mtd: nand: set ECC algorithm to Hamming on fallback
[deliverable/linux.git] / drivers / mtd / nand / nand_base.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Overview:
3 * This is the generic MTD driver for NAND flash devices. It should be
4 * capable of working with almost all NAND chips currently available.
61b03bd7 5 *
1da177e4 6 * Additional technical information is available on
8b2b403c 7 * http://www.linux-mtd.infradead.org/doc/nand.html
61b03bd7 8 *
1da177e4 9 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
ace4dfee 10 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
1da177e4 11 *
ace4dfee 12 * Credits:
61b03bd7
TG
13 * David Woodhouse for adding multichip support
14 *
1da177e4
LT
15 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
16 * rework for 2K page size chips
17 *
ace4dfee 18 * TODO:
1da177e4
LT
19 * Enable cached programming for 2k page size chips
20 * Check, if mtd->ecctype should be set to MTD_ECC_HW
7854d3f7 21 * if we have HW ECC support.
c0b8ba7b 22 * BBT table is not serialized, has to be fixed
1da177e4 23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License version 2 as
26 * published by the Free Software Foundation.
27 *
28 */
29
20171642
EG
30#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31
552d9205 32#include <linux/module.h>
1da177e4
LT
33#include <linux/delay.h>
34#include <linux/errno.h>
7aa65bfd 35#include <linux/err.h>
1da177e4
LT
36#include <linux/sched.h>
37#include <linux/slab.h>
66507c7b 38#include <linux/mm.h>
1da177e4
LT
39#include <linux/types.h>
40#include <linux/mtd/mtd.h>
41#include <linux/mtd/nand.h>
42#include <linux/mtd/nand_ecc.h>
193bd400 43#include <linux/mtd/nand_bch.h>
1da177e4
LT
44#include <linux/interrupt.h>
45#include <linux/bitops.h>
7351d3a5 46#include <linux/io.h>
1da177e4 47#include <linux/mtd/partitions.h>
d48f62b9 48#include <linux/of.h>
1da177e4 49
41b207a7
BB
50static int nand_get_device(struct mtd_info *mtd, int new_state);
51
52static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
53 struct mtd_oob_ops *ops);
54
1da177e4 55/* Define default oob placement schemes for large and small page devices */
41b207a7
BB
56static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
57 struct mtd_oob_region *oobregion)
58{
59 struct nand_chip *chip = mtd_to_nand(mtd);
60 struct nand_ecc_ctrl *ecc = &chip->ecc;
1da177e4 61
41b207a7
BB
62 if (section > 1)
63 return -ERANGE;
1da177e4 64
41b207a7
BB
65 if (!section) {
66 oobregion->offset = 0;
67 oobregion->length = 4;
68 } else {
69 oobregion->offset = 6;
70 oobregion->length = ecc->total - 4;
71 }
1da177e4 72
41b207a7
BB
73 return 0;
74}
75
76static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
77 struct mtd_oob_region *oobregion)
78{
79 if (section > 1)
80 return -ERANGE;
81
82 if (mtd->oobsize == 16) {
83 if (section)
84 return -ERANGE;
85
86 oobregion->length = 8;
87 oobregion->offset = 8;
88 } else {
89 oobregion->length = 2;
90 if (!section)
91 oobregion->offset = 3;
92 else
93 oobregion->offset = 6;
94 }
95
96 return 0;
97}
98
99const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
100 .ecc = nand_ooblayout_ecc_sp,
101 .free = nand_ooblayout_free_sp,
81ec5364 102};
41b207a7 103EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops);
81ec5364 104
41b207a7
BB
105static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
106 struct mtd_oob_region *oobregion)
107{
108 struct nand_chip *chip = mtd_to_nand(mtd);
109 struct nand_ecc_ctrl *ecc = &chip->ecc;
1da177e4 110
41b207a7
BB
111 if (section)
112 return -ERANGE;
113
114 oobregion->length = ecc->total;
115 oobregion->offset = mtd->oobsize - oobregion->length;
116
117 return 0;
118}
119
120static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
121 struct mtd_oob_region *oobregion)
122{
123 struct nand_chip *chip = mtd_to_nand(mtd);
124 struct nand_ecc_ctrl *ecc = &chip->ecc;
125
126 if (section)
127 return -ERANGE;
128
129 oobregion->length = mtd->oobsize - ecc->total - 2;
130 oobregion->offset = 2;
131
132 return 0;
133}
134
135const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
136 .ecc = nand_ooblayout_ecc_lp,
137 .free = nand_ooblayout_free_lp,
138};
139EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops);
8593fbc6 140
6fe5a6ac
VS
141static int check_offs_len(struct mtd_info *mtd,
142 loff_t ofs, uint64_t len)
143{
862eba51 144 struct nand_chip *chip = mtd_to_nand(mtd);
6fe5a6ac
VS
145 int ret = 0;
146
147 /* Start address must align on block boundary */
daae74ca 148 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
289c0522 149 pr_debug("%s: unaligned address\n", __func__);
6fe5a6ac
VS
150 ret = -EINVAL;
151 }
152
153 /* Length must align on block boundary */
daae74ca 154 if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
289c0522 155 pr_debug("%s: length not block aligned\n", __func__);
6fe5a6ac
VS
156 ret = -EINVAL;
157 }
158
6fe5a6ac
VS
159 return ret;
160}
161
1da177e4
LT
162/**
163 * nand_release_device - [GENERIC] release chip
8b6e50c9 164 * @mtd: MTD device structure
61b03bd7 165 *
b0bb6903 166 * Release chip lock and wake up anyone waiting on the device.
1da177e4 167 */
e0c7d767 168static void nand_release_device(struct mtd_info *mtd)
1da177e4 169{
862eba51 170 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 171
a36ed299 172 /* Release the controller and the chip */
ace4dfee
TG
173 spin_lock(&chip->controller->lock);
174 chip->controller->active = NULL;
175 chip->state = FL_READY;
176 wake_up(&chip->controller->wq);
177 spin_unlock(&chip->controller->lock);
1da177e4
LT
178}
179
180/**
181 * nand_read_byte - [DEFAULT] read one byte from the chip
8b6e50c9 182 * @mtd: MTD device structure
1da177e4 183 *
7854d3f7 184 * Default read function for 8bit buswidth
1da177e4 185 */
58dd8f2b 186static uint8_t nand_read_byte(struct mtd_info *mtd)
1da177e4 187{
862eba51 188 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee 189 return readb(chip->IO_ADDR_R);
1da177e4
LT
190}
191
1da177e4 192/**
7854d3f7 193 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
8b6e50c9 194 * @mtd: MTD device structure
1da177e4 195 *
7854d3f7
BN
196 * Default read function for 16bit buswidth with endianness conversion.
197 *
1da177e4 198 */
58dd8f2b 199static uint8_t nand_read_byte16(struct mtd_info *mtd)
1da177e4 200{
862eba51 201 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee 202 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
1da177e4
LT
203}
204
1da177e4
LT
205/**
206 * nand_read_word - [DEFAULT] read one word from the chip
8b6e50c9 207 * @mtd: MTD device structure
1da177e4 208 *
7854d3f7 209 * Default read function for 16bit buswidth without endianness conversion.
1da177e4
LT
210 */
211static u16 nand_read_word(struct mtd_info *mtd)
212{
862eba51 213 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee 214 return readw(chip->IO_ADDR_R);
1da177e4
LT
215}
216
1da177e4
LT
217/**
218 * nand_select_chip - [DEFAULT] control CE line
8b6e50c9
BN
219 * @mtd: MTD device structure
220 * @chipnr: chipnumber to select, -1 for deselect
1da177e4
LT
221 *
222 * Default select function for 1 chip devices.
223 */
ace4dfee 224static void nand_select_chip(struct mtd_info *mtd, int chipnr)
1da177e4 225{
862eba51 226 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee
TG
227
228 switch (chipnr) {
1da177e4 229 case -1:
ace4dfee 230 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
1da177e4
LT
231 break;
232 case 0:
1da177e4
LT
233 break;
234
235 default:
236 BUG();
237 }
238}
239
05f78359
UKK
240/**
241 * nand_write_byte - [DEFAULT] write single byte to chip
242 * @mtd: MTD device structure
243 * @byte: value to write
244 *
245 * Default function to write a byte to I/O[7:0]
246 */
247static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
248{
862eba51 249 struct nand_chip *chip = mtd_to_nand(mtd);
05f78359
UKK
250
251 chip->write_buf(mtd, &byte, 1);
252}
253
254/**
255 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
256 * @mtd: MTD device structure
257 * @byte: value to write
258 *
259 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
260 */
261static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
262{
862eba51 263 struct nand_chip *chip = mtd_to_nand(mtd);
05f78359
UKK
264 uint16_t word = byte;
265
266 /*
267 * It's not entirely clear what should happen to I/O[15:8] when writing
268 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
269 *
270 * When the host supports a 16-bit bus width, only data is
271 * transferred at the 16-bit width. All address and command line
272 * transfers shall use only the lower 8-bits of the data bus. During
273 * command transfers, the host may place any value on the upper
274 * 8-bits of the data bus. During address transfers, the host shall
275 * set the upper 8-bits of the data bus to 00h.
276 *
277 * One user of the write_byte callback is nand_onfi_set_features. The
278 * four parameters are specified to be written to I/O[7:0], but this is
279 * neither an address nor a command transfer. Let's assume a 0 on the
280 * upper I/O lines is OK.
281 */
282 chip->write_buf(mtd, (uint8_t *)&word, 2);
283}
284
1da177e4
LT
285/**
286 * nand_write_buf - [DEFAULT] write buffer to chip
8b6e50c9
BN
287 * @mtd: MTD device structure
288 * @buf: data buffer
289 * @len: number of bytes to write
1da177e4 290 *
7854d3f7 291 * Default write function for 8bit buswidth.
1da177e4 292 */
58dd8f2b 293static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4 294{
862eba51 295 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 296
76413839 297 iowrite8_rep(chip->IO_ADDR_W, buf, len);
1da177e4
LT
298}
299
300/**
61b03bd7 301 * nand_read_buf - [DEFAULT] read chip data into buffer
8b6e50c9
BN
302 * @mtd: MTD device structure
303 * @buf: buffer to store date
304 * @len: number of bytes to read
1da177e4 305 *
7854d3f7 306 * Default read function for 8bit buswidth.
1da177e4 307 */
58dd8f2b 308static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4 309{
862eba51 310 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 311
76413839 312 ioread8_rep(chip->IO_ADDR_R, buf, len);
1da177e4
LT
313}
314
1da177e4
LT
315/**
316 * nand_write_buf16 - [DEFAULT] write buffer to chip
8b6e50c9
BN
317 * @mtd: MTD device structure
318 * @buf: data buffer
319 * @len: number of bytes to write
1da177e4 320 *
7854d3f7 321 * Default write function for 16bit buswidth.
1da177e4 322 */
58dd8f2b 323static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4 324{
862eba51 325 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 326 u16 *p = (u16 *) buf;
61b03bd7 327
76413839 328 iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
1da177e4
LT
329}
330
331/**
61b03bd7 332 * nand_read_buf16 - [DEFAULT] read chip data into buffer
8b6e50c9
BN
333 * @mtd: MTD device structure
334 * @buf: buffer to store date
335 * @len: number of bytes to read
1da177e4 336 *
7854d3f7 337 * Default read function for 16bit buswidth.
1da177e4 338 */
58dd8f2b 339static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4 340{
862eba51 341 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 342 u16 *p = (u16 *) buf;
1da177e4 343
76413839 344 ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
1da177e4
LT
345}
346
1da177e4
LT
347/**
348 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
8b6e50c9
BN
349 * @mtd: MTD device structure
350 * @ofs: offset from device start
1da177e4 351 *
61b03bd7 352 * Check, if the block is bad.
1da177e4 353 */
9f3e0429 354static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
1da177e4 355{
9f3e0429 356 int page, res = 0, i = 0;
862eba51 357 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4
LT
358 u16 bad;
359
5fb1549d 360 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
b60b08b0
KC
361 ofs += mtd->erasesize - mtd->writesize;
362
1a12f46a
TK
363 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
364
cdbec050
BN
365 do {
366 if (chip->options & NAND_BUSWIDTH_16) {
367 chip->cmdfunc(mtd, NAND_CMD_READOOB,
368 chip->badblockpos & 0xFE, page);
369 bad = cpu_to_le16(chip->read_word(mtd));
370 if (chip->badblockpos & 0x1)
371 bad >>= 8;
372 else
373 bad &= 0xFF;
374 } else {
375 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
376 page);
377 bad = chip->read_byte(mtd);
378 }
379
380 if (likely(chip->badblockbits == 8))
381 res = bad != 0xFF;
e0b58d0a 382 else
cdbec050
BN
383 res = hweight8(bad) < chip->badblockbits;
384 ofs += mtd->writesize;
385 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
386 i++;
387 } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
e0b58d0a 388
1da177e4
LT
389 return res;
390}
391
392/**
5a0edb25 393 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
8b6e50c9
BN
394 * @mtd: MTD device structure
395 * @ofs: offset from device start
1da177e4 396 *
8b6e50c9 397 * This is the default implementation, which can be overridden by a hardware
5a0edb25
BN
398 * specific driver. It provides the details for writing a bad block marker to a
399 * block.
400 */
401static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
402{
862eba51 403 struct nand_chip *chip = mtd_to_nand(mtd);
5a0edb25
BN
404 struct mtd_oob_ops ops;
405 uint8_t buf[2] = { 0, 0 };
406 int ret = 0, res, i = 0;
407
0ec56dc4 408 memset(&ops, 0, sizeof(ops));
5a0edb25
BN
409 ops.oobbuf = buf;
410 ops.ooboffs = chip->badblockpos;
411 if (chip->options & NAND_BUSWIDTH_16) {
412 ops.ooboffs &= ~0x01;
413 ops.len = ops.ooblen = 2;
414 } else {
415 ops.len = ops.ooblen = 1;
416 }
417 ops.mode = MTD_OPS_PLACE_OOB;
418
419 /* Write to first/last page(s) if necessary */
420 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
421 ofs += mtd->erasesize - mtd->writesize;
422 do {
423 res = nand_do_write_oob(mtd, ofs, &ops);
424 if (!ret)
425 ret = res;
426
427 i++;
428 ofs += mtd->writesize;
429 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
430
431 return ret;
432}
433
434/**
435 * nand_block_markbad_lowlevel - mark a block bad
436 * @mtd: MTD device structure
437 * @ofs: offset from device start
438 *
439 * This function performs the generic NAND bad block marking steps (i.e., bad
440 * block table(s) and/or marker(s)). We only allow the hardware driver to
441 * specify how to write bad block markers to OOB (chip->block_markbad).
442 *
b32843b7 443 * We try operations in the following order:
e2414f4c 444 * (1) erase the affected block, to allow OOB marker to be written cleanly
b32843b7
BN
445 * (2) write bad block marker to OOB area of affected block (unless flag
446 * NAND_BBT_NO_OOB_BBM is present)
447 * (3) update the BBT
448 * Note that we retain the first error encountered in (2) or (3), finish the
e2414f4c 449 * procedures, and dump the error in the end.
1da177e4 450*/
5a0edb25 451static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
1da177e4 452{
862eba51 453 struct nand_chip *chip = mtd_to_nand(mtd);
b32843b7 454 int res, ret = 0;
61b03bd7 455
b32843b7 456 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
00918429
BN
457 struct erase_info einfo;
458
459 /* Attempt erase before marking OOB */
460 memset(&einfo, 0, sizeof(einfo));
461 einfo.mtd = mtd;
462 einfo.addr = ofs;
daae74ca 463 einfo.len = 1ULL << chip->phys_erase_shift;
00918429 464 nand_erase_nand(mtd, &einfo, 0);
1da177e4 465
b32843b7 466 /* Write bad block marker to OOB */
6a8214aa 467 nand_get_device(mtd, FL_WRITING);
5a0edb25 468 ret = chip->block_markbad(mtd, ofs);
c0b8ba7b 469 nand_release_device(mtd);
f1a28c02 470 }
e2414f4c 471
b32843b7
BN
472 /* Mark block bad in BBT */
473 if (chip->bbt) {
474 res = nand_markbad_bbt(mtd, ofs);
e2414f4c
BN
475 if (!ret)
476 ret = res;
477 }
478
f1a28c02
TG
479 if (!ret)
480 mtd->ecc_stats.badblocks++;
c0b8ba7b 481
f1a28c02 482 return ret;
1da177e4
LT
483}
484
61b03bd7 485/**
1da177e4 486 * nand_check_wp - [GENERIC] check if the chip is write protected
8b6e50c9 487 * @mtd: MTD device structure
1da177e4 488 *
8b6e50c9
BN
489 * Check, if the device is write protected. The function expects, that the
490 * device is already selected.
1da177e4 491 */
e0c7d767 492static int nand_check_wp(struct mtd_info *mtd)
1da177e4 493{
862eba51 494 struct nand_chip *chip = mtd_to_nand(mtd);
93edbad6 495
8b6e50c9 496 /* Broken xD cards report WP despite being writable */
93edbad6
ML
497 if (chip->options & NAND_BROKEN_XD)
498 return 0;
499
1da177e4 500 /* Check the WP bit */
ace4dfee
TG
501 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
502 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
1da177e4
LT
503}
504
8471bb73 505/**
c30e1f79 506 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
8471bb73
EG
507 * @mtd: MTD device structure
508 * @ofs: offset from device start
509 *
c30e1f79 510 * Check if the block is marked as reserved.
8471bb73
EG
511 */
512static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
513{
862eba51 514 struct nand_chip *chip = mtd_to_nand(mtd);
8471bb73
EG
515
516 if (!chip->bbt)
517 return 0;
518 /* Return info from the table */
519 return nand_isreserved_bbt(mtd, ofs);
520}
521
1da177e4
LT
522/**
523 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
8b6e50c9
BN
524 * @mtd: MTD device structure
525 * @ofs: offset from device start
8b6e50c9 526 * @allowbbt: 1, if its allowed to access the bbt area
1da177e4
LT
527 *
528 * Check, if the block is bad. Either by reading the bad block table or
529 * calling of the scan function.
530 */
9f3e0429 531static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
1da177e4 532{
862eba51 533 struct nand_chip *chip = mtd_to_nand(mtd);
61b03bd7 534
ace4dfee 535 if (!chip->bbt)
9f3e0429 536 return chip->block_bad(mtd, ofs);
61b03bd7 537
1da177e4 538 /* Return info from the table */
e0c7d767 539 return nand_isbad_bbt(mtd, ofs, allowbbt);
1da177e4
LT
540}
541
2af7c653
SK
542/**
543 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
8b6e50c9
BN
544 * @mtd: MTD device structure
545 * @timeo: Timeout
2af7c653
SK
546 *
547 * Helper function for nand_wait_ready used when needing to wait in interrupt
548 * context.
549 */
550static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
551{
862eba51 552 struct nand_chip *chip = mtd_to_nand(mtd);
2af7c653
SK
553 int i;
554
555 /* Wait for the device to get ready */
556 for (i = 0; i < timeo; i++) {
557 if (chip->dev_ready(mtd))
558 break;
559 touch_softlockup_watchdog();
560 mdelay(1);
561 }
562}
563
b70af9be
AS
564/**
565 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
566 * @mtd: MTD device structure
567 *
568 * Wait for the ready pin after a command, and warn if a timeout occurs.
569 */
4b648b02 570void nand_wait_ready(struct mtd_info *mtd)
3b88775c 571{
862eba51 572 struct nand_chip *chip = mtd_to_nand(mtd);
b70af9be 573 unsigned long timeo = 400;
3b88775c 574
2af7c653 575 if (in_interrupt() || oops_in_progress)
b70af9be 576 return panic_nand_wait_ready(mtd, timeo);
2af7c653 577
7854d3f7 578 /* Wait until command is processed or timeout occurs */
b70af9be 579 timeo = jiffies + msecs_to_jiffies(timeo);
3b88775c 580 do {
ace4dfee 581 if (chip->dev_ready(mtd))
4c7e054f 582 return;
b70af9be 583 cond_resched();
61b03bd7 584 } while (time_before(jiffies, timeo));
b70af9be 585
9ebfdf5b
BN
586 if (!chip->dev_ready(mtd))
587 pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
3b88775c 588}
4b648b02 589EXPORT_SYMBOL_GPL(nand_wait_ready);
3b88775c 590
60c70d66
RQ
591/**
592 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
593 * @mtd: MTD device structure
594 * @timeo: Timeout in ms
595 *
596 * Wait for status ready (i.e. command done) or timeout.
597 */
598static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
599{
862eba51 600 register struct nand_chip *chip = mtd_to_nand(mtd);
60c70d66
RQ
601
602 timeo = jiffies + msecs_to_jiffies(timeo);
603 do {
604 if ((chip->read_byte(mtd) & NAND_STATUS_READY))
605 break;
606 touch_softlockup_watchdog();
607 } while (time_before(jiffies, timeo));
608};
609
1da177e4
LT
610/**
611 * nand_command - [DEFAULT] Send command to NAND device
8b6e50c9
BN
612 * @mtd: MTD device structure
613 * @command: the command to be sent
614 * @column: the column address for this command, -1 if none
615 * @page_addr: the page address for this command, -1 if none
1da177e4 616 *
8b6e50c9 617 * Send command to NAND device. This function is used for small page devices
51148f1f 618 * (512 Bytes per page).
