459559 1343
8b6e50c9 1344 /* Data size aligned to ECC ecc.size */
3d459559
AK
1345 datafrag_len = num_steps * chip->ecc.size;
1346 eccfrag_len = num_steps * chip->ecc.bytes;
1347
1348 data_col_addr = start_step * chip->ecc.size;
1349 /* If we read not a page aligned data */
1350 if (data_col_addr != 0)
1351 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1352
1353 p = bufpoi + data_col_addr;
1354 chip->read_buf(mtd, p, datafrag_len);
1355
8b6e50c9 1356 /* Calculate ECC */
3d459559
AK
1357 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1358 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1359
8b6e50c9
BN
1360 /*
1361 * The performance is faster if we position offsets according to
7854d3f7 1362 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
8b6e50c9 1363 */
3d459559 1364 for (i = 0; i < eccfrag_len - 1; i++) {
47570bb1 1365 if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
3d459559
AK
1366 gaps = 1;
1367 break;
1368 }
1369 }
1370 if (gaps) {
1371 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1372 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1373 } else {
8b6e50c9 1374 /*
7854d3f7 1375 * Send the command to read the particular ECC bytes take care
8b6e50c9
BN
1376 * about buswidth alignment in read_buf.
1377 */
7351d3a5 1378 aligned_pos = eccpos[index] & ~(busw - 1);
3d459559 1379 aligned_len = eccfrag_len;
7351d3a5 1380 if (eccpos[index] & (busw - 1))
3d459559 1381 aligned_len++;
7351d3a5 1382 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
3d459559
AK
1383 aligned_len++;
1384
7351d3a5
FF
1385 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1386 mtd->writesize + aligned_pos, -1);
3d459559
AK
1387 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1388 }
1389
1390 for (i = 0; i < eccfrag_len; i++)
7351d3a5 1391 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
3d459559
AK
1392
1393 p = bufpoi + data_col_addr;
1394 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1395 int stat;
1396
7351d3a5
FF
1397 stat = chip->ecc.correct(mtd, p,
1398 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
40cbe6ee
BB
1399 if (stat == -EBADMSG &&
1400 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1401 /* check for empty pages with bitflips */
1402 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1403 &chip->buffers->ecccode[i],
1404 chip->ecc.bytes,
1405 NULL, 0,
1406 chip->ecc.strength);
1407 }
1408
3f91e94f 1409 if (stat < 0) {
3d459559 1410 mtd->ecc_stats.failed++;
3f91e94f 1411 } else {
3d459559 1412 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1413 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1414 }
3d459559 1415 }
3f91e94f 1416 return max_bitflips;
3d459559
AK
1417}
1418
068e3c0a 1419/**
7854d3f7 1420 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
8b6e50c9
BN
1421 * @mtd: mtd info structure
1422 * @chip: nand chip info structure
1423 * @buf: buffer to store read data
1fbb938d 1424 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1425 * @page: page number to read
068e3c0a 1426 *
7854d3f7 1427 * Not for syndrome calculating ECC controllers which need a special oob layout.
068e3c0a 1428 */
f5bbdacc 1429static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1430 uint8_t *buf, int oob_required, int page)
1da177e4 1431{
f5bbdacc
TG
1432 int i, eccsize = chip->ecc.size;
1433 int eccbytes = chip->ecc.bytes;
1434 int eccsteps = chip->ecc.steps;
1435 uint8_t *p = buf;
4bf63fcb
DW
1436 uint8_t *ecc_calc = chip->buffers->ecccalc;
1437 uint8_t *ecc_code = chip->buffers->ecccode;
8b099a39 1438 uint32_t *eccpos = chip->ecc.layout->eccpos;
3f91e94f 1439 unsigned int max_bitflips = 0;
f5bbdacc
TG
1440
1441 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1442 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1443 chip->read_buf(mtd, p, eccsize);
1444 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1da177e4 1445 }
f75e5097 1446 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1da177e4 1447
f5bbdacc 1448 for (i = 0; i < chip->ecc.total; i++)
f75e5097 1449 ecc_code[i] = chip->oob_poi[eccpos[i]];
1da177e4 1450
f5bbdacc
TG
1451 eccsteps = chip->ecc.steps;
1452 p = buf;
61b03bd7 1453
f5bbdacc
TG
1454 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1455 int stat;
1da177e4 1456
f5bbdacc 1457 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
40cbe6ee
BB
1458 if (stat == -EBADMSG &&
1459 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1460 /* check for empty pages with bitflips */
1461 stat = nand_check_erased_ecc_chunk(p, eccsize,
1462 &ecc_code[i], eccbytes,
1463 NULL, 0,
1464 chip->ecc.strength);
1465 }
1466
3f91e94f 1467 if (stat < 0) {
f5bbdacc 1468 mtd->ecc_stats.failed++;
3f91e94f 1469 } else {
f5bbdacc 1470 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1471 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1472 }
f5bbdacc 1473 }
3f91e94f 1474 return max_bitflips;
f5bbdacc 1475}
1da177e4 1476
6e0cb135 1477/**
7854d3f7 1478 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
8b6e50c9
BN
1479 * @mtd: mtd info structure
1480 * @chip: nand chip info structure
1481 * @buf: buffer to store read data
1fbb938d 1482 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1483 * @page: page number to read
6e0cb135 1484 *
8b6e50c9
BN
1485 * Hardware ECC for large page chips, require OOB to be read first. For this
1486 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1487 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1488 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1489 * the data area, by overwriting the NAND manufacturer bad block markings.
6e0cb135
SN
1490 */
1491static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1fbb938d 1492 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
6e0cb135
SN
1493{
1494 int i, eccsize = chip->ecc.size;
1495 int eccbytes = chip->ecc.bytes;
1496 int eccsteps = chip->ecc.steps;
1497 uint8_t *p = buf;
1498 uint8_t *ecc_code = chip->buffers->ecccode;
1499 uint32_t *eccpos = chip->ecc.layout->eccpos;
1500 uint8_t *ecc_calc = chip->buffers->ecccalc;
3f91e94f 1501 unsigned int max_bitflips = 0;
6e0cb135
SN
1502
1503 /* Read the OOB area first */
1504 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1505 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1506 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1507
1508 for (i = 0; i < chip->ecc.total; i++)
1509 ecc_code[i] = chip->oob_poi[eccpos[i]];
1510
1511 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1512 int stat;
1513
1514 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1515 chip->read_buf(mtd, p, eccsize);
1516 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1517
1518 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
40cbe6ee
BB
1519 if (stat == -EBADMSG &&
1520 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1521 /* check for empty pages with bitflips */
1522 stat = nand_check_erased_ecc_chunk(p, eccsize,
1523 &ecc_code[i], eccbytes,
1524 NULL, 0,
1525 chip->ecc.strength);
1526 }
1527
3f91e94f 1528 if (stat < 0) {
6e0cb135 1529 mtd->ecc_stats.failed++;
3f91e94f 1530 } else {
6e0cb135 1531 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1532 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1533 }
6e0cb135 1534 }
3f91e94f 1535 return max_bitflips;
6e0cb135
SN
1536}
1537
f5bbdacc 1538/**
7854d3f7 1539 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
8b6e50c9
BN
1540 * @mtd: mtd info structure
1541 * @chip: nand chip info structure
1542 * @buf: buffer to store read data
1fbb938d 1543 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1544 * @page: page number to read
f5bbdacc 1545 *
8b6e50c9
BN
1546 * The hw generator calculates the error syndrome automatically. Therefore we
1547 * need a special oob layout and handling.
f5bbdacc
TG
1548 */
1549static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1550 uint8_t *buf, int oob_required, int page)
f5bbdacc
TG
1551{
1552 int i, eccsize = chip->ecc.size;
1553 int eccbytes = chip->ecc.bytes;
1554 int eccsteps = chip->ecc.steps;
40cbe6ee 1555 int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
f5bbdacc 1556 uint8_t *p = buf;
f75e5097 1557 uint8_t *oob = chip->oob_poi;
3f91e94f 1558 unsigned int max_bitflips = 0;
1da177e4 1559
f5bbdacc
TG
1560 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1561 int stat;
61b03bd7 1562
f5bbdacc
TG
1563 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1564 chip->read_buf(mtd, p, eccsize);
1da177e4 1565
f5bbdacc
TG
1566 if (chip->ecc.prepad) {
1567 chip->read_buf(mtd, oob, chip->ecc.prepad);
1568 oob += chip->ecc.prepad;
1569 }
1da177e4 1570
f5bbdacc
TG
1571 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1572 chip->read_buf(mtd, oob, eccbytes);
1573 stat = chip->ecc.correct(mtd, p, oob, NULL);
61b03bd7 1574
f5bbdacc 1575 oob += eccbytes;
1da177e4 1576
f5bbdacc
TG
1577 if (chip->ecc.postpad) {
1578 chip->read_buf(mtd, oob, chip->ecc.postpad);
1579 oob += chip->ecc.postpad;
61b03bd7 1580 }
40cbe6ee
BB
1581
1582 if (stat == -EBADMSG &&
1583 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1584 /* check for empty pages with bitflips */
1585 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1586 oob - eccpadbytes,
1587 eccpadbytes,
1588 NULL, 0,
1589 chip->ecc.strength);
1590 }
1591
1592 if (stat < 0) {
1593 mtd->ecc_stats.failed++;
1594 } else {
1595 mtd->ecc_stats.corrected += stat;
1596 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1597 }
f5bbdacc 1598 }
1da177e4 1599
f5bbdacc 1600 /* Calculate remaining oob bytes */
7e4178f9 1601 i = mtd->oobsize - (oob - chip->oob_poi);
f5bbdacc
TG
1602 if (i)
1603 chip->read_buf(mtd, oob, i);
61b03bd7 1604
3f91e94f 1605 return max_bitflips;
f5bbdacc 1606}
1da177e4 1607
f5bbdacc 1608/**
7854d3f7 1609 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
8b6e50c9
BN
1610 * @chip: nand chip structure
1611 * @oob: oob destination address
1612 * @ops: oob ops structure
1613 * @len: size of oob to transfer
8593fbc6
TG
1614 */
1615static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
7014568b 1616 struct mtd_oob_ops *ops, size_t len)
8593fbc6 1617{
f8ac0414 1618 switch (ops->mode) {
8593fbc6 1619
0612b9dd
BN
1620 case MTD_OPS_PLACE_OOB:
1621 case MTD_OPS_RAW:
8593fbc6
TG
1622 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1623 return oob + len;
1624
0612b9dd 1625 case MTD_OPS_AUTO_OOB: {
8593fbc6 1626 struct nand_oobfree *free = chip->ecc.layout->oobfree;
7bc3312b
TG
1627 uint32_t boffs = 0, roffs = ops->ooboffs;
1628 size_t bytes = 0;
8593fbc6 1629
f8ac0414 1630 for (; free->length && len; free++, len -= bytes) {
8b6e50c9 1631 /* Read request not from offset 0? */
7bc3312b
TG
1632 if (unlikely(roffs)) {
1633 if (roffs >= free->length) {
1634 roffs -= free->length;
1635 continue;
1636 }
1637 boffs = free->offset + roffs;
1638 bytes = min_t(size_t, len,
1639 (free->length - roffs));
1640 roffs = 0;
1641 } else {
1642 bytes = min_t(size_t, len, free->length);
1643 boffs = free->offset;
1644 }
1645 memcpy(oob, chip->oob_poi + boffs, bytes);
8593fbc6
TG
1646 oob += bytes;
1647 }
1648 return oob;
1649 }
1650 default:
1651 BUG();
1652 }
1653 return NULL;
1654}
1655
ba84fb59
BN
1656/**
1657 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1658 * @mtd: MTD device structure
1659 * @retry_mode: the retry mode to use
1660 *
1661 * Some vendors supply a special command to shift the Vt threshold, to be used
1662 * when there are too many bitflips in a page (i.e., ECC error). After setting
1663 * a new threshold, the host should retry reading the page.
1664 */
1665static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1666{
862eba51 1667 struct nand_chip *chip = mtd_to_nand(mtd);
ba84fb59
BN
1668
1669 pr_debug("setting READ RETRY mode %d\n", retry_mode);
1670
1671 if (retry_mode >= chip->read_retries)
1672 return -EINVAL;
1673
1674 if (!chip->setup_read_retry)
1675 return -EOPNOTSUPP;
1676
1677 return chip->setup_read_retry(mtd, retry_mode);
1678}
1679
8593fbc6 1680/**
7854d3f7 1681 * nand_do_read_ops - [INTERN] Read data with ECC
8b6e50c9
BN
1682 * @mtd: MTD device structure
1683 * @from: offset to read from
1684 * @ops: oob ops structure
f5bbdacc
TG
1685 *
1686 * Internal function. Called with chip held.
1687 */
8593fbc6
TG
1688static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1689 struct mtd_oob_ops *ops)
f5bbdacc 1690{
e47f3db4 1691 int chipnr, page, realpage, col, bytes, aligned, oob_required;
862eba51 1692 struct nand_chip *chip = mtd_to_nand(mtd);
f5bbdacc 1693 int ret = 0;
8593fbc6 1694 uint32_t readlen = ops->len;
7014568b 1695 uint32_t oobreadlen = ops->ooblen;
29f1058a 1696 uint32_t max_oobsize = mtd_oobavail(mtd, ops);
9aca334e 1697
8593fbc6 1698 uint8_t *bufpoi, *oob, *buf;
66507c7b 1699 int use_bufpoi;
edbc4540 1700 unsigned int max_bitflips = 0;
ba84fb59 1701 int retry_mode = 0;
b72f3dfb 1702 bool ecc_fail = false;
1da177e4 1703
f5bbdacc
TG
1704 chipnr = (int)(from >> chip->chip_shift);
1705 chip->select_chip(mtd, chipnr);
61b03bd7 1706
f5bbdacc
TG
1707 realpage = (int)(from >> chip->page_shift);
1708 page = realpage & chip->pagemask;
1da177e4 1709
f5bbdacc 1710 col = (int)(from & (mtd->writesize - 1));
61b03bd7 1711
8593fbc6
TG
1712 buf = ops->datbuf;
1713 oob = ops->oobbuf;
e47f3db4 1714 oob_required = oob ? 1 : 0;
8593fbc6 1715
f8ac0414 1716 while (1) {
b72f3dfb
BN
1717 unsigned int ecc_failures = mtd->ecc_stats.failed;
1718
f5bbdacc
TG
1719 bytes = min(mtd->writesize - col, readlen);
1720 aligned = (bytes == mtd->writesize);
61b03bd7 1721
66507c7b
KD
1722 if (!aligned)
1723 use_bufpoi = 1;
1724 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
1725 use_bufpoi = !virt_addr_valid(buf);
1726 else
1727 use_bufpoi = 0;
1728
8b6e50c9 1729 /* Is the current page in the buffer? */
8593fbc6 1730 if (realpage != chip->pagebuf || oob) {
66507c7b
KD
1731 bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
1732
1733 if (use_bufpoi && aligned)
1734 pr_debug("%s: using read bounce buffer for buf@%p\n",
1735 __func__, buf);
61b03bd7 1736
ba84fb59 1737read_retry:
c00a0991 1738 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1da177e4 1739
edbc4540
MD
1740 /*
1741 * Now read the page into the buffer. Absent an error,
1742 * the read methods return max bitflips per ecc step.
