Merge branch 'omap-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / mtd / nand / nand_ecc.c
CommitLineData
1da177e4 1/*
e6cf5df1 2 * This file contains an ECC algorithm that detects and corrects 1 bit
3 * errors in a 256 byte block of data.
1da177e4
LT
4 *
5 * drivers/mtd/nand/nand_ecc.c
6 *
ccbcd6cb
DW
7 * Copyright © 2008 Koninklijke Philips Electronics NV.
8 * Author: Frans Meulenbroeks
1da177e4 9 *
e6cf5df1 10 * Completely replaces the previous ECC implementation which was written by:
11 * Steven J. Hill (sjhill@realitydiluted.com)
12 * Thomas Gleixner (tglx@linutronix.de)
13 *
14 * Information on how this algorithm works and how it was developed
ccbcd6cb 15 * can be found in Documentation/mtd/nand_ecc.txt
819d6a32 16 *
1da177e4
LT
17 * This file is free software; you can redistribute it and/or modify it
18 * under the terms of the GNU General Public License as published by the
19 * Free Software Foundation; either version 2 or (at your option) any
20 * later version.
61b03bd7 21 *
1da177e4
LT
22 * This file is distributed in the hope that it will be useful, but WITHOUT
23 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
24 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
25 * for more details.
61b03bd7 26 *
1da177e4
LT
27 * You should have received a copy of the GNU General Public License along
28 * with this file; if not, write to the Free Software Foundation, Inc.,
29 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
61b03bd7 30 *
1da177e4
LT
31 */
32
e6cf5df1 33/*
34 * The STANDALONE macro is useful when running the code outside the kernel
35 * e.g. when running the code in a testbed or a benchmark program.
36 * When STANDALONE is used, the module related macros are commented out
37 * as well as the linux include files.
ccbcd6cb 38 * Instead a private definition of mtd_info is given to satisfy the compiler
e6cf5df1 39 * (the code does not use mtd_info, so the code does not care)
40 */
41#ifndef STANDALONE
1da177e4
LT
42#include <linux/types.h>
43#include <linux/kernel.h>
44#include <linux/module.h>
d68156cf
SV
45#include <linux/mtd/mtd.h>
46#include <linux/mtd/nand.h>
1da177e4 47#include <linux/mtd/nand_ecc.h>
1077be58 48#include <asm/byteorder.h>
e6cf5df1 49#else
ccbcd6cb
DW
50#include <stdint.h>
51struct mtd_info;
e6cf5df1 52#define EXPORT_SYMBOL(x) /* x */
53
54#define MODULE_LICENSE(x) /* x */
55#define MODULE_AUTHOR(x) /* x */
56#define MODULE_DESCRIPTION(x) /* x */
1077be58 57
58#define printk printf
59#define KERN_ERR ""
e6cf5df1 60#endif
61
62/*
63 * invparity is a 256 byte table that contains the odd parity
64 * for each byte. So if the number of bits in a byte is even,
65 * the array element is 1, and when the number of bits is odd
66 * the array eleemnt is 0.
67 */
68static const char invparity[256] = {
69 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
70 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
71 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
72 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
73 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
74 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
75 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
76 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
77 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
78 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
79 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
80 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
81 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
82 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
83 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
84 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
85};
1da177e4
LT
86
87/*
e6cf5df1 88 * bitsperbyte contains the number of bits per byte
89 * this is only used for testing and repairing parity
90 * (a precalculated value slightly improves performance)
1da177e4 91 */
e6cf5df1 92static const char bitsperbyte[256] = {
93 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
94 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
95 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
96 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
97 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
98 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
99 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
100 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
101 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
102 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
103 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
104 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
105 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
106 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
107 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
108 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8,
109};
110
111/*
112 * addressbits is a lookup table to filter out the bits from the xor-ed
113 * ecc data that identify the faulty location.