1da177e4 619 */
7abd3ef9
TG
620static void nand_command(struct mtd_info *mtd, unsigned int command,
621 int column, int page_addr)
1da177e4 622{
862eba51 623 register struct nand_chip *chip = mtd_to_nand(mtd);
7abd3ef9 624 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
1da177e4 625
8b6e50c9 626 /* Write out the command to the device */
1da177e4
LT
627 if (command == NAND_CMD_SEQIN) {
628 int readcmd;
629
28318776 630 if (column >= mtd->writesize) {
1da177e4 631 /* OOB area */
28318776 632 column -= mtd->writesize;
1da177e4
LT
633 readcmd = NAND_CMD_READOOB;
634 } else if (column < 256) {
635 /* First 256 bytes --> READ0 */
636 readcmd = NAND_CMD_READ0;
637 } else {
638 column -= 256;
639 readcmd = NAND_CMD_READ1;
640 }
ace4dfee 641 chip->cmd_ctrl(mtd, readcmd, ctrl);
7abd3ef9 642 ctrl &= ~NAND_CTRL_CHANGE;
1da177e4 643 }
ace4dfee 644 chip->cmd_ctrl(mtd, command, ctrl);
1da177e4 645
8b6e50c9 646 /* Address cycle, when necessary */
7abd3ef9
TG
647 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
648 /* Serially input address */
649 if (column != -1) {
650 /* Adjust columns for 16 bit buswidth */
3dad2344
BN
651 if (chip->options & NAND_BUSWIDTH_16 &&
652 !nand_opcode_8bits(command))
7abd3ef9 653 column >>= 1;
ace4dfee 654 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9
TG
655 ctrl &= ~NAND_CTRL_CHANGE;
656 }
657 if (page_addr != -1) {
ace4dfee 658 chip->cmd_ctrl(mtd, page_addr, ctrl);
7abd3ef9 659 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 660 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
7abd3ef9 661 /* One more address cycle for devices > 32MiB */
ace4dfee
TG
662 if (chip->chipsize > (32 << 20))
663 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
1da177e4 664 }
ace4dfee 665 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
666
667 /*
8b6e50c9
BN
668 * Program and erase have their own busy handlers status and sequential
669 * in needs no delay
e0c7d767 670 */
1da177e4 671 switch (command) {
61b03bd7 672
1da177e4
LT
673 case NAND_CMD_PAGEPROG:
674 case NAND_CMD_ERASE1:
675 case NAND_CMD_ERASE2:
676 case NAND_CMD_SEQIN:
677 case NAND_CMD_STATUS:
678 return;
679
680 case NAND_CMD_RESET:
ace4dfee 681 if (chip->dev_ready)
1da177e4 682 break;
ace4dfee
TG
683 udelay(chip->chip_delay);
684 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
7abd3ef9 685 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
12efdde3
TG
686 chip->cmd_ctrl(mtd,
687 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
60c70d66
RQ
688 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
689 nand_wait_status_ready(mtd, 250);
1da177e4
LT
690 return;
691
e0c7d767 692 /* This applies to read commands */
1da177e4 693 default:
61b03bd7 694 /*
1da177e4
LT
695 * If we don't have access to the busy pin, we apply the given
696 * command delay
e0c7d767 697 */
ace4dfee
TG
698 if (!chip->dev_ready) {
699 udelay(chip->chip_delay);
1da177e4 700 return;
61b03bd7 701 }
1da177e4 702 }
8b6e50c9
BN
703 /*
704 * Apply this short delay always to ensure that we do wait tWB in
705 * any case on any machine.
706 */
e0c7d767 707 ndelay(100);
3b88775c
TG
708
709 nand_wait_ready(mtd);
1da177e4
LT
710}
711
712/**
713 * nand_command_lp - [DEFAULT] Send command to NAND large page device
8b6e50c9
BN
714 * @mtd: MTD device structure
715 * @command: the command to be sent
716 * @column: the column address for this command, -1 if none
717 * @page_addr: the page address for this command, -1 if none
1da177e4 718 *
7abd3ef9 719 * Send command to NAND device. This is the version for the new large page
7854d3f7
BN
720 * devices. We don't have the separate regions as we have in the small page
721 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
1da177e4 722 */
7abd3ef9
TG
723static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
724 int column, int page_addr)
1da177e4 725{
862eba51 726 register struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4
LT
727
728 /* Emulate NAND_CMD_READOOB */
729 if (command == NAND_CMD_READOOB) {
28318776 730 column += mtd->writesize;
1da177e4
LT
731 command = NAND_CMD_READ0;
732 }
61b03bd7 733
7abd3ef9 734 /* Command latch cycle */
fb066ada 735 chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
1da177e4
LT
736
737 if (column != -1 || page_addr != -1) {
7abd3ef9 738 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
1da177e4
LT
739
740 /* Serially input address */
741 if (column != -1) {
742 /* Adjust columns for 16 bit buswidth */
3dad2344
BN
743 if (chip->options & NAND_BUSWIDTH_16 &&
744 !nand_opcode_8bits(command))
1da177e4 745 column >>= 1;
ace4dfee 746 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9 747 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 748 chip->cmd_ctrl(mtd, column >> 8, ctrl);
61b03bd7 749 }
1da177e4 750 if (page_addr != -1) {
ace4dfee
TG
751 chip->cmd_ctrl(mtd, page_addr, ctrl);
752 chip->cmd_ctrl(mtd, page_addr >> 8,
7abd3ef9 753 NAND_NCE | NAND_ALE);
1da177e4 754 /* One more address cycle for devices > 128MiB */
ace4dfee
TG
755 if (chip->chipsize > (128 << 20))
756 chip->cmd_ctrl(mtd, page_addr >> 16,
7abd3ef9 757 NAND_NCE | NAND_ALE);
1da177e4 758 }
1da177e4 759 }
ace4dfee 760 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
761
762 /*
8b6e50c9 763 * Program and erase have their own busy handlers status, sequential
7a442f17 764 * in and status need no delay.
30f464b7 765 */
1da177e4 766 switch (command) {
61b03bd7 767
1da177e4
LT
768 case NAND_CMD_CACHEDPROG:
769 case NAND_CMD_PAGEPROG:
770 case NAND_CMD_ERASE1:
771 case NAND_CMD_ERASE2:
772 case NAND_CMD_SEQIN:
7bc3312b 773 case NAND_CMD_RNDIN:
1da177e4 774 case NAND_CMD_STATUS:
30f464b7 775 return;
1da177e4
LT
776
777 case NAND_CMD_RESET:
ace4dfee 778 if (chip->dev_ready)
1da177e4 779 break;
ace4dfee 780 udelay(chip->chip_delay);
12efdde3
TG
781 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
782 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
783 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
784 NAND_NCE | NAND_CTRL_CHANGE);
60c70d66
RQ
785 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
786 nand_wait_status_ready(mtd, 250);
1da177e4
LT
787 return;
788
7bc3312b
TG
789 case NAND_CMD_RNDOUT:
790 /* No ready / busy check necessary */
791 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
792 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
793 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
794 NAND_NCE | NAND_CTRL_CHANGE);
795 return;
796
1da177e4 797 case NAND_CMD_READ0:
12efdde3
TG
798 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
799 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
800 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
801 NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7 802
e0c7d767 803 /* This applies to read commands */
1da177e4 804 default:
61b03bd7 805 /*
1da177e4 806 * If we don't have access to the busy pin, we apply the given
8b6e50c9 807 * command delay.
e0c7d767 808 */
ace4dfee
TG
809 if (!chip->dev_ready) {
810 udelay(chip->chip_delay);
1da177e4 811 return;
61b03bd7 812 }
1da177e4 813 }
3b88775c 814
8b6e50c9
BN
815 /*
816 * Apply this short delay always to ensure that we do wait tWB in
817 * any case on any machine.
818 */
e0c7d767 819 ndelay(100);
3b88775c
TG
820
821 nand_wait_ready(mtd);
1da177e4
LT
822}
823
2af7c653
SK
824/**
825 * panic_nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
826 * @chip: the nand chip descriptor
827 * @mtd: MTD device structure
828 * @new_state: the state which is requested
2af7c653
SK
829 *
830 * Used when in panic, no locks are taken.
831 */
832static void panic_nand_get_device(struct nand_chip *chip,
833 struct mtd_info *mtd, int new_state)
834{
7854d3f7 835 /* Hardware controller shared among independent devices */
2af7c653
SK
836 chip->controller->active = chip;
837 chip->state = new_state;
838}
839
1da177e4
LT
840/**
841 * nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
842 * @mtd: MTD device structure
843 * @new_state: the state which is requested
1da177e4
LT
844 *
845 * Get the device and lock it for exclusive access
846 */
2c0a2bed 847static int
6a8214aa 848nand_get_device(struct mtd_info *mtd, int new_state)
1da177e4 849{
862eba51 850 struct nand_chip *chip = mtd_to_nand(mtd);
ace4dfee
TG
851 spinlock_t *lock = &chip->controller->lock;
852 wait_queue_head_t *wq = &chip->controller->wq;
e0c7d767 853 DECLARE_WAITQUEUE(wait, current);
7351d3a5 854retry:
0dfc6246
TG
855 spin_lock(lock);
856
b8b3ee9a 857 /* Hardware controller shared among independent devices */
ace4dfee
TG
858 if (!chip->controller->active)
859 chip->controller->active = chip;
a36ed299 860
ace4dfee
TG
861 if (chip->controller->active == chip && chip->state == FL_READY) {
862 chip->state = new_state;
0dfc6246 863 spin_unlock(lock);
962034f4
VW
864 return 0;
865 }
866 if (new_state == FL_PM_SUSPENDED) {
6b0d9a84
LY
867 if (chip->controller->active->state == FL_PM_SUSPENDED) {
868 chip->state = FL_PM_SUSPENDED;
869 spin_unlock(lock);
870 return 0;
6b0d9a84 871 }
0dfc6246
TG
872 }
873 set_current_state(TASK_UNINTERRUPTIBLE);
874 add_wait_queue(wq, &wait);
875 spin_unlock(lock);
876 schedule();
877 remove_wait_queue(wq, &wait);
1da177e4
LT
878 goto retry;
879}
880
2af7c653 881/**
8b6e50c9
BN
882 * panic_nand_wait - [GENERIC] wait until the command is done
883 * @mtd: MTD device structure
884 * @chip: NAND chip structure
885 * @timeo: timeout
2af7c653
SK
886 *
887 * Wait for command done. This is a helper function for nand_wait used when
888 * we are in interrupt context. May happen when in panic and trying to write
b595076a 889 * an oops through mtdoops.
2af7c653
SK
890 */
891static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
892 unsigned long timeo)
893{
894 int i;
895 for (i = 0; i < timeo; i++) {
896 if (chip->dev_ready) {
897 if (chip->dev_ready(mtd))
898 break;
899 } else {
900 if (chip->read_byte(mtd) & NAND_STATUS_READY)
901 break;
902 }
903 mdelay(1);
f8ac0414 904 }
2af7c653
SK
905}
906
1da177e4 907/**
8b6e50c9
BN
908 * nand_wait - [DEFAULT] wait until the command is done
909 * @mtd: MTD device structure
910 * @chip: NAND chip structure
1da177e4 911 *
b70af9be 912 * Wait for command done. This applies to erase and program only.
844d3b42 913 */
7bc3312b 914static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
1da177e4
LT
915{
916
b70af9be
AS
917 int status;
918 unsigned long timeo = 400;
1da177e4 919
8b6e50c9
BN
920 /*
921 * Apply this short delay always to ensure that we do wait tWB in any
922 * case on any machine.
923 */
e0c7d767 924 ndelay(100);
1da177e4 925
14c65786 926 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
1da177e4 927
2af7c653
SK
928 if (in_interrupt() || oops_in_progress)
929 panic_nand_wait(mtd, chip, timeo);
930 else {
6d2559f8 931 timeo = jiffies + msecs_to_jiffies(timeo);
b70af9be 932 do {
2af7c653
SK
933 if (chip->dev_ready) {
934 if (chip->dev_ready(mtd))
935 break;
936 } else {
937 if (chip->read_byte(mtd) & NAND_STATUS_READY)
938 break;
939 }
940 cond_resched();
b70af9be 941 } while (time_before(jiffies, timeo));
1da177e4 942 }
8fe833c1 943
ace4dfee 944 status = (int)chip->read_byte(mtd);
f251b8df
MC
945 /* This can happen if in case of timeout or buggy dev_ready */
946 WARN_ON(!(status & NAND_STATUS_READY));
1da177e4
LT
947 return status;
948}
949
7d70f334 950/**
b6d676db 951 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
b6d676db
RD
952 * @mtd: mtd info
953 * @ofs: offset to start unlock from
954 * @len: length to unlock
8b6e50c9
BN
955 * @invert: when = 0, unlock the range of blocks within the lower and
956 * upper boundary address
957 * when = 1, unlock the range of blocks outside the boundaries
958 * of the lower and upper boundary address
7d70f334 959 *
8b6e50c9 960 * Returs unlock status.
7d70f334
VS
961 */
962static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
963 uint64_t len, int invert)
964{
965 int ret = 0;
966 int status, page;
862eba51 967 struct nand_chip *chip = mtd_to_nand(mtd);
7d70f334
VS
968
969 /* Submit address of first page to unlock */
970 page = ofs >> chip->page_shift;
971 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
972
973 /* Submit address of last page to unlock */
974 page = (ofs + len) >> chip->page_shift;
975 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
976 (page | invert) & chip->pagemask);
977
978 /* Call wait ready function */
979 status = chip->waitfunc(mtd, chip);
7d70f334 980 /* See if device thinks it succeeded */
74830966 981 if (status & NAND_STATUS_FAIL) {
289c0522 982 pr_debug("%s: error status = 0x%08x\n",
7d70f334
VS
983 __func__, status);
984 ret = -EIO;
985 }
986
987 return ret;
988}
989
990/**
b6d676db 991 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
b6d676db
RD
992 * @mtd: mtd info
993 * @ofs: offset to start unlock from
994 * @len: length to unlock
7d70f334 995 *
8b6e50c9 996 * Returns unlock status.
7d70f334
VS
997 */
998int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
999{
1000 int ret = 0;
1001 int chipnr;
862eba51 1002 struct nand_chip *chip = mtd_to_nand(mtd);
7d70f334 1003
289c0522 1004 pr_debug("%s: start = 0x%012llx, len = %llu\n",
7d70f334
VS
1005 __func__, (unsigned long long)ofs, len);
1006
1007 if (check_offs_len(mtd, ofs, len))
b1a2348a 1008 return -EINVAL;
7d70f334
VS
1009
1010 /* Align to last block address if size addresses end of the device */
1011 if (ofs + len == mtd->size)
1012 len -= mtd->erasesize;
1013
6a8214aa 1014 nand_get_device(mtd, FL_UNLOCKING);
7d70f334
VS
1015
1016 /* Shift to get chip number */
1017 chipnr = ofs >> chip->chip_shift;
1018
1019 chip->select_chip(mtd, chipnr);
1020
57d3a9a8
WD
1021 /*
1022 * Reset the chip.
1023 * If we want to check the WP through READ STATUS and check the bit 7
1024 * we must reset the chip
1025 * some operation can also clear the bit 7 of status register
1026 * eg. erase/program a locked block
1027 */
1028 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1029
7d70f334
VS
1030 /* Check, if it is write protected */
1031 if (nand_check_wp(mtd)) {
289c0522 1032 pr_debug("%s: device is write protected!\n",
7d70f334
VS
1033 __func__);
1034 ret = -EIO;
1035 goto out;
1036 }
1037
1038 ret = __nand_unlock(mtd, ofs, len, 0);
1039
1040out:
b0bb6903 1041 chip->select_chip(mtd, -1);
7d70f334
VS
1042 nand_release_device(mtd);
1043
1044 return ret;
1045}
7351d3a5 1046EXPORT_SYMBOL(nand_unlock);
7d70f334
VS
1047
1048/**
b6d676db 1049 * nand_lock - [REPLACEABLE] locks all blocks present in the device
b6d676db
RD
1050 * @mtd: mtd info
1051 * @ofs: offset to start unlock from
1052 * @len: length to unlock
7d70f334 1053 *
8b6e50c9
BN
1054 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
1055 * have this feature, but it allows only to lock all blocks, not for specified
1056 * range for block. Implementing 'lock' feature by making use of 'unlock', for
1057 * now.
7d70f334 1058 *
8b6e50c9 1059 * Returns lock status.
7d70f334
VS
1060 */
1061int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1062{
1063 int ret = 0;
1064 int chipnr, status, page;
862eba51 1065 struct nand_chip *chip = mtd_to_nand(mtd);
7d70f334 1066
289c0522 1067 pr_debug("%s: start = 0x%012llx, len = %llu\n",
7d70f334
VS
1068 __func__, (unsigned long long)ofs, len);
1069
1070 if (check_offs_len(mtd, ofs, len))
b1a2348a 1071 return -EINVAL;
7d70f334 1072
6a8214aa 1073 nand_get_device(mtd, FL_LOCKING);
7d70f334
VS
1074
1075 /* Shift to get chip number */
1076 chipnr = ofs >> chip->chip_shift;
1077
1078 chip->select_chip(mtd, chipnr);
1079
57d3a9a8
WD
1080 /*
1081 * Reset the chip.
1082 * If we want to check the WP through READ STATUS and check the bit 7
1083 * we must reset the chip
1084 * some operation can also clear the bit 7 of status register
1085 * eg. erase/program a locked block
1086 */
1087 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1088
7d70f334
VS
1089 /* Check, if it is write protected */
1090 if (nand_check_wp(mtd)) {
289c0522 1091 pr_debug("%s: device is write protected!\n",
7d70f334
VS
1092 __func__);
1093 status = MTD_ERASE_FAILED;
1094 ret = -EIO;
1095 goto out;
1096 }
1097
1098 /* Submit address of first page to lock */
1099 page = ofs >> chip->page_shift;
1100 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1101
1102 /* Call wait ready function */
1103 status = chip->waitfunc(mtd, chip);
7d70f334 1104 /* See if device thinks it succeeded */
74830966 1105 if (status & NAND_STATUS_FAIL) {
289c0522 1106 pr_debug("%s: error status = 0x%08x\n",
7d70f334
VS
1107 __func__, status);
1108 ret = -EIO;
1109 goto out;
1110 }
1111
1112 ret = __nand_unlock(mtd, ofs, len, 0x1);
1113
1114out:
b0bb6903 1115 chip->select_chip(mtd, -1);
7d70f334
VS
1116 nand_release_device(mtd);
1117
1118 return ret;
1119}
7351d3a5 1120EXPORT_SYMBOL(nand_lock);
7d70f334 1121
730a43fb
BB
1122/**
1123 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
1124 * @buf: buffer to test
1125 * @len: buffer length
1126 * @bitflips_threshold: maximum number of bitflips
1127 *
1128 * Check if a buffer contains only 0xff, which means the underlying region
1129 * has been erased and is ready to be programmed.
1130 * The bitflips_threshold specify the maximum number of bitflips before
1131 * considering the region is not erased.
1132 * Note: The logic of this function has been extracted from the memweight
1133 * implementation, except that nand_check_erased_buf function exit before
1134 * testing the whole buffer if the number of bitflips exceed the
1135 * bitflips_threshold value.
1136 *
1137 * Returns a positive number of bitflips less than or equal to
1138 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1139 * threshold.
1140 */
1141static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
1142{
1143 const unsigned char *bitmap = buf;
1144 int bitflips = 0;
1145 int weight;
1146
1147 for (; len && ((uintptr_t)bitmap) % sizeof(long);
1148 len--, bitmap++) {
1149 weight = hweight8(*bitmap);
1150 bitflips += BITS_PER_BYTE - weight;
1151 if (unlikely(bitflips > bitflips_threshold))
1152 return -EBADMSG;
1153 }
1154
1155 for (; len >= sizeof(long);
1156 len -= sizeof(long), bitmap += sizeof(long)) {
1157 weight = hweight_long(*((unsigned long *)bitmap));
1158 bitflips += BITS_PER_LONG - weight;
1159 if (unlikely(bitflips > bitflips_threshold))
1160 return -EBADMSG;
1161 }
1162
1163 for (; len > 0; len--, bitmap++) {
1164 weight = hweight8(*bitmap);
1165 bitflips += BITS_PER_BYTE - weight;
1166 if (unlikely(bitflips > bitflips_threshold))
1167 return -EBADMSG;
1168 }
1169
1170 return bitflips;
1171}
1172
1173/**
1174 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
1175 * 0xff data
1176 * @data: data buffer to test
1177 * @datalen: data length
1178 * @ecc: ECC buffer
1179 * @ecclen: ECC length
1180 * @extraoob: extra OOB buffer
1181 * @extraooblen: extra OOB length
1182 * @bitflips_threshold: maximum number of bitflips
1183 *
1184 * Check if a data buffer and its associated ECC and OOB data contains only
1185 * 0xff pattern, which means the underlying region has been erased and is
1186 * ready to be programmed.
1187 * The bitflips_threshold specify the maximum number of bitflips before
1188 * considering the region as not erased.
1189 *
1190 * Note:
1191 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
1192 * different from the NAND page size. When fixing bitflips, ECC engines will
1193 * report the number of errors per chunk, and the NAND core infrastructure
1194 * expect you to return the maximum number of bitflips for the whole page.
1195 * This is why you should always use this function on a single chunk and
1196 * not on the whole page. After checking each chunk you should update your
1197 * max_bitflips value accordingly.
1198 * 2/ When checking for bitflips in erased pages you should not only check
1199 * the payload data but also their associated ECC data, because a user might
1200 * have programmed almost all bits to 1 but a few. In this case, we
1201 * shouldn't consider the chunk as erased, and checking ECC bytes prevent
1202 * this case.