1743 */
0612b9dd 1744 if (unlikely(ops->mode == MTD_OPS_RAW))
1fbb938d 1745 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
e47f3db4
BN
1746 oob_required,
1747 page);
a5ff4f10
JW
1748 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1749 !oob)
7351d3a5 1750 ret = chip->ecc.read_subpage(mtd, chip,
e004debd
HS
1751 col, bytes, bufpoi,
1752 page);
956e944c 1753 else
46a8cf2d 1754 ret = chip->ecc.read_page(mtd, chip, bufpoi,
e47f3db4 1755 oob_required, page);
6d77b9d0 1756 if (ret < 0) {
66507c7b 1757 if (use_bufpoi)
6d77b9d0
BN
1758 /* Invalidate page cache */
1759 chip->pagebuf = -1;
1da177e4 1760 break;
6d77b9d0 1761 }
f5bbdacc 1762
edbc4540
MD
1763 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1764
f5bbdacc 1765 /* Transfer not aligned data */
66507c7b 1766 if (use_bufpoi) {
a5ff4f10 1767 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
b72f3dfb 1768 !(mtd->ecc_stats.failed - ecc_failures) &&
edbc4540 1769 (ops->mode != MTD_OPS_RAW)) {
3d459559 1770 chip->pagebuf = realpage;
edbc4540
MD
1771 chip->pagebuf_bitflips = ret;
1772 } else {
6d77b9d0
BN
1773 /* Invalidate page cache */
1774 chip->pagebuf = -1;
edbc4540 1775 }
4bf63fcb 1776 memcpy(buf, chip->buffers->databuf + col, bytes);
f5bbdacc
TG
1777 }
1778
8593fbc6 1779 if (unlikely(oob)) {
b64d39d8
ML
1780 int toread = min(oobreadlen, max_oobsize);
1781
1782 if (toread) {
1783 oob = nand_transfer_oob(chip,
1784 oob, ops, toread);
1785 oobreadlen -= toread;
1786 }
8593fbc6 1787 }
5bc7c33c
BN
1788
1789 if (chip->options & NAND_NEED_READRDY) {
1790 /* Apply delay or wait for ready/busy pin */
1791 if (!chip->dev_ready)
1792 udelay(chip->chip_delay);
1793 else
1794 nand_wait_ready(mtd);
1795 }
b72f3dfb 1796
ba84fb59 1797 if (mtd->ecc_stats.failed - ecc_failures) {
28fa65e6 1798 if (retry_mode + 1 < chip->read_retries) {
ba84fb59
BN
1799 retry_mode++;
1800 ret = nand_setup_read_retry(mtd,
1801 retry_mode);
1802 if (ret < 0)
1803 break;
1804
1805 /* Reset failures; retry */
1806 mtd->ecc_stats.failed = ecc_failures;
1807 goto read_retry;
1808 } else {
1809 /* No more retry modes; real failure */
1810 ecc_fail = true;
1811 }
1812 }
1813
1814 buf += bytes;
8593fbc6 1815 } else {
4bf63fcb 1816 memcpy(buf, chip->buffers->databuf + col, bytes);
8593fbc6 1817 buf += bytes;
edbc4540
MD
1818 max_bitflips = max_t(unsigned int, max_bitflips,
1819 chip->pagebuf_bitflips);
8593fbc6 1820 }
1da177e4 1821
f5bbdacc 1822 readlen -= bytes;
61b03bd7 1823
ba84fb59
BN
1824 /* Reset to retry mode 0 */
1825 if (retry_mode) {
1826 ret = nand_setup_read_retry(mtd, 0);
1827 if (ret < 0)
1828 break;
1829 retry_mode = 0;
1830 }
1831
f5bbdacc 1832 if (!readlen)
61b03bd7 1833 break;
1da177e4 1834
8b6e50c9 1835 /* For subsequent reads align to page boundary */
1da177e4
LT
1836 col = 0;
1837 /* Increment page address */
1838 realpage++;
1839
ace4dfee 1840 page = realpage & chip->pagemask;
1da177e4
LT
1841 /* Check, if we cross a chip boundary */
1842 if (!page) {
1843 chipnr++;
ace4dfee
TG
1844 chip->select_chip(mtd, -1);
1845 chip->select_chip(mtd, chipnr);
1da177e4 1846 }
1da177e4 1847 }
b0bb6903 1848 chip->select_chip(mtd, -1);
1da177e4 1849
8593fbc6 1850 ops->retlen = ops->len - (size_t) readlen;
7014568b
VW
1851 if (oob)
1852 ops->oobretlen = ops->ooblen - oobreadlen;
1da177e4 1853
3f91e94f 1854 if (ret < 0)
f5bbdacc
TG
1855 return ret;
1856
b72f3dfb 1857 if (ecc_fail)
9a1fcdfd
TG
1858 return -EBADMSG;
1859
edbc4540 1860 return max_bitflips;
f5bbdacc
TG
1861}
1862
1863/**
25985edc 1864 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
8b6e50c9
BN
1865 * @mtd: MTD device structure
1866 * @from: offset to read from
1867 * @len: number of bytes to read
1868 * @retlen: pointer to variable to store the number of read bytes
1869 * @buf: the databuffer to put data
f5bbdacc 1870 *
8b6e50c9 1871 * Get hold of the chip and call nand_do_read.
f5bbdacc
TG
1872 */
1873static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1874 size_t *retlen, uint8_t *buf)
1875{
4a89ff88 1876 struct mtd_oob_ops ops;
f5bbdacc
TG
1877 int ret;
1878
6a8214aa 1879 nand_get_device(mtd, FL_READING);
0ec56dc4 1880 memset(&ops, 0, sizeof(ops));
4a89ff88
BN
1881 ops.len = len;
1882 ops.datbuf = buf;
11041ae6 1883 ops.mode = MTD_OPS_PLACE_OOB;
4a89ff88 1884 ret = nand_do_read_ops(mtd, from, &ops);
4a89ff88 1885 *retlen = ops.retlen;
f5bbdacc 1886 nand_release_device(mtd);
f5bbdacc 1887 return ret;
1da177e4
LT
1888}
1889
7bc3312b 1890/**
7854d3f7 1891 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
8b6e50c9
BN
1892 * @mtd: mtd info structure
1893 * @chip: nand chip info structure
1894 * @page: page number to read
7bc3312b
TG
1895 */
1896static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
5c2ffb11 1897 int page)
7bc3312b 1898{
5c2ffb11 1899 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
7bc3312b 1900 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
5c2ffb11 1901 return 0;
7bc3312b
TG
1902}
1903
1904/**
7854d3f7 1905 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
7bc3312b 1906 * with syndromes
8b6e50c9
BN
1907 * @mtd: mtd info structure
1908 * @chip: nand chip info structure
1909 * @page: page number to read
7bc3312b
TG
1910 */
1911static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
5c2ffb11 1912 int page)
7bc3312b 1913{
7bc3312b
TG
1914 int length = mtd->oobsize;
1915 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1916 int eccsize = chip->ecc.size;
2ea69d21 1917 uint8_t *bufpoi = chip->oob_poi;
7bc3312b
TG
1918 int i, toread, sndrnd = 0, pos;
1919
1920 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1921 for (i = 0; i < chip->ecc.steps; i++) {
1922 if (sndrnd) {
1923 pos = eccsize + i * (eccsize + chunk);
1924 if (mtd->writesize > 512)
1925 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1926 else
1927 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1928 } else
1929 sndrnd = 1;
1930 toread = min_t(int, length, chunk);
1931 chip->read_buf(mtd, bufpoi, toread);
1932 bufpoi += toread;
1933 length -= toread;
1934 }
1935 if (length > 0)
1936 chip->read_buf(mtd, bufpoi, length);
1937
5c2ffb11 1938 return 0;
7bc3312b
TG
1939}
1940
1941/**
7854d3f7 1942 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
8b6e50c9
BN
1943 * @mtd: mtd info structure
1944 * @chip: nand chip info structure
1945 * @page: page number to write
7bc3312b
TG
1946 */
1947static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1948 int page)
1949{
1950 int status = 0;
1951 const uint8_t *buf = chip->oob_poi;
1952 int length = mtd->oobsize;
1953
1954 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1955 chip->write_buf(mtd, buf, length);
1956 /* Send command to program the OOB data */
1957 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1958
1959 status = chip->waitfunc(mtd, chip);
1960
0d420f9d 1961 return status & NAND_STATUS_FAIL ? -EIO : 0;
7bc3312b
TG
1962}
1963
1964/**
7854d3f7 1965 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
8b6e50c9
BN
1966 * with syndrome - only for large page flash
1967 * @mtd: mtd info structure
1968 * @chip: nand chip info structure
1969 * @page: page number to write
7bc3312b
TG
1970 */
1971static int nand_write_oob_syndrome(struct mtd_info *mtd,
1972 struct nand_chip *chip, int page)
1973{
1974 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1975 int eccsize = chip->ecc.size, length = mtd->oobsize;
1976 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1977 const uint8_t *bufpoi = chip->oob_poi;
1978
1979 /*
1980 * data-ecc-data-ecc ... ecc-oob
1981 * or
1982 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1983 */
1984 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1985 pos = steps * (eccsize + chunk);
1986 steps = 0;
1987 } else
8b0036ee 1988 pos = eccsize;
7bc3312b
TG
1989
1990 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1991 for (i = 0; i < steps; i++) {
1992 if (sndcmd) {
1993 if (mtd->writesize <= 512) {
1994 uint32_t fill = 0xFFFFFFFF;
1995
1996 len = eccsize;
1997 while (len > 0) {
1998 int num = min_t(int, len, 4);
1999 chip->write_buf(mtd, (uint8_t *)&fill,
2000 num);
2001 len -= num;
2002 }
2003 } else {
2004 pos = eccsize + i * (eccsize + chunk);
2005 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
2006 }
2007 } else
2008 sndcmd = 1;
2009 len = min_t(int, length, chunk);
2010 chip->write_buf(mtd, bufpoi, len);
2011 bufpoi += len;
2012 length -= len;
2013 }
2014 if (length > 0)
2015 chip->write_buf(mtd, bufpoi, length);
2016
2017 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2018 status = chip->waitfunc(mtd, chip);
2019
2020 return status & NAND_STATUS_FAIL ? -EIO : 0;
2021}
2022
1da177e4 2023/**
7854d3f7 2024 * nand_do_read_oob - [INTERN] NAND read out-of-band
8b6e50c9
BN
2025 * @mtd: MTD device structure
2026 * @from: offset to read from
2027 * @ops: oob operations description structure
1da177e4 2028 *
8b6e50c9 2029 * NAND read out-of-band data from the spare area.
1da177e4 2030 */
8593fbc6
TG
2031static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
2032 struct mtd_oob_ops *ops)
1da177e4 2033{
c00a0991 2034 int page, realpage, chipnr;
862eba51 2035 struct nand_chip *chip = mtd_to_nand(mtd);
041e4575 2036 struct mtd_ecc_stats stats;
7014568b
VW
2037 int readlen = ops->ooblen;
2038 int len;
7bc3312b 2039 uint8_t *buf = ops->oobbuf;
1951f2f7 2040 int ret = 0;
61b03bd7 2041
289c0522 2042 pr_debug("%s: from = 0x%08Lx, len = %i\n",
20d8e248 2043 __func__, (unsigned long long)from, readlen);
1da177e4 2044
041e4575
BN
2045 stats = mtd->ecc_stats;
2046
29f1058a 2047 len = mtd_oobavail(mtd, ops);
03736155
AH
2048
2049 if (unlikely(ops->ooboffs >= len)) {
289c0522
BN
2050 pr_debug("%s: attempt to start read outside oob\n",
2051 __func__);
03736155
AH
2052 return -EINVAL;
2053 }
2054
2055 /* Do not allow reads past end of device */
2056 if (unlikely(from >= mtd->size ||
2057 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
2058 (from >> chip->page_shift)) * len)) {
289c0522
BN
2059 pr_debug("%s: attempt to read beyond end of device\n",
2060 __func__);
03736155
AH
2061 return -EINVAL;
2062 }
7014568b 2063
7314e9e7 2064 chipnr = (int)(from >> chip->chip_shift);
ace4dfee 2065 chip->select_chip(mtd, chipnr);
1da177e4 2066
7314e9e7
TG
2067 /* Shift to get page */
2068 realpage = (int)(from >> chip->page_shift);
2069 page = realpage & chip->pagemask;
1da177e4 2070
f8ac0414 2071 while (1) {
0612b9dd 2072 if (ops->mode == MTD_OPS_RAW)
1951f2f7 2073 ret = chip->ecc.read_oob_raw(mtd, chip, page);
c46f6483 2074 else
1951f2f7
SL
2075 ret = chip->ecc.read_oob(mtd, chip, page);
2076
2077 if (ret < 0)
2078 break;
7014568b
VW
2079
2080 len = min(len, readlen);
2081 buf = nand_transfer_oob(chip, buf, ops, len);
8593fbc6 2082
5bc7c33c
BN
2083 if (chip->options & NAND_NEED_READRDY) {
2084 /* Apply delay or wait for ready/busy pin */
2085 if (!chip->dev_ready)
2086 udelay(chip->chip_delay);
2087 else
2088 nand_wait_ready(mtd);
2089 }
2090
7014568b 2091 readlen -= len;
0d420f9d
SZ
2092 if (!readlen)
2093 break;
2094
7314e9e7
TG
2095 /* Increment page address */
2096 realpage++;
2097
2098 page = realpage & chip->pagemask;
2099 /* Check, if we cross a chip boundary */
2100 if (!page) {
2101 chipnr++;
2102 chip->select_chip(mtd, -1);
2103 chip->select_chip(mtd, chipnr);
1da177e4
LT
2104 }
2105 }
b0bb6903 2106 chip->select_chip(mtd, -1);
1da177e4 2107
1951f2f7
SL
2108 ops->oobretlen = ops->ooblen - readlen;
2109
2110 if (ret < 0)
2111 return ret;
041e4575
BN
2112
2113 if (mtd->ecc_stats.failed - stats.failed)
2114 return -EBADMSG;
2115
2116 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1da177e4
LT
2117}
2118
2119/**
8593fbc6 2120 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
8b6e50c9
BN
2121 * @mtd: MTD device structure
2122 * @from: offset to read from
2123 * @ops: oob operation description structure
1da177e4 2124 *
8b6e50c9 2125 * NAND read data and/or out-of-band data.