114 * this is only used for repairing parity
115 * see the comments in nand_correct_data for more details
116 */
117static const char addressbits[256] = {
118 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
119 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
120 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
121 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
122 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
123 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
124 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
125 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
126 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
127 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
128 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
129 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
130 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
131 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
132 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
133 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
134 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
135 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
136 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
137 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
138 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
139 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
140 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
141 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
142 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
143 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
144 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
145 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
146 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
147 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
148 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
149 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f
1da177e4
LT
150};
151
1da177e4 152/**
1c63aca3 153 * __nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256/512-byte
d68156cf 154 * block
17c1d2be 155 * @buf: input buffer with raw data
1c63aca3 156 * @eccsize: data bytes per ecc step (256 or 512)
17c1d2be 157 * @code: output buffer with ECC
1da177e4 158 */
1c63aca3 159void __nand_calculate_ecc(const unsigned char *buf, unsigned int eccsize,
e6cf5df1 160 unsigned char *code)
1da177e4 161{
819d6a32 162 int i;
e6cf5df1 163 const uint32_t *bp = (uint32_t *)buf;
d68156cf 164 /* 256 or 512 bytes/ecc */
1c63aca3 165 const uint32_t eccsize_mult = eccsize >> 8;
e6cf5df1 166 uint32_t cur; /* current value in buffer */
d68156cf 167 /* rp0..rp15..rp17 are the various accumulated parities (per byte) */
e6cf5df1 168 uint32_t rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
d68156cf
SV
169 uint32_t rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15, rp16;
170 uint32_t uninitialized_var(rp17); /* to make compiler happy */
e6cf5df1 171 uint32_t par; /* the cumulative parity for all data */
172 uint32_t tmppar; /* the cumulative parity for this iteration;
d68156cf
SV
173 for rp12, rp14 and rp16 at the end of the
174 loop */
e6cf5df1 175
176 par = 0;
177 rp4 = 0;
178 rp6 = 0;
179 rp8 = 0;
180 rp10 = 0;
181 rp12 = 0;
182 rp14 = 0;
d68156cf 183 rp16 = 0;
e6cf5df1 184
185 /*
186 * The loop is unrolled a number of times;
187 * This avoids if statements to decide on which rp value to update
188 * Also we process the data by longwords.
189 * Note: passing unaligned data might give a performance penalty.
190 * It is assumed that the buffers are aligned.
191 * tmppar is the cumulative sum of this iteration.
d68156cf 192 * needed for calculating rp12, rp14, rp16 and par
e6cf5df1 193 * also used as a performance improvement for rp6, rp8 and rp10
194 */
d68156cf 195 for (i = 0; i < eccsize_mult << 2; i++) {
e6cf5df1 196 cur = *bp++;
197 tmppar = cur;
198 rp4 ^= cur;
199 cur = *bp++;
200 tmppar ^= cur;
201 rp6 ^= tmppar;
202 cur = *bp++;
203 tmppar ^= cur;
204 rp4 ^= cur;
205 cur = *bp++;
206 tmppar ^= cur;
207 rp8 ^= tmppar;
61b03bd7 208
e6cf5df1 209 cur = *bp++;
210 tmppar ^= cur;
211 rp4 ^= cur;
212 rp6 ^= cur;
213 cur = *bp++;
214 tmppar ^= cur;
215 rp6 ^= cur;
216 cur = *bp++;
217 tmppar ^= cur;
218 rp4 ^= cur;
219 cur = *bp++;
220 tmppar ^= cur;
221 rp10 ^= tmppar;
61b03bd7 222
e6cf5df1 223 cur = *bp++;
224 tmppar ^= cur;
225 rp4 ^= cur;
226 rp6 ^= cur;
227 rp8 ^= cur;
228 cur = *bp++;
229 tmppar ^= cur;
230 rp6 ^= cur;
231 rp8 ^= cur;
232 cur = *bp++;
233 tmppar ^= cur;
234 rp4 ^= cur;
235 rp8 ^= cur;
236 cur = *bp++;
237 tmppar ^= cur;
238 rp8 ^= cur;
61b03bd7 239
e6cf5df1 240 cur = *bp++;
241 tmppar ^= cur;
242 rp4 ^= cur;
243 rp6 ^= cur;
244 cur = *bp++;
245 tmppar ^= cur;
246 rp6 ^= cur;
247 cur = *bp++;
248 tmppar ^= cur;
249 rp4 ^= cur;
250 cur = *bp++;
251 tmppar ^= cur;
252
253 par ^= tmppar;
254 if ((i & 0x1) == 0)
255 rp12 ^= tmppar;
256 if ((i & 0x2) == 0)
257 rp14 ^= tmppar;
d68156cf
SV
258 if (eccsize_mult == 2 && (i & 0x4) == 0)
259 rp16 ^= tmppar;
1da177e4 260 }
61b03bd7 261
e6cf5df1 262 /*
263 * handle the fact that we use longword operations
d68156cf
SV
264 * we'll bring rp4..rp14..rp16 back to single byte entities by
265 * shifting and xoring first fold the upper and lower 16 bits,
e6cf5df1 266 * then the upper and lower 8 bits.