1203 * 3/ The extraoob argument is optional, and should be used if some of your OOB
1204 * data are protected by the ECC engine.
1205 * It could also be used if you support subpages and want to attach some
1206 * extra OOB data to an ECC chunk.
1207 *
1208 * Returns a positive number of bitflips less than or equal to
1209 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1210 * threshold. In case of success, the passed buffers are filled with 0xff.
1211 */
1212int nand_check_erased_ecc_chunk(void *data, int datalen,
1213 void *ecc, int ecclen,
1214 void *extraoob, int extraooblen,
1215 int bitflips_threshold)
1216{
1217 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
1218
1219 data_bitflips = nand_check_erased_buf(data, datalen,
1220 bitflips_threshold);
1221 if (data_bitflips < 0)
1222 return data_bitflips;
1223
1224 bitflips_threshold -= data_bitflips;
1225
1226 ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
1227 if (ecc_bitflips < 0)
1228 return ecc_bitflips;
1229
1230 bitflips_threshold -= ecc_bitflips;
1231
1232 extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
1233 bitflips_threshold);
1234 if (extraoob_bitflips < 0)
1235 return extraoob_bitflips;
1236
1237 if (data_bitflips)
1238 memset(data, 0xff, datalen);
1239
1240 if (ecc_bitflips)
1241 memset(ecc, 0xff, ecclen);
1242
1243 if (extraoob_bitflips)
1244 memset(extraoob, 0xff, extraooblen);
1245
1246 return data_bitflips + ecc_bitflips + extraoob_bitflips;
1247}
1248EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
1249
8593fbc6 1250/**
7854d3f7 1251 * nand_read_page_raw - [INTERN] read raw page data without ecc
8b6e50c9
BN
1252 * @mtd: mtd info structure
1253 * @chip: nand chip info structure
1254 * @buf: buffer to store read data
1fbb938d 1255 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1256 * @page: page number to read
52ff49df 1257 *
7854d3f7 1258 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6
TG
1259 */
1260static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1261 uint8_t *buf, int oob_required, int page)
8593fbc6
TG
1262{
1263 chip->read_buf(mtd, buf, mtd->writesize);
279f08d4
BN
1264 if (oob_required)
1265 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
8593fbc6
TG
1266 return 0;
1267}
1268
52ff49df 1269/**
7854d3f7 1270 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
8b6e50c9
BN
1271 * @mtd: mtd info structure
1272 * @chip: nand chip info structure
1273 * @buf: buffer to store read data
1fbb938d 1274 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1275 * @page: page number to read
52ff49df
DB
1276 *
1277 * We need a special oob layout and handling even when OOB isn't used.
1278 */
7351d3a5 1279static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1fbb938d
BN
1280 struct nand_chip *chip, uint8_t *buf,
1281 int oob_required, int page)
52ff49df
DB
1282{
1283 int eccsize = chip->ecc.size;
1284 int eccbytes = chip->ecc.bytes;
1285 uint8_t *oob = chip->oob_poi;
1286 int steps, size;
1287
1288 for (steps = chip->ecc.steps; steps > 0; steps--) {
1289 chip->read_buf(mtd, buf, eccsize);
1290 buf += eccsize;
1291
1292 if (chip->ecc.prepad) {
1293 chip->read_buf(mtd, oob, chip->ecc.prepad);
1294 oob += chip->ecc.prepad;
1295 }
1296
1297 chip->read_buf(mtd, oob, eccbytes);
1298 oob += eccbytes;
1299
1300 if (chip->ecc.postpad) {
1301 chip->read_buf(mtd, oob, chip->ecc.postpad);
1302 oob += chip->ecc.postpad;
1303 }
1304 }
1305
1306 size = mtd->oobsize - (oob - chip->oob_poi);
1307 if (size)
1308 chip->read_buf(mtd, oob, size);
1309
1310 return 0;
1311}
1312
1da177e4 1313/**
7854d3f7 1314 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
8b6e50c9
BN
1315 * @mtd: mtd info structure
1316 * @chip: nand chip info structure
1317 * @buf: buffer to store read data
1fbb938d 1318 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1319 * @page: page number to read
068e3c0a 1320 */
f5bbdacc 1321static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1322 uint8_t *buf, int oob_required, int page)
1da177e4 1323{
846031d3 1324 int i, eccsize = chip->ecc.size, ret;
f5bbdacc
TG
1325 int eccbytes = chip->ecc.bytes;
1326 int eccsteps = chip->ecc.steps;
1327 uint8_t *p = buf;
4bf63fcb
DW
1328 uint8_t *ecc_calc = chip->buffers->ecccalc;
1329 uint8_t *ecc_code = chip->buffers->ecccode;
3f91e94f 1330 unsigned int max_bitflips = 0;
f5bbdacc 1331
1fbb938d 1332 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
f5bbdacc
TG
1333
1334 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1335 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1336
846031d3
BB
1337 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1338 chip->ecc.total);
1339 if (ret)
1340 return ret;
f5bbdacc
TG
1341
1342 eccsteps = chip->ecc.steps;
1343 p = buf;
1344
1345 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1346 int stat;
1347
1348 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3f91e94f 1349 if (stat < 0) {
f5bbdacc 1350 mtd->ecc_stats.failed++;
3f91e94f 1351 } else {
f5bbdacc 1352 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1353 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1354 }
f5bbdacc 1355 }
3f91e94f 1356 return max_bitflips;
22c60f5f 1357}
1da177e4 1358
3d459559 1359/**
837a6ba4 1360 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
8b6e50c9
BN
1361 * @mtd: mtd info structure
1362 * @chip: nand chip info structure
1363 * @data_offs: offset of requested data within the page
1364 * @readlen: data length
1365 * @bufpoi: buffer to store read data
e004debd 1366 * @page: page number to read
3d459559 1367 */
7351d3a5 1368static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
e004debd
HS
1369 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1370 int page)
3d459559 1371{
846031d3 1372 int start_step, end_step, num_steps, ret;
3d459559
AK
1373 uint8_t *p;
1374 int data_col_addr, i, gaps = 0;
1375 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1376 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
846031d3 1377 int index, section = 0;
3f91e94f 1378 unsigned int max_bitflips = 0;
846031d3 1379 struct mtd_oob_region oobregion = { };
3d459559 1380
7854d3f7 1381 /* Column address within the page aligned to ECC size (256bytes) */
3d459559
AK
1382 start_step = data_offs / chip->ecc.size;
1383 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1384 num_steps = end_step - start_step + 1;
4a4163ca 1385 index = start_step * chip->ecc.bytes;
3d459559 1386
8b6e50c9 1387 /* Data size aligned to ECC ecc.size */
3d459559
AK
1388 datafrag_len = num_steps * chip->ecc.size;
1389 eccfrag_len = num_steps * chip->ecc.bytes;
1390
1391 data_col_addr = start_step * chip->ecc.size;
1392 /* If we read not a page aligned data */
1393 if (data_col_addr != 0)
1394 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1395
1396 p = bufpoi + data_col_addr;
1397 chip->read_buf(mtd, p, datafrag_len);
1398
8b6e50c9 1399 /* Calculate ECC */
3d459559
AK
1400 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1401 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1402
8b6e50c9
BN
1403 /*
1404 * The performance is faster if we position offsets according to
7854d3f7 1405 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
8b6e50c9 1406 */
846031d3
BB
1407 ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
1408 if (ret)
1409 return ret;
1410
1411 if (oobregion.length < eccfrag_len)
1412 gaps = 1;
1413
3d459559
AK
1414 if (gaps) {
1415 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1416 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1417 } else {
8b6e50c9 1418 /*
7854d3f7 1419 * Send the command to read the particular ECC bytes take care
8b6e50c9
BN
1420 * about buswidth alignment in read_buf.
1421 */
846031d3 1422 aligned_pos = oobregion.offset & ~(busw - 1);
3d459559 1423 aligned_len = eccfrag_len;
846031d3 1424 if (oobregion.offset & (busw - 1))
3d459559 1425 aligned_len++;
846031d3
BB
1426 if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
1427 (busw - 1))
3d459559
AK
1428 aligned_len++;
1429
7351d3a5 1430 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
846031d3 1431 mtd->writesize + aligned_pos, -1);
3d459559
AK
1432 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1433 }
1434
846031d3
BB
1435 ret = mtd_ooblayout_get_eccbytes(mtd, chip->buffers->ecccode,
1436 chip->oob_poi, index, eccfrag_len);
1437 if (ret)
1438 return ret;
3d459559
AK
1439
1440 p = bufpoi + data_col_addr;
1441 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1442 int stat;
1443
7351d3a5
FF
1444 stat = chip->ecc.correct(mtd, p,
1445 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
40cbe6ee
BB
1446 if (stat == -EBADMSG &&
1447 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1448 /* check for empty pages with bitflips */
1449 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1450 &chip->buffers->ecccode[i],
1451 chip->ecc.bytes,
1452 NULL, 0,
1453 chip->ecc.strength);
1454 }
1455
3f91e94f 1456 if (stat < 0) {
3d459559 1457 mtd->ecc_stats.failed++;
3f91e94f 1458 } else {
3d459559 1459 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1460 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1461 }
3d459559 1462 }
3f91e94f 1463 return max_bitflips;
3d459559
AK
1464}
1465
068e3c0a 1466/**
7854d3f7 1467 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
8b6e50c9
BN
1468 * @mtd: mtd info structure
1469 * @chip: nand chip info structure
1470 * @buf: buffer to store read data
1fbb938d 1471 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1472 * @page: page number to read
068e3c0a 1473 *
7854d3f7 1474 * Not for syndrome calculating ECC controllers which need a special oob layout.
068e3c0a 1475 */
f5bbdacc 1476static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1477 uint8_t *buf, int oob_required, int page)
1da177e4 1478{
846031d3 1479 int i, eccsize = chip->ecc.size, ret;
f5bbdacc
TG
1480 int eccbytes = chip->ecc.bytes;
1481 int eccsteps = chip->ecc.steps;
1482 uint8_t *p = buf;
4bf63fcb
DW
1483 uint8_t *ecc_calc = chip->buffers->ecccalc;
1484 uint8_t *ecc_code = chip->buffers->ecccode;
3f91e94f 1485 unsigned int max_bitflips = 0;
f5bbdacc
TG
1486
1487 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1488 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1489 chip->read_buf(mtd, p, eccsize);
1490 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1da177e4 1491 }
f75e5097 1492 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1da177e4 1493
846031d3
BB
1494 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1495 chip->ecc.total);
1496 if (ret)
1497 return ret;
1da177e4 1498
f5bbdacc
TG
1499 eccsteps = chip->ecc.steps;
1500 p = buf;
61b03bd7 1501
f5bbdacc
TG
1502 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1503 int stat;
1da177e4 1504
f5bbdacc 1505 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
40cbe6ee
BB
1506 if (stat == -EBADMSG &&
1507 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1508 /* check for empty pages with bitflips */
1509 stat = nand_check_erased_ecc_chunk(p, eccsize,
1510 &ecc_code[i], eccbytes,
1511 NULL, 0,
1512 chip->ecc.strength);
1513 }
1514
3f91e94f 1515 if (stat < 0) {
f5bbdacc 1516 mtd->ecc_stats.failed++;
3f91e94f 1517 } else {
f5bbdacc 1518 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1519 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1520 }
f5bbdacc 1521 }
3f91e94f 1522 return max_bitflips;
f5bbdacc 1523}
1da177e4 1524
6e0cb135 1525/**
7854d3f7 1526 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
8b6e50c9
BN
1527 * @mtd: mtd info structure
1528 * @chip: nand chip info structure
1529 * @buf: buffer to store read data
1fbb938d 1530 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1531 * @page: page number to read
6e0cb135 1532 *
8b6e50c9
BN
1533 * Hardware ECC for large page chips, require OOB to be read first. For this
1534 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1535 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1536 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1537 * the data area, by overwriting the NAND manufacturer bad block markings.
6e0cb135
SN
1538 */
1539static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1fbb938d 1540 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
6e0cb135 1541{
846031d3 1542 int i, eccsize = chip->ecc.size, ret;
6e0cb135
SN
1543 int eccbytes = chip->ecc.bytes;
1544 int eccsteps = chip->ecc.steps;
1545 uint8_t *p = buf;
1546 uint8_t *ecc_code = chip->buffers->ecccode;
6e0cb135 1547 uint8_t *ecc_calc = chip->buffers->ecccalc;
3f91e94f 1548 unsigned int max_bitflips = 0;
6e0cb135
SN
1549
1550 /* Read the OOB area first */
1551 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1552 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1553 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1554
846031d3
BB
1555 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1556 chip->ecc.total);
1557 if (ret)
1558 return ret;
6e0cb135
SN
1559
1560 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1561 int stat;
1562
1563 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1564 chip->read_buf(mtd, p, eccsize);
1565 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1566
1567 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
40cbe6ee
BB
1568 if (stat == -EBADMSG &&
1569 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1570 /* check for empty pages with bitflips */
1571 stat = nand_check_erased_ecc_chunk(p, eccsize,
1572 &ecc_code[i], eccbytes,
1573 NULL, 0,
1574 chip->ecc.strength);
1575 }
1576
3f91e94f 1577 if (stat < 0) {
6e0cb135 1578 mtd->ecc_stats.failed++;
3f91e94f 1579 } else {
6e0cb135 1580 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1581 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1582 }
6e0cb135 1583 }
3f91e94f 1584 return max_bitflips;
6e0cb135
SN
1585}
1586
f5bbdacc 1587/**
7854d3f7 1588 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
8b6e50c9
BN
1589 * @mtd: mtd info structure
1590 * @chip: nand chip info structure
1591 * @buf: buffer to store read data
1fbb938d 1592 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1593 * @page: page number to read
f5bbdacc 1594 *
8b6e50c9
BN
1595 * The hw generator calculates the error syndrome automatically. Therefore we
1596 * need a special oob layout and handling.
f5bbdacc
TG
1597 */
1598static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1599 uint8_t *buf, int oob_required, int page)
f5bbdacc
TG
1600{
1601 int i, eccsize = chip->ecc.size;
1602 int eccbytes = chip->ecc.bytes;
1603 int eccsteps = chip->ecc.steps;
40cbe6ee 1604 int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
f5bbdacc 1605 uint8_t *p = buf;
f75e5097 1606 uint8_t *oob = chip->oob_poi;
3f91e94f 1607 unsigned int max_bitflips = 0;
1da177e4 1608
f5bbdacc
TG
1609 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1610 int stat;
61b03bd7 1611
f5bbdacc
TG
1612 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1613 chip->read_buf(mtd, p, eccsize);
1da177e4 1614
f5bbdacc
TG
1615 if (chip->ecc.prepad) {
1616 chip->read_buf(mtd, oob, chip->ecc.prepad);
1617 oob += chip->ecc.prepad;
1618 }
1da177e4 1619
f5bbdacc
TG
1620 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1621 chip->read_buf(mtd, oob, eccbytes);
1622 stat = chip->ecc.correct(mtd, p, oob, NULL);
61b03bd7 1623
f5bbdacc 1624 oob += eccbytes;
1da177e4 1625
f5bbdacc
TG
1626 if (chip->ecc.postpad) {
1627 chip->read_buf(mtd, oob, chip->ecc.postpad);
1628 oob += chip->ecc.postpad;
61b03bd7 1629 }
40cbe6ee
BB
1630
1631 if (stat == -EBADMSG &&
1632 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1633 /* check for empty pages with bitflips */
1634 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1635 oob - eccpadbytes,
1636 eccpadbytes,
1637 NULL, 0,
1638 chip->ecc.strength);
1639 }
1640
1641 if (stat < 0) {
1642 mtd->ecc_stats.failed++;
1643 } else {
1644 mtd->ecc_stats.corrected += stat;
1645 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1646 }
f5bbdacc 1647 }
1da177e4 1648
f5bbdacc 1649 /* Calculate remaining oob bytes */
7e4178f9 1650 i = mtd->oobsize - (oob - chip->oob_poi);
f5bbdacc
TG
1651 if (i)
1652 chip->read_buf(mtd, oob, i);
61b03bd7 1653
3f91e94f 1654 return max_bitflips;
f5bbdacc 1655}
1da177e4 1656
f5bbdacc 1657/**
7854d3f7 1658 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
846031d3 1659 * @mtd: mtd info structure
8b6e50c9
BN
1660 * @oob: oob destination address
1661 * @ops: oob ops structure
1662 * @len: size of oob to transfer
8593fbc6 1663 */
846031d3 1664static uint8_t *nand_transfer_oob(struct mtd_info *mtd, uint8_t *oob,
7014568b 1665 struct mtd_oob_ops *ops, size_t len)
8593fbc6 1666{
846031d3
BB
1667 struct nand_chip *chip = mtd_to_nand(mtd);
1668 int ret;
1669
f8ac0414 1670 switch (ops->mode) {
8593fbc6 1671
0612b9dd
BN
1672 case MTD_OPS_PLACE_OOB:
1673 case MTD_OPS_RAW:
8593fbc6
TG
1674 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1675 return oob + len;
1676
846031d3
BB
1677 case MTD_OPS_AUTO_OOB:
1678 ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
1679 ops->ooboffs, len);
1680 BUG_ON(ret);
1681 return oob + len;
1682
8593fbc6
TG
1683 default:
1684 BUG();
1685 }
1686 return NULL;
1687}
1688
ba84fb59
BN
1689/**
1690 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1691 * @mtd: MTD device structure
1692 * @retry_mode: the retry mode to use
1693 *
1694 * Some vendors supply a special command to shift the Vt threshold, to be used
1695 * when there are too many bitflips in a page (i.e., ECC error). After setting
1696 * a new threshold, the host should retry reading the page.
1697 */
1698static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1699{
862eba51 1700 struct nand_chip *chip = mtd_to_nand(mtd);
ba84fb59
BN
1701
1702 pr_debug("setting READ RETRY mode %d\n", retry_mode);
1703
1704 if (retry_mode >= chip->read_retries)
1705 return -EINVAL;
1706
1707 if (!chip->setup_read_retry)
1708 return -EOPNOTSUPP;
1709
1710 return chip->setup_read_retry(mtd, retry_mode);
1711}
1712
8593fbc6 1713/**
7854d3f7 1714 * nand_do_read_ops - [INTERN] Read data with ECC
8b6e50c9
BN
1715 * @mtd: MTD device structure
1716 * @from: offset to read from
1717 * @ops: oob ops structure
f5bbdacc
TG
1718 *
1719 * Internal function. Called with chip held.
1720 */
8593fbc6
TG
1721static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1722 struct mtd_oob_ops *ops)
f5bbdacc 1723{
e47f3db4 1724 int chipnr, page, realpage, col, bytes, aligned, oob_required;
862eba51 1725 struct nand_chip *chip = mtd_to_nand(mtd);
f5bbdacc 1726 int ret = 0;
8593fbc6 1727 uint32_t readlen = ops->len;
7014568b 1728 uint32_t oobreadlen = ops->ooblen;
29f1058a 1729 uint32_t max_oobsize = mtd_oobavail(mtd, ops);
9aca334e 1730
8593fbc6 1731 uint8_t *bufpoi, *oob, *buf;
66507c7b 1732 int use_bufpoi;
edbc4540 1733 unsigned int max_bitflips = 0;
ba84fb59 1734 int retry_mode = 0;
b72f3dfb 1735 bool ecc_fail = false;
1da177e4 1736
f5bbdacc
TG
1737 chipnr = (int)(from >> chip->chip_shift);
1738 chip->select_chip(mtd, chipnr);
61b03bd7 1739
f5bbdacc
TG
1740 realpage = (int)(from >> chip->page_shift);
1741 page = realpage & chip->pagemask;
1da177e4 1742
f5bbdacc 1743 col = (int)(from & (mtd->writesize - 1));
61b03bd7 1744
8593fbc6
TG
1745 buf = ops->datbuf;
1746 oob = ops->oobbuf;
e47f3db4 1747 oob_required = oob ? 1 : 0;
8593fbc6 1748
f8ac0414 1749 while (1) {
b72f3dfb
BN
1750 unsigned int ecc_failures = mtd->ecc_stats.failed;
1751
f5bbdacc
TG
1752 bytes = min(mtd->writesize - col, readlen);
1753 aligned = (bytes == mtd->writesize);
61b03bd7 1754
66507c7b
KD
1755 if (!aligned)
1756 use_bufpoi = 1;
1757 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
1758 use_bufpoi = !virt_addr_valid(buf);
1759 else
1760 use_bufpoi = 0;
1761
8b6e50c9 1762 /* Is the current page in the buffer? */
8593fbc6 1763 if (realpage != chip->pagebuf || oob) {
66507c7b
KD
1764 bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
1765
1766 if (use_bufpoi && aligned)
1767 pr_debug("%s: using read bounce buffer for buf@%p\n",
1768 __func__, buf);
61b03bd7 1769
ba84fb59 1770read_retry:
c00a0991 1771 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1da177e4 1772
edbc4540
MD
1773 /*
1774 * Now read the page into the buffer. Absent an error,
1775 * the read methods return max bitflips per ecc step.