1da177e4 2126 */
8593fbc6
TG
2127static int nand_read_oob(struct mtd_info *mtd, loff_t from,
2128 struct mtd_oob_ops *ops)
1da177e4 2129{
8593fbc6
TG
2130 int ret = -ENOTSUPP;
2131
2132 ops->retlen = 0;
1da177e4
LT
2133
2134 /* Do not allow reads past end of device */
7014568b 2135 if (ops->datbuf && (from + ops->len) > mtd->size) {
289c0522
BN
2136 pr_debug("%s: attempt to read beyond end of device\n",
2137 __func__);
1da177e4
LT
2138 return -EINVAL;
2139 }
2140
6a8214aa 2141 nand_get_device(mtd, FL_READING);
1da177e4 2142
f8ac0414 2143 switch (ops->mode) {
0612b9dd
BN
2144 case MTD_OPS_PLACE_OOB:
2145 case MTD_OPS_AUTO_OOB:
2146 case MTD_OPS_RAW:
8593fbc6 2147 break;
1da177e4 2148
8593fbc6
TG
2149 default:
2150 goto out;
2151 }
1da177e4 2152
8593fbc6
TG
2153 if (!ops->datbuf)
2154 ret = nand_do_read_oob(mtd, from, ops);
2155 else
2156 ret = nand_do_read_ops(mtd, from, ops);
61b03bd7 2157
7351d3a5 2158out:
8593fbc6
TG
2159 nand_release_device(mtd);
2160 return ret;
2161}
61b03bd7 2162
1da177e4 2163
8593fbc6 2164/**
7854d3f7 2165 * nand_write_page_raw - [INTERN] raw page write function
8b6e50c9
BN
2166 * @mtd: mtd info structure
2167 * @chip: nand chip info structure
2168 * @buf: data buffer
1fbb938d 2169 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2170 * @page: page number to write
52ff49df 2171 *
7854d3f7 2172 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6 2173 */
fdbad98d 2174static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
45aaeff9 2175 const uint8_t *buf, int oob_required, int page)
8593fbc6
TG
2176{
2177 chip->write_buf(mtd, buf, mtd->writesize);
279f08d4
BN
2178 if (oob_required)
2179 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
fdbad98d
JW
2180
2181 return 0;
1da177e4
LT
2182}
2183
52ff49df 2184/**
7854d3f7 2185 * nand_write_page_raw_syndrome - [INTERN] raw page write function
8b6e50c9
BN
2186 * @mtd: mtd info structure
2187 * @chip: nand chip info structure
2188 * @buf: data buffer
1fbb938d 2189 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2190 * @page: page number to write
52ff49df
DB
2191 *
2192 * We need a special oob layout and handling even when ECC isn't checked.
2193 */
fdbad98d 2194static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
7351d3a5 2195 struct nand_chip *chip,
45aaeff9
BB
2196 const uint8_t *buf, int oob_required,
2197 int page)
52ff49df
DB
2198{
2199 int eccsize = chip->ecc.size;
2200 int eccbytes = chip->ecc.bytes;
2201 uint8_t *oob = chip->oob_poi;
2202 int steps, size;
2203
2204 for (steps = chip->ecc.steps; steps > 0; steps--) {
2205 chip->write_buf(mtd, buf, eccsize);
2206 buf += eccsize;
2207
2208 if (chip->ecc.prepad) {
2209 chip->write_buf(mtd, oob, chip->ecc.prepad);
2210 oob += chip->ecc.prepad;
2211 }
2212
60c3bc1f 2213 chip->write_buf(mtd, oob, eccbytes);
52ff49df
DB
2214 oob += eccbytes;
2215
2216 if (chip->ecc.postpad) {
2217 chip->write_buf(mtd, oob, chip->ecc.postpad);
2218 oob += chip->ecc.postpad;
2219 }
2220 }
2221
2222 size = mtd->oobsize - (oob - chip->oob_poi);
2223 if (size)
2224 chip->write_buf(mtd, oob, size);
fdbad98d
JW
2225
2226 return 0;
52ff49df 2227}
9223a456 2228/**
7854d3f7 2229 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
8b6e50c9
BN
2230 * @mtd: mtd info structure
2231 * @chip: nand chip info structure
2232 * @buf: data buffer
1fbb938d 2233 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2234 * @page: page number to write
9223a456 2235 */
fdbad98d 2236static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
45aaeff9
BB
2237 const uint8_t *buf, int oob_required,
2238 int page)
9223a456 2239{
f75e5097
TG
2240 int i, eccsize = chip->ecc.size;
2241 int eccbytes = chip->ecc.bytes;
2242 int eccsteps = chip->ecc.steps;
4bf63fcb 2243 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 2244 const uint8_t *p = buf;
8b099a39 2245 uint32_t *eccpos = chip->ecc.layout->eccpos;
9223a456 2246
7854d3f7 2247 /* Software ECC calculation */
8593fbc6
TG
2248 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2249 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456 2250
8593fbc6
TG
2251 for (i = 0; i < chip->ecc.total; i++)
2252 chip->oob_poi[eccpos[i]] = ecc_calc[i];
9223a456 2253
45aaeff9 2254 return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
f75e5097 2255}
9223a456 2256
f75e5097 2257/**
7854d3f7 2258 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
8b6e50c9
BN
2259 * @mtd: mtd info structure
2260 * @chip: nand chip info structure
2261 * @buf: data buffer
1fbb938d 2262 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2263 * @page: page number to write
f75e5097 2264 */
fdbad98d 2265static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
45aaeff9
BB
2266 const uint8_t *buf, int oob_required,
2267 int page)
f75e5097
TG
2268{
2269 int i, eccsize = chip->ecc.size;
2270 int eccbytes = chip->ecc.bytes;
2271 int eccsteps = chip->ecc.steps;
4bf63fcb 2272 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 2273 const uint8_t *p = buf;
8b099a39 2274 uint32_t *eccpos = chip->ecc.layout->eccpos;
9223a456 2275
f75e5097
TG
2276 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2277 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
29da9cea 2278 chip->write_buf(mtd, p, eccsize);
f75e5097 2279 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456
TG
2280 }
2281
f75e5097
TG
2282 for (i = 0; i < chip->ecc.total; i++)
2283 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2284
2285 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
fdbad98d
JW
2286
2287 return 0;
9223a456
TG
2288}
2289
837a6ba4
GP
2290
2291/**
73c8aaf4 2292 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
837a6ba4
GP
2293 * @mtd: mtd info structure
2294 * @chip: nand chip info structure
d6a95080 2295 * @offset: column address of subpage within the page
837a6ba4 2296 * @data_len: data length
d6a95080 2297 * @buf: data buffer
837a6ba4 2298 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2299 * @page: page number to write
837a6ba4
GP
2300 */
2301static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2302 struct nand_chip *chip, uint32_t offset,
d6a95080 2303 uint32_t data_len, const uint8_t *buf,
45aaeff9 2304 int oob_required, int page)
837a6ba4
GP
2305{
2306 uint8_t *oob_buf = chip->oob_poi;
2307 uint8_t *ecc_calc = chip->buffers->ecccalc;
2308 int ecc_size = chip->ecc.size;
2309 int ecc_bytes = chip->ecc.bytes;
2310 int ecc_steps = chip->ecc.steps;
2311 uint32_t *eccpos = chip->ecc.layout->eccpos;
2312 uint32_t start_step = offset / ecc_size;
2313 uint32_t end_step = (offset + data_len - 1) / ecc_size;
2314 int oob_bytes = mtd->oobsize / ecc_steps;
2315 int step, i;
2316
2317 for (step = 0; step < ecc_steps; step++) {
2318 /* configure controller for WRITE access */
2319 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2320
2321 /* write data (untouched subpages already masked by 0xFF) */
d6a95080 2322 chip->write_buf(mtd, buf, ecc_size);
837a6ba4
GP
2323
2324 /* mask ECC of un-touched subpages by padding 0xFF */
2325 if ((step < start_step) || (step > end_step))
2326 memset(ecc_calc, 0xff, ecc_bytes);
2327 else
d6a95080 2328 chip->ecc.calculate(mtd, buf, ecc_calc);
837a6ba4
GP
2329
2330 /* mask OOB of un-touched subpages by padding 0xFF */
2331 /* if oob_required, preserve OOB metadata of written subpage */
2332 if (!oob_required || (step < start_step) || (step > end_step))
2333 memset(oob_buf, 0xff, oob_bytes);
2334
d6a95080 2335 buf += ecc_size;
837a6ba4
GP
2336 ecc_calc += ecc_bytes;
2337 oob_buf += oob_bytes;
2338 }
2339
2340 /* copy calculated ECC for whole page to chip->buffer->oob */
2341 /* this include masked-value(0xFF) for unwritten subpages */
2342 ecc_calc = chip->buffers->ecccalc;
2343 for (i = 0; i < chip->ecc.total; i++)
2344 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2345
2346 /* write OOB buffer to NAND device */
2347 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2348
2349 return 0;
2350}
2351
2352
61b03bd7 2353/**
7854d3f7 2354 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
8b6e50c9
BN
2355 * @mtd: mtd info structure
2356 * @chip: nand chip info structure
2357 * @buf: data buffer
1fbb938d 2358 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2359 * @page: page number to write
1da177e4 2360 *
8b6e50c9
BN
2361 * The hw generator calculates the error syndrome automatically. Therefore we
2362 * need a special oob layout and handling.
f75e5097 2363 */
fdbad98d 2364static int nand_write_page_syndrome(struct mtd_info *mtd,
1fbb938d 2365 struct nand_chip *chip,
45aaeff9
BB
2366 const uint8_t *buf, int oob_required,
2367 int page)
1da177e4 2368{
f75e5097
TG
2369 int i, eccsize = chip->ecc.size;
2370 int eccbytes = chip->ecc.bytes;
2371 int eccsteps = chip->ecc.steps;
2372 const uint8_t *p = buf;
2373 uint8_t *oob = chip->oob_poi;
1da177e4 2374
f75e5097 2375 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1da177e4 2376
f75e5097
TG
2377 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2378 chip->write_buf(mtd, p, eccsize);
61b03bd7 2379
f75e5097
TG
2380 if (chip->ecc.prepad) {
2381 chip->write_buf(mtd, oob, chip->ecc.prepad);
2382 oob += chip->ecc.prepad;
2383 }
2384
2385 chip->ecc.calculate(mtd, p, oob);
2386 chip->write_buf(mtd, oob, eccbytes);
2387 oob += eccbytes;
2388
2389 if (chip->ecc.postpad) {
2390 chip->write_buf(mtd, oob, chip->ecc.postpad);
2391 oob += chip->ecc.postpad;
1da177e4 2392 }
1da177e4 2393 }
f75e5097
TG
2394
2395 /* Calculate remaining oob bytes */
7e4178f9 2396 i = mtd->oobsize - (oob - chip->oob_poi);
f75e5097
TG
2397 if (i)
2398 chip->write_buf(mtd, oob, i);
fdbad98d
JW
2399
2400 return 0;
f75e5097
TG
2401}
2402
2403/**
956e944c 2404 * nand_write_page - [REPLACEABLE] write one page
8b6e50c9
BN
2405 * @mtd: MTD device structure
2406 * @chip: NAND chip descriptor
837a6ba4
GP
2407 * @offset: address offset within the page
2408 * @data_len: length of actual data to be written
8b6e50c9 2409 * @buf: the data to write
1fbb938d 2410 * @oob_required: must write chip->oob_poi to OOB
8b6e50c9
BN
2411 * @page: page number to write
2412 * @cached: cached programming
2413 * @raw: use _raw version of write_page
f75e5097
TG
2414 */
2415static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
837a6ba4
GP
2416 uint32_t offset, int data_len, const uint8_t *buf,
2417 int oob_required, int page, int cached, int raw)
f75e5097 2418{
837a6ba4
GP
2419 int status, subpage;
2420
2421 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2422 chip->ecc.write_subpage)
2423 subpage = offset || (data_len < mtd->writesize);
2424 else
2425 subpage = 0;
f75e5097
TG
2426
2427 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2428
956e944c 2429 if (unlikely(raw))
837a6ba4 2430 status = chip->ecc.write_page_raw(mtd, chip, buf,
45aaeff9 2431 oob_required, page);
837a6ba4
GP
2432 else if (subpage)
2433 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
45aaeff9 2434 buf, oob_required, page);
956e944c 2435 else
45aaeff9
BB
2436 status = chip->ecc.write_page(mtd, chip, buf, oob_required,
2437 page);
fdbad98d
JW
2438
2439 if (status < 0)
2440 return status;
f75e5097
TG
2441
2442 /*
7854d3f7 2443 * Cached progamming disabled for now. Not sure if it's worth the
8b6e50c9 2444 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
f75e5097
TG
2445 */
2446 cached = 0;
2447
3239a6cd 2448 if (!cached || !NAND_HAS_CACHEPROG(chip)) {
f75e5097
TG
2449
2450 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
7bc3312b 2451 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2452 /*
2453 * See if operation failed and additional status checks are
8b6e50c9 2454 * available.
f75e5097
TG
2455 */
2456 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2457 status = chip->errstat(mtd, chip, FL_WRITING, status,
2458 page);
2459
2460 if (status & NAND_STATUS_FAIL)
2461 return -EIO;
2462 } else {
2463 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
7bc3312b 2464 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2465 }
2466
f75e5097 2467 return 0;
1da177e4
LT
2468}
2469
8593fbc6 2470/**
7854d3f7 2471 * nand_fill_oob - [INTERN] Transfer client buffer to oob
f722013e 2472 * @mtd: MTD device structure
8b6e50c9
BN
2473 * @oob: oob data buffer
2474 * @len: oob data write length
2475 * @ops: oob ops structure
8593fbc6 2476 */
f722013e
TAA
2477static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2478 struct mtd_oob_ops *ops)
8593fbc6 2479{
862eba51 2480 struct nand_chip *chip = mtd_to_nand(mtd);
f722013e
TAA
2481
2482 /*
2483 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2484 * data from a previous OOB read.
2485 */
2486 memset(chip->oob_poi, 0xff, mtd->oobsize);
2487
f8ac0414 2488 switch (ops->mode) {
8593fbc6 2489
0612b9dd
BN
2490 case MTD_OPS_PLACE_OOB:
2491 case MTD_OPS_RAW:
8593fbc6
TG
2492 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2493 return oob + len;
2494
0612b9dd 2495 case MTD_OPS_AUTO_OOB: {
8593fbc6 2496 struct nand_oobfree *free = chip->ecc.layout->oobfree;
7bc3312b
TG
2497 uint32_t boffs = 0, woffs = ops->ooboffs;
2498 size_t bytes = 0;
8593fbc6 2499
f8ac0414 2500 for (; free->length && len; free++, len -= bytes) {
8b6e50c9 2501 /* Write request not from offset 0? */
7bc3312b
TG
2502 if (unlikely(woffs)) {
2503 if (woffs >= free->length) {
2504 woffs -= free->length;
2505 continue;
2506 }
2507 boffs = free->offset + woffs;
2508 bytes = min_t(size_t, len,
2509 (free->length - woffs));
2510 woffs = 0;
2511 } else {
2512 bytes = min_t(size_t, len, free->length);
2513 boffs = free->offset;
2514 }
8b0036ee 2515 memcpy(chip->oob_poi + boffs, oob, bytes);
8593fbc6
TG
2516 oob += bytes;
2517 }
2518 return oob;
2519 }
2520 default:
2521 BUG();
2522 }
2523 return NULL;
2524}
2525
f8ac0414 2526#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
1da177e4
LT
2527
2528/**
7854d3f7 2529 * nand_do_write_ops - [INTERN] NAND write with ECC
8b6e50c9
BN
2530 * @mtd: MTD device structure
2531 * @to: offset to write to
2532 * @ops: oob operations description structure
1da177e4 2533 *
8b6e50c9 2534 * NAND write with ECC.