267 */
268 rp4 ^= (rp4 >> 16);
269 rp4 ^= (rp4 >> 8);
270 rp4 &= 0xff;
271 rp6 ^= (rp6 >> 16);
272 rp6 ^= (rp6 >> 8);
273 rp6 &= 0xff;
274 rp8 ^= (rp8 >> 16);
275 rp8 ^= (rp8 >> 8);
276 rp8 &= 0xff;
277 rp10 ^= (rp10 >> 16);
278 rp10 ^= (rp10 >> 8);
279 rp10 &= 0xff;
280 rp12 ^= (rp12 >> 16);
281 rp12 ^= (rp12 >> 8);
282 rp12 &= 0xff;
283 rp14 ^= (rp14 >> 16);
284 rp14 ^= (rp14 >> 8);
285 rp14 &= 0xff;
d68156cf
SV
286 if (eccsize_mult == 2) {
287 rp16 ^= (rp16 >> 16);
288 rp16 ^= (rp16 >> 8);
289 rp16 &= 0xff;
290 }
e6cf5df1 291
292 /*
293 * we also need to calculate the row parity for rp0..rp3
294 * This is present in par, because par is now
1077be58 295 * rp3 rp3 rp2 rp2 in little endian and
296 * rp2 rp2 rp3 rp3 in big endian
e6cf5df1 297 * as well as
1077be58 298 * rp1 rp0 rp1 rp0 in little endian and
299 * rp0 rp1 rp0 rp1 in big endian
e6cf5df1 300 * First calculate rp2 and rp3
e6cf5df1 301 */
1077be58 302#ifdef __BIG_ENDIAN
303 rp2 = (par >> 16);
304 rp2 ^= (rp2 >> 8);
305 rp2 &= 0xff;
306 rp3 = par & 0xffff;
307 rp3 ^= (rp3 >> 8);
308 rp3 &= 0xff;
309#else
e6cf5df1 310 rp3 = (par >> 16);
311 rp3 ^= (rp3 >> 8);
312 rp3 &= 0xff;
313 rp2 = par & 0xffff;
314 rp2 ^= (rp2 >> 8);
315 rp2 &= 0xff;
1077be58 316#endif
e6cf5df1 317
318 /* reduce par to 16 bits then calculate rp1 and rp0 */
319 par ^= (par >> 16);
1077be58 320#ifdef __BIG_ENDIAN
321 rp0 = (par >> 8) & 0xff;
322 rp1 = (par & 0xff);
323#else
e6cf5df1 324 rp1 = (par >> 8) & 0xff;
325 rp0 = (par & 0xff);
1077be58 326#endif
e6cf5df1 327
328 /* finally reduce par to 8 bits */
329 par ^= (par >> 8);
330 par &= 0xff;
331
332 /*
d68156cf 333 * and calculate rp5..rp15..rp17
e6cf5df1 334 * note that par = rp4 ^ rp5 and due to the commutative property
335 * of the ^ operator we can say:
336 * rp5 = (par ^ rp4);
337 * The & 0xff seems superfluous, but benchmarking learned that
338 * leaving it out gives slightly worse results. No idea why, probably
339 * it has to do with the way the pipeline in pentium is organized.
340 */
341 rp5 = (par ^ rp4) & 0xff;
342 rp7 = (par ^ rp6) & 0xff;
343 rp9 = (par ^ rp8) & 0xff;
344 rp11 = (par ^ rp10) & 0xff;
345 rp13 = (par ^ rp12) & 0xff;
346 rp15 = (par ^ rp14) & 0xff;
d68156cf
SV
347 if (eccsize_mult == 2)
348 rp17 = (par ^ rp16) & 0xff;
e6cf5df1 349
350 /*
351 * Finally calculate the ecc bits.