1776 */
0612b9dd 1777 if (unlikely(ops->mode == MTD_OPS_RAW))
1fbb938d 1778 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
e47f3db4
BN
1779 oob_required,
1780 page);
a5ff4f10
JW
1781 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1782 !oob)
7351d3a5 1783 ret = chip->ecc.read_subpage(mtd, chip,
e004debd
HS
1784 col, bytes, bufpoi,
1785 page);
956e944c 1786 else
46a8cf2d 1787 ret = chip->ecc.read_page(mtd, chip, bufpoi,
e47f3db4 1788 oob_required, page);
6d77b9d0 1789 if (ret < 0) {
66507c7b 1790 if (use_bufpoi)
6d77b9d0
BN
1791 /* Invalidate page cache */
1792 chip->pagebuf = -1;
1da177e4 1793 break;
6d77b9d0 1794 }
f5bbdacc 1795
edbc4540
MD
1796 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1797
f5bbdacc 1798 /* Transfer not aligned data */
66507c7b 1799 if (use_bufpoi) {
a5ff4f10 1800 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
b72f3dfb 1801 !(mtd->ecc_stats.failed - ecc_failures) &&
edbc4540 1802 (ops->mode != MTD_OPS_RAW)) {
3d459559 1803 chip->pagebuf = realpage;
edbc4540
MD
1804 chip->pagebuf_bitflips = ret;
1805 } else {
6d77b9d0
BN
1806 /* Invalidate page cache */
1807 chip->pagebuf = -1;
edbc4540 1808 }
4bf63fcb 1809 memcpy(buf, chip->buffers->databuf + col, bytes);
f5bbdacc
TG
1810 }
1811
8593fbc6 1812 if (unlikely(oob)) {
b64d39d8
ML
1813 int toread = min(oobreadlen, max_oobsize);
1814
1815 if (toread) {
846031d3 1816 oob = nand_transfer_oob(mtd,
b64d39d8
ML
1817 oob, ops, toread);
1818 oobreadlen -= toread;
1819 }
8593fbc6 1820 }
5bc7c33c
BN
1821
1822 if (chip->options & NAND_NEED_READRDY) {
1823 /* Apply delay or wait for ready/busy pin */
1824 if (!chip->dev_ready)
1825 udelay(chip->chip_delay);
1826 else
1827 nand_wait_ready(mtd);
1828 }
b72f3dfb 1829
ba84fb59 1830 if (mtd->ecc_stats.failed - ecc_failures) {
28fa65e6 1831 if (retry_mode + 1 < chip->read_retries) {
ba84fb59
BN
1832 retry_mode++;
1833 ret = nand_setup_read_retry(mtd,
1834 retry_mode);
1835 if (ret < 0)
1836 break;
1837
1838 /* Reset failures; retry */
1839 mtd->ecc_stats.failed = ecc_failures;
1840 goto read_retry;
1841 } else {
1842 /* No more retry modes; real failure */
1843 ecc_fail = true;
1844 }
1845 }
1846
1847 buf += bytes;
8593fbc6 1848 } else {
4bf63fcb 1849 memcpy(buf, chip->buffers->databuf + col, bytes);
8593fbc6 1850 buf += bytes;
edbc4540
MD
1851 max_bitflips = max_t(unsigned int, max_bitflips,
1852 chip->pagebuf_bitflips);
8593fbc6 1853 }
1da177e4 1854
f5bbdacc 1855 readlen -= bytes;
61b03bd7 1856
ba84fb59
BN
1857 /* Reset to retry mode 0 */
1858 if (retry_mode) {
1859 ret = nand_setup_read_retry(mtd, 0);
1860 if (ret < 0)
1861 break;
1862 retry_mode = 0;
1863 }
1864
f5bbdacc 1865 if (!readlen)
61b03bd7 1866 break;
1da177e4 1867
8b6e50c9 1868 /* For subsequent reads align to page boundary */
1da177e4
LT
1869 col = 0;
1870 /* Increment page address */
1871 realpage++;
1872
ace4dfee 1873 page = realpage & chip->pagemask;
1da177e4
LT
1874 /* Check, if we cross a chip boundary */
1875 if (!page) {
1876 chipnr++;
ace4dfee
TG
1877 chip->select_chip(mtd, -1);
1878 chip->select_chip(mtd, chipnr);
1da177e4 1879 }
1da177e4 1880 }
b0bb6903 1881 chip->select_chip(mtd, -1);
1da177e4 1882
8593fbc6 1883 ops->retlen = ops->len - (size_t) readlen;
7014568b
VW
1884 if (oob)
1885 ops->oobretlen = ops->ooblen - oobreadlen;
1da177e4 1886
3f91e94f 1887 if (ret < 0)
f5bbdacc
TG
1888 return ret;
1889
b72f3dfb 1890 if (ecc_fail)
9a1fcdfd
TG
1891 return -EBADMSG;
1892
edbc4540 1893 return max_bitflips;
f5bbdacc
TG
1894}
1895
1896/**
25985edc 1897 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
8b6e50c9
BN
1898 * @mtd: MTD device structure
1899 * @from: offset to read from
1900 * @len: number of bytes to read
1901 * @retlen: pointer to variable to store the number of read bytes
1902 * @buf: the databuffer to put data
f5bbdacc 1903 *
8b6e50c9 1904 * Get hold of the chip and call nand_do_read.
f5bbdacc
TG
1905 */
1906static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1907 size_t *retlen, uint8_t *buf)
1908{
4a89ff88 1909 struct mtd_oob_ops ops;
f5bbdacc
TG
1910 int ret;
1911
6a8214aa 1912 nand_get_device(mtd, FL_READING);
0ec56dc4 1913 memset(&ops, 0, sizeof(ops));
4a89ff88
BN
1914 ops.len = len;
1915 ops.datbuf = buf;
11041ae6 1916 ops.mode = MTD_OPS_PLACE_OOB;
4a89ff88 1917 ret = nand_do_read_ops(mtd, from, &ops);
4a89ff88 1918 *retlen = ops.retlen;
f5bbdacc 1919 nand_release_device(mtd);
f5bbdacc 1920 return ret;
1da177e4
LT
1921}
1922
7bc3312b 1923/**
7854d3f7 1924 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
8b6e50c9
BN
1925 * @mtd: mtd info structure
1926 * @chip: nand chip info structure
1927 * @page: page number to read
7bc3312b 1928 */
9d02fc2a 1929int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
7bc3312b 1930{
5c2ffb11 1931 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
7bc3312b 1932 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
5c2ffb11 1933 return 0;
7bc3312b 1934}
9d02fc2a 1935EXPORT_SYMBOL(nand_read_oob_std);
7bc3312b
TG
1936
1937/**
7854d3f7 1938 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
7bc3312b 1939 * with syndromes
8b6e50c9
BN
1940 * @mtd: mtd info structure
1941 * @chip: nand chip info structure
1942 * @page: page number to read
7bc3312b 1943 */
9d02fc2a
BB
1944int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1945 int page)
7bc3312b 1946{
7bc3312b
TG
1947 int length = mtd->oobsize;
1948 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1949 int eccsize = chip->ecc.size;
2ea69d21 1950 uint8_t *bufpoi = chip->oob_poi;
7bc3312b
TG
1951 int i, toread, sndrnd = 0, pos;
1952
1953 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1954 for (i = 0; i < chip->ecc.steps; i++) {
1955 if (sndrnd) {
1956 pos = eccsize + i * (eccsize + chunk);
1957 if (mtd->writesize > 512)
1958 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1959 else
1960 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1961 } else
1962 sndrnd = 1;
1963 toread = min_t(int, length, chunk);
1964 chip->read_buf(mtd, bufpoi, toread);
1965 bufpoi += toread;
1966 length -= toread;
1967 }
1968 if (length > 0)
1969 chip->read_buf(mtd, bufpoi, length);
1970
5c2ffb11 1971 return 0;
7bc3312b 1972}
9d02fc2a 1973EXPORT_SYMBOL(nand_read_oob_syndrome);
7bc3312b
TG
1974
1975/**
7854d3f7 1976 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
8b6e50c9
BN
1977 * @mtd: mtd info structure
1978 * @chip: nand chip info structure
1979 * @page: page number to write
7bc3312b 1980 */
9d02fc2a 1981int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
7bc3312b
TG
1982{
1983 int status = 0;
1984 const uint8_t *buf = chip->oob_poi;
1985 int length = mtd->oobsize;
1986
1987 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1988 chip->write_buf(mtd, buf, length);
1989 /* Send command to program the OOB data */
1990 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1991
1992 status = chip->waitfunc(mtd, chip);
1993
0d420f9d 1994 return status & NAND_STATUS_FAIL ? -EIO : 0;
7bc3312b 1995}
9d02fc2a 1996EXPORT_SYMBOL(nand_write_oob_std);
7bc3312b
TG
1997
1998/**
7854d3f7 1999 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
8b6e50c9
BN
2000 * with syndrome - only for large page flash
2001 * @mtd: mtd info structure
2002 * @chip: nand chip info structure
2003 * @page: page number to write
7bc3312b 2004 */
9d02fc2a
BB
2005int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
2006 int page)
7bc3312b
TG
2007{
2008 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
2009 int eccsize = chip->ecc.size, length = mtd->oobsize;
2010 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
2011 const uint8_t *bufpoi = chip->oob_poi;
2012
2013 /*
2014 * data-ecc-data-ecc ... ecc-oob
2015 * or
2016 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
2017 */
2018 if (!chip->ecc.prepad && !chip->ecc.postpad) {
2019 pos = steps * (eccsize + chunk);
2020 steps = 0;
2021 } else
8b0036ee 2022 pos = eccsize;
7bc3312b
TG
2023
2024 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
2025 for (i = 0; i < steps; i++) {
2026 if (sndcmd) {
2027 if (mtd->writesize <= 512) {
2028 uint32_t fill = 0xFFFFFFFF;
2029
2030 len = eccsize;
2031 while (len > 0) {
2032 int num = min_t(int, len, 4);
2033 chip->write_buf(mtd, (uint8_t *)&fill,
2034 num);
2035 len -= num;
2036 }
2037 } else {
2038 pos = eccsize + i * (eccsize + chunk);
2039 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
2040 }
2041 } else
2042 sndcmd = 1;
2043 len = min_t(int, length, chunk);
2044 chip->write_buf(mtd, bufpoi, len);
2045 bufpoi += len;
2046 length -= len;
2047 }
2048 if (length > 0)
2049 chip->write_buf(mtd, bufpoi, length);
2050
2051 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2052 status = chip->waitfunc(mtd, chip);
2053
2054 return status & NAND_STATUS_FAIL ? -EIO : 0;
2055}
9d02fc2a 2056EXPORT_SYMBOL(nand_write_oob_syndrome);
7bc3312b 2057
1da177e4 2058/**
7854d3f7 2059 * nand_do_read_oob - [INTERN] NAND read out-of-band
8b6e50c9
BN
2060 * @mtd: MTD device structure
2061 * @from: offset to read from
2062 * @ops: oob operations description structure
1da177e4 2063 *
8b6e50c9 2064 * NAND read out-of-band data from the spare area.
1da177e4 2065 */
8593fbc6
TG
2066static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
2067 struct mtd_oob_ops *ops)
1da177e4 2068{
c00a0991 2069 int page, realpage, chipnr;
862eba51 2070 struct nand_chip *chip = mtd_to_nand(mtd);
041e4575 2071 struct mtd_ecc_stats stats;
7014568b
VW
2072 int readlen = ops->ooblen;
2073 int len;
7bc3312b 2074 uint8_t *buf = ops->oobbuf;
1951f2f7 2075 int ret = 0;
61b03bd7 2076
289c0522 2077 pr_debug("%s: from = 0x%08Lx, len = %i\n",
20d8e248 2078 __func__, (unsigned long long)from, readlen);
1da177e4 2079
041e4575
BN
2080 stats = mtd->ecc_stats;
2081
29f1058a 2082 len = mtd_oobavail(mtd, ops);
03736155
AH
2083
2084 if (unlikely(ops->ooboffs >= len)) {
289c0522
BN
2085 pr_debug("%s: attempt to start read outside oob\n",
2086 __func__);
03736155
AH
2087 return -EINVAL;
2088 }
2089
2090 /* Do not allow reads past end of device */
2091 if (unlikely(from >= mtd->size ||
2092 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
2093 (from >> chip->page_shift)) * len)) {
289c0522
BN
2094 pr_debug("%s: attempt to read beyond end of device\n",
2095 __func__);
03736155
AH
2096 return -EINVAL;
2097 }
7014568b 2098
7314e9e7 2099 chipnr = (int)(from >> chip->chip_shift);
ace4dfee 2100 chip->select_chip(mtd, chipnr);
1da177e4 2101
7314e9e7
TG
2102 /* Shift to get page */
2103 realpage = (int)(from >> chip->page_shift);
2104 page = realpage & chip->pagemask;
1da177e4 2105
f8ac0414 2106 while (1) {
0612b9dd 2107 if (ops->mode == MTD_OPS_RAW)
1951f2f7 2108 ret = chip->ecc.read_oob_raw(mtd, chip, page);
c46f6483 2109 else
1951f2f7
SL
2110 ret = chip->ecc.read_oob(mtd, chip, page);
2111
2112 if (ret < 0)
2113 break;
7014568b
VW
2114
2115 len = min(len, readlen);
846031d3 2116 buf = nand_transfer_oob(mtd, buf, ops, len);
8593fbc6 2117
5bc7c33c
BN
2118 if (chip->options & NAND_NEED_READRDY) {
2119 /* Apply delay or wait for ready/busy pin */
2120 if (!chip->dev_ready)
2121 udelay(chip->chip_delay);
2122 else
2123 nand_wait_ready(mtd);
2124 }
2125
7014568b 2126 readlen -= len;
0d420f9d
SZ
2127 if (!readlen)
2128 break;
2129
7314e9e7
TG
2130 /* Increment page address */
2131 realpage++;
2132
2133 page = realpage & chip->pagemask;
2134 /* Check, if we cross a chip boundary */
2135 if (!page) {
2136 chipnr++;
2137 chip->select_chip(mtd, -1);
2138 chip->select_chip(mtd, chipnr);
1da177e4
LT
2139 }
2140 }
b0bb6903 2141 chip->select_chip(mtd, -1);
1da177e4 2142
1951f2f7
SL
2143 ops->oobretlen = ops->ooblen - readlen;
2144
2145 if (ret < 0)
2146 return ret;
041e4575
BN
2147
2148 if (mtd->ecc_stats.failed - stats.failed)
2149 return -EBADMSG;
2150
2151 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1da177e4
LT
2152}
2153
2154/**
8593fbc6 2155 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
8b6e50c9
BN
2156 * @mtd: MTD device structure
2157 * @from: offset to read from
2158 * @ops: oob operation description structure
1da177e4 2159 *
8b6e50c9 2160 * NAND read data and/or out-of-band data.
1da177e4 2161 */
8593fbc6
TG
2162static int nand_read_oob(struct mtd_info *mtd, loff_t from,
2163 struct mtd_oob_ops *ops)
1da177e4 2164{
8593fbc6
TG
2165 int ret = -ENOTSUPP;
2166
2167 ops->retlen = 0;
1da177e4
LT
2168
2169 /* Do not allow reads past end of device */
7014568b 2170 if (ops->datbuf && (from + ops->len) > mtd->size) {
289c0522
BN
2171 pr_debug("%s: attempt to read beyond end of device\n",
2172 __func__);
1da177e4
LT
2173 return -EINVAL;
2174 }
2175
6a8214aa 2176 nand_get_device(mtd, FL_READING);
1da177e4 2177
f8ac0414 2178 switch (ops->mode) {
0612b9dd
BN
2179 case MTD_OPS_PLACE_OOB:
2180 case MTD_OPS_AUTO_OOB:
2181 case MTD_OPS_RAW:
8593fbc6 2182 break;
1da177e4 2183
8593fbc6
TG
2184 default:
2185 goto out;
2186 }
1da177e4 2187
8593fbc6
TG
2188 if (!ops->datbuf)
2189 ret = nand_do_read_oob(mtd, from, ops);
2190 else
2191 ret = nand_do_read_ops(mtd, from, ops);
61b03bd7 2192
7351d3a5 2193out:
8593fbc6
TG
2194 nand_release_device(mtd);
2195 return ret;
2196}
61b03bd7 2197
1da177e4 2198
8593fbc6 2199/**
7854d3f7 2200 * nand_write_page_raw - [INTERN] raw page write function
8b6e50c9
BN
2201 * @mtd: mtd info structure
2202 * @chip: nand chip info structure
2203 * @buf: data buffer
1fbb938d 2204 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2205 * @page: page number to write
52ff49df 2206 *
7854d3f7 2207 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6 2208 */
fdbad98d 2209static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
45aaeff9 2210 const uint8_t *buf, int oob_required, int page)
8593fbc6
TG
2211{
2212 chip->write_buf(mtd, buf, mtd->writesize);
279f08d4
BN
2213 if (oob_required)
2214 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
fdbad98d
JW
2215
2216 return 0;
1da177e4
LT
2217}
2218
52ff49df 2219/**
7854d3f7 2220 * nand_write_page_raw_syndrome - [INTERN] raw page write function
8b6e50c9
BN
2221 * @mtd: mtd info structure
2222 * @chip: nand chip info structure
2223 * @buf: data buffer
1fbb938d 2224 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2225 * @page: page number to write
52ff49df
DB
2226 *
2227 * We need a special oob layout and handling even when ECC isn't checked.
2228 */
fdbad98d 2229static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
7351d3a5 2230 struct nand_chip *chip,
45aaeff9
BB
2231 const uint8_t *buf, int oob_required,
2232 int page)
52ff49df
DB
2233{
2234 int eccsize = chip->ecc.size;
2235 int eccbytes = chip->ecc.bytes;
2236 uint8_t *oob = chip->oob_poi;
2237 int steps, size;
2238
2239 for (steps = chip->ecc.steps; steps > 0; steps--) {
2240 chip->write_buf(mtd, buf, eccsize);
2241 buf += eccsize;
2242
2243 if (chip->ecc.prepad) {
2244 chip->write_buf(mtd, oob, chip->ecc.prepad);
2245 oob += chip->ecc.prepad;
2246 }
2247
60c3bc1f 2248 chip->write_buf(mtd, oob, eccbytes);
52ff49df
DB
2249 oob += eccbytes;
2250
2251 if (chip->ecc.postpad) {
2252 chip->write_buf(mtd, oob, chip->ecc.postpad);
2253 oob += chip->ecc.postpad;
2254 }
2255 }
2256
2257 size = mtd->oobsize - (oob - chip->oob_poi);
2258 if (size)
2259 chip->write_buf(mtd, oob, size);
fdbad98d
JW
2260
2261 return 0;
52ff49df 2262}
9223a456 2263/**
7854d3f7 2264 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
8b6e50c9
BN
2265 * @mtd: mtd info structure
2266 * @chip: nand chip info structure
2267 * @buf: data buffer
1fbb938d 2268 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2269 * @page: page number to write
9223a456 2270 */
fdbad98d 2271static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
45aaeff9
BB
2272 const uint8_t *buf, int oob_required,
2273 int page)
9223a456 2274{
846031d3 2275 int i, eccsize = chip->ecc.size, ret;
f75e5097
TG
2276 int eccbytes = chip->ecc.bytes;
2277 int eccsteps = chip->ecc.steps;
4bf63fcb 2278 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 2279 const uint8_t *p = buf;
9223a456 2280
7854d3f7 2281 /* Software ECC calculation */
8593fbc6
TG
2282 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2283 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456 2284
846031d3
BB
2285 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
2286 chip->ecc.total);
2287 if (ret)
2288 return ret;
9223a456 2289
45aaeff9 2290 return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
f75e5097 2291}
9223a456 2292
f75e5097 2293/**
7854d3f7 2294 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
8b6e50c9
BN
2295 * @mtd: mtd info structure
2296 * @chip: nand chip info structure
2297 * @buf: data buffer
1fbb938d 2298 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2299 * @page: page number to write
f75e5097 2300 */
fdbad98d 2301static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
45aaeff9
BB
2302 const uint8_t *buf, int oob_required,
2303 int page)
f75e5097 2304{
846031d3 2305 int i, eccsize = chip->ecc.size, ret;
f75e5097
TG
2306 int eccbytes = chip->ecc.bytes;
2307 int eccsteps = chip->ecc.steps;
4bf63fcb 2308 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 2309 const uint8_t *p = buf;
9223a456 2310
f75e5097
TG
2311 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2312 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
29da9cea 2313 chip->write_buf(mtd, p, eccsize);
f75e5097 2314 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456
TG
2315 }
2316
846031d3
BB
2317 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
2318 chip->ecc.total);
2319 if (ret)
2320 return ret;
f75e5097
TG
2321
2322 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
fdbad98d
JW
2323
2324 return 0;
9223a456
TG
2325}
2326
837a6ba4
GP
2327
2328/**
73c8aaf4 2329 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
837a6ba4
GP
2330 * @mtd: mtd info structure
2331 * @chip: nand chip info structure
d6a95080 2332 * @offset: column address of subpage within the page
837a6ba4 2333 * @data_len: data length
d6a95080 2334 * @buf: data buffer
837a6ba4 2335 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2336 * @page: page number to write
837a6ba4
GP
2337 */
2338static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2339 struct nand_chip *chip, uint32_t offset,
d6a95080 2340 uint32_t data_len, const uint8_t *buf,
45aaeff9 2341 int oob_required, int page)
837a6ba4
GP
2342{
2343 uint8_t *oob_buf = chip->oob_poi;
2344 uint8_t *ecc_calc = chip->buffers->ecccalc;
2345 int ecc_size = chip->ecc.size;
2346 int ecc_bytes = chip->ecc.bytes;
2347 int ecc_steps = chip->ecc.steps;
837a6ba4
GP
2348 uint32_t start_step = offset / ecc_size;
2349 uint32_t end_step = (offset + data_len - 1) / ecc_size;
2350 int oob_bytes = mtd->oobsize / ecc_steps;
846031d3 2351 int step, ret;
837a6ba4
GP
2352
2353 for (step = 0; step < ecc_steps; step++) {
2354 /* configure controller for WRITE access */
2355 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2356
2357 /* write data (untouched subpages already masked by 0xFF) */
d6a95080 2358 chip->write_buf(mtd, buf, ecc_size);
837a6ba4
GP
2359
2360 /* mask ECC of un-touched subpages by padding 0xFF */
2361 if ((step < start_step) || (step > end_step))
2362 memset(ecc_calc, 0xff, ecc_bytes);
2363 else
d6a95080 2364 chip->ecc.calculate(mtd, buf, ecc_calc);
837a6ba4
GP
2365
2366 /* mask OOB of un-touched subpages by padding 0xFF */
2367 /* if oob_required, preserve OOB metadata of written subpage */
2368 if (!oob_required || (step < start_step) || (step > end_step))
2369 memset(oob_buf, 0xff, oob_bytes);
2370
d6a95080 2371 buf += ecc_size;
837a6ba4
GP
2372 ecc_calc += ecc_bytes;
2373 oob_buf += oob_bytes;
2374 }
2375
2376 /* copy calculated ECC for whole page to chip->buffer->oob */
2377 /* this include masked-value(0xFF) for unwritten subpages */
2378 ecc_calc = chip->buffers->ecccalc;
846031d3
BB
2379 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
2380 chip->ecc.total);
2381 if (ret)
2382 return ret;
837a6ba4
GP
2383
2384 /* write OOB buffer to NAND device */
2385 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2386
2387 return 0;
2388}
2389
2390
61b03bd7 2391/**
7854d3f7 2392 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
8b6e50c9
BN
2393 * @mtd: mtd info structure
2394 * @chip: nand chip info structure
2395 * @buf: data buffer
1fbb938d 2396 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 2397 * @page: page number to write
1da177e4 2398 *
8b6e50c9
BN
2399 * The hw generator calculates the error syndrome automatically. Therefore we
2400 * need a special oob layout and handling.