1da177e4 2535 */
8593fbc6
TG
2536static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2537 struct mtd_oob_ops *ops)
1da177e4 2538{
29072b96 2539 int chipnr, realpage, page, blockmask, column;
862eba51 2540 struct nand_chip *chip = mtd_to_nand(mtd);
8593fbc6 2541 uint32_t writelen = ops->len;
782ce79a
ML
2542
2543 uint32_t oobwritelen = ops->ooblen;
29f1058a 2544 uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
782ce79a 2545
8593fbc6
TG
2546 uint8_t *oob = ops->oobbuf;
2547 uint8_t *buf = ops->datbuf;
837a6ba4 2548 int ret;
e47f3db4 2549 int oob_required = oob ? 1 : 0;
1da177e4 2550
8593fbc6 2551 ops->retlen = 0;
29072b96
TG
2552 if (!writelen)
2553 return 0;
1da177e4 2554
8b6e50c9 2555 /* Reject writes, which are not page aligned */
8593fbc6 2556 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
d0370219
BN
2557 pr_notice("%s: attempt to write non page aligned data\n",
2558 __func__);
1da177e4
LT
2559 return -EINVAL;
2560 }
2561
29072b96 2562 column = to & (mtd->writesize - 1);
1da177e4 2563
6a930961
TG
2564 chipnr = (int)(to >> chip->chip_shift);
2565 chip->select_chip(mtd, chipnr);
2566
1da177e4 2567 /* Check, if it is write protected */
b0bb6903
HS
2568 if (nand_check_wp(mtd)) {
2569 ret = -EIO;
2570 goto err_out;
2571 }
1da177e4 2572
f75e5097
TG
2573 realpage = (int)(to >> chip->page_shift);
2574 page = realpage & chip->pagemask;
2575 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2576
2577 /* Invalidate the page cache, when we write to the cached page */
537ab1bd
BN
2578 if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
2579 ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
ace4dfee 2580 chip->pagebuf = -1;
61b03bd7 2581
782ce79a 2582 /* Don't allow multipage oob writes with offset */
b0bb6903
HS
2583 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2584 ret = -EINVAL;
2585 goto err_out;
2586 }
782ce79a 2587
f8ac0414 2588 while (1) {
29072b96 2589 int bytes = mtd->writesize;
f75e5097 2590 int cached = writelen > bytes && page != blockmask;
29072b96 2591 uint8_t *wbuf = buf;
66507c7b
KD
2592 int use_bufpoi;
2593 int part_pagewr = (column || writelen < (mtd->writesize - 1));
2594
2595 if (part_pagewr)
2596 use_bufpoi = 1;
2597 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
2598 use_bufpoi = !virt_addr_valid(buf);
2599 else
2600 use_bufpoi = 0;
29072b96 2601
66507c7b
KD
2602 /* Partial page write?, or need to use bounce buffer */
2603 if (use_bufpoi) {
2604 pr_debug("%s: using write bounce buffer for buf@%p\n",
2605 __func__, buf);
29072b96 2606 cached = 0;
66507c7b
KD
2607 if (part_pagewr)
2608 bytes = min_t(int, bytes - column, writelen);
29072b96
TG
2609 chip->pagebuf = -1;
2610 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2611 memcpy(&chip->buffers->databuf[column], buf, bytes);
2612 wbuf = chip->buffers->databuf;
2613 }
1da177e4 2614
782ce79a
ML
2615 if (unlikely(oob)) {
2616 size_t len = min(oobwritelen, oobmaxlen);
f722013e 2617 oob = nand_fill_oob(mtd, oob, len, ops);
782ce79a 2618 oobwritelen -= len;
f722013e
TAA
2619 } else {
2620 /* We still need to erase leftover OOB data */
2621 memset(chip->oob_poi, 0xff, mtd->oobsize);
782ce79a 2622 }
837a6ba4
GP
2623 ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2624 oob_required, page, cached,
2625 (ops->mode == MTD_OPS_RAW));
f75e5097
TG
2626 if (ret)
2627 break;
2628
2629 writelen -= bytes;
2630 if (!writelen)
2631 break;
2632
29072b96 2633 column = 0;
f75e5097
TG
2634 buf += bytes;
2635 realpage++;
2636
2637 page = realpage & chip->pagemask;
2638 /* Check, if we cross a chip boundary */
2639 if (!page) {
2640 chipnr++;
2641 chip->select_chip(mtd, -1);
2642 chip->select_chip(mtd, chipnr);
1da177e4
LT
2643 }
2644 }
8593fbc6 2645
8593fbc6 2646 ops->retlen = ops->len - writelen;
7014568b
VW
2647 if (unlikely(oob))
2648 ops->oobretlen = ops->ooblen;
b0bb6903
HS
2649
2650err_out:
2651 chip->select_chip(mtd, -1);
1da177e4
LT
2652 return ret;
2653}
2654
2af7c653
SK
2655/**
2656 * panic_nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
2657 * @mtd: MTD device structure
2658 * @to: offset to write to
2659 * @len: number of bytes to write
2660 * @retlen: pointer to variable to store the number of written bytes
2661 * @buf: the data to write
2af7c653
SK
2662 *
2663 * NAND write with ECC. Used when performing writes in interrupt context, this
2664 * may for example be called by mtdoops when writing an oops while in panic.
2665 */
2666static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2667 size_t *retlen, const uint8_t *buf)
2668{
862eba51 2669 struct nand_chip *chip = mtd_to_nand(mtd);
4a89ff88 2670 struct mtd_oob_ops ops;
2af7c653
SK
2671 int ret;
2672
8b6e50c9 2673 /* Wait for the device to get ready */
2af7c653
SK
2674 panic_nand_wait(mtd, chip, 400);
2675
8b6e50c9 2676 /* Grab the device */
2af7c653
SK
2677 panic_nand_get_device(chip, mtd, FL_WRITING);
2678
0ec56dc4 2679 memset(&ops, 0, sizeof(ops));
4a89ff88
BN
2680 ops.len = len;
2681 ops.datbuf = (uint8_t *)buf;
11041ae6 2682 ops.mode = MTD_OPS_PLACE_OOB;
2af7c653 2683
4a89ff88 2684 ret = nand_do_write_ops(mtd, to, &ops);
2af7c653 2685
4a89ff88 2686 *retlen = ops.retlen;
2af7c653
SK
2687 return ret;
2688}
2689
f75e5097 2690/**
8593fbc6 2691 * nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
2692 * @mtd: MTD device structure
2693 * @to: offset to write to
2694 * @len: number of bytes to write
2695 * @retlen: pointer to variable to store the number of written bytes
2696 * @buf: the data to write
f75e5097 2697 *
8b6e50c9 2698 * NAND write with ECC.
f75e5097 2699 */
8593fbc6
TG
2700static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2701 size_t *retlen, const uint8_t *buf)
f75e5097 2702{
4a89ff88 2703 struct mtd_oob_ops ops;
f75e5097
TG
2704 int ret;
2705
6a8214aa 2706 nand_get_device(mtd, FL_WRITING);
0ec56dc4 2707 memset(&ops, 0, sizeof(ops));
4a89ff88
BN
2708 ops.len = len;
2709 ops.datbuf = (uint8_t *)buf;
11041ae6 2710 ops.mode = MTD_OPS_PLACE_OOB;
4a89ff88 2711 ret = nand_do_write_ops(mtd, to, &ops);
4a89ff88 2712 *retlen = ops.retlen;
f75e5097 2713 nand_release_device(mtd);
8593fbc6 2714 return ret;
f75e5097 2715}
7314e9e7 2716
1da177e4 2717/**
8593fbc6 2718 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
8b6e50c9
BN
2719 * @mtd: MTD device structure
2720 * @to: offset to write to
2721 * @ops: oob operation description structure
1da177e4 2722 *
8b6e50c9 2723 * NAND write out-of-band.
1da177e4 2724 */
8593fbc6
TG
2725static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2726 struct mtd_oob_ops *ops)
1da177e4 2727{
03736155 2728 int chipnr, page, status, len;
862eba51 2729 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 2730
289c0522 2731 pr_debug("%s: to = 0x%08x, len = %i\n",
20d8e248 2732 __func__, (unsigned int)to, (int)ops->ooblen);
1da177e4 2733
29f1058a 2734 len = mtd_oobavail(mtd, ops);
03736155 2735
1da177e4 2736 /* Do not allow write past end of page */
03736155 2737 if ((ops->ooboffs + ops->ooblen) > len) {
289c0522
BN
2738 pr_debug("%s: attempt to write past end of page\n",
2739 __func__);
1da177e4
LT
2740 return -EINVAL;
2741 }
2742
03736155 2743 if (unlikely(ops->ooboffs >= len)) {
289c0522
BN
2744 pr_debug("%s: attempt to start write outside oob\n",
2745 __func__);
03736155
AH
2746 return -EINVAL;
2747 }
2748
775adc3d 2749 /* Do not allow write past end of device */
03736155
AH
2750 if (unlikely(to >= mtd->size ||
2751 ops->ooboffs + ops->ooblen >
2752 ((mtd->size >> chip->page_shift) -
2753 (to >> chip->page_shift)) * len)) {
289c0522
BN
2754 pr_debug("%s: attempt to write beyond end of device\n",
2755 __func__);
03736155
AH
2756 return -EINVAL;
2757 }
2758
7314e9e7 2759 chipnr = (int)(to >> chip->chip_shift);
ace4dfee 2760 chip->select_chip(mtd, chipnr);
1da177e4 2761
7314e9e7
TG
2762 /* Shift to get page */
2763 page = (int)(to >> chip->page_shift);
2764
2765 /*
2766 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2767 * of my DiskOnChip 2000 test units) will clear the whole data page too
2768 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2769 * it in the doc2000 driver in August 1999. dwmw2.
2770 */
ace4dfee 2771 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4
LT
2772
2773 /* Check, if it is write protected */
b0bb6903
HS
2774 if (nand_check_wp(mtd)) {
2775 chip->select_chip(mtd, -1);
8593fbc6 2776 return -EROFS;
b0bb6903 2777 }
61b03bd7 2778
1da177e4 2779 /* Invalidate the page cache, if we write to the cached page */
ace4dfee
TG
2780 if (page == chip->pagebuf)
2781 chip->pagebuf = -1;
1da177e4 2782
f722013e 2783 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
9ce244b3 2784
0612b9dd 2785 if (ops->mode == MTD_OPS_RAW)
9ce244b3
BN
2786 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2787 else
2788 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
1da177e4 2789
b0bb6903
HS
2790 chip->select_chip(mtd, -1);
2791
7bc3312b
TG
2792 if (status)
2793 return status;
1da177e4 2794
7014568b 2795 ops->oobretlen = ops->ooblen;
1da177e4 2796
7bc3312b 2797 return 0;
8593fbc6
TG
2798}
2799
2800/**
2801 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
8b6e50c9
BN
2802 * @mtd: MTD device structure
2803 * @to: offset to write to
2804 * @ops: oob operation description structure
8593fbc6
TG
2805 */
2806static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2807 struct mtd_oob_ops *ops)
2808{
8593fbc6
TG
2809 int ret = -ENOTSUPP;
2810
2811 ops->retlen = 0;
2812
2813 /* Do not allow writes past end of device */
7014568b 2814 if (ops->datbuf && (to + ops->len) > mtd->size) {
289c0522
BN
2815 pr_debug("%s: attempt to write beyond end of device\n",
2816 __func__);
8593fbc6
TG
2817 return -EINVAL;
2818 }
2819
6a8214aa 2820 nand_get_device(mtd, FL_WRITING);
8593fbc6 2821
f8ac0414 2822 switch (ops->mode) {
0612b9dd
BN
2823 case MTD_OPS_PLACE_OOB:
2824 case MTD_OPS_AUTO_OOB:
2825 case MTD_OPS_RAW:
8593fbc6
TG
2826 break;
2827
2828 default:
2829 goto out;
2830 }
2831
2832 if (!ops->datbuf)
2833 ret = nand_do_write_oob(mtd, to, ops);
2834 else
2835 ret = nand_do_write_ops(mtd, to, ops);
2836
7351d3a5 2837out:
1da177e4 2838 nand_release_device(mtd);
1da177e4
LT
2839 return ret;
2840}
2841
1da177e4 2842/**
49c50b97 2843 * single_erase - [GENERIC] NAND standard block erase command function
8b6e50c9
BN
2844 * @mtd: MTD device structure
2845 * @page: the page address of the block which will be erased
1da177e4 2846 *
49c50b97 2847 * Standard erase command for NAND chips. Returns NAND status.
1da177e4 2848 */
49c50b97 2849static int single_erase(struct mtd_info *mtd, int page)
1da177e4 2850{
862eba51 2851 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 2852 /* Send commands to erase a block */
ace4dfee
TG
2853 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2854 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
49c50b97
BN
2855
2856 return chip->waitfunc(mtd, chip);
1da177e4
LT
2857}
2858
1da177e4
LT
2859/**
2860 * nand_erase - [MTD Interface] erase block(s)
8b6e50c9
BN
2861 * @mtd: MTD device structure
2862 * @instr: erase instruction
1da177e4 2863 *
8b6e50c9 2864 * Erase one ore more blocks.
1da177e4 2865 */
e0c7d767 2866static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1da177e4 2867{
e0c7d767 2868 return nand_erase_nand(mtd, instr, 0);
1da177e4 2869}
61b03bd7 2870
1da177e4 2871/**
7854d3f7 2872 * nand_erase_nand - [INTERN] erase block(s)
8b6e50c9
BN
2873 * @mtd: MTD device structure
2874 * @instr: erase instruction
2875 * @allowbbt: allow erasing the bbt area
1da177e4 2876 *
8b6e50c9 2877 * Erase one ore more blocks.