352 * Again here it might seem that there are performance optimisations
353 * possible, but benchmarks showed that on the system this is developed
354 * the code below is the fastest
355 */
fc029194 356#ifdef CONFIG_MTD_NAND_ECC_SMC
e6cf5df1 357 code[0] =
358 (invparity[rp7] << 7) |
359 (invparity[rp6] << 6) |
360 (invparity[rp5] << 5) |
361 (invparity[rp4] << 4) |
362 (invparity[rp3] << 3) |
363 (invparity[rp2] << 2) |
364 (invparity[rp1] << 1) |
365 (invparity[rp0]);
366 code[1] =
367 (invparity[rp15] << 7) |
368 (invparity[rp14] << 6) |
369 (invparity[rp13] << 5) |
370 (invparity[rp12] << 4) |
371 (invparity[rp11] << 3) |
372 (invparity[rp10] << 2) |
373 (invparity[rp9] << 1) |
374 (invparity[rp8]);
819d6a32 375#else
e6cf5df1 376 code[1] =
377 (invparity[rp7] << 7) |
378 (invparity[rp6] << 6) |
379 (invparity[rp5] << 5) |
380 (invparity[rp4] << 4) |
381 (invparity[rp3] << 3) |
382 (invparity[rp2] << 2) |
383 (invparity[rp1] << 1) |
384 (invparity[rp0]);
385 code[0] =
386 (invparity[rp15] << 7) |
387 (invparity[rp14] << 6) |
388 (invparity[rp13] << 5) |
389 (invparity[rp12] << 4) |
390 (invparity[rp11] << 3) |
391 (invparity[rp10] << 2) |
392 (invparity[rp9] << 1) |
393 (invparity[rp8]);
819d6a32 394#endif
d68156cf
SV
395 if (eccsize_mult == 1)
396 code[2] =
397 (invparity[par & 0xf0] << 7) |
398 (invparity[par & 0x0f] << 6) |
399 (invparity[par & 0xcc] << 5) |
400 (invparity[par & 0x33] << 4) |
401 (invparity[par & 0xaa] << 3) |
402 (invparity[par & 0x55] << 2) |
403 3;
404 else
405 code[2] =
406 (invparity[par & 0xf0] << 7) |
407 (invparity[par & 0x0f] << 6) |
408 (invparity[par & 0xcc] << 5) |
409 (invparity[par & 0x33] << 4) |
410 (invparity[par & 0xaa] << 3) |
411 (invparity[par & 0x55] << 2) |
412 (invparity[rp17] << 1) |
413 (invparity[rp16] << 0);
1c63aca3
AM
414}
415EXPORT_SYMBOL(__nand_calculate_ecc);
416
417/**
418 * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256/512-byte
419 * block
420 * @mtd: MTD block structure
421 * @buf: input buffer with raw data
422 * @code: output buffer with ECC
423 */
424int nand_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf,
425 unsigned char *code)
426{
427 __nand_calculate_ecc(buf,
428 ((struct nand_chip *)mtd->priv)->ecc.size, code);
429
1da177e4
LT
430 return 0;
431}
819d6a32
TG
432EXPORT_SYMBOL(nand_calculate_ecc);
433
1da177e4 434/**
be2f092b 435 * __nand_correct_data - [NAND Interface] Detect and correct bit error(s)
17c1d2be 436 * @buf: raw data read from the chip
1da177e4
LT
437 * @read_ecc: ECC from the chip
438 * @calc_ecc: the ECC calculated from raw data
be2f092b 439 * @eccsize: data bytes per ecc step (256 or 512)
1da177e4 440 *
be2f092b 441 * Detect and correct a 1 bit error for eccsize byte block
1da177e4 442 */
be2f092b
AN
443int __nand_correct_data(unsigned char *buf,
444 unsigned char *read_ecc, unsigned char *calc_ecc,
445 unsigned int eccsize)
1da177e4 446{
260dc003
VS
447 unsigned char b0, b1, b2, bit_addr;
448 unsigned int byte_addr;
d68156cf 449 /* 256 or 512 bytes/ecc */
be2f092b 450 const uint32_t eccsize_mult = eccsize >> 8;
819d6a32 451
e6cf5df1 452 /*
453 * b0 to b2 indicate which bit is faulty (if any)
454 * we might need the xor result more than once,