f75e5097 2401 */
fdbad98d 2402static int nand_write_page_syndrome(struct mtd_info *mtd,
1fbb938d 2403 struct nand_chip *chip,
45aaeff9
BB
2404 const uint8_t *buf, int oob_required,
2405 int page)
1da177e4 2406{
f75e5097
TG
2407 int i, eccsize = chip->ecc.size;
2408 int eccbytes = chip->ecc.bytes;
2409 int eccsteps = chip->ecc.steps;
2410 const uint8_t *p = buf;
2411 uint8_t *oob = chip->oob_poi;
1da177e4 2412
f75e5097 2413 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1da177e4 2414
f75e5097
TG
2415 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2416 chip->write_buf(mtd, p, eccsize);
61b03bd7 2417
f75e5097
TG
2418 if (chip->ecc.prepad) {
2419 chip->write_buf(mtd, oob, chip->ecc.prepad);
2420 oob += chip->ecc.prepad;
2421 }
2422
2423 chip->ecc.calculate(mtd, p, oob);
2424 chip->write_buf(mtd, oob, eccbytes);
2425 oob += eccbytes;
2426
2427 if (chip->ecc.postpad) {
2428 chip->write_buf(mtd, oob, chip->ecc.postpad);
2429 oob += chip->ecc.postpad;
1da177e4 2430 }
1da177e4 2431 }
f75e5097
TG
2432
2433 /* Calculate remaining oob bytes */
7e4178f9 2434 i = mtd->oobsize - (oob - chip->oob_poi);
f75e5097
TG
2435 if (i)
2436 chip->write_buf(mtd, oob, i);
fdbad98d
JW
2437
2438 return 0;
f75e5097
TG
2439}
2440
2441/**
956e944c 2442 * nand_write_page - [REPLACEABLE] write one page
8b6e50c9
BN
2443 * @mtd: MTD device structure
2444 * @chip: NAND chip descriptor
837a6ba4
GP
2445 * @offset: address offset within the page
2446 * @data_len: length of actual data to be written
8b6e50c9 2447 * @buf: the data to write
1fbb938d 2448 * @oob_required: must write chip->oob_poi to OOB
8b6e50c9
BN
2449 * @page: page number to write
2450 * @cached: cached programming
2451 * @raw: use _raw version of write_page
f75e5097
TG
2452 */
2453static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
837a6ba4
GP
2454 uint32_t offset, int data_len, const uint8_t *buf,
2455 int oob_required, int page, int cached, int raw)
f75e5097 2456{
837a6ba4
GP
2457 int status, subpage;
2458
2459 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2460 chip->ecc.write_subpage)
2461 subpage = offset || (data_len < mtd->writesize);
2462 else
2463 subpage = 0;
f75e5097
TG
2464
2465 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2466
956e944c 2467 if (unlikely(raw))
837a6ba4 2468 status = chip->ecc.write_page_raw(mtd, chip, buf,
45aaeff9 2469 oob_required, page);
837a6ba4
GP
2470 else if (subpage)
2471 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
45aaeff9 2472 buf, oob_required, page);
956e944c 2473 else
45aaeff9
BB
2474 status = chip->ecc.write_page(mtd, chip, buf, oob_required,
2475 page);
fdbad98d
JW
2476
2477 if (status < 0)
2478 return status;
f75e5097
TG
2479
2480 /*
7854d3f7 2481 * Cached progamming disabled for now. Not sure if it's worth the
8b6e50c9 2482 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
f75e5097
TG
2483 */
2484 cached = 0;
2485
3239a6cd 2486 if (!cached || !NAND_HAS_CACHEPROG(chip)) {
f75e5097
TG
2487
2488 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
7bc3312b 2489 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2490 /*
2491 * See if operation failed and additional status checks are
8b6e50c9 2492 * available.
f75e5097
TG
2493 */
2494 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2495 status = chip->errstat(mtd, chip, FL_WRITING, status,
2496 page);
2497
2498 if (status & NAND_STATUS_FAIL)
2499 return -EIO;
2500 } else {
2501 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
7bc3312b 2502 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2503 }
2504
f75e5097 2505 return 0;
1da177e4
LT
2506}
2507
8593fbc6 2508/**
7854d3f7 2509 * nand_fill_oob - [INTERN] Transfer client buffer to oob
f722013e 2510 * @mtd: MTD device structure
8b6e50c9
BN
2511 * @oob: oob data buffer
2512 * @len: oob data write length
2513 * @ops: oob ops structure
8593fbc6 2514 */
f722013e
TAA
2515static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2516 struct mtd_oob_ops *ops)
8593fbc6 2517{
862eba51 2518 struct nand_chip *chip = mtd_to_nand(mtd);
846031d3 2519 int ret;
f722013e
TAA
2520
2521 /*
2522 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2523 * data from a previous OOB read.
2524 */
2525 memset(chip->oob_poi, 0xff, mtd->oobsize);
2526
f8ac0414 2527 switch (ops->mode) {
8593fbc6 2528
0612b9dd
BN
2529 case MTD_OPS_PLACE_OOB:
2530 case MTD_OPS_RAW:
8593fbc6
TG
2531 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2532 return oob + len;
2533
846031d3
BB
2534 case MTD_OPS_AUTO_OOB:
2535 ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
2536 ops->ooboffs, len);
2537 BUG_ON(ret);
2538 return oob + len;
2539
8593fbc6
TG
2540 default:
2541 BUG();
2542 }
2543 return NULL;
2544}
2545
f8ac0414 2546#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
1da177e4
LT
2547
2548/**
7854d3f7 2549 * nand_do_write_ops - [INTERN] NAND write with ECC
8b6e50c9
BN
2550 * @mtd: MTD device structure
2551 * @to: offset to write to
2552 * @ops: oob operations description structure
1da177e4 2553 *
8b6e50c9 2554 * NAND write with ECC.
1da177e4 2555 */
8593fbc6
TG
2556static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2557 struct mtd_oob_ops *ops)
1da177e4 2558{
29072b96 2559 int chipnr, realpage, page, blockmask, column;
862eba51 2560 struct nand_chip *chip = mtd_to_nand(mtd);
8593fbc6 2561 uint32_t writelen = ops->len;
782ce79a
ML
2562
2563 uint32_t oobwritelen = ops->ooblen;
29f1058a 2564 uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
782ce79a 2565
8593fbc6
TG
2566 uint8_t *oob = ops->oobbuf;
2567 uint8_t *buf = ops->datbuf;
837a6ba4 2568 int ret;
e47f3db4 2569 int oob_required = oob ? 1 : 0;
1da177e4 2570
8593fbc6 2571 ops->retlen = 0;
29072b96
TG
2572 if (!writelen)
2573 return 0;
1da177e4 2574
8b6e50c9 2575 /* Reject writes, which are not page aligned */
8593fbc6 2576 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
d0370219
BN
2577 pr_notice("%s: attempt to write non page aligned data\n",
2578 __func__);
1da177e4
LT
2579 return -EINVAL;
2580 }
2581
29072b96 2582 column = to & (mtd->writesize - 1);
1da177e4 2583
6a930961
TG
2584 chipnr = (int)(to >> chip->chip_shift);
2585 chip->select_chip(mtd, chipnr);
2586
1da177e4 2587 /* Check, if it is write protected */
b0bb6903
HS
2588 if (nand_check_wp(mtd)) {
2589 ret = -EIO;
2590 goto err_out;
2591 }
1da177e4 2592
f75e5097
TG
2593 realpage = (int)(to >> chip->page_shift);
2594 page = realpage & chip->pagemask;
2595 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2596
2597 /* Invalidate the page cache, when we write to the cached page */
537ab1bd
BN
2598 if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
2599 ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
ace4dfee 2600 chip->pagebuf = -1;
61b03bd7 2601
782ce79a 2602 /* Don't allow multipage oob writes with offset */
b0bb6903
HS
2603 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2604 ret = -EINVAL;
2605 goto err_out;
2606 }
782ce79a 2607
f8ac0414 2608 while (1) {
29072b96 2609 int bytes = mtd->writesize;
f75e5097 2610 int cached = writelen > bytes && page != blockmask;
29072b96 2611 uint8_t *wbuf = buf;
66507c7b
KD
2612 int use_bufpoi;
2613 int part_pagewr = (column || writelen < (mtd->writesize - 1));
2614
2615 if (part_pagewr)
2616 use_bufpoi = 1;
2617 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
2618 use_bufpoi = !virt_addr_valid(buf);
2619 else
2620 use_bufpoi = 0;
29072b96 2621
66507c7b
KD
2622 /* Partial page write?, or need to use bounce buffer */
2623 if (use_bufpoi) {
2624 pr_debug("%s: using write bounce buffer for buf@%p\n",
2625 __func__, buf);
29072b96 2626 cached = 0;
66507c7b
KD
2627 if (part_pagewr)
2628 bytes = min_t(int, bytes - column, writelen);
29072b96
TG
2629 chip->pagebuf = -1;
2630 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2631 memcpy(&chip->buffers->databuf[column], buf, bytes);
2632 wbuf = chip->buffers->databuf;
2633 }
1da177e4 2634
782ce79a
ML
2635 if (unlikely(oob)) {
2636 size_t len = min(oobwritelen, oobmaxlen);
f722013e 2637 oob = nand_fill_oob(mtd, oob, len, ops);
782ce79a 2638 oobwritelen -= len;
f722013e
TAA
2639 } else {
2640 /* We still need to erase leftover OOB data */
2641 memset(chip->oob_poi, 0xff, mtd->oobsize);
782ce79a 2642 }
837a6ba4
GP
2643 ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2644 oob_required, page, cached,
2645 (ops->mode == MTD_OPS_RAW));
f75e5097
TG
2646 if (ret)
2647 break;
2648
2649 writelen -= bytes;
2650 if (!writelen)
2651 break;
2652
29072b96 2653 column = 0;
f75e5097
TG
2654 buf += bytes;
2655 realpage++;
2656
2657 page = realpage & chip->pagemask;
2658 /* Check, if we cross a chip boundary */
2659 if (!page) {
2660 chipnr++;
2661 chip->select_chip(mtd, -1);
2662 chip->select_chip(mtd, chipnr);
1da177e4
LT
2663 }
2664 }
8593fbc6 2665
8593fbc6 2666 ops->retlen = ops->len - writelen;
7014568b
VW
2667 if (unlikely(oob))
2668 ops->oobretlen = ops->ooblen;
b0bb6903
HS
2669
2670err_out:
2671 chip->select_chip(mtd, -1);
1da177e4
LT
2672 return ret;
2673}
2674
2af7c653
SK
2675/**
2676 * panic_nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
2677 * @mtd: MTD device structure
2678 * @to: offset to write to
2679 * @len: number of bytes to write
2680 * @retlen: pointer to variable to store the number of written bytes
2681 * @buf: the data to write
2af7c653
SK
2682 *
2683 * NAND write with ECC. Used when performing writes in interrupt context, this
2684 * may for example be called by mtdoops when writing an oops while in panic.
2685 */
2686static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2687 size_t *retlen, const uint8_t *buf)
2688{
862eba51 2689 struct nand_chip *chip = mtd_to_nand(mtd);
4a89ff88 2690 struct mtd_oob_ops ops;
2af7c653
SK
2691 int ret;
2692
8b6e50c9 2693 /* Wait for the device to get ready */
2af7c653
SK
2694 panic_nand_wait(mtd, chip, 400);
2695
8b6e50c9 2696 /* Grab the device */
2af7c653
SK
2697 panic_nand_get_device(chip, mtd, FL_WRITING);
2698
0ec56dc4 2699 memset(&ops, 0, sizeof(ops));
4a89ff88
BN
2700 ops.len = len;
2701 ops.datbuf = (uint8_t *)buf;
11041ae6 2702 ops.mode = MTD_OPS_PLACE_OOB;
2af7c653 2703
4a89ff88 2704 ret = nand_do_write_ops(mtd, to, &ops);
2af7c653 2705
4a89ff88 2706 *retlen = ops.retlen;
2af7c653
SK
2707 return ret;
2708}
2709
f75e5097 2710/**
8593fbc6 2711 * nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
2712 * @mtd: MTD device structure
2713 * @to: offset to write to
2714 * @len: number of bytes to write
2715 * @retlen: pointer to variable to store the number of written bytes
2716 * @buf: the data to write
f75e5097 2717 *
8b6e50c9 2718 * NAND write with ECC.
f75e5097 2719 */
8593fbc6
TG
2720static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2721 size_t *retlen, const uint8_t *buf)
f75e5097 2722{
4a89ff88 2723 struct mtd_oob_ops ops;
f75e5097
TG
2724 int ret;
2725
6a8214aa 2726 nand_get_device(mtd, FL_WRITING);
0ec56dc4 2727 memset(&ops, 0, sizeof(ops));
4a89ff88
BN
2728 ops.len = len;
2729 ops.datbuf = (uint8_t *)buf;
11041ae6 2730 ops.mode = MTD_OPS_PLACE_OOB;
4a89ff88 2731 ret = nand_do_write_ops(mtd, to, &ops);
4a89ff88 2732 *retlen = ops.retlen;
f75e5097 2733 nand_release_device(mtd);
8593fbc6 2734 return ret;
f75e5097 2735}
7314e9e7 2736
1da177e4 2737/**
8593fbc6 2738 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
8b6e50c9
BN
2739 * @mtd: MTD device structure
2740 * @to: offset to write to
2741 * @ops: oob operation description structure
1da177e4 2742 *
8b6e50c9 2743 * NAND write out-of-band.
1da177e4 2744 */
8593fbc6
TG
2745static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2746 struct mtd_oob_ops *ops)
1da177e4 2747{
03736155 2748 int chipnr, page, status, len;
862eba51 2749 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 2750
289c0522 2751 pr_debug("%s: to = 0x%08x, len = %i\n",
20d8e248 2752 __func__, (unsigned int)to, (int)ops->ooblen);
1da177e4 2753
29f1058a 2754 len = mtd_oobavail(mtd, ops);
03736155 2755
1da177e4 2756 /* Do not allow write past end of page */
03736155 2757 if ((ops->ooboffs + ops->ooblen) > len) {
289c0522
BN
2758 pr_debug("%s: attempt to write past end of page\n",
2759 __func__);
1da177e4
LT
2760 return -EINVAL;
2761 }
2762
03736155 2763 if (unlikely(ops->ooboffs >= len)) {
289c0522
BN
2764 pr_debug("%s: attempt to start write outside oob\n",
2765 __func__);
03736155
AH
2766 return -EINVAL;
2767 }
2768
775adc3d 2769 /* Do not allow write past end of device */
03736155
AH
2770 if (unlikely(to >= mtd->size ||
2771 ops->ooboffs + ops->ooblen >
2772 ((mtd->size >> chip->page_shift) -
2773 (to >> chip->page_shift)) * len)) {
289c0522
BN
2774 pr_debug("%s: attempt to write beyond end of device\n",
2775 __func__);
03736155
AH
2776 return -EINVAL;
2777 }
2778
7314e9e7 2779 chipnr = (int)(to >> chip->chip_shift);
ace4dfee 2780 chip->select_chip(mtd, chipnr);
1da177e4 2781
7314e9e7
TG
2782 /* Shift to get page */
2783 page = (int)(to >> chip->page_shift);
2784
2785 /*
2786 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2787 * of my DiskOnChip 2000 test units) will clear the whole data page too
2788 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2789 * it in the doc2000 driver in August 1999. dwmw2.
2790 */
ace4dfee 2791 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4
LT
2792
2793 /* Check, if it is write protected */
b0bb6903
HS
2794 if (nand_check_wp(mtd)) {
2795 chip->select_chip(mtd, -1);
8593fbc6 2796 return -EROFS;
b0bb6903 2797 }
61b03bd7 2798
1da177e4 2799 /* Invalidate the page cache, if we write to the cached page */
ace4dfee
TG
2800 if (page == chip->pagebuf)
2801 chip->pagebuf = -1;
1da177e4 2802
f722013e 2803 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
9ce244b3 2804
0612b9dd 2805 if (ops->mode == MTD_OPS_RAW)
9ce244b3
BN
2806 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2807 else
2808 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
1da177e4 2809
b0bb6903
HS
2810 chip->select_chip(mtd, -1);
2811
7bc3312b
TG
2812 if (status)
2813 return status;
1da177e4 2814
7014568b 2815 ops->oobretlen = ops->ooblen;
1da177e4 2816
7bc3312b 2817 return 0;
8593fbc6
TG
2818}
2819
2820/**
2821 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
8b6e50c9
BN
2822 * @mtd: MTD device structure
2823 * @to: offset to write to
2824 * @ops: oob operation description structure
8593fbc6
TG
2825 */
2826static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2827 struct mtd_oob_ops *ops)
2828{
8593fbc6
TG
2829 int ret = -ENOTSUPP;
2830
2831 ops->retlen = 0;
2832
2833 /* Do not allow writes past end of device */
7014568b 2834 if (ops->datbuf && (to + ops->len) > mtd->size) {
289c0522
BN
2835 pr_debug("%s: attempt to write beyond end of device\n",
2836 __func__);
8593fbc6
TG
2837 return -EINVAL;
2838 }
2839
6a8214aa 2840 nand_get_device(mtd, FL_WRITING);
8593fbc6 2841
f8ac0414 2842 switch (ops->mode) {
0612b9dd
BN
2843 case MTD_OPS_PLACE_OOB:
2844 case MTD_OPS_AUTO_OOB:
2845 case MTD_OPS_RAW:
8593fbc6
TG
2846 break;
2847
2848 default:
2849 goto out;
2850 }
2851
2852 if (!ops->datbuf)
2853 ret = nand_do_write_oob(mtd, to, ops);
2854 else
2855 ret = nand_do_write_ops(mtd, to, ops);
2856
7351d3a5 2857out:
1da177e4 2858 nand_release_device(mtd);
1da177e4
LT
2859 return ret;
2860}
2861
1da177e4 2862/**
49c50b97 2863 * single_erase - [GENERIC] NAND standard block erase command function
8b6e50c9
BN
2864 * @mtd: MTD device structure
2865 * @page: the page address of the block which will be erased
1da177e4 2866 *
49c50b97 2867 * Standard erase command for NAND chips. Returns NAND status.
1da177e4 2868 */
49c50b97 2869static int single_erase(struct mtd_info *mtd, int page)
1da177e4 2870{
862eba51 2871 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 2872 /* Send commands to erase a block */
ace4dfee
TG
2873 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2874 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
49c50b97
BN
2875
2876 return chip->waitfunc(mtd, chip);
1da177e4
LT
2877}
2878
1da177e4
LT
2879/**
2880 * nand_erase - [MTD Interface] erase block(s)
8b6e50c9
BN
2881 * @mtd: MTD device structure
2882 * @instr: erase instruction
1da177e4 2883 *
8b6e50c9 2884 * Erase one ore more blocks.
1da177e4 2885 */
e0c7d767 2886static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1da177e4 2887{
e0c7d767 2888 return nand_erase_nand(mtd, instr, 0);
1da177e4 2889}
61b03bd7 2890
1da177e4 2891/**
7854d3f7 2892 * nand_erase_nand - [INTERN] erase block(s)
8b6e50c9
BN
2893 * @mtd: MTD device structure
2894 * @instr: erase instruction
2895 * @allowbbt: allow erasing the bbt area
1da177e4 2896 *
8b6e50c9 2897 * Erase one ore more blocks.