1da177e4 2878 */
ace4dfee
TG
2879int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2880 int allowbbt)
1da177e4 2881{
69423d99 2882 int page, status, pages_per_block, ret, chipnr;
862eba51 2883 struct nand_chip *chip = mtd_to_nand(mtd);
69423d99 2884 loff_t len;
1da177e4 2885
289c0522
BN
2886 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2887 __func__, (unsigned long long)instr->addr,
2888 (unsigned long long)instr->len);
1da177e4 2889
6fe5a6ac 2890 if (check_offs_len(mtd, instr->addr, instr->len))
1da177e4 2891 return -EINVAL;
1da177e4 2892
1da177e4 2893 /* Grab the lock and see if the device is available */
6a8214aa 2894 nand_get_device(mtd, FL_ERASING);
1da177e4
LT
2895
2896 /* Shift to get first page */
ace4dfee
TG
2897 page = (int)(instr->addr >> chip->page_shift);
2898 chipnr = (int)(instr->addr >> chip->chip_shift);
1da177e4
LT
2899
2900 /* Calculate pages in each block */
ace4dfee 2901 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1da177e4
LT
2902
2903 /* Select the NAND device */
ace4dfee 2904 chip->select_chip(mtd, chipnr);
1da177e4 2905
1da177e4
LT
2906 /* Check, if it is write protected */
2907 if (nand_check_wp(mtd)) {
289c0522
BN
2908 pr_debug("%s: device is write protected!\n",
2909 __func__);
1da177e4
LT
2910 instr->state = MTD_ERASE_FAILED;
2911 goto erase_exit;
2912 }
2913
2914 /* Loop through the pages */
2915 len = instr->len;
2916
2917 instr->state = MTD_ERASING;
2918
2919 while (len) {
12183a20 2920 /* Check if we have a bad block, we do not erase bad blocks! */
ace4dfee 2921 if (nand_block_checkbad(mtd, ((loff_t) page) <<
9f3e0429 2922 chip->page_shift, allowbbt)) {
d0370219
BN
2923 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2924 __func__, page);
1da177e4
LT
2925 instr->state = MTD_ERASE_FAILED;
2926 goto erase_exit;
2927 }
61b03bd7 2928
ace4dfee
TG
2929 /*
2930 * Invalidate the page cache, if we erase the block which
8b6e50c9 2931 * contains the current cached page.
ace4dfee
TG
2932 */
2933 if (page <= chip->pagebuf && chip->pagebuf <
2934 (page + pages_per_block))
2935 chip->pagebuf = -1;
1da177e4 2936
49c50b97 2937 status = chip->erase(mtd, page & chip->pagemask);
1da177e4 2938
ace4dfee
TG
2939 /*
2940 * See if operation failed and additional status checks are
2941 * available
2942 */
2943 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2944 status = chip->errstat(mtd, chip, FL_ERASING,
2945 status, page);
068e3c0a 2946
1da177e4 2947 /* See if block erase succeeded */
a4ab4c5d 2948 if (status & NAND_STATUS_FAIL) {
289c0522
BN
2949 pr_debug("%s: failed erase, page 0x%08x\n",
2950 __func__, page);
1da177e4 2951 instr->state = MTD_ERASE_FAILED;
69423d99
AH
2952 instr->fail_addr =
2953 ((loff_t)page << chip->page_shift);
1da177e4
LT
2954 goto erase_exit;
2955 }
30f464b7 2956
1da177e4 2957 /* Increment page address and decrement length */
daae74ca 2958 len -= (1ULL << chip->phys_erase_shift);
1da177e4
LT
2959 page += pages_per_block;
2960
2961 /* Check, if we cross a chip boundary */
ace4dfee 2962 if (len && !(page & chip->pagemask)) {
1da177e4 2963 chipnr++;
ace4dfee
TG
2964 chip->select_chip(mtd, -1);
2965 chip->select_chip(mtd, chipnr);
1da177e4
LT
2966 }
2967 }
2968 instr->state = MTD_ERASE_DONE;
2969
7351d3a5 2970erase_exit:
1da177e4
LT
2971
2972 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1da177e4
LT
2973
2974 /* Deselect and wake up anyone waiting on the device */
b0bb6903 2975 chip->select_chip(mtd, -1);
1da177e4
LT
2976 nand_release_device(mtd);
2977
49defc01
DW
2978 /* Do call back function */
2979 if (!ret)
2980 mtd_erase_callback(instr);
2981
1da177e4
LT
2982 /* Return more or less happy */
2983 return ret;
2984}
2985
2986/**
2987 * nand_sync - [MTD Interface] sync
8b6e50c9 2988 * @mtd: MTD device structure
1da177e4 2989 *
8b6e50c9 2990 * Sync is actually a wait for chip ready function.
1da177e4 2991 */
e0c7d767 2992static void nand_sync(struct mtd_info *mtd)
1da177e4 2993{
289c0522 2994 pr_debug("%s: called\n", __func__);
1da177e4
LT
2995
2996 /* Grab the lock and see if the device is available */
6a8214aa 2997 nand_get_device(mtd, FL_SYNCING);
1da177e4 2998 /* Release it and go back */
e0c7d767 2999 nand_release_device(mtd);
1da177e4
LT
3000}
3001
1da177e4 3002/**
ace4dfee 3003 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
8b6e50c9
BN
3004 * @mtd: MTD device structure
3005 * @offs: offset relative to mtd start
1da177e4 3006 */
ace4dfee 3007static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
1da177e4 3008{
9f3e0429
AT
3009 struct nand_chip *chip = mtd_to_nand(mtd);
3010 int chipnr = (int)(offs >> chip->chip_shift);
3011 int ret;
3012
3013 /* Select the NAND device */
3014 nand_get_device(mtd, FL_READING);
3015 chip->select_chip(mtd, chipnr);
3016
3017 ret = nand_block_checkbad(mtd, offs, 0);
3018
3019 chip->select_chip(mtd, -1);
3020 nand_release_device(mtd);
3021
3022 return ret;
1da177e4
LT
3023}
3024
3025/**
ace4dfee 3026 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
8b6e50c9
BN
3027 * @mtd: MTD device structure
3028 * @ofs: offset relative to mtd start
1da177e4 3029 */
e0c7d767 3030static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1da177e4 3031{
1da177e4
LT
3032 int ret;
3033
f8ac0414
FF
3034 ret = nand_block_isbad(mtd, ofs);
3035 if (ret) {
8b6e50c9 3036 /* If it was bad already, return success and do nothing */
1da177e4
LT
3037 if (ret > 0)
3038 return 0;
e0c7d767
DW
3039 return ret;
3040 }
1da177e4 3041
5a0edb25 3042 return nand_block_markbad_lowlevel(mtd, ofs);
1da177e4
LT
3043}
3044
7db03ecc
HS
3045/**
3046 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
3047 * @mtd: MTD device structure
3048 * @chip: nand chip info structure
3049 * @addr: feature address.
3050 * @subfeature_param: the subfeature parameters, a four bytes array.
3051 */
3052static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
3053 int addr, uint8_t *subfeature_param)
3054{
3055 int status;
05f78359 3056 int i;
7db03ecc 3057
d914c932
DM
3058 if (!chip->onfi_version ||
3059 !(le16_to_cpu(chip->onfi_params.opt_cmd)
3060 & ONFI_OPT_CMD_SET_GET_FEATURES))
7db03ecc
HS
3061 return -EINVAL;
3062
3063 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
05f78359
UKK
3064 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3065 chip->write_byte(mtd, subfeature_param[i]);
3066
7db03ecc
HS
3067 status = chip->waitfunc(mtd, chip);
3068 if (status & NAND_STATUS_FAIL)
3069 return -EIO;
3070 return 0;
3071}
3072
3073/**
3074 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
3075 * @mtd: MTD device structure
3076 * @chip: nand chip info structure
3077 * @addr: feature address.
3078 * @subfeature_param: the subfeature parameters, a four bytes array.
3079 */
3080static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
3081 int addr, uint8_t *subfeature_param)
3082{
05f78359
UKK
3083 int i;
3084
d914c932
DM
3085 if (!chip->onfi_version ||
3086 !(le16_to_cpu(chip->onfi_params.opt_cmd)
3087 & ONFI_OPT_CMD_SET_GET_FEATURES))
7db03ecc
HS
3088 return -EINVAL;
3089
7db03ecc 3090 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
05f78359
UKK
3091 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3092 *subfeature_param++ = chip->read_byte(mtd);
7db03ecc
HS
3093 return 0;
3094}
3095
962034f4
VW
3096/**
3097 * nand_suspend - [MTD Interface] Suspend the NAND flash
8b6e50c9 3098 * @mtd: MTD device structure
962034f4
VW
3099 */
3100static int nand_suspend(struct mtd_info *mtd)
3101{
6a8214aa 3102 return nand_get_device(mtd, FL_PM_SUSPENDED);
962034f4
VW
3103}
3104
3105/**
3106 * nand_resume - [MTD Interface] Resume the NAND flash
8b6e50c9 3107 * @mtd: MTD device structure
962034f4
VW
3108 */
3109static void nand_resume(struct mtd_info *mtd)
3110{
862eba51 3111 struct nand_chip *chip = mtd_to_nand(mtd);
962034f4 3112
ace4dfee 3113 if (chip->state == FL_PM_SUSPENDED)
962034f4
VW
3114 nand_release_device(mtd);
3115 else
d0370219
BN
3116 pr_err("%s called for a chip which is not in suspended state\n",
3117 __func__);
962034f4
VW
3118}
3119
72ea4036
SB
3120/**
3121 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
3122 * prevent further operations
3123 * @mtd: MTD device structure
3124 */
3125static void nand_shutdown(struct mtd_info *mtd)
3126{
9ca641b0 3127 nand_get_device(mtd, FL_PM_SUSPENDED);
72ea4036
SB
3128}
3129
8b6e50c9 3130/* Set default functions */
ace4dfee 3131static void nand_set_defaults(struct nand_chip *chip, int busw)
7aa65bfd 3132{
1da177e4 3133 /* check for proper chip_delay setup, set 20us if not */
ace4dfee
TG
3134 if (!chip->chip_delay)
3135 chip->chip_delay = 20;
1da177e4
LT
3136
3137 /* check, if a user supplied command function given */
ace4dfee
TG
3138 if (chip->cmdfunc == NULL)
3139 chip->cmdfunc = nand_command;
1da177e4
LT
3140
3141 /* check, if a user supplied wait function given */
ace4dfee
TG
3142 if (chip->waitfunc == NULL)
3143 chip->waitfunc = nand_wait;
3144
3145 if (!chip->select_chip)
3146 chip->select_chip = nand_select_chip;
68e80780 3147
4204cccd
HS
3148 /* set for ONFI nand */
3149 if (!chip->onfi_set_features)
3150 chip->onfi_set_features = nand_onfi_set_features;
3151 if (!chip->onfi_get_features)
3152 chip->onfi_get_features = nand_onfi_get_features;
3153
68e80780
BN
3154 /* If called twice, pointers that depend on busw may need to be reset */
3155 if (!chip->read_byte || chip->read_byte == nand_read_byte)
ace4dfee
TG
3156 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
3157 if (!chip->read_word)
3158 chip->read_word = nand_read_word;
3159 if (!chip->block_bad)
3160 chip->block_bad = nand_block_bad;
3161 if (!chip->block_markbad)
3162 chip->block_markbad = nand_default_block_markbad;
68e80780 3163 if (!chip->write_buf || chip->write_buf == nand_write_buf)
ace4dfee 3164 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
05f78359
UKK
3165 if (!chip->write_byte || chip->write_byte == nand_write_byte)
3166 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
68e80780 3167 if (!chip->read_buf || chip->read_buf == nand_read_buf)
ace4dfee 3168 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
ace4dfee
TG
3169 if (!chip->scan_bbt)
3170 chip->scan_bbt = nand_default_bbt;
f75e5097
TG
3171
3172 if (!chip->controller) {
3173 chip->controller = &chip->hwcontrol;
3174 spin_lock_init(&chip->controller->lock);
3175 init_waitqueue_head(&chip->controller->wq);
3176 }
3177
7aa65bfd
TG
3178}
3179
8b6e50c9 3180/* Sanitize ONFI strings so we can safely print them */
d1e1f4e4
FF
3181static void sanitize_string(uint8_t *s, size_t len)
3182{
3183 ssize_t i;
3184
8b6e50c9 3185 /* Null terminate */
d1e1f4e4
FF
3186 s[len - 1] = 0;
3187
8b6e50c9 3188 /* Remove non printable chars */
d1e1f4e4
FF
3189 for (i = 0; i < len - 1; i++) {
3190 if (s[i] < ' ' || s[i] > 127)
3191 s[i] = '?';
3192 }
3193
8b6e50c9 3194 /* Remove trailing spaces */
d1e1f4e4
FF
3195 strim(s);
3196}
3197
3198static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
3199{
3200 int i;
3201 while (len--) {
3202 crc ^= *p++ << 8;
3203 for (i = 0; i < 8; i++)
3204 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3205 }
3206
3207 return crc;
3208}
3209
6dcbe0cd
HS
3210/* Parse the Extended Parameter Page. */
3211static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
3212 struct nand_chip *chip, struct nand_onfi_params *p)
3213{
3214 struct onfi_ext_param_page *ep;
3215 struct onfi_ext_section *s;
3216 struct onfi_ext_ecc_info *ecc;
3217 uint8_t *cursor;
3218 int ret = -EINVAL;
3219 int len;
3220 int i;
3221
3222 len = le16_to_cpu(p->ext_param_page_length) * 16;
3223 ep = kmalloc(len, GFP_KERNEL);
5cb13271
BN
3224 if (!ep)
3225 return -ENOMEM;
6dcbe0cd
HS
3226
3227 /* Send our own NAND_CMD_PARAM. */
3228 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3229
3230 /* Use the Change Read Column command to skip the ONFI param pages. */
3231 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
3232 sizeof(*p) * p->num_of_param_pages , -1);
3233
3234 /* Read out the Extended Parameter Page. */
3235 chip->read_buf(mtd, (uint8_t *)ep, len);
3236 if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3237 != le16_to_cpu(ep->crc))) {
3238 pr_debug("fail in the CRC.\n");
3239 goto ext_out;
3240 }
3241
3242 /*
3243 * Check the signature.
3244 * Do not strictly follow the ONFI spec, maybe changed in future.
3245 */
3246 if (strncmp(ep->sig, "EPPS", 4)) {
3247 pr_debug("The signature is invalid.\n");
3248 goto ext_out;
3249 }
3250
3251 /* find the ECC section. */
3252 cursor = (uint8_t *)(ep + 1);
3253 for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3254 s = ep->sections + i;
3255 if (s->type == ONFI_SECTION_TYPE_2)
3256 break;
3257 cursor += s->length * 16;
3258 }
3259 if (i == ONFI_EXT_SECTION_MAX) {
3260 pr_debug("We can not find the ECC section.\n");
3261 goto ext_out;
3262 }
3263
3264 /* get the info we want. */
3265 ecc = (struct onfi_ext_ecc_info *)cursor;
3266
4ae7d228
BN
3267 if (!ecc->codeword_size) {
3268 pr_debug("Invalid codeword size\n");
3269 goto ext_out;
6dcbe0cd
HS
3270 }
3271
4ae7d228
BN
3272 chip->ecc_strength_ds = ecc->ecc_bits;
3273 chip->ecc_step_ds = 1 << ecc->codeword_size;
5cb13271 3274 ret = 0;
6dcbe0cd
HS
3275
3276ext_out:
3277 kfree(ep);
3278 return ret;
3279}
3280
8429bb39
BN
3281static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3282{
862eba51 3283 struct nand_chip *chip = mtd_to_nand(mtd);
8429bb39
BN
3284 uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3285
3286 return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3287 feature);
3288}
3289
3290/*
3291 * Configure chip properties from Micron vendor-specific ONFI table
3292 */
3293static void nand_onfi_detect_micron(struct nand_chip *chip,
3294 struct nand_onfi_params *p)
3295{
3296 struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3297
3298 if (le16_to_cpu(p->vendor_revision) < 1)
3299 return;
3300
3301 chip->read_retries = micron->read_retry_options;
3302 chip->setup_read_retry = nand_setup_read_retry_micron;
3303}
3304
6fb277ba 3305/*
8b6e50c9 3306 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
6fb277ba
FF
3307 */
3308static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
08c248fb 3309 int *busw)
6fb277ba
FF
3310{
3311 struct nand_onfi_params *p = &chip->onfi_params;
bd9c6e99 3312 int i, j;
6fb277ba
FF
3313 int val;
3314
7854d3f7 3315 /* Try ONFI for unknown chip or LP */
6fb277ba
FF
3316 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3317 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3318 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3319 return 0;
3320
6fb277ba
FF
3321 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3322 for (i = 0; i < 3; i++) {
bd9c6e99
BN
3323 for (j = 0; j < sizeof(*p); j++)
3324 ((uint8_t *)p)[j] = chip->read_byte(mtd);
6fb277ba
FF
3325 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3326 le16_to_cpu(p->crc)) {
6fb277ba
FF
3327 break;
3328 }
3329 }
3330
c7f23a70
BN
3331 if (i == 3) {
3332 pr_err("Could not find valid ONFI parameter page; aborting\n");
6fb277ba 3333 return 0;
c7f23a70 3334 }
6fb277ba 3335
8b6e50c9 3336 /* Check version */
6fb277ba 3337 val = le16_to_cpu(p->revision);
b7b1a29d
BN
3338 if (val & (1 << 5))
3339 chip->onfi_version = 23;
3340 else if (val & (1 << 4))
6fb277ba
FF
3341 chip->onfi_version = 22;
3342 else if (val & (1 << 3))
3343 chip->onfi_version = 21;
3344 else if (val & (1 << 2))
3345 chip->onfi_version = 20;
b7b1a29d 3346 else if (val & (1 << 1))
6fb277ba 3347 chip->onfi_version = 10;
b7b1a29d
BN
3348
3349 if (!chip->onfi_version) {
20171642 3350 pr_info("unsupported ONFI version: %d\n", val);
b7b1a29d
BN
3351 return 0;
3352 }
6fb277ba
FF
3353
3354 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3355 sanitize_string(p->model, sizeof(p->model));
3356 if (!mtd->name)
3357 mtd->name = p->model;
4355b70c 3358
6fb277ba 3359 mtd->writesize = le32_to_cpu(p->byte_per_page);
4355b70c
BN
3360
3361 /*
3362 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3363 * (don't ask me who thought of this...). MTD assumes that these
3364 * dimensions will be power-of-2, so just truncate the remaining area.