455 * so keep them in a local var
456 */
fc029194 457#ifdef CONFIG_MTD_NAND_ECC_SMC
e6cf5df1 458 b0 = read_ecc[0] ^ calc_ecc[0];
459 b1 = read_ecc[1] ^ calc_ecc[1];
819d6a32 460#else
e6cf5df1 461 b0 = read_ecc[1] ^ calc_ecc[1];
462 b1 = read_ecc[0] ^ calc_ecc[0];
819d6a32 463#endif
e6cf5df1 464 b2 = read_ecc[2] ^ calc_ecc[2];
819d6a32 465
e6cf5df1 466 /* check if there are any bitfaults */
819d6a32 467
e6cf5df1 468 /* repeated if statements are slightly more efficient than switch ... */
469 /* ordered in order of likelihood */
1077be58 470
471 if ((b0 | b1 | b2) == 0)
ccbcd6cb 472 return 0; /* no error */
1077be58 473
474 if ((((b0 ^ (b0 >> 1)) & 0x55) == 0x55) &&
475 (((b1 ^ (b1 >> 1)) & 0x55) == 0x55) &&
d68156cf
SV
476 ((eccsize_mult == 1 && ((b2 ^ (b2 >> 1)) & 0x54) == 0x54) ||
477 (eccsize_mult == 2 && ((b2 ^ (b2 >> 1)) & 0x55) == 0x55))) {
478 /* single bit error */
e6cf5df1 479 /*
d68156cf
SV
480 * rp17/rp15/13/11/9/7/5/3/1 indicate which byte is the faulty
481 * byte, cp 5/3/1 indicate the faulty bit.
e6cf5df1 482 * A lookup table (called addressbits) is used to filter
483 * the bits from the byte they are in.
484 * A marginal optimisation is possible by having three
485 * different lookup tables.
486 * One as we have now (for b0), one for b2
487 * (that would avoid the >> 1), and one for b1 (with all values
488 * << 4). However it was felt that introducing two more tables
489 * hardly justify the gain.
490 *
491 * The b2 shift is there to get rid of the lowest two bits.
492 * We could also do addressbits[b2] >> 1 but for the
af901ca1 493 * performance it does not make any difference
e6cf5df1 494 */
d68156cf
SV
495 if (eccsize_mult == 1)
496 byte_addr = (addressbits[b1] << 4) + addressbits[b0];
497 else
498 byte_addr = (addressbits[b2 & 0x3] << 8) +
499 (addressbits[b1] << 4) + addressbits[b0];
e6cf5df1 500 bit_addr = addressbits[b2 >> 2];
501 /* flip the bit */
502 buf[byte_addr] ^= (1 << bit_addr);
ccbcd6cb 503 return 1;
1077be58 504
1da177e4 505 }
1077be58 506 /* count nr of bits; use table lookup, faster than calculating it */
507 if ((bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2]) == 1)
ccbcd6cb 508 return 1; /* error in ecc data; no action needed */
1077be58 509
510 printk(KERN_ERR "uncorrectable error : ");
e6cf5df1 511 return -1;
1da177e4 512}
be2f092b
AN
513EXPORT_SYMBOL(__nand_correct_data);
514
515/**
516 * nand_correct_data - [NAND Interface] Detect and correct bit error(s)
517 * @mtd: MTD block structure
518 * @buf: raw data read from the chip
519 * @read_ecc: ECC from the chip
520 * @calc_ecc: the ECC calculated from raw data
521 *
522 * Detect and correct a 1 bit error for 256/512 byte block
523 */
524int nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
525 unsigned char *read_ecc, unsigned char *calc_ecc)
526{
527 return __nand_correct_data(buf, read_ecc, calc_ecc,
528 ((struct nand_chip *)mtd->priv)->ecc.size);
529}
1da177e4
LT
530EXPORT_SYMBOL(nand_correct_data);
531
532MODULE_LICENSE("GPL");
e6cf5df1 533MODULE_AUTHOR("Frans Meulenbroeks <fransmeulenbroeks@gmail.com>");
1da177e4 534MODULE_DESCRIPTION("Generic NAND ECC support");
This page took 0.50261 seconds and 5 git commands to generate.