1da177e4 2898 */
ace4dfee
TG
2899int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2900 int allowbbt)
1da177e4 2901{
69423d99 2902 int page, status, pages_per_block, ret, chipnr;
862eba51 2903 struct nand_chip *chip = mtd_to_nand(mtd);
69423d99 2904 loff_t len;
1da177e4 2905
289c0522
BN
2906 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2907 __func__, (unsigned long long)instr->addr,
2908 (unsigned long long)instr->len);
1da177e4 2909
6fe5a6ac 2910 if (check_offs_len(mtd, instr->addr, instr->len))
1da177e4 2911 return -EINVAL;
1da177e4 2912
1da177e4 2913 /* Grab the lock and see if the device is available */
6a8214aa 2914 nand_get_device(mtd, FL_ERASING);
1da177e4
LT
2915
2916 /* Shift to get first page */
ace4dfee
TG
2917 page = (int)(instr->addr >> chip->page_shift);
2918 chipnr = (int)(instr->addr >> chip->chip_shift);
1da177e4
LT
2919
2920 /* Calculate pages in each block */
ace4dfee 2921 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1da177e4
LT
2922
2923 /* Select the NAND device */
ace4dfee 2924 chip->select_chip(mtd, chipnr);
1da177e4 2925
1da177e4
LT
2926 /* Check, if it is write protected */
2927 if (nand_check_wp(mtd)) {
289c0522
BN
2928 pr_debug("%s: device is write protected!\n",
2929 __func__);
1da177e4
LT
2930 instr->state = MTD_ERASE_FAILED;
2931 goto erase_exit;
2932 }
2933
2934 /* Loop through the pages */
2935 len = instr->len;
2936
2937 instr->state = MTD_ERASING;
2938
2939 while (len) {
12183a20 2940 /* Check if we have a bad block, we do not erase bad blocks! */
ace4dfee 2941 if (nand_block_checkbad(mtd, ((loff_t) page) <<
9f3e0429 2942 chip->page_shift, allowbbt)) {
d0370219
BN
2943 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2944 __func__, page);
1da177e4
LT
2945 instr->state = MTD_ERASE_FAILED;
2946 goto erase_exit;
2947 }
61b03bd7 2948
ace4dfee
TG
2949 /*
2950 * Invalidate the page cache, if we erase the block which
8b6e50c9 2951 * contains the current cached page.
ace4dfee
TG
2952 */
2953 if (page <= chip->pagebuf && chip->pagebuf <
2954 (page + pages_per_block))
2955 chip->pagebuf = -1;
1da177e4 2956
49c50b97 2957 status = chip->erase(mtd, page & chip->pagemask);
1da177e4 2958
ace4dfee
TG
2959 /*
2960 * See if operation failed and additional status checks are
2961 * available
2962 */
2963 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2964 status = chip->errstat(mtd, chip, FL_ERASING,
2965 status, page);
068e3c0a 2966
1da177e4 2967 /* See if block erase succeeded */
a4ab4c5d 2968 if (status & NAND_STATUS_FAIL) {
289c0522
BN
2969 pr_debug("%s: failed erase, page 0x%08x\n",
2970 __func__, page);
1da177e4 2971 instr->state = MTD_ERASE_FAILED;
69423d99
AH
2972 instr->fail_addr =
2973 ((loff_t)page << chip->page_shift);
1da177e4
LT
2974 goto erase_exit;
2975 }
30f464b7 2976
1da177e4 2977 /* Increment page address and decrement length */
daae74ca 2978 len -= (1ULL << chip->phys_erase_shift);
1da177e4
LT
2979 page += pages_per_block;
2980
2981 /* Check, if we cross a chip boundary */
ace4dfee 2982 if (len && !(page & chip->pagemask)) {
1da177e4 2983 chipnr++;
ace4dfee
TG
2984 chip->select_chip(mtd, -1);
2985 chip->select_chip(mtd, chipnr);
1da177e4
LT
2986 }
2987 }
2988 instr->state = MTD_ERASE_DONE;
2989
7351d3a5 2990erase_exit:
1da177e4
LT
2991
2992 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1da177e4
LT
2993
2994 /* Deselect and wake up anyone waiting on the device */
b0bb6903 2995 chip->select_chip(mtd, -1);
1da177e4
LT
2996 nand_release_device(mtd);
2997
49defc01
DW
2998 /* Do call back function */
2999 if (!ret)
3000 mtd_erase_callback(instr);
3001
1da177e4
LT
3002 /* Return more or less happy */
3003 return ret;
3004}
3005
3006/**
3007 * nand_sync - [MTD Interface] sync
8b6e50c9 3008 * @mtd: MTD device structure
1da177e4 3009 *
8b6e50c9 3010 * Sync is actually a wait for chip ready function.
1da177e4 3011 */
e0c7d767 3012static void nand_sync(struct mtd_info *mtd)
1da177e4 3013{
289c0522 3014 pr_debug("%s: called\n", __func__);
1da177e4
LT
3015
3016 /* Grab the lock and see if the device is available */
6a8214aa 3017 nand_get_device(mtd, FL_SYNCING);
1da177e4 3018 /* Release it and go back */
e0c7d767 3019 nand_release_device(mtd);
1da177e4
LT
3020}
3021
1da177e4 3022/**
ace4dfee 3023 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
8b6e50c9
BN
3024 * @mtd: MTD device structure
3025 * @offs: offset relative to mtd start
1da177e4 3026 */
ace4dfee 3027static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
1da177e4 3028{
9f3e0429
AT
3029 struct nand_chip *chip = mtd_to_nand(mtd);
3030 int chipnr = (int)(offs >> chip->chip_shift);
3031 int ret;
3032
3033 /* Select the NAND device */
3034 nand_get_device(mtd, FL_READING);
3035 chip->select_chip(mtd, chipnr);
3036
3037 ret = nand_block_checkbad(mtd, offs, 0);
3038
3039 chip->select_chip(mtd, -1);
3040 nand_release_device(mtd);
3041
3042 return ret;
1da177e4
LT
3043}
3044
3045/**
ace4dfee 3046 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
8b6e50c9
BN
3047 * @mtd: MTD device structure
3048 * @ofs: offset relative to mtd start
1da177e4 3049 */
e0c7d767 3050static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1da177e4 3051{
1da177e4
LT
3052 int ret;
3053
f8ac0414
FF
3054 ret = nand_block_isbad(mtd, ofs);
3055 if (ret) {
8b6e50c9 3056 /* If it was bad already, return success and do nothing */
1da177e4
LT
3057 if (ret > 0)
3058 return 0;
e0c7d767
DW
3059 return ret;
3060 }
1da177e4 3061
5a0edb25 3062 return nand_block_markbad_lowlevel(mtd, ofs);
1da177e4
LT
3063}
3064
7db03ecc
HS
3065/**
3066 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
3067 * @mtd: MTD device structure
3068 * @chip: nand chip info structure
3069 * @addr: feature address.
3070 * @subfeature_param: the subfeature parameters, a four bytes array.
3071 */
3072static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
3073 int addr, uint8_t *subfeature_param)
3074{
3075 int status;
05f78359 3076 int i;
7db03ecc 3077
d914c932
DM
3078 if (!chip->onfi_version ||
3079 !(le16_to_cpu(chip->onfi_params.opt_cmd)
3080 & ONFI_OPT_CMD_SET_GET_FEATURES))
7db03ecc
HS
3081 return -EINVAL;
3082
3083 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
05f78359
UKK
3084 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3085 chip->write_byte(mtd, subfeature_param[i]);
3086
7db03ecc
HS
3087 status = chip->waitfunc(mtd, chip);
3088 if (status & NAND_STATUS_FAIL)
3089 return -EIO;
3090 return 0;
3091}
3092
3093/**
3094 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
3095 * @mtd: MTD device structure
3096 * @chip: nand chip info structure
3097 * @addr: feature address.
3098 * @subfeature_param: the subfeature parameters, a four bytes array.
3099 */
3100static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
3101 int addr, uint8_t *subfeature_param)
3102{
05f78359
UKK
3103 int i;
3104
d914c932
DM
3105 if (!chip->onfi_version ||
3106 !(le16_to_cpu(chip->onfi_params.opt_cmd)
3107 & ONFI_OPT_CMD_SET_GET_FEATURES))
7db03ecc
HS
3108 return -EINVAL;
3109
7db03ecc 3110 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
05f78359
UKK
3111 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3112 *subfeature_param++ = chip->read_byte(mtd);
7db03ecc
HS
3113 return 0;
3114}
3115
962034f4
VW
3116/**
3117 * nand_suspend - [MTD Interface] Suspend the NAND flash
8b6e50c9 3118 * @mtd: MTD device structure
962034f4
VW
3119 */
3120static int nand_suspend(struct mtd_info *mtd)
3121{
6a8214aa 3122 return nand_get_device(mtd, FL_PM_SUSPENDED);
962034f4
VW
3123}
3124
3125/**
3126 * nand_resume - [MTD Interface] Resume the NAND flash
8b6e50c9 3127 * @mtd: MTD device structure
962034f4
VW
3128 */
3129static void nand_resume(struct mtd_info *mtd)
3130{
862eba51 3131 struct nand_chip *chip = mtd_to_nand(mtd);
962034f4 3132
ace4dfee 3133 if (chip->state == FL_PM_SUSPENDED)
962034f4
VW
3134 nand_release_device(mtd);
3135 else
d0370219
BN
3136 pr_err("%s called for a chip which is not in suspended state\n",
3137 __func__);
962034f4
VW
3138}
3139
72ea4036
SB
3140/**
3141 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
3142 * prevent further operations
3143 * @mtd: MTD device structure
3144 */
3145static void nand_shutdown(struct mtd_info *mtd)
3146{
9ca641b0 3147 nand_get_device(mtd, FL_PM_SUSPENDED);
72ea4036
SB
3148}
3149
8b6e50c9 3150/* Set default functions */
ace4dfee 3151static void nand_set_defaults(struct nand_chip *chip, int busw)
7aa65bfd 3152{
1da177e4 3153 /* check for proper chip_delay setup, set 20us if not */
ace4dfee
TG
3154 if (!chip->chip_delay)
3155 chip->chip_delay = 20;
1da177e4
LT
3156
3157 /* check, if a user supplied command function given */
ace4dfee
TG
3158 if (chip->cmdfunc == NULL)
3159 chip->cmdfunc = nand_command;
1da177e4
LT
3160
3161 /* check, if a user supplied wait function given */
ace4dfee
TG
3162 if (chip->waitfunc == NULL)
3163 chip->waitfunc = nand_wait;
3164
3165 if (!chip->select_chip)
3166 chip->select_chip = nand_select_chip;
68e80780 3167
4204cccd
HS
3168 /* set for ONFI nand */
3169 if (!chip->onfi_set_features)
3170 chip->onfi_set_features = nand_onfi_set_features;
3171 if (!chip->onfi_get_features)
3172 chip->onfi_get_features = nand_onfi_get_features;
3173
68e80780
BN
3174 /* If called twice, pointers that depend on busw may need to be reset */
3175 if (!chip->read_byte || chip->read_byte == nand_read_byte)
ace4dfee
TG
3176 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
3177 if (!chip->read_word)
3178 chip->read_word = nand_read_word;
3179 if (!chip->block_bad)
3180 chip->block_bad = nand_block_bad;
3181 if (!chip->block_markbad)
3182 chip->block_markbad = nand_default_block_markbad;
68e80780 3183 if (!chip->write_buf || chip->write_buf == nand_write_buf)
ace4dfee 3184 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
05f78359
UKK
3185 if (!chip->write_byte || chip->write_byte == nand_write_byte)
3186 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
68e80780 3187 if (!chip->read_buf || chip->read_buf == nand_read_buf)
ace4dfee 3188 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
ace4dfee
TG
3189 if (!chip->scan_bbt)
3190 chip->scan_bbt = nand_default_bbt;
f75e5097
TG
3191
3192 if (!chip->controller) {
3193 chip->controller = &chip->hwcontrol;
3194 spin_lock_init(&chip->controller->lock);
3195 init_waitqueue_head(&chip->controller->wq);
3196 }
3197
7aa65bfd
TG
3198}
3199
8b6e50c9 3200/* Sanitize ONFI strings so we can safely print them */
d1e1f4e4
FF
3201static void sanitize_string(uint8_t *s, size_t len)
3202{
3203 ssize_t i;
3204
8b6e50c9 3205 /* Null terminate */
d1e1f4e4
FF
3206 s[len - 1] = 0;
3207
8b6e50c9 3208 /* Remove non printable chars */
d1e1f4e4
FF
3209 for (i = 0; i < len - 1; i++) {
3210 if (s[i] < ' ' || s[i] > 127)
3211 s[i] = '?';
3212 }
3213
8b6e50c9 3214 /* Remove trailing spaces */
d1e1f4e4
FF
3215 strim(s);
3216}
3217
3218static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
3219{
3220 int i;
3221 while (len--) {
3222 crc ^= *p++ << 8;
3223 for (i = 0; i < 8; i++)
3224 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3225 }
3226
3227 return crc;
3228}
3229
6dcbe0cd
HS
3230/* Parse the Extended Parameter Page. */
3231static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
3232 struct nand_chip *chip, struct nand_onfi_params *p)
3233{
3234 struct onfi_ext_param_page *ep;
3235 struct onfi_ext_section *s;
3236 struct onfi_ext_ecc_info *ecc;
3237 uint8_t *cursor;
3238 int ret = -EINVAL;
3239 int len;
3240 int i;
3241
3242 len = le16_to_cpu(p->ext_param_page_length) * 16;
3243 ep = kmalloc(len, GFP_KERNEL);
5cb13271
BN
3244 if (!ep)
3245 return -ENOMEM;
6dcbe0cd
HS
3246
3247 /* Send our own NAND_CMD_PARAM. */
3248 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3249
3250 /* Use the Change Read Column command to skip the ONFI param pages. */
3251 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
3252 sizeof(*p) * p->num_of_param_pages , -1);
3253
3254 /* Read out the Extended Parameter Page. */
3255 chip->read_buf(mtd, (uint8_t *)ep, len);
3256 if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3257 != le16_to_cpu(ep->crc))) {
3258 pr_debug("fail in the CRC.\n");
3259 goto ext_out;
3260 }
3261
3262 /*
3263 * Check the signature.
3264 * Do not strictly follow the ONFI spec, maybe changed in future.
3265 */
3266 if (strncmp(ep->sig, "EPPS", 4)) {
3267 pr_debug("The signature is invalid.\n");
3268 goto ext_out;
3269 }
3270
3271 /* find the ECC section. */
3272 cursor = (uint8_t *)(ep + 1);
3273 for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3274 s = ep->sections + i;
3275 if (s->type == ONFI_SECTION_TYPE_2)
3276 break;
3277 cursor += s->length * 16;
3278 }
3279 if (i == ONFI_EXT_SECTION_MAX) {
3280 pr_debug("We can not find the ECC section.\n");
3281 goto ext_out;
3282 }
3283
3284 /* get the info we want. */
3285 ecc = (struct onfi_ext_ecc_info *)cursor;
3286
4ae7d228
BN
3287 if (!ecc->codeword_size) {
3288 pr_debug("Invalid codeword size\n");
3289 goto ext_out;
6dcbe0cd
HS
3290 }
3291
4ae7d228
BN
3292 chip->ecc_strength_ds = ecc->ecc_bits;
3293 chip->ecc_step_ds = 1 << ecc->codeword_size;
5cb13271 3294 ret = 0;
6dcbe0cd
HS
3295
3296ext_out:
3297 kfree(ep);
3298 return ret;
3299}
3300
8429bb39
BN
3301static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3302{
862eba51 3303 struct nand_chip *chip = mtd_to_nand(mtd);
8429bb39
BN
3304 uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3305
3306 return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3307 feature);
3308}
3309
3310/*
3311 * Configure chip properties from Micron vendor-specific ONFI table
3312 */
3313static void nand_onfi_detect_micron(struct nand_chip *chip,
3314 struct nand_onfi_params *p)
3315{
3316 struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3317
3318 if (le16_to_cpu(p->vendor_revision) < 1)
3319 return;
3320
3321 chip->read_retries = micron->read_retry_options;
3322 chip->setup_read_retry = nand_setup_read_retry_micron;
3323}
3324
6fb277ba 3325/*
8b6e50c9 3326 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
6fb277ba
FF
3327 */
3328static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
08c248fb 3329 int *busw)
6fb277ba
FF
3330{
3331 struct nand_onfi_params *p = &chip->onfi_params;
bd9c6e99 3332 int i, j;
6fb277ba
FF
3333 int val;
3334
7854d3f7 3335 /* Try ONFI for unknown chip or LP */
6fb277ba
FF
3336 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3337 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3338 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3339 return 0;
3340
6fb277ba
FF
3341 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3342 for (i = 0; i < 3; i++) {
bd9c6e99
BN
3343 for (j = 0; j < sizeof(*p); j++)
3344 ((uint8_t *)p)[j] = chip->read_byte(mtd);
6fb277ba
FF
3345 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3346 le16_to_cpu(p->crc)) {
6fb277ba
FF
3347 break;
3348 }
3349 }
3350
c7f23a70
BN
3351 if (i == 3) {
3352 pr_err("Could not find valid ONFI parameter page; aborting\n");
6fb277ba 3353 return 0;
c7f23a70 3354 }
6fb277ba 3355
8b6e50c9 3356 /* Check version */
6fb277ba 3357 val = le16_to_cpu(p->revision);
b7b1a29d
BN
3358 if (val & (1 << 5))
3359 chip->onfi_version = 23;
3360 else if (val & (1 << 4))
6fb277ba
FF
3361 chip->onfi_version = 22;
3362 else if (val & (1 << 3))
3363 chip->onfi_version = 21;
3364 else if (val & (1 << 2))
3365 chip->onfi_version = 20;
b7b1a29d 3366 else if (val & (1 << 1))
6fb277ba 3367 chip->onfi_version = 10;
b7b1a29d
BN
3368
3369 if (!chip->onfi_version) {
20171642 3370 pr_info("unsupported ONFI version: %d\n", val);
b7b1a29d
BN
3371 return 0;
3372 }
6fb277ba
FF
3373
3374 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3375 sanitize_string(p->model, sizeof(p->model));
3376 if (!mtd->name)
3377 mtd->name = p->model;
4355b70c 3378
6fb277ba 3379 mtd->writesize = le32_to_cpu(p->byte_per_page);
4355b70c
BN
3380
3381 /*
3382 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3383 * (don't ask me who thought of this...). MTD assumes that these
3384 * dimensions will be power-of-2, so just truncate the remaining area.
3385 */
3386 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3387 mtd->erasesize *= mtd->writesize;
3388
6fb277ba 3389 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
4355b70c
BN
3390
3391 /* See erasesize comment */
3392 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
63795755 3393 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
13fbd179 3394 chip->bits_per_cell = p->bits_per_cell;
e2985fc1
HS
3395
3396 if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
08c248fb 3397 *busw = NAND_BUSWIDTH_16;
e2985fc1
HS
3398 else
3399 *busw = 0;
6fb277ba 3400
10c86bab
HS
3401 if (p->ecc_bits != 0xff) {
3402 chip->ecc_strength_ds = p->ecc_bits;
3403 chip->ecc_step_ds = 512;
6dcbe0cd
HS
3404 } else if (chip->onfi_version >= 21 &&
3405 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3406
3407 /*
3408 * The nand_flash_detect_ext_param_page() uses the
3409 * Change Read Column command which maybe not supported
3410 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3411 * now. We do not replace user supplied command function.
3412 */
3413 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3414 chip->cmdfunc = nand_command_lp;
3415
3416 /* The Extended Parameter Page is supported since ONFI 2.1. */
3417 if (nand_flash_detect_ext_param_page(mtd, chip, p))
c7f23a70
BN
3418 pr_warn("Failed to detect ONFI extended param page\n");
3419 } else {
3420 pr_warn("Could not retrieve ONFI ECC requirements\n");
10c86bab
HS
3421 }
3422
8429bb39
BN
3423 if (p->jedec_id == NAND_MFR_MICRON)
3424 nand_onfi_detect_micron(chip, p);
3425
6fb277ba
FF
3426 return 1;
3427}
3428
91361818
HS
3429/*
3430 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3431 */
3432static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
3433 int *busw)
3434{
3435 struct nand_jedec_params *p = &chip->jedec_params;
3436 struct jedec_ecc_info *ecc;
3437 int val;
3438 int i, j;
3439
3440 /* Try JEDEC for unknown chip or LP */
3441 chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3442 if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3443 chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3444 chip->read_byte(mtd) != 'C')
3445 return 0;
3446
3447 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3448 for (i = 0; i < 3; i++) {
3449 for (j = 0; j < sizeof(*p); j++)
3450 ((uint8_t *)p)[j] = chip->read_byte(mtd);
3451
3452 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3453 le16_to_cpu(p->crc))
3454 break;
3455 }
3456
3457 if (i == 3) {
3458 pr_err("Could not find valid JEDEC parameter page; aborting\n");
3459 return 0;
3460 }
3461
3462 /* Check version */
3463 val = le16_to_cpu(p->revision);
3464 if (val & (1 << 2))
3465 chip->jedec_version = 10;
3466 else if (val & (1 << 1))
3467 chip->jedec_version = 1; /* vendor specific version */
3468
3469 if (!chip->jedec_version) {
3470 pr_info("unsupported JEDEC version: %d\n", val);
3471 return 0;
3472 }
3473
3474 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3475 sanitize_string(p->model, sizeof(p->model));
3476 if (!mtd->name)
3477 mtd->name = p->model;
3478
3479 mtd->writesize = le32_to_cpu(p->byte_per_page);
3480
3481 /* Please reference to the comment for nand_flash_detect_onfi. */
3482 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3483 mtd->erasesize *= mtd->writesize;
3484
3485 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3486
3487 /* Please reference to the comment for nand_flash_detect_onfi. */
3488 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3489 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3490 chip->bits_per_cell = p->bits_per_cell;
3491
3492 if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3493 *busw = NAND_BUSWIDTH_16;
3494 else
3495 *busw = 0;
3496
3497 /* ECC info */
3498 ecc = &p->ecc_info[0];
3499
3500 if (ecc->codeword_size >= 9) {
3501 chip->ecc_strength_ds = ecc->ecc_bits;
3502 chip->ecc_step_ds = 1 << ecc->codeword_size;
3503 } else {
3504 pr_warn("Invalid codeword size\n");
3505 }
3506
3507 return 1;
3508}
3509
e3b88bd6
BN
3510/*
3511 * nand_id_has_period - Check if an ID string has a given wraparound period
3512 * @id_data: the ID string
3513 * @arrlen: the length of the @id_data array
3514 * @period: the period of repitition
3515 *
3516 * Check if an ID string is repeated within a given sequence of bytes at
3517 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
d4d4f1bf 3518 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
e3b88bd6
BN
3519 * if the repetition has a period of @period; otherwise, returns zero.