3365 */
3366 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3367 mtd->erasesize *= mtd->writesize;
3368
6fb277ba 3369 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
4355b70c
BN
3370
3371 /* See erasesize comment */
3372 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
63795755 3373 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
13fbd179 3374 chip->bits_per_cell = p->bits_per_cell;
e2985fc1
HS
3375
3376 if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
08c248fb 3377 *busw = NAND_BUSWIDTH_16;
e2985fc1
HS
3378 else
3379 *busw = 0;
6fb277ba 3380
10c86bab
HS
3381 if (p->ecc_bits != 0xff) {
3382 chip->ecc_strength_ds = p->ecc_bits;
3383 chip->ecc_step_ds = 512;
6dcbe0cd
HS
3384 } else if (chip->onfi_version >= 21 &&
3385 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3386
3387 /*
3388 * The nand_flash_detect_ext_param_page() uses the
3389 * Change Read Column command which maybe not supported
3390 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3391 * now. We do not replace user supplied command function.
3392 */
3393 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3394 chip->cmdfunc = nand_command_lp;
3395
3396 /* The Extended Parameter Page is supported since ONFI 2.1. */
3397 if (nand_flash_detect_ext_param_page(mtd, chip, p))
c7f23a70
BN
3398 pr_warn("Failed to detect ONFI extended param page\n");
3399 } else {
3400 pr_warn("Could not retrieve ONFI ECC requirements\n");
10c86bab
HS
3401 }
3402
8429bb39
BN
3403 if (p->jedec_id == NAND_MFR_MICRON)
3404 nand_onfi_detect_micron(chip, p);
3405
6fb277ba
FF
3406 return 1;
3407}
3408
91361818
HS
3409/*
3410 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3411 */
3412static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
3413 int *busw)
3414{
3415 struct nand_jedec_params *p = &chip->jedec_params;
3416 struct jedec_ecc_info *ecc;
3417 int val;
3418 int i, j;
3419
3420 /* Try JEDEC for unknown chip or LP */
3421 chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3422 if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3423 chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3424 chip->read_byte(mtd) != 'C')
3425 return 0;
3426
3427 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3428 for (i = 0; i < 3; i++) {
3429 for (j = 0; j < sizeof(*p); j++)
3430 ((uint8_t *)p)[j] = chip->read_byte(mtd);
3431
3432 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3433 le16_to_cpu(p->crc))
3434 break;
3435 }
3436
3437 if (i == 3) {
3438 pr_err("Could not find valid JEDEC parameter page; aborting\n");
3439 return 0;
3440 }
3441
3442 /* Check version */
3443 val = le16_to_cpu(p->revision);
3444 if (val & (1 << 2))
3445 chip->jedec_version = 10;
3446 else if (val & (1 << 1))
3447 chip->jedec_version = 1; /* vendor specific version */
3448
3449 if (!chip->jedec_version) {
3450 pr_info("unsupported JEDEC version: %d\n", val);
3451 return 0;
3452 }
3453
3454 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3455 sanitize_string(p->model, sizeof(p->model));
3456 if (!mtd->name)
3457 mtd->name = p->model;
3458
3459 mtd->writesize = le32_to_cpu(p->byte_per_page);
3460
3461 /* Please reference to the comment for nand_flash_detect_onfi. */
3462 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3463 mtd->erasesize *= mtd->writesize;
3464
3465 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3466
3467 /* Please reference to the comment for nand_flash_detect_onfi. */
3468 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3469 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3470 chip->bits_per_cell = p->bits_per_cell;
3471
3472 if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3473 *busw = NAND_BUSWIDTH_16;
3474 else
3475 *busw = 0;
3476
3477 /* ECC info */
3478 ecc = &p->ecc_info[0];
3479
3480 if (ecc->codeword_size >= 9) {
3481 chip->ecc_strength_ds = ecc->ecc_bits;
3482 chip->ecc_step_ds = 1 << ecc->codeword_size;
3483 } else {
3484 pr_warn("Invalid codeword size\n");
3485 }
3486
3487 return 1;
3488}
3489
e3b88bd6
BN
3490/*
3491 * nand_id_has_period - Check if an ID string has a given wraparound period
3492 * @id_data: the ID string
3493 * @arrlen: the length of the @id_data array
3494 * @period: the period of repitition
3495 *
3496 * Check if an ID string is repeated within a given sequence of bytes at
3497 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
d4d4f1bf 3498 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
e3b88bd6
BN
3499 * if the repetition has a period of @period; otherwise, returns zero.
3500 */
3501static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3502{
3503 int i, j;
3504 for (i = 0; i < period; i++)
3505 for (j = i + period; j < arrlen; j += period)
3506 if (id_data[i] != id_data[j])
3507 return 0;
3508 return 1;
3509}
3510
3511/*
3512 * nand_id_len - Get the length of an ID string returned by CMD_READID
3513 * @id_data: the ID string
3514 * @arrlen: the length of the @id_data array
3515
3516 * Returns the length of the ID string, according to known wraparound/trailing
3517 * zero patterns. If no pattern exists, returns the length of the array.
3518 */
3519static int nand_id_len(u8 *id_data, int arrlen)
3520{
3521 int last_nonzero, period;
3522
3523 /* Find last non-zero byte */
3524 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3525 if (id_data[last_nonzero])
3526 break;
3527
3528 /* All zeros */
3529 if (last_nonzero < 0)
3530 return 0;
3531
3532 /* Calculate wraparound period */
3533 for (period = 1; period < arrlen; period++)
3534 if (nand_id_has_period(id_data, arrlen, period))
3535 break;
3536
3537 /* There's a repeated pattern */
3538 if (period < arrlen)
3539 return period;
3540
3541 /* There are trailing zeros */
3542 if (last_nonzero < arrlen - 1)
3543 return last_nonzero + 1;
3544
3545 /* No pattern detected */
3546 return arrlen;
3547}
3548
7db906b7
HS
3549/* Extract the bits of per cell from the 3rd byte of the extended ID */
3550static int nand_get_bits_per_cell(u8 cellinfo)
3551{
3552 int bits;
3553
3554 bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3555 bits >>= NAND_CI_CELLTYPE_SHIFT;
3556 return bits + 1;
3557}
3558
fc09bbc0
BN
3559/*
3560 * Many new NAND share similar device ID codes, which represent the size of the
3561 * chip. The rest of the parameters must be decoded according to generic or
3562 * manufacturer-specific "extended ID" decoding patterns.
3563 */
3564static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3565 u8 id_data[8], int *busw)
3566{
e3b88bd6 3567 int extid, id_len;
fc09bbc0 3568 /* The 3rd id byte holds MLC / multichip data */
7db906b7 3569 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
fc09bbc0
BN
3570 /* The 4th id byte is the important one */
3571 extid = id_data[3];
3572
e3b88bd6
BN
3573 id_len = nand_id_len(id_data, 8);
3574
fc09bbc0
BN
3575 /*
3576 * Field definitions are in the following datasheets:
3577 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
af451af4 3578 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
73ca392f 3579 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
fc09bbc0 3580 *
af451af4
BN
3581 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3582 * ID to decide what to do.
fc09bbc0 3583 */
af451af4 3584 if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
1d0ed69d 3585 !nand_is_slc(chip) && id_data[5] != 0x00) {
fc09bbc0
BN
3586 /* Calc pagesize */
3587 mtd->writesize = 2048 << (extid & 0x03);
3588 extid >>= 2;
3589 /* Calc oobsize */
e2d3a35e 3590 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
fc09bbc0
BN
3591 case 1:
3592 mtd->oobsize = 128;
3593 break;
3594 case 2:
3595 mtd->oobsize = 218;
3596 break;
3597 case 3:
3598 mtd->oobsize = 400;
3599 break;
e2d3a35e 3600 case 4:
fc09bbc0
BN
3601 mtd->oobsize = 436;
3602 break;
e2d3a35e
BN
3603 case 5:
3604 mtd->oobsize = 512;
3605 break;
3606 case 6:
e2d3a35e
BN
3607 mtd->oobsize = 640;
3608 break;
94d04e82
HS
3609 case 7:
3610 default: /* Other cases are "reserved" (unknown) */
3611 mtd->oobsize = 1024;
3612 break;
fc09bbc0
BN
3613 }
3614 extid >>= 2;
3615 /* Calc blocksize */
3616 mtd->erasesize = (128 * 1024) <<
3617 (((extid >> 1) & 0x04) | (extid & 0x03));
3618 *busw = 0;
73ca392f 3619 } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
1d0ed69d 3620 !nand_is_slc(chip)) {
73ca392f
BN
3621 unsigned int tmp;
3622
3623 /* Calc pagesize */
3624 mtd->writesize = 2048 << (extid & 0x03);
3625 extid >>= 2;
3626 /* Calc oobsize */
3627 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3628 case 0:
3629 mtd->oobsize = 128;
3630 break;
3631 case 1:
3632 mtd->oobsize = 224;
3633 break;
3634 case 2:
3635 mtd->oobsize = 448;
3636 break;
3637 case 3:
3638 mtd->oobsize = 64;
3639 break;
3640 case 4:
3641 mtd->oobsize = 32;
3642 break;
3643 case 5:
3644 mtd->oobsize = 16;
3645 break;
3646 default:
3647 mtd->oobsize = 640;
3648 break;
3649 }
3650 extid >>= 2;
3651 /* Calc blocksize */
3652 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3653 if (tmp < 0x03)
3654 mtd->erasesize = (128 * 1024) << tmp;
3655 else if (tmp == 0x03)
3656 mtd->erasesize = 768 * 1024;
3657 else
3658 mtd->erasesize = (64 * 1024) << tmp;
3659 *busw = 0;
fc09bbc0
BN
3660 } else {
3661 /* Calc pagesize */
3662 mtd->writesize = 1024 << (extid & 0x03);
3663 extid >>= 2;
3664 /* Calc oobsize */
3665 mtd->oobsize = (8 << (extid & 0x01)) *
3666 (mtd->writesize >> 9);
3667 extid >>= 2;
3668 /* Calc blocksize. Blocksize is multiples of 64KiB */
3669 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3670 extid >>= 2;
3671 /* Get buswidth information */
3672 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
60c67382
BN
3673
3674 /*
3675 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3676 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3677 * follows:
3678 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3679 * 110b -> 24nm
3680 * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
3681 */
3682 if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
1d0ed69d 3683 nand_is_slc(chip) &&
60c67382
BN
3684 (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3685 !(id_data[4] & 0x80) /* !BENAND */) {
3686 mtd->oobsize = 32 * mtd->writesize >> 9;
3687 }
3688
fc09bbc0
BN
3689 }
3690}
3691
f23a481c
BN
3692/*
3693 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3694 * decodes a matching ID table entry and assigns the MTD size parameters for
3695 * the chip.
3696 */
3697static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3698 struct nand_flash_dev *type, u8 id_data[8],
3699 int *busw)
3700{
3701 int maf_id = id_data[0];
3702
3703 mtd->erasesize = type->erasesize;
3704 mtd->writesize = type->pagesize;
3705 mtd->oobsize = mtd->writesize / 32;
3706 *busw = type->options & NAND_BUSWIDTH_16;
3707
1c195e90
HS
3708 /* All legacy ID NAND are small-page, SLC */
3709 chip->bits_per_cell = 1;
3710
f23a481c
BN
3711 /*
3712 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3713 * some Spansion chips have erasesize that conflicts with size
3714 * listed in nand_ids table.
3715 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3716 */
3717 if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3718 && id_data[6] == 0x00 && id_data[7] == 0x00
3719 && mtd->writesize == 512) {
3720 mtd->erasesize = 128 * 1024;
3721 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3722 }
3723}
3724
7e74c2d7
BN
3725/*
3726 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3727 * heuristic patterns using various detected parameters (e.g., manufacturer,
3728 * page size, cell-type information).
3729 */
3730static void nand_decode_bbm_options(struct mtd_info *mtd,
3731 struct nand_chip *chip, u8 id_data[8])
3732{
3733 int maf_id = id_data[0];
3734
3735 /* Set the bad block position */
3736 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3737 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3738 else
3739 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3740
3741 /*
3742 * Bad block marker is stored in the last page of each block on Samsung
3743 * and Hynix MLC devices; stored in first two pages of each block on
3744 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3745 * AMD/Spansion, and Macronix. All others scan only the first page.