3520 */
3521static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3522{
3523 int i, j;
3524 for (i = 0; i < period; i++)
3525 for (j = i + period; j < arrlen; j += period)
3526 if (id_data[i] != id_data[j])
3527 return 0;
3528 return 1;
3529}
3530
3531/*
3532 * nand_id_len - Get the length of an ID string returned by CMD_READID
3533 * @id_data: the ID string
3534 * @arrlen: the length of the @id_data array
3535
3536 * Returns the length of the ID string, according to known wraparound/trailing
3537 * zero patterns. If no pattern exists, returns the length of the array.
3538 */
3539static int nand_id_len(u8 *id_data, int arrlen)
3540{
3541 int last_nonzero, period;
3542
3543 /* Find last non-zero byte */
3544 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3545 if (id_data[last_nonzero])
3546 break;
3547
3548 /* All zeros */
3549 if (last_nonzero < 0)
3550 return 0;
3551
3552 /* Calculate wraparound period */
3553 for (period = 1; period < arrlen; period++)
3554 if (nand_id_has_period(id_data, arrlen, period))
3555 break;
3556
3557 /* There's a repeated pattern */
3558 if (period < arrlen)
3559 return period;
3560
3561 /* There are trailing zeros */
3562 if (last_nonzero < arrlen - 1)
3563 return last_nonzero + 1;
3564
3565 /* No pattern detected */
3566 return arrlen;
3567}
3568
7db906b7
HS
3569/* Extract the bits of per cell from the 3rd byte of the extended ID */
3570static int nand_get_bits_per_cell(u8 cellinfo)
3571{
3572 int bits;
3573
3574 bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3575 bits >>= NAND_CI_CELLTYPE_SHIFT;
3576 return bits + 1;
3577}
3578
fc09bbc0
BN
3579/*
3580 * Many new NAND share similar device ID codes, which represent the size of the
3581 * chip. The rest of the parameters must be decoded according to generic or
3582 * manufacturer-specific "extended ID" decoding patterns.
3583 */
3584static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3585 u8 id_data[8], int *busw)
3586{
e3b88bd6 3587 int extid, id_len;
fc09bbc0 3588 /* The 3rd id byte holds MLC / multichip data */
7db906b7 3589 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
fc09bbc0
BN
3590 /* The 4th id byte is the important one */
3591 extid = id_data[3];
3592
e3b88bd6
BN
3593 id_len = nand_id_len(id_data, 8);
3594
fc09bbc0
BN
3595 /*
3596 * Field definitions are in the following datasheets:
3597 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
af451af4 3598 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
73ca392f 3599 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
fc09bbc0 3600 *
af451af4
BN
3601 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3602 * ID to decide what to do.
fc09bbc0 3603 */
af451af4 3604 if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
1d0ed69d 3605 !nand_is_slc(chip) && id_data[5] != 0x00) {
fc09bbc0
BN
3606 /* Calc pagesize */
3607 mtd->writesize = 2048 << (extid & 0x03);
3608 extid >>= 2;
3609 /* Calc oobsize */
e2d3a35e 3610 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
fc09bbc0
BN
3611 case 1:
3612 mtd->oobsize = 128;
3613 break;
3614 case 2:
3615 mtd->oobsize = 218;
3616 break;
3617 case 3:
3618 mtd->oobsize = 400;
3619 break;
e2d3a35e 3620 case 4:
fc09bbc0
BN
3621 mtd->oobsize = 436;
3622 break;
e2d3a35e
BN
3623 case 5:
3624 mtd->oobsize = 512;
3625 break;
3626 case 6:
e2d3a35e
BN
3627 mtd->oobsize = 640;
3628 break;
94d04e82
HS
3629 case 7:
3630 default: /* Other cases are "reserved" (unknown) */
3631 mtd->oobsize = 1024;
3632 break;
fc09bbc0
BN
3633 }
3634 extid >>= 2;
3635 /* Calc blocksize */
3636 mtd->erasesize = (128 * 1024) <<
3637 (((extid >> 1) & 0x04) | (extid & 0x03));
3638 *busw = 0;
73ca392f 3639 } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
1d0ed69d 3640 !nand_is_slc(chip)) {
73ca392f
BN
3641 unsigned int tmp;
3642
3643 /* Calc pagesize */
3644 mtd->writesize = 2048 << (extid & 0x03);
3645 extid >>= 2;
3646 /* Calc oobsize */
3647 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3648 case 0:
3649 mtd->oobsize = 128;
3650 break;
3651 case 1:
3652 mtd->oobsize = 224;
3653 break;
3654 case 2:
3655 mtd->oobsize = 448;
3656 break;
3657 case 3:
3658 mtd->oobsize = 64;
3659 break;
3660 case 4:
3661 mtd->oobsize = 32;
3662 break;
3663 case 5:
3664 mtd->oobsize = 16;
3665 break;
3666 default:
3667 mtd->oobsize = 640;
3668 break;
3669 }
3670 extid >>= 2;
3671 /* Calc blocksize */
3672 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3673 if (tmp < 0x03)
3674 mtd->erasesize = (128 * 1024) << tmp;
3675 else if (tmp == 0x03)
3676 mtd->erasesize = 768 * 1024;
3677 else
3678 mtd->erasesize = (64 * 1024) << tmp;
3679 *busw = 0;
fc09bbc0
BN
3680 } else {
3681 /* Calc pagesize */
3682 mtd->writesize = 1024 << (extid & 0x03);
3683 extid >>= 2;
3684 /* Calc oobsize */
3685 mtd->oobsize = (8 << (extid & 0x01)) *
3686 (mtd->writesize >> 9);
3687 extid >>= 2;
3688 /* Calc blocksize. Blocksize is multiples of 64KiB */
3689 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3690 extid >>= 2;
3691 /* Get buswidth information */
3692 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
60c67382
BN
3693
3694 /*
3695 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3696 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3697 * follows:
3698 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3699 * 110b -> 24nm
3700 * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
3701 */
3702 if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
1d0ed69d 3703 nand_is_slc(chip) &&
60c67382
BN
3704 (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3705 !(id_data[4] & 0x80) /* !BENAND */) {
3706 mtd->oobsize = 32 * mtd->writesize >> 9;
3707 }
3708
fc09bbc0
BN
3709 }
3710}
3711
f23a481c
BN
3712/*
3713 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3714 * decodes a matching ID table entry and assigns the MTD size parameters for
3715 * the chip.
3716 */
3717static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3718 struct nand_flash_dev *type, u8 id_data[8],
3719 int *busw)
3720{
3721 int maf_id = id_data[0];
3722
3723 mtd->erasesize = type->erasesize;
3724 mtd->writesize = type->pagesize;
3725 mtd->oobsize = mtd->writesize / 32;
3726 *busw = type->options & NAND_BUSWIDTH_16;
3727
1c195e90
HS
3728 /* All legacy ID NAND are small-page, SLC */
3729 chip->bits_per_cell = 1;
3730
f23a481c
BN
3731 /*
3732 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3733 * some Spansion chips have erasesize that conflicts with size
3734 * listed in nand_ids table.
3735 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3736 */
3737 if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3738 && id_data[6] == 0x00 && id_data[7] == 0x00
3739 && mtd->writesize == 512) {
3740 mtd->erasesize = 128 * 1024;
3741 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3742 }
3743}
3744
7e74c2d7
BN
3745/*
3746 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3747 * heuristic patterns using various detected parameters (e.g., manufacturer,
3748 * page size, cell-type information).
3749 */
3750static void nand_decode_bbm_options(struct mtd_info *mtd,
3751 struct nand_chip *chip, u8 id_data[8])
3752{
3753 int maf_id = id_data[0];
3754
3755 /* Set the bad block position */
3756 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3757 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3758 else
3759 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3760
3761 /*
3762 * Bad block marker is stored in the last page of each block on Samsung
3763 * and Hynix MLC devices; stored in first two pages of each block on
3764 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3765 * AMD/Spansion, and Macronix. All others scan only the first page.
3766 */
1d0ed69d 3767 if (!nand_is_slc(chip) &&
7e74c2d7
BN
3768 (maf_id == NAND_MFR_SAMSUNG ||
3769 maf_id == NAND_MFR_HYNIX))
3770 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
1d0ed69d 3771 else if ((nand_is_slc(chip) &&
7e74c2d7
BN
3772 (maf_id == NAND_MFR_SAMSUNG ||
3773 maf_id == NAND_MFR_HYNIX ||
3774 maf_id == NAND_MFR_TOSHIBA ||
3775 maf_id == NAND_MFR_AMD ||
3776 maf_id == NAND_MFR_MACRONIX)) ||
3777 (mtd->writesize == 2048 &&
3778 maf_id == NAND_MFR_MICRON))
3779 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3780}
3781
ec6e87e3
HS
3782static inline bool is_full_id_nand(struct nand_flash_dev *type)
3783{
3784 return type->id_len;
3785}
3786
3787static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3788 struct nand_flash_dev *type, u8 *id_data, int *busw)
3789{
3790 if (!strncmp(type->id, id_data, type->id_len)) {
3791 mtd->writesize = type->pagesize;
3792 mtd->erasesize = type->erasesize;
3793 mtd->oobsize = type->oobsize;
3794
7db906b7 3795 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
ec6e87e3
HS
3796 chip->chipsize = (uint64_t)type->chipsize << 20;
3797 chip->options |= type->options;
57219342
HS
3798 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3799 chip->ecc_step_ds = NAND_ECC_STEP(type);
57a94e24
BB
3800 chip->onfi_timing_mode_default =
3801 type->onfi_timing_mode_default;
ec6e87e3
HS
3802
3803 *busw = type->options & NAND_BUSWIDTH_16;
3804
092b6a1d
CZ
3805 if (!mtd->name)
3806 mtd->name = type->name;
3807
ec6e87e3
HS
3808 return true;
3809 }
3810 return false;
3811}
3812
7aa65bfd 3813/*
8b6e50c9 3814 * Get the flash and manufacturer id and lookup if the type is supported.
7aa65bfd
TG
3815 */
3816static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
ace4dfee 3817 struct nand_chip *chip,
7351d3a5 3818 int *maf_id, int *dev_id,
5e81e88a 3819 struct nand_flash_dev *type)
7aa65bfd 3820{
bb77082f 3821 int busw;
d1e1f4e4 3822 int i, maf_idx;
426c457a 3823 u8 id_data[8];
1da177e4
LT
3824
3825 /* Select the device */
ace4dfee 3826 chip->select_chip(mtd, 0);
1da177e4 3827
ef89a880
KB
3828 /*
3829 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
8b6e50c9 3830 * after power-up.
ef89a880
KB
3831 */
3832 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3833
1da177e4 3834 /* Send the command for reading device ID */
ace4dfee 3835 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4
LT
3836
3837 /* Read manufacturer and device IDs */
ace4dfee 3838 *maf_id = chip->read_byte(mtd);
d1e1f4e4 3839 *dev_id = chip->read_byte(mtd);
1da177e4 3840
8b6e50c9
BN
3841 /*
3842 * Try again to make sure, as some systems the bus-hold or other
ed8165c7
BD
3843 * interface concerns can cause random data which looks like a
3844 * possibly credible NAND flash to appear. If the two results do
3845 * not match, ignore the device completely.
3846 */
3847
3848 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3849
4aef9b78
BN
3850 /* Read entire ID string */
3851 for (i = 0; i < 8; i++)
426c457a 3852 id_data[i] = chip->read_byte(mtd);
ed8165c7 3853
d1e1f4e4 3854 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
20171642 3855 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
d0370219 3856 *maf_id, *dev_id, id_data[0], id_data[1]);
ed8165c7
BD
3857 return ERR_PTR(-ENODEV);
3858 }
3859
7aa65bfd 3860 if (!type)
5e81e88a
DW
3861 type = nand_flash_ids;
3862
ec6e87e3
HS
3863 for (; type->name != NULL; type++) {
3864 if (is_full_id_nand(type)) {
3865 if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3866 goto ident_done;
3867 } else if (*dev_id == type->dev_id) {
db5b09f6 3868 break;
ec6e87e3
HS
3869 }
3870 }
5e81e88a 3871
d1e1f4e4
FF
3872 chip->onfi_version = 0;
3873 if (!type->name || !type->pagesize) {
35fc5195 3874 /* Check if the chip is ONFI compliant */
47450b35 3875 if (nand_flash_detect_onfi(mtd, chip, &busw))
6fb277ba 3876 goto ident_done;
91361818
HS
3877
3878 /* Check if the chip is JEDEC compliant */
3879 if (nand_flash_detect_jedec(mtd, chip, &busw))
3880 goto ident_done;
d1e1f4e4
FF
3881 }
3882
5e81e88a 3883 if (!type->name)
7aa65bfd
TG
3884 return ERR_PTR(-ENODEV);
3885
ba0251fe
TG
3886 if (!mtd->name)
3887 mtd->name = type->name;
3888
69423d99 3889 chip->chipsize = (uint64_t)type->chipsize << 20;
7aa65bfd 3890
a7f5ba40 3891 if (!type->pagesize) {
fc09bbc0
BN
3892 /* Decode parameters from extended ID */
3893 nand_decode_ext_id(mtd, chip, id_data, &busw);
7aa65bfd 3894 } else {
f23a481c 3895 nand_decode_id(mtd, chip, type, id_data, &busw);
7aa65bfd 3896 }
bf7a01bf
BN
3897 /* Get chip options */
3898 chip->options |= type->options;
d1e1f4e4 3899
8b6e50c9
BN
3900 /*
3901 * Check if chip is not a Samsung device. Do not clear the
3902 * options for chips which do not have an extended id.
d1e1f4e4
FF
3903 */
3904 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3905 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3906ident_done:
3907
7aa65bfd 3908 /* Try to identify manufacturer */
9a909867 3909 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
7aa65bfd
TG
3910 if (nand_manuf_ids[maf_idx].id == *maf_id)
3911 break;
3912 }
0ea4a755 3913
64b37b2a
MC
3914 if (chip->options & NAND_BUSWIDTH_AUTO) {
3915 WARN_ON(chip->options & NAND_BUSWIDTH_16);
3916 chip->options |= busw;
3917 nand_set_defaults(chip, busw);
3918 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3919 /*
3920 * Check, if buswidth is correct. Hardware drivers should set
3921 * chip correct!
3922 */
20171642
EG
3923 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3924 *maf_id, *dev_id);
3925 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
3926 pr_warn("bus width %d instead %d bit\n",
d0370219
BN
3927 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3928 busw ? 16 : 8);
7aa65bfd
TG
3929 return ERR_PTR(-EINVAL);
3930 }
61b03bd7 3931
7e74c2d7
BN
3932 nand_decode_bbm_options(mtd, chip, id_data);
3933
7aa65bfd 3934 /* Calculate the address shift from the page size */
ace4dfee 3935 chip->page_shift = ffs(mtd->writesize) - 1;
8b6e50c9 3936 /* Convert chipsize to number of pages per chip -1 */
ace4dfee 3937 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
61b03bd7 3938
ace4dfee 3939 chip->bbt_erase_shift = chip->phys_erase_shift =
7aa65bfd 3940 ffs(mtd->erasesize) - 1;
69423d99
AH
3941 if (chip->chipsize & 0xffffffff)
3942 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
7351d3a5
FF
3943 else {
3944 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3945 chip->chip_shift += 32 - 1;
3946 }
1da177e4 3947
26d9be11 3948 chip->badblockbits = 8;
49c50b97 3949 chip->erase = single_erase;
7aa65bfd 3950
8b6e50c9 3951 /* Do not replace user supplied command function! */
ace4dfee
TG
3952 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3953 chip->cmdfunc = nand_command_lp;
7aa65bfd 3954
20171642
EG
3955 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3956 *maf_id, *dev_id);
ffdac6cd
HS
3957
3958 if (chip->onfi_version)
3959 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3960 chip->onfi_params.model);
3961 else if (chip->jedec_version)
3962 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3963 chip->jedec_params.model);
3964 else
3965 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3966 type->name);
3967
3755a991 3968 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
3723e93c 3969 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3755a991 3970 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
7aa65bfd
TG
3971 return type;
3972}
3973
d48f62b9
BB
3974static const char * const nand_ecc_modes[] = {
3975 [NAND_ECC_NONE] = "none",
3976 [NAND_ECC_SOFT] = "soft",
3977 [NAND_ECC_HW] = "hw",
3978 [NAND_ECC_HW_SYNDROME] = "hw_syndrome",
3979 [NAND_ECC_HW_OOB_FIRST] = "hw_oob_first",
3980 [NAND_ECC_SOFT_BCH] = "soft_bch",
3981};
3982
3983static int of_get_nand_ecc_mode(struct device_node *np)
3984{
3985 const char *pm;
3986 int err, i;
3987
3988 err = of_property_read_string(np, "nand-ecc-mode", &pm);
3989 if (err < 0)
3990 return err;
3991
3992 for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++)
3993 if (!strcasecmp(pm, nand_ecc_modes[i]))
3994 return i;
3995
3996 return -ENODEV;
3997}
3998
3999static int of_get_nand_ecc_algo(struct device_node *np)
4000{
4001 const char *pm;
4002 int err;
4003
4004 /*
4005 * TODO: Read ECC algo OF property and map it to enum nand_ecc_algo.
4006 * It's not implemented yet as currently NAND subsystem ignores
4007 * algorithm explicitly set this way. Once it's handled we should
4008 * document & support new property.
4009 */
4010
4011 /*
4012 * For backward compatibility we also read "nand-ecc-mode" checking
4013 * for some obsoleted values that were specifying ECC algorithm.
4014 */
4015 err = of_property_read_string(np, "nand-ecc-mode", &pm);
4016 if (err < 0)
4017 return err;
4018
4019 if (!strcasecmp(pm, "soft"))
4020 return NAND_ECC_HAMMING;
4021 else if (!strcasecmp(pm, "soft_bch"))
4022 return NAND_ECC_BCH;
4023
4024 return -ENODEV;
4025}
4026
4027static int of_get_nand_ecc_step_size(struct device_node *np)
4028{
4029 int ret;
4030 u32 val;
4031
4032 ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
4033 return ret ? ret : val;
4034}
4035
4036static int of_get_nand_ecc_strength(struct device_node *np)
4037{
4038 int ret;
4039 u32 val;
4040
4041 ret = of_property_read_u32(np, "nand-ecc-strength", &val);
4042 return ret ? ret : val;
4043}
4044
4045static int of_get_nand_bus_width(struct device_node *np)
4046{
4047 u32 val;
4048
4049 if (of_property_read_u32(np, "nand-bus-width", &val))
4050 return 8;
4051
4052 switch (val) {
4053 case 8:
4054 case 16:
4055 return val;
4056 default:
4057 return -EIO;
4058 }
4059}
4060
4061static bool of_get_nand_on_flash_bbt(struct device_node *np)
4062{
4063 return of_property_read_bool(np, "nand-on-flash-bbt");
4064}
4065
7194a29a 4066static int nand_dt_init(struct nand_chip *chip)
5844feea 4067{
7194a29a 4068 struct device_node *dn = nand_get_flash_node(chip);
79082457 4069 int ecc_mode, ecc_algo, ecc_strength, ecc_step;
5844feea 4070
7194a29a
BB
4071 if (!dn)
4072 return 0;
4073
5844feea
BN
4074 if (of_get_nand_bus_width(dn) == 16)
4075 chip->options |= NAND_BUSWIDTH_16;
4076
4077 if (of_get_nand_on_flash_bbt(dn))
4078 chip->bbt_options |= NAND_BBT_USE_FLASH;
4079
4080 ecc_mode = of_get_nand_ecc_mode(dn);
79082457 4081 ecc_algo = of_get_nand_ecc_algo(dn);
5844feea
BN
4082 ecc_strength = of_get_nand_ecc_strength(dn);
4083 ecc_step = of_get_nand_ecc_step_size(dn);
4084
4085 if ((ecc_step >= 0 && !(ecc_strength >= 0)) ||
4086 (!(ecc_step >= 0) && ecc_strength >= 0)) {
4087 pr_err("must set both strength and step size in DT\n");
4088 return -EINVAL;
4089 }
4090
4091 if (ecc_mode >= 0)
4092 chip->ecc.mode = ecc_mode;
4093
79082457
RM
4094 if (ecc_algo >= 0)
4095 chip->ecc.algo = ecc_algo;
4096
5844feea
BN
4097 if (ecc_strength >= 0)
4098 chip->ecc.strength = ecc_strength;
4099
4100 if (ecc_step > 0)
4101 chip->ecc.size = ecc_step;
4102
4103 return 0;
4104}
4105
7aa65bfd 4106/**
3b85c321 4107 * nand_scan_ident - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
4108 * @mtd: MTD device structure
4109 * @maxchips: number of chips to scan for
4110 * @table: alternative NAND ID table
7aa65bfd 4111 *
8b6e50c9
BN
4112 * This is the first phase of the normal nand_scan() function. It reads the
4113 * flash ID and sets up MTD fields accordingly.
7aa65bfd 4114 *
3b85c321 4115 * The mtd->owner field must be set to the module of the caller.
7aa65bfd 4116 */
5e81e88a
DW
4117int nand_scan_ident(struct mtd_info *mtd, int maxchips,
4118 struct nand_flash_dev *table)
7aa65bfd 4119{
bb77082f 4120 int i, nand_maf_id, nand_dev_id;
862eba51 4121 struct nand_chip *chip = mtd_to_nand(mtd);
7aa65bfd 4122 struct nand_flash_dev *type;
5844feea
BN
4123 int ret;
4124
7194a29a
BB
4125 ret = nand_dt_init(chip);
4126 if (ret)
4127 return ret;
7aa65bfd 4128
f7a8e38f
BN
4129 if (!mtd->name && mtd->dev.parent)
4130 mtd->name = dev_name(mtd->dev.parent);
4131
7aa65bfd 4132 /* Set the default functions */
bb77082f 4133 nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
7aa65bfd
TG
4134
4135 /* Read the flash type */
bb77082f
CZ
4136 type = nand_get_flash_type(mtd, chip, &nand_maf_id,
4137 &nand_dev_id, table);
7aa65bfd
TG
4138
4139 if (IS_ERR(type)) {
b1c6e6db 4140 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
d0370219 4141 pr_warn("No NAND device found\n");
ace4dfee 4142 chip->select_chip(mtd, -1);
7aa65bfd 4143 return PTR_ERR(type);
1da177e4
LT
4144 }
4145
07300164
HS
4146 chip->select_chip(mtd, -1);
4147
7aa65bfd 4148 /* Check for a chip array */
e0c7d767 4149 for (i = 1; i < maxchips; i++) {
ace4dfee 4150 chip->select_chip(mtd, i);
ef89a880
KB
4151 /* See comment in nand_get_flash_type for reset */
4152 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4 4153 /* Send the command for reading device ID */
ace4dfee 4154 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4 4155 /* Read manufacturer and device IDs */
ace4dfee 4156 if (nand_maf_id != chip->read_byte(mtd) ||
07300164
HS
4157 nand_dev_id != chip->read_byte(mtd)) {
4158 chip->select_chip(mtd, -1);
1da177e4 4159 break;
07300164
HS
4160 }
4161 chip->select_chip(mtd, -1);
1da177e4
LT
4162 }
4163 if (i > 1)
20171642 4164 pr_info("%d chips detected\n", i);
61b03bd7 4165
1da177e4 4166 /* Store the number of chips and calc total size for mtd */
ace4dfee
TG
4167 chip->numchips = i;
4168 mtd->size = i * chip->chipsize;
7aa65bfd 4169
3b85c321
DW
4170 return 0;
4171}
7351d3a5 4172EXPORT_SYMBOL(nand_scan_ident);
3b85c321 4173
67a9ad9b
EG
4174/*
4175 * Check if the chip configuration meet the datasheet requirements.
4176
4177 * If our configuration corrects A bits per B bytes and the minimum
4178 * required correction level is X bits per Y bytes, then we must ensure
4179 * both of the following are true:
4180 *
4181 * (1) A / B >= X / Y
4182 * (2) A >= X
4183 *
4184 * Requirement (1) ensures we can correct for the required bitflip density.
4185 * Requirement (2) ensures we can correct even when all bitflips are clumped
4186 * in the same sector.
4187 */
4188static bool nand_ecc_strength_good(struct mtd_info *mtd)
4189{
862eba51 4190 struct nand_chip *chip = mtd_to_nand(mtd);
67a9ad9b
EG
4191 struct nand_ecc_ctrl *ecc = &chip->ecc;
4192 int corr, ds_corr;
4193
4194 if (ecc->size == 0 || chip->ecc_step_ds == 0)
4195 /* Not enough information */
4196 return true;
4197
4198 /*
4199 * We get the number of corrected bits per page to compare
4200 * the correction density.
4201 */
4202 corr = (mtd->writesize * ecc->strength) / ecc->size;
4203 ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
4204
4205 return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
4206}
3b85c321
DW
4207
4208/**
4209 * nand_scan_tail - [NAND Interface] Scan for the NAND device
8b6e50c9 4210 * @mtd: MTD device structure
3b85c321 4211 *
8b6e50c9
BN
4212 * This is the second phase of the normal nand_scan() function. It fills out
4213 * all the uninitialized function pointers with the defaults and scans for a
4214 * bad block table if appropriate.
3b85c321
DW
4215 */
4216int nand_scan_tail(struct mtd_info *mtd)
4217{
862eba51 4218 struct nand_chip *chip = mtd_to_nand(mtd);
97de79e0 4219 struct nand_ecc_ctrl *ecc = &chip->ecc;
f02ea4e6 4220 struct nand_buffers *nbuf;
11eaf6df 4221 int ret;
3b85c321 4222
e2414f4c 4223 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
11eaf6df
EG
4224 if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
4225 !(chip->bbt_options & NAND_BBT_USE_FLASH)))
4226 return -EINVAL;
e2414f4c 4227
f02ea4e6
HS
4228 if (!(chip->options & NAND_OWN_BUFFERS)) {
4229 nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize
4230 + mtd->oobsize * 3, GFP_KERNEL);
4231 if (!nbuf)
4232 return -ENOMEM;
4233 nbuf->ecccalc = (uint8_t *)(nbuf + 1);
4234 nbuf->ecccode = nbuf->ecccalc + mtd->oobsize;
4235 nbuf->databuf = nbuf->ecccode + mtd->oobsize;
4236
4237 chip->buffers = nbuf;
4238 } else {
4239 if (!chip->buffers)
4240 return -ENOMEM;
4241 }
4bf63fcb 4242
7dcdcbef 4243 /* Set the internal oob buffer location, just after the page data */
784f4d5e 4244 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
1da177e4 4245
7aa65bfd 4246 /*
8b6e50c9 4247 * If no default placement scheme is given, select an appropriate one.
7aa65bfd 4248 */
41b207a7 4249 if (!mtd->ooblayout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
61b03bd7 4250 switch (mtd->oobsize) {
1da177e4 4251 case 8:
1da177e4 4252 case 16:
41b207a7 4253 mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops);
1da177e4
LT
4254 break;
4255 case 64:
81ec5364 4256 case 128:
41b207a7 4257 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
81ec5364 4258 break;
1da177e4 4259 default:
11eaf6df
EG
4260 WARN(1, "No oob scheme defined for oobsize %d\n",
4261 mtd->oobsize);
4262 ret = -EINVAL;
4263 goto err_free;
1da177e4
LT
4264 }
4265 }
61b03bd7 4266
956e944c
DW
4267 if (!chip->write_page)
4268 chip->write_page = nand_write_page;
4269
61b03bd7 4270 /*
8b6e50c9 4271 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
7aa65bfd 4272 * selected and we have 256 byte pagesize fallback to software ECC
e0c7d767 4273 */
956e944c 4274
97de79e0 4275 switch (ecc->mode) {
6e0cb135
SN
4276 case NAND_ECC_HW_OOB_FIRST:
4277 /* Similar to NAND_ECC_HW, but a separate read_page handle */
97de79e0 4278 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
11eaf6df
EG
4279 WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
4280 ret = -EINVAL;
4281 goto err_free;
6e0cb135 4282 }
97de79e0
HS
4283 if (!ecc->read_page)
4284 ecc->read_page = nand_read_page_hwecc_oob_first;
6e0cb135 4285
6dfc6d25 4286 case NAND_ECC_HW:
8b6e50c9 4287 /* Use standard hwecc read page function? */
97de79e0
HS
4288 if (!ecc->read_page)
4289 ecc->read_page = nand_read_page_hwecc;
4290 if (!ecc->write_page)
4291 ecc->write_page = nand_write_page_hwecc;
4292 if (!ecc->read_page_raw)
4293 ecc->read_page_raw = nand_read_page_raw;
4294 if (!ecc->write_page_raw)
4295 ecc->write_page_raw = nand_write_page_raw;
4296 if (!ecc->read_oob)
4297 ecc->read_oob = nand_read_oob_std;
4298 if (!ecc->write_oob)
4299 ecc->write_oob = nand_write_oob_std;
4300 if (!ecc->read_subpage)
4301 ecc->read_subpage = nand_read_subpage;
44991b3d 4302 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
97de79e0 4303 ecc->write_subpage = nand_write_subpage_hwecc;
f5bbdacc 4304
6dfc6d25 4305 case NAND_ECC_HW_SYNDROME:
97de79e0
HS
4306 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
4307 (!ecc->read_page ||
4308 ecc->read_page == nand_read_page_hwecc ||
4309 !ecc->write_page ||
4310 ecc->write_page == nand_write_page_hwecc)) {
11eaf6df
EG
4311 WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
4312 ret = -EINVAL;
4313 goto err_free;
6dfc6d25 4314 }
8b6e50c9 4315 /* Use standard syndrome read/write page function? */
97de79e0
HS
4316 if (!ecc->read_page)
4317 ecc->read_page = nand_read_page_syndrome;
4318 if (!ecc->write_page)
4319 ecc->write_page = nand_write_page_syndrome;
4320 if (!ecc->read_page_raw)
4321 ecc->read_page_raw = nand_read_page_raw_syndrome;
4322 if (!ecc->write_page_raw)
4323 ecc->write_page_raw = nand_write_page_raw_syndrome;
4324 if (!ecc->read_oob)
4325 ecc->read_oob = nand_read_oob_syndrome;
4326 if (!ecc->write_oob)
4327 ecc->write_oob = nand_write_oob_syndrome;
4328
4329 if (mtd->writesize >= ecc->size) {
4330 if (!ecc->strength) {
11eaf6df
EG
4331 WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
4332 ret = -EINVAL;
4333 goto err_free;
e2788c98 4334 }
6dfc6d25 4335 break;
e2788c98 4336 }
2ac63d90
RM
4337 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
4338 ecc->size, mtd->writesize);
97de79e0 4339 ecc->mode = NAND_ECC_SOFT;
e9d4faed 4340 ecc->algo = NAND_ECC_HAMMING;
61b03bd7 4341
6dfc6d25 4342 case NAND_ECC_SOFT:
97de79e0
HS
4343 ecc->calculate = nand_calculate_ecc;
4344 ecc->correct = nand_correct_data;
4345 ecc->read_page = nand_read_page_swecc;
4346 ecc->read_subpage = nand_read_subpage;
4347 ecc->write_page = nand_write_page_swecc;
4348 ecc->read_page_raw = nand_read_page_raw;
4349 ecc->write_page_raw = nand_write_page_raw;
4350 ecc->read_oob = nand_read_oob_std;
4351 ecc->write_oob = nand_write_oob_std;
4352 if (!ecc->size)
4353 ecc->size = 256;
4354 ecc->bytes = 3;
4355 ecc->strength = 1;
1da177e4 4356 break;
61b03bd7 4357
193bd400
ID
4358 case NAND_ECC_SOFT_BCH:
4359 if (!mtd_nand_has_bch()) {
11eaf6df
EG
4360 WARN(1, "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
4361 ret = -EINVAL;
4362 goto err_free;
193bd400 4363 }
97de79e0
HS
4364 ecc->calculate = nand_bch_calculate_ecc;
4365 ecc->correct = nand_bch_correct_data;
4366 ecc->read_page = nand_read_page_swecc;
4367 ecc->read_subpage = nand_read_subpage;
4368 ecc->write_page = nand_write_page_swecc;
4369 ecc->read_page_raw = nand_read_page_raw;
4370 ecc->write_page_raw = nand_write_page_raw;
4371 ecc->read_oob = nand_read_oob_std;
4372 ecc->write_oob = nand_write_oob_std;
193bd400 4373 /*
e0377cde
AS
4374 * Board driver should supply ecc.size and ecc.strength values
4375 * to select how many bits are correctable. Otherwise, default
4376 * to 4 bits for large page devices.
193bd400 4377 */
97de79e0
HS
4378 if (!ecc->size && (mtd->oobsize >= 64)) {
4379 ecc->size = 512;
e0377cde 4380 ecc->strength = 4;
193bd400 4381 }
e0377cde 4382
7cf9c19a
BB
4383 /*
4384 * if no ecc placement scheme was provided pickup the default
4385 * large page one.
4386 */
4387 if (!mtd->ooblayout) {
4388 /* handle large page devices only */
4389 if (mtd->oobsize < 64) {
4390 WARN(1, "OOB layout is required when using software BCH on small pages\n");
4391 ret = -EINVAL;
4392 goto err_free;
4393 }
4394
4395 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
4396 }
4397
e0377cde 4398 /* See nand_bch_init() for details. */
a8c65d50
BB
4399 ecc->bytes = 0;
4400 ecc->priv = nand_bch_init(mtd);
97de79e0 4401 if (!ecc->priv) {
11eaf6df
EG
4402 WARN(1, "BCH ECC initialization failed!\n");
4403 ret = -EINVAL;
4404 goto err_free;
193bd400
ID
4405 }
4406 break;
4407
61b03bd7 4408 case NAND_ECC_NONE:
2ac63d90 4409 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
97de79e0
HS
4410 ecc->read_page = nand_read_page_raw;
4411 ecc->write_page = nand_write_page_raw;
4412 ecc->read_oob = nand_read_oob_std;
4413 ecc->read_page_raw = nand_read_page_raw;
4414 ecc->write_page_raw = nand_write_page_raw;
4415 ecc->write_oob = nand_write_oob_std;
4416 ecc->size = mtd->writesize;
4417 ecc->bytes = 0;
4418 ecc->strength = 0;
1da177e4 4419 break;
956e944c 4420
1da177e4 4421 default:
11eaf6df
EG
4422 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode);
4423 ret = -EINVAL;
4424 goto err_free;
1da177e4 4425 }
61b03bd7 4426
9ce244b3 4427 /* For many systems, the standard OOB write also works for raw */
97de79e0
HS
4428 if (!ecc->read_oob_raw)
4429 ecc->read_oob_raw = ecc->read_oob;
4430 if (!ecc->write_oob_raw)
4431 ecc->write_oob_raw = ecc->write_oob;
9ce244b3 4432
846031d3 4433 /* propagate ecc info to mtd_info */
846031d3
BB
4434 mtd->ecc_strength = ecc->strength;
4435 mtd->ecc_step_size = ecc->size;
67a9ad9b 4436
7aa65bfd
TG
4437 /*
4438 * Set the number of read / write steps for one page depending on ECC
8b6e50c9 4439 * mode.
7aa65bfd 4440 */
97de79e0
HS
4441 ecc->steps = mtd->writesize / ecc->size;
4442 if (ecc->steps * ecc->size != mtd->writesize) {
11eaf6df
EG
4443 WARN(1, "Invalid ECC parameters\n");
4444 ret = -EINVAL;
4445 goto err_free;
1da177e4 4446 }
97de79e0 4447 ecc->total = ecc->steps * ecc->bytes;
61b03bd7 4448
846031d3
BB
4449 /*
4450 * The number of bytes available for a client to place data into
4451 * the out of band area.
4452 */
4453 ret = mtd_ooblayout_count_freebytes(mtd);
4454 if (ret < 0)
4455 ret = 0;
4456
4457 mtd->oobavail = ret;
4458
4459 /* ECC sanity check: warn if it's too weak */
4460 if (!nand_ecc_strength_good(mtd))
4461 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
4462 mtd->name);
4463
8b6e50c9 4464 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
1d0ed69d 4465 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
97de79e0 4466 switch (ecc->steps) {
29072b96
TG
4467 case 2:
4468 mtd->subpage_sft = 1;
4469 break;
4470 case 4:
4471 case 8:
81ec5364 4472 case 16:
29072b96
TG
4473 mtd->subpage_sft = 2;
4474 break;
4475 }
4476 }
4477 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
4478
04bbd0ea 4479 /* Initialize state */
ace4dfee 4480 chip->state = FL_READY;
1da177e4 4481
1da177e4 4482 /* Invalidate the pagebuffer reference */
ace4dfee 4483 chip->pagebuf = -1;
1da177e4 4484
a5ff4f10 4485 /* Large page NAND with SOFT_ECC should support subpage reads */
4007e2d1
RL
4486 switch (ecc->mode) {
4487 case NAND_ECC_SOFT:
4488 case NAND_ECC_SOFT_BCH:
4489 if (chip->page_shift > 9)
4490 chip->options |= NAND_SUBPAGE_READ;
4491 break;
4492
4493 default:
4494 break;
4495 }
a5ff4f10 4496
1da177e4 4497 /* Fill in remaining MTD driver data */
963d1c28 4498 mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
93edbad6
ML
4499 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
4500 MTD_CAP_NANDFLASH;
3c3c10bb
AB
4501 mtd->_erase = nand_erase;
4502 mtd->_point = NULL;
4503 mtd->_unpoint = NULL;
4504 mtd->_read = nand_read;
4505 mtd->_write = nand_write;
4506 mtd->_panic_write = panic_nand_write;
4507 mtd->_read_oob = nand_read_oob;
4508 mtd->_write_oob = nand_write_oob;
4509 mtd->_sync = nand_sync;
4510 mtd->_lock = NULL;
4511 mtd->_unlock = NULL;
4512 mtd->_suspend = nand_suspend;
4513 mtd->_resume = nand_resume;
72ea4036 4514 mtd->_reboot = nand_shutdown;
8471bb73 4515 mtd->_block_isreserved = nand_block_isreserved;
3c3c10bb
AB
4516 mtd->_block_isbad = nand_block_isbad;
4517 mtd->_block_markbad = nand_block_markbad;
cbcab65a 4518 mtd->writebufsize = mtd->writesize;
1da177e4 4519
ea3b2ea2
SL
4520 /*
4521 * Initialize bitflip_threshold to its default prior scan_bbt() call.
4522 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4523 * properly set.
4524 */
4525 if (!mtd->bitflip_threshold)
240181fd 4526 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
1da177e4 4527
0040bf38 4528 /* Check, if we should skip the bad block table scan */
ace4dfee 4529 if (chip->options & NAND_SKIP_BBTSCAN)
0040bf38 4530 return 0;
1da177e4
LT
4531
4532 /* Build bad block table */
ace4dfee 4533 return chip->scan_bbt(mtd);
11eaf6df
EG
4534err_free:
4535 if (!(chip->options & NAND_OWN_BUFFERS))
4536 kfree(chip->buffers);
4537 return ret;
1da177e4 4538}
7351d3a5 4539EXPORT_SYMBOL(nand_scan_tail);
1da177e4 4540
8b6e50c9
BN
4541/*
4542 * is_module_text_address() isn't exported, and it's mostly a pointless
7351d3a5 4543 * test if this is a module _anyway_ -- they'd have to try _really_ hard
8b6e50c9
BN
4544 * to call us from in-kernel code if the core NAND support is modular.
4545 */
3b85c321
DW
4546#ifdef MODULE
4547#define caller_is_module() (1)
4548#else
4549#define caller_is_module() \
a6e6abd5 4550 is_module_text_address((unsigned long)__builtin_return_address(0))
3b85c321
DW
4551#endif
4552
4553/**
4554 * nand_scan - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
4555 * @mtd: MTD device structure
4556 * @maxchips: number of chips to scan for
3b85c321 4557 *
8b6e50c9
BN
4558 * This fills out all the uninitialized function pointers with the defaults.
4559 * The flash ID is read and the mtd/chip structures are filled with the
4560 * appropriate values. The mtd->owner field must be set to the module of the
4561 * caller.
3b85c321
DW
4562 */
4563int nand_scan(struct mtd_info *mtd, int maxchips)
4564{
4565 int ret;
4566
4567 /* Many callers got this wrong, so check for it for a while... */
4568 if (!mtd->owner && caller_is_module()) {
d0370219 4569 pr_crit("%s called with NULL mtd->owner!\n", __func__);
3b85c321
DW
4570 BUG();
4571 }
4572
5e81e88a 4573 ret = nand_scan_ident(mtd, maxchips, NULL);
3b85c321
DW
4574 if (!ret)
4575 ret = nand_scan_tail(mtd);
4576 return ret;
4577}
7351d3a5 4578EXPORT_SYMBOL(nand_scan);
3b85c321 4579
1da177e4 4580/**
61b03bd7 4581 * nand_release - [NAND Interface] Free resources held by the NAND device
8b6e50c9
BN
4582 * @mtd: MTD device structure
4583 */
e0c7d767 4584void nand_release(struct mtd_info *mtd)
1da177e4 4585{
862eba51 4586 struct nand_chip *chip = mtd_to_nand(mtd);
1da177e4 4587
193bd400
ID
4588 if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
4589 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
4590
5ffcaf3d 4591 mtd_device_unregister(mtd);
1da177e4 4592
fa671646 4593 /* Free bad block table memory */
ace4dfee 4594 kfree(chip->bbt);
4bf63fcb
DW
4595 if (!(chip->options & NAND_OWN_BUFFERS))
4596 kfree(chip->buffers);
58373ff0
BN
4597
4598 /* Free bad block descriptor memory */
4599 if (chip->badblock_pattern && chip->badblock_pattern->options
4600 & NAND_BBT_DYNAMICSTRUCT)
4601 kfree(chip->badblock_pattern);
1da177e4 4602}
e0c7d767 4603EXPORT_SYMBOL_GPL(nand_release);
8fe833c1 4604
e0c7d767 4605MODULE_LICENSE("GPL");
7351d3a5
FF
4606MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4607MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
e0c7d767 4608MODULE_DESCRIPTION("Generic NAND flash driver code");
This page took 0.896586 seconds and 5 git commands to generate.