3746 */
1d0ed69d 3747 if (!nand_is_slc(chip) &&
7e74c2d7
BN
3748 (maf_id == NAND_MFR_SAMSUNG ||
3749 maf_id == NAND_MFR_HYNIX))
3750 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
1d0ed69d 3751 else if ((nand_is_slc(chip) &&
7e74c2d7
BN
3752 (maf_id == NAND_MFR_SAMSUNG ||
3753 maf_id == NAND_MFR_HYNIX ||
3754 maf_id == NAND_MFR_TOSHIBA ||
3755 maf_id == NAND_MFR_AMD ||
3756 maf_id == NAND_MFR_MACRONIX)) ||
3757 (mtd->writesize == 2048 &&
3758 maf_id == NAND_MFR_MICRON))
3759 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3760}
3761
ec6e87e3
HS
3762static inline bool is_full_id_nand(struct nand_flash_dev *type)
3763{
3764 return type->id_len;
3765}
3766
3767static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3768 struct nand_flash_dev *type, u8 *id_data, int *busw)
3769{
3770 if (!strncmp(type->id, id_data, type->id_len)) {
3771 mtd->writesize = type->pagesize;
3772 mtd->erasesize = type->erasesize;
3773 mtd->oobsize = type->oobsize;
3774
7db906b7 3775 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
ec6e87e3
HS
3776 chip->chipsize = (uint64_t)type->chipsize << 20;
3777 chip->options |= type->options;
57219342
HS
3778 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3779 chip->ecc_step_ds = NAND_ECC_STEP(type);
57a94e24
BB
3780 chip->onfi_timing_mode_default =
3781 type->onfi_timing_mode_default;
ec6e87e3
HS
3782
3783 *busw = type->options & NAND_BUSWIDTH_16;
3784
092b6a1d
CZ
3785 if (!mtd->name)
3786 mtd->name = type->name;
3787
ec6e87e3
HS
3788 return true;
3789 }
3790 return false;
3791}
3792
7aa65bfd 3793/*
8b6e50c9 3794 * Get the flash and manufacturer id and lookup if the type is supported.
7aa65bfd
TG
3795 */
3796static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
ace4dfee 3797 struct nand_chip *chip,
7351d3a5 3798 int *maf_id, int *dev_id,
5e81e88a 3799 struct nand_flash_dev *type)
7aa65bfd 3800{
bb77082f 3801 int busw;
d1e1f4e4 3802 int i, maf_idx;
426c457a 3803 u8 id_data[8];
1da177e4
LT
3804
3805 /* Select the device */
ace4dfee 3806 chip->select_chip(mtd, 0);
1da177e4 3807
ef89a880
KB
3808 /*
3809 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
8b6e50c9 3810 * after power-up.
ef89a880
KB
3811 */
3812 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3813
1da177e4 3814 /* Send the command for reading device ID */
ace4dfee 3815 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4
LT
3816
3817 /* Read manufacturer and device IDs */
ace4dfee 3818 *maf_id = chip->read_byte(mtd);
d1e1f4e4 3819 *dev_id = chip->read_byte(mtd);
1da177e4 3820
8b6e50c9
BN
3821 /*
3822 * Try again to make sure, as some systems the bus-hold or other
ed8165c7
BD
3823 * interface concerns can cause random data which looks like a
3824 * possibly credible NAND flash to appear. If the two results do
3825 * not match, ignore the device completely.
3826 */
3827
3828 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3829
4aef9b78
BN
3830 /* Read entire ID string */
3831 for (i = 0; i < 8; i++)
426c457a 3832 id_data[i] = chip->read_byte(mtd);
ed8165c7 3833
d1e1f4e4 3834 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
20171642 3835 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
d0370219 3836 *maf_id, *dev_id, id_data[0], id_data[1]);
ed8165c7
BD
3837 return ERR_PTR(-ENODEV);
3838 }
3839
7aa65bfd 3840 if (!type)
5e81e88a
DW
3841 type = nand_flash_ids;
3842
ec6e87e3
HS
3843 for (; type->name != NULL; type++) {
3844 if (is_full_id_nand(type)) {
3845 if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3846 goto ident_done;
3847 } else if (*dev_id == type->dev_id) {
db5b09f6 3848 break;
ec6e87e3
HS
3849 }
3850 }
5e81e88a 3851
d1e1f4e4
FF
3852 chip->onfi_version = 0;
3853 if (!type->name || !type->pagesize) {
35fc5195 3854 /* Check if the chip is ONFI compliant */
47450b35 3855 if (nand_flash_detect_onfi(mtd, chip, &busw))
6fb277ba 3856 goto ident_done;
91361818
HS
3857
3858 /* Check if the chip is JEDEC compliant */
3859 if (nand_flash_detect_jedec(mtd, chip, &busw))
3860 goto ident_done;
d1e1f4e4
FF
3861 }
3862
5e81e88a 3863 if (!type->name)
7aa65bfd
TG
3864 return ERR_PTR(-ENODEV);
3865
ba0251fe
TG
3866 if (!mtd->name)
3867 mtd->name = type->name;
3868
69423d99 3869 chip->chipsize = (uint64_t)type->chipsize << 20;
7aa65bfd 3870
a7f5ba40 3871 if (!type->pagesize) {
fc09bbc0
BN
3872 /* Decode parameters from extended ID */
3873 nand_decode_ext_id(mtd, chip, id_data, &busw);
7aa65bfd 3874 } else {
f23a481c 3875 nand_decode_id(mtd, chip, type, id_data, &busw);
7aa65bfd 3876 }
bf7a01bf
BN
3877 /* Get chip options */
3878 chip->options |= type->options;
d1e1f4e4 3879
8b6e50c9
BN
3880 /*
3881 * Check if chip is not a Samsung device. Do not clear the
3882 * options for chips which do not have an extended id.
d1e1f4e4
FF
3883 */
3884 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3885 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3886ident_done:
3887
7aa65bfd 3888 /* Try to identify manufacturer */
9a909867 3889 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
7aa65bfd
TG
3890 if (nand_manuf_ids[maf_idx].id == *maf_id)
3891 break;
3892 }
0ea4a755 3893
64b37b2a
MC
3894 if (chip->options & NAND_BUSWIDTH_AUTO) {
3895 WARN_ON(chip->options & NAND_BUSWIDTH_16);
3896 chip->options |= busw;
3897 nand_set_defaults(chip, busw);
3898 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3899 /*
3900 * Check, if buswidth is correct. Hardware drivers should set
3901 * chip correct!
3902 */
20171642
EG
3903 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3904 *maf_id, *dev_id);
3905 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
3906 pr_warn("bus width %d instead %d bit\n",
d0370219
BN
3907 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3908 busw ? 16 : 8);
7aa65bfd
TG
3909 return ERR_PTR(-EINVAL);
3910 }
61b03bd7 3911
7e74c2d7
BN
3912 nand_decode_bbm_options(mtd, chip, id_data);
3913
7aa65bfd 3914 /* Calculate the address shift from the page size */
ace4dfee 3915 chip->page_shift = ffs(mtd->writesize) - 1;
8b6e50c9 3916 /* Convert chipsize to number of pages per chip -1 */
ace4dfee 3917 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
61b03bd7 3918
ace4dfee 3919 chip->bbt_erase_shift = chip->phys_erase_shift =
7aa65bfd 3920 ffs(mtd->erasesize) - 1;
69423d99
AH
3921 if (chip->chipsize & 0xffffffff)
3922 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
7351d3a5
FF
3923 else {
3924 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3925 chip->chip_shift += 32 - 1;
3926 }
1da177e4 3927
26d9be11 3928 chip->badblockbits = 8;
49c50b97 3929 chip->erase = single_erase;
7aa65bfd 3930
8b6e50c9 3931 /* Do not replace user supplied command function! */
ace4dfee
TG
3932 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3933 chip->cmdfunc = nand_command_lp;
7aa65bfd 3934
20171642
EG
3935 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3936 *maf_id, *dev_id);
ffdac6cd
HS
3937
3938 if (chip->onfi_version)
3939 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3940 chip->onfi_params.model);
3941 else if (chip->jedec_version)
3942 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3943 chip->jedec_params.model);
3944 else
3945 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3946 type->name);
3947
3755a991 3948 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
3723e93c 3949 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3755a991 3950 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
7aa65bfd
TG
3951 return type;
3952}
3953
7194a29a 3954static int nand_dt_init(struct nand_chip *chip)
5844feea 3955{
7194a29a 3956 struct device_node *dn = nand_get_flash_node(chip);
79082457 3957 int ecc_mode, ecc_algo, ecc_strength, ecc_step;
5844feea 3958
7194a29a
BB
3959 if (!dn)
3960 return 0;
3961
5844feea
BN
3962 if (of_get_nand_bus_width(dn) == 16)
3963 chip->options |= NAND_BUSWIDTH_16;
3964
3965 if (of_get_nand_on_flash_bbt(dn))
3966 chip->bbt_options |= NAND_BBT_USE_FLASH;
3967
3968 ecc_mode = of_get_nand_ecc_mode(dn);
79082457 3969 ecc_algo = of_get_nand_ecc_algo(dn);
5844feea
BN
3970 ecc_strength = of_get_nand_ecc_strength(dn);
3971 ecc_step = of_get_nand_ecc_step_size(dn);
3972
3973 if ((ecc_step >= 0 && !(ecc_strength >= 0)) ||
3974 (!(ecc_step >= 0) && ecc_strength >= 0)) {
3975 pr_err("must set both strength and step size in DT\n");
3976 return -EINVAL;
3977 }
3978
3979 if (ecc_mode >= 0)
3980 chip->ecc.mode = ecc_mode;
3981
79082457
RM
3982 if (ecc_algo >= 0)
3983 chip->ecc.algo = ecc_algo;
3984
5844feea
BN
3985 if (ecc_strength >= 0)
3986 chip->ecc.strength = ecc_strength;
3987
3988 if (ecc_step > 0)
3989 chip->ecc.size = ecc_step;
3990
3991 return 0;
3992}
3993
7aa65bfd 3994/**
3b85c321 3995 * nand_scan_ident - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
3996 * @mtd: MTD device structure
3997 * @maxchips: number of chips to scan for
3998 * @table: alternative NAND ID table
7aa65bfd 3999 *
8b6e50c9
BN
4000 * This is the first phase of the normal nand_scan() function. It reads the
4001 * flash ID and sets up MTD fields accordingly.
7aa65bfd 4002 *
3b85c321 4003 * The mtd->owner field must be set to the module of the caller.
7aa65bfd 4004 */
5e81e88a
DW
4005int nand_scan_ident(struct mtd_info *mtd, int maxchips,
4006 struct nand_flash_dev *table)
7aa65bfd 4007{
bb77082f 4008 int i, nand_maf_id, nand_dev_id;
862eba51 4009 struct nand_chip *chip = mtd_to_nand(mtd);
7aa65bfd 4010 struct nand_flash_dev *type;
5844feea
BN
4011 int ret;
4012
7194a29a
BB
4013 ret = nand_dt_init(chip);
4014 if (ret)
4015 return ret;
7aa65bfd 4016
f7a8e38f
BN
4017 if (!mtd->name && mtd->dev.parent)
4018 mtd->name = dev_name(mtd->dev.parent);
4019
7aa65bfd 4020 /* Set the default functions */
bb77082f 4021 nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
7aa65bfd
TG
4022
4023 /* Read the flash type */
bb77082f
CZ
4024 type = nand_get_flash_type(mtd, chip, &nand_maf_id,
4025 &nand_dev_id, table);
7aa65bfd
TG
4026
4027 if (IS_ERR(type)) {
b1c6e6db 4028 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
d0370219 4029 pr_warn("No NAND device found\n");
ace4dfee 4030 chip->select_chip(mtd, -1);
7aa65bfd 4031 return PTR_ERR(type);
1da177e4
LT
4032 }
4033
07300164
HS
4034 chip->select_chip(mtd, -1);
4035
7aa65bfd 4036 /* Check for a chip array */
e0c7d767 4037 for (i = 1; i < maxchips; i++) {
ace4dfee 4038 chip->select_chip(mtd, i);
ef89a880
KB
4039 /* See comment in nand_get_flash_type for reset */
4040 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4 4041 /* Send the command for reading device ID */
ace4dfee 4042 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4 4043 /* Read manufacturer and device IDs */
ace4dfee 4044 if (nand_maf_id != chip->read_byte(mtd) ||
07300164
HS
4045 nand_dev_id != chip->read_byte(mtd)) {
4046 chip->select_chip(mtd, -1);
1da177e4 4047 break;
07300164
HS
4048 }
4049 chip->select_chip(mtd, -1);
1da177e4
LT
4050 }
4051 if (i > 1)
20171642 4052 pr_info("%d chips detected\n", i);
61b03bd7 4053
1da177e4 4054 /* Store the number of chips and calc total size for mtd */
ace4dfee
TG
4055 chip->numchips = i;
4056 mtd->size = i * chip->chipsize;
7aa65bfd 4057
3b85c321
DW
4058 return 0;
4059}
7351d3a5 4060EXPORT_SYMBOL(nand_scan_ident);
3b85c321 4061
67a9ad9b
EG
4062/*
4063 * Check if the chip configuration meet the datasheet requirements.
4064
4065 * If our configuration corrects A bits per B bytes and the minimum
4066 * required correction level is X bits per Y bytes, then we must ensure
4067 * both of the following are true:
4068 *
4069 * (1) A / B >= X / Y
4070 * (2) A >= X
4071 *
4072 * Requirement (1) ensures we can correct for the required bitflip density.
4073 * Requirement (2) ensures we can correct even when all bitflips are clumped
4074 * in the same sector.
4075 */
4076static bool nand_ecc_strength_good(struct mtd_info *mtd)
4077{
862eba51 4078 struct nand_chip *chip = mtd_to_nand(mtd);
67a9ad9b
EG
4079 struct nand_ecc_ctrl *ecc = &chip->ecc;
4080 int corr, ds_corr;
4081
4082 if (ecc->size == 0 || chip->ecc_step_ds == 0)
4083 /* Not enough information */
4084 return true;
4085
4086 /*
4087 * We get the number of corrected bits per page to compare
4088 * the correction density.
4089 */
4090 corr = (mtd->writesize * ecc->strength) / ecc->size;
4091 ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
4092
4093 return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
4094}
3b85c321
DW
4095
4096/**
4097 * nand_scan_tail - [NAND Interface] Scan for the NAND device
8b6e50c9 4098 * @mtd: MTD device structure
3b85c321 4099 *
8b6e50c9
BN
4100 * This is the second phase of the normal nand_scan() function. It fills out
4101 * all the uninitialized function pointers with the defaults and scans for a
4102 * bad block table if appropriate.
3b85c321
DW
4103 */
4104int nand_scan_tail(struct mtd_info *mtd)
4105{
4106 int i;
862eba51 4107 struct nand_chip *chip = mtd_to_nand(mtd);
97de79e0 4108 struct nand_ecc_ctrl *ecc = &chip->ecc;
f02ea4e6 4109 struct nand_buffers *nbuf;
3b85c321 4110
e2414f4c
BN
4111 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
4112 BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
4113 !(chip->bbt_options & NAND_BBT_USE_FLASH));
4114
f02ea4e6
HS
4115 if (!(chip->options & NAND_OWN_BUFFERS)) {
4116 nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize
4117 + mtd->oobsize * 3, GFP_KERNEL);
4118 if (!nbuf)
4119 return -ENOMEM;
4120 nbuf->ecccalc = (uint8_t *)(nbuf + 1);
4121 nbuf->ecccode = nbuf->ecccalc + mtd->oobsize;
4122 nbuf->databuf = nbuf->ecccode + mtd->oobsize;
4123
4124 chip->buffers = nbuf;
4125 } else {
4126 if (!chip->buffers)
4127 return -ENOMEM;
4128 }
4bf63fcb 4129
7dcdcbef 4130 /* Set the internal oob buffer location, just after the page data */
784f4d5e 4131 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
1da177e4 4132
7aa65bfd 4133 /*
8b6e50c9 4134 * If no default placement scheme is given, select an appropriate one.
7aa65bfd 4135 */
97de79e0 4136 if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
61b03bd7 4137 switch (mtd->oobsize) {
1da177e4 4138 case 8:
97de79e0 4139 ecc->layout = &nand_oob_8;
1da177e4
LT
4140 break;
4141 case 16:
97de79e0 4142 ecc->layout = &nand_oob_16;
1da177e4
LT
4143 break;
4144 case 64:
97de79e0 4145 ecc->layout = &nand_oob_64;
1da177e4 4146 break;
81ec5364 4147 case 128:
97de79e0 4148 ecc->layout = &nand_oob_128;
81ec5364 4149 break;
1da177e4 4150 default:
d0370219
BN
4151 pr_warn("No oob scheme defined for oobsize %d\n",
4152 mtd->oobsize);
1da177e4
LT
4153 BUG();
4154 }
4155 }
61b03bd7 4156
956e944c
DW
4157 if (!chip->write_page)
4158 chip->write_page = nand_write_page;
4159
61b03bd7 4160 /*
8b6e50c9 4161 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
7aa65bfd 4162 * selected and we have 256 byte pagesize fallback to software ECC
e0c7d767 4163 */
956e944c 4164
97de79e0 4165 switch (ecc->mode) {
6e0cb135
SN
4166 case NAND_ECC_HW_OOB_FIRST:
4167 /* Similar to NAND_ECC_HW, but a separate read_page handle */
97de79e0 4168 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
2ac63d90 4169 pr_warn("No ECC functions supplied; hardware ECC not possible\n");
6e0cb135
SN
4170 BUG();
4171 }
97de79e0
HS
4172 if (!ecc->read_page)
4173 ecc->read_page = nand_read_page_hwecc_oob_first;
6e0cb135 4174
6dfc6d25 4175 case NAND_ECC_HW:
8b6e50c9 4176 /* Use standard hwecc read page function? */
97de79e0
HS
4177 if (!ecc->read_page)
4178 ecc->read_page = nand_read_page_hwecc;
4179 if (!ecc->write_page)
4180 ecc->write_page = nand_write_page_hwecc;
4181 if (!ecc->read_page_raw)
4182 ecc->read_page_raw = nand_read_page_raw;
4183 if (!ecc->write_page_raw)
4184 ecc->write_page_raw = nand_write_page_raw;
4185 if (!ecc->read_oob)
4186 ecc->read_oob = nand_read_oob_std;
4187 if (!ecc->write_oob)
4188 ecc->write_oob = nand_write_oob_std;
4189 if (!ecc->read_subpage)
4190 ecc->read_subpage = nand_read_subpage;
44991b3d 4191 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
97de79e0 4192 ecc->write_subpage = nand_write_subpage_hwecc;
f5bbdacc 4193
6dfc6d25 4194 case NAND_ECC_HW_SYNDROME:
97de79e0
HS
4195 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
4196 (!ecc->read_page ||
4197 ecc->read_page == nand_read_page_hwecc ||
4198 !ecc->write_page ||
4199 ecc->write_page == nand_write_page_hwecc)) {
2ac63d90 4200 pr_warn("No ECC functions supplied; hardware ECC not possible\n");
6dfc6d25
TG
4201 BUG();
4202 }
8b6e50c9 4203 /* Use standard syndrome read/write page function? */
97de79e0
HS
4204 if (!ecc->read_page)
4205 ecc->read_page = nand_read_page_syndrome;
4206 if (!ecc->write_page)
4207 ecc->write_page = nand_write_page_syndrome;
4208 if (!ecc->read_page_raw)
4209 ecc->read_page_raw = nand_read_page_raw_syndrome;
4210 if (!ecc->write_page_raw)
4211 ecc->write_page_raw = nand_write_page_raw_syndrome;
4212 if (!ecc->read_oob)
4213 ecc->read_oob = nand_read_oob_syndrome;
4214 if (!ecc->write_oob)
4215 ecc->write_oob = nand_write_oob_syndrome;
4216
4217 if (mtd->writesize >= ecc->size) {
4218 if (!ecc->strength) {
e2788c98
MD
4219 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
4220 BUG();
4221 }
6dfc6d25 4222 break;
e2788c98 4223 }
2ac63d90
RM
4224 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
4225 ecc->size, mtd->writesize);
97de79e0 4226 ecc->mode = NAND_ECC_SOFT;
61b03bd7 4227
6dfc6d25 4228 case NAND_ECC_SOFT:
97de79e0
HS
4229 ecc->calculate = nand_calculate_ecc;
4230 ecc->correct = nand_correct_data;
4231 ecc->read_page = nand_read_page_swecc;
4232 ecc->read_subpage = nand_read_subpage;
4233 ecc->write_page = nand_write_page_swecc;
4234 ecc->read_page_raw = nand_read_page_raw;
4235 ecc->write_page_raw = nand_write_page_raw;
4236 ecc->read_oob = nand_read_oob_std;
4237 ecc->write_oob = nand_write_oob_std;
4238 if (!ecc->size)
4239 ecc->size = 256;
4240 ecc->bytes = 3;
4241 ecc->strength = 1;
1da177e4 4242 break;
61b03bd7 4243
193bd400
ID
4244 case NAND_ECC_SOFT_BCH:
4245 if (!mtd_nand_has_bch()) {
148256fa 4246 pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
193bd400
ID
4247 BUG();
4248 }
97de79e0
HS
4249 ecc->calculate = nand_bch_calculate_ecc;
4250 ecc->correct = nand_bch_correct_data;
4251 ecc->read_page = nand_read_page_swecc;
4252 ecc->read_subpage = nand_read_subpage;
4253 ecc->write_page = nand_write_page_swecc;
4254 ecc->read_page_raw = nand_read_page_raw;
4255 ecc->write_page_raw = nand_write_page_raw;
4256 ecc->read_oob = nand_read_oob_std;
4257 ecc->write_oob = nand_write_oob_std;
193bd400 4258 /*
e0377cde
AS
4259 * Board driver should supply ecc.size and ecc.strength values
4260 * to select how many bits are correctable. Otherwise, default
4261 * to 4 bits for large page devices.
193bd400 4262 */
97de79e0
HS
4263 if (!ecc->size && (mtd->oobsize >= 64)) {
4264 ecc->size = 512;
e0377cde 4265 ecc->strength = 4;
193bd400 4266 }
e0377cde
AS
4267
4268 /* See nand_bch_init() for details. */
a8c65d50
BB
4269 ecc->bytes = 0;
4270 ecc->priv = nand_bch_init(mtd);
97de79e0 4271 if (!ecc->priv) {
9a4d4d69 4272 pr_warn("BCH ECC initialization failed!\n");
193bd400
ID
4273 BUG();
4274 }
4275 break;
4276
61b03bd7 4277 case NAND_ECC_NONE:
2ac63d90 4278 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
97de79e0
HS
4279 ecc->read_page = nand_read_page_raw;
4280 ecc->write_page = nand_write_page_raw;
4281 ecc->read_oob = nand_read_oob_std;
4282 ecc->read_page_raw = nand_read_page_raw;
4283 ecc->write_page_raw = nand_write_page_raw;
4284 ecc->write_oob = nand_write_oob_std;
4285 ecc->size = mtd->writesize;
4286 ecc->bytes = 0;
4287 ecc->strength = 0;
1da177e4 4288 break;
956e944c 4289
1da177e4 4290 default:
97de79e0 4291 pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
61b03bd7 4292 BUG();
1da177e4 4293 }
61b03bd7 4294
9ce244b3 4295 /* For many systems, the standard OOB write also works for raw */
97de79e0
HS
4296 if (!ecc->read_oob_raw)
4297 ecc->read_oob_raw = ecc->read_oob;
4298 if (!ecc->write_oob_raw)
4299 ecc->write_oob_raw = ecc->write_oob;
9ce244b3 4300
5bd34c09
TG
4301 /*
4302 * The number of bytes available for a client to place data into
8b6e50c9 4303 * the out of band area.
5bd34c09 4304 */
f5b8aa78
BB
4305 mtd->oobavail = 0;
4306 if (ecc->layout) {
4307 for (i = 0; ecc->layout->oobfree[i].length; i++)
4308 mtd->oobavail += ecc->layout->oobfree[i].length;
4309 }
5bd34c09 4310
54c39e9b
TP
4311 /* ECC sanity check: warn if it's too weak */
4312 if (!nand_ecc_strength_good(mtd))
4313 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
4314 mtd->name);
67a9ad9b 4315
7aa65bfd
TG
4316 /*
4317 * Set the number of read / write steps for one page depending on ECC
8b6e50c9 4318 * mode.
7aa65bfd 4319 */
97de79e0
HS
4320 ecc->steps = mtd->writesize / ecc->size;
4321 if (ecc->steps * ecc->size != mtd->writesize) {
9a4d4d69 4322 pr_warn("Invalid ECC parameters\n");
6dfc6d25 4323 BUG();
1da177e4 4324 }
97de79e0 4325 ecc->total = ecc->steps * ecc->bytes;
61b03bd7 4326
8b6e50c9 4327 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
1d0ed69d 4328 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
97de79e0 4329 switch (ecc->steps) {
29072b96
TG
4330 case 2:
4331 mtd->subpage_sft = 1;
4332 break;
4333 case 4:
4334 case 8:
81ec5364 4335 case 16:
29072b96
TG
4336 mtd->subpage_sft = 2;
4337 break;
4338 }
4339 }
4340 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
4341
04bbd0ea 4342 /* Initialize state */
ace4dfee 4343 chip->state = FL_READY;
1da177e4 4344
1da177e4 4345 /* Invalidate the pagebuffer reference */
ace4dfee 4346 chip->pagebuf = -1;
1da177e4 4347
a5ff4f10 4348 /* Large page NAND with SOFT_ECC should support subpage reads */
4007e2d1
RL
4349 switch (ecc->mode) {
4350 case NAND_ECC_SOFT:
4351 case NAND_ECC_SOFT_BCH:
4352 if (chip->page_shift > 9)
4353 chip->options |= NAND_SUBPAGE_READ;
4354 break;
4355
4356 default:
4357 break;
4358 }
a5ff4f10 4359
1da177e4 4360 /* Fill in remaining MTD driver data */
963d1c28 4361 mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
93edbad6
ML
4362 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
4363 MTD_CAP_NANDFLASH;
3c3c10bb
AB
4364 mtd->_erase = nand_erase;
4365 mtd->_point = NULL;
4366 mtd->_unpoint = NULL;
4367 mtd->_read = nand_read;
4368 mtd->_write = nand_write;
4369 mtd->_panic_write = panic_nand_write;
4370 mtd->_read_oob = nand_read_oob;
4371 mtd->_write_oob = nand_write_oob;
4372 mtd->_sync = nand_sync;
4373 mtd->_lock = NULL;
4374 mtd->_unlock = NULL;
4375 mtd->_suspend = nand_suspend;
4376 mtd->_resume = nand_resume;
72ea4036 4377 mtd->_reboot = nand_shutdown;
8471bb73 4378 mtd->_block_isreserved = nand_block_isreserved;
3c3c10bb
AB
4379 mtd->_block_isbad = nand_block_isbad;
4380 mtd->_block_markbad = nand_block_markbad;
cbcab65a 4381 mtd->writebufsize = mtd->writesize;
1da177e4 4382
6a918bad 4383 /* propagate ecc info to mtd_info */
97de79e0
HS
4384 mtd->ecclayout = ecc->layout;
4385 mtd->ecc_strength = ecc->strength;
4386 mtd->ecc_step_size = ecc->size;
ea3b2ea2
SL
4387 /*
4388 * Initialize bitflip_threshold to its default prior scan_bbt() call.
4389 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4390 * properly set.
4391 */
4392 if (!mtd->bitflip_threshold)
240181fd 4393 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
1da177e4 4394
0040bf38 4395 /* Check, if we should skip the bad block table scan */
ace4dfee 4396 if (chip->options & NAND_SKIP_BBTSCAN)
0040bf38 4397 return 0;
1da177e4
LT
4398
4399 /* Build bad block table */
ace4dfee 4400 return chip->scan_bbt(mtd);
1da177e4 4401}
7351d3a5 4402EXPORT_SYMBOL(nand_scan_tail);
1da177e4 4403
8b6e50c9
BN
4404/*
4405 * is_module_text_address() isn't exported, and it's mostly a pointless
7351d3a5 4406 * test if this is a module _anyway_ -- they'd have to try _really_ hard
8b6e50c9
BN
4407 * to call us from in-kernel code if the core NAND support is modular.
4408 */
3b85c321
DW
4409#ifdef MODULE
4410#define caller_is_module() (1)
4411#else
4412#define caller_is_module() \
a6e6abd5 4413 is_module_text_address((unsigned long)__builtin_return_address(0))
3b85c321
DW
4414#endif
4415
4416/**
4417 * nand_scan - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
4418 * @mtd: MTD device structure
4419 * @maxchips: number of chips to scan for
3b85c321 4420 *
8b6e50c9
BN
4421 * This fills out all the uninitialized function pointers with the defaults.
4422 * The flash ID is read and the mtd/chip structures are filled with the
4423 * appropriate values. The mtd->owner field must be set to the module of the
4424 * caller.
3b85c321
DW
4425 */
4426int nand_scan(struct mtd_info *mtd, int maxchips)
4427{
4428 int ret;
4429
4430 /* Many callers got this wrong, so check for it for a while... */
4431 if (!mtd->owner && caller_is_module()) {
d0370219 4432 pr_crit("%s called with NULL mtd->owner!\n", __func__);
3b85c321
DW
4433 BUG();
4434 }
4435
5e81e88a 4436 ret = nand_scan_ident(mtd, maxchips, NULL);
3b85c321
DW
4437 if (!ret)
4438 ret = nand_scan_tail(mtd);
4439 return ret;
4440}
7351d3a5 4441EXPORT_SYMBOL(nand_scan);
3b85c321 4442
1da177e4 4443/**
61b03bd7 4444 * nand_release - [NAND Interface] Free resources held by the NAND device
8b6e50c9
BN
4445 * @mtd: MTD device structure
4446 */
e0c7d767 4447void nand_release(struct mtd_info *mtd)
1da177e4 4448{
862eba51 4449 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 4450
193bd400
ID
4451 if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
4452 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
4453
5ffcaf3d 4454 mtd_device_unregister(mtd);
1da177e4 4455
fa671646 4456 /* Free bad block table memory */
ace4dfee 4457 kfree(chip->bbt);
4bf63fcb
DW
4458 if (!(chip->options & NAND_OWN_BUFFERS))
4459 kfree(chip->buffers);
58373ff0
BN
4460
4461 /* Free bad block descriptor memory */
4462 if (chip->badblock_pattern && chip->badblock_pattern->options
4463 & NAND_BBT_DYNAMICSTRUCT)
4464 kfree(chip->badblock_pattern);
1da177e4 4465}
e0c7d767 4466EXPORT_SYMBOL_GPL(nand_release);
8fe833c1 4467
e0c7d767 4468MODULE_LICENSE("GPL");
7351d3a5
FF
4469MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4470MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
e0c7d767 4471MODULE_DESCRIPTION("Generic NAND flash driver code");
This page took 1.013291 seconds and 5 git commands to generate.