Merge branch 'omap-for-v4.8/legacy' into for-next
[deliverable/linux.git] / drivers / mtd / nand / omap2.c
CommitLineData
67ce04bf
VS
1/*
2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11#include <linux/platform_device.h>
763e7359 12#include <linux/dmaengine.h>
67ce04bf
VS
13#include <linux/dma-mapping.h>
14#include <linux/delay.h>
10f22ee3 15#include <linux/gpio/consumer.h>
a0e5cc58 16#include <linux/module.h>
4e070376 17#include <linux/interrupt.h>
c276aca4 18#include <linux/jiffies.h>
19#include <linux/sched.h>
67ce04bf
VS
20#include <linux/mtd/mtd.h>
21#include <linux/mtd/nand.h>
22#include <linux/mtd/partitions.h>
763e7359 23#include <linux/omap-dma.h>
67ce04bf 24#include <linux/io.h>
5a0e3ad6 25#include <linux/slab.h>
62116e51
PA
26#include <linux/of.h>
27#include <linux/of_device.h>
67ce04bf 28
32d42a85 29#include <linux/mtd/nand_bch.h>
62116e51 30#include <linux/platform_data/elm.h>
0e618ef0 31
c509aefd 32#include <linux/omap-gpmc.h>
2203747c 33#include <linux/platform_data/mtd-nand-omap2.h>
67ce04bf 34
67ce04bf 35#define DRIVER_NAME "omap2-nand"
4e070376 36#define OMAP_NAND_TIMEOUT_MS 5000
67ce04bf 37
67ce04bf
VS
38#define NAND_Ecc_P1e (1 << 0)
39#define NAND_Ecc_P2e (1 << 1)
40#define NAND_Ecc_P4e (1 << 2)
41#define NAND_Ecc_P8e (1 << 3)
42#define NAND_Ecc_P16e (1 << 4)
43#define NAND_Ecc_P32e (1 << 5)
44#define NAND_Ecc_P64e (1 << 6)
45#define NAND_Ecc_P128e (1 << 7)
46#define NAND_Ecc_P256e (1 << 8)
47#define NAND_Ecc_P512e (1 << 9)
48#define NAND_Ecc_P1024e (1 << 10)
49#define NAND_Ecc_P2048e (1 << 11)
50
51#define NAND_Ecc_P1o (1 << 16)
52#define NAND_Ecc_P2o (1 << 17)
53#define NAND_Ecc_P4o (1 << 18)
54#define NAND_Ecc_P8o (1 << 19)
55#define NAND_Ecc_P16o (1 << 20)
56#define NAND_Ecc_P32o (1 << 21)
57#define NAND_Ecc_P64o (1 << 22)
58#define NAND_Ecc_P128o (1 << 23)
59#define NAND_Ecc_P256o (1 << 24)
60#define NAND_Ecc_P512o (1 << 25)
61#define NAND_Ecc_P1024o (1 << 26)
62#define NAND_Ecc_P2048o (1 << 27)
63
64#define TF(value) (value ? 1 : 0)
65
66#define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
67#define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
68#define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
69#define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
70#define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
71#define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
72#define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
73#define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
74
75#define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
76#define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
77#define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
78#define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
79#define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
80#define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
81#define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
82#define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
83
84#define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
85#define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
86#define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
87#define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
88#define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
89#define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
90#define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
91#define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
92
93#define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
94#define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
95#define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
96#define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
97#define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
98#define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
99#define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
100#define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
101
102#define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
103#define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
104
65b97cf6
AM
105#define PREFETCH_CONFIG1_CS_SHIFT 24
106#define ECC_CONFIG_CS_SHIFT 1
107#define CS_MASK 0x7
108#define ENABLE_PREFETCH (0x1 << 7)
109#define DMA_MPU_MODE_SHIFT 2
2ef9f3dd 110#define ECCSIZE0_SHIFT 12
65b97cf6
AM
111#define ECCSIZE1_SHIFT 22
112#define ECC1RESULTSIZE 0x1
113#define ECCCLEAR 0x100
114#define ECC1 0x1
47f88af4
AM
115#define PREFETCH_FIFOTHRESHOLD_MAX 0x40
116#define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
117#define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
118#define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
119#define STATUS_BUFF_EMPTY 0x00000001
65b97cf6 120
62116e51
PA
121#define SECTOR_BYTES 512
122/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
123#define BCH4_BIT_PAD 4
62116e51
PA
124
125/* GPMC ecc engine settings for read */
126#define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
127#define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
128#define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
129#define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
130#define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
131
132/* GPMC ecc engine settings for write */
133#define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
134#define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
135#define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
136
b491da72 137#define BADBLOCK_MARKER_LENGTH 2
a919e511 138
9748fff9 139static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
140 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
141 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
142 0x07, 0x0e};
62116e51
PA
143static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
144 0xac, 0x6b, 0xff, 0x99, 0x7b};
145static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
62116e51 146
1dc338e8
RL
147/* Shared among all NAND instances to synchronize access to the ECC Engine */
148static struct nand_hw_control omap_gpmc_controller = {
149 .lock = __SPIN_LOCK_UNLOCKED(omap_gpmc_controller.lock),
150 .wq = __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller.wq),
151};
59e9c5ae 152
67ce04bf 153struct omap_nand_info {
67ce04bf
VS
154 struct nand_chip nand;
155 struct platform_device *pdev;
156
157 int gpmc_cs;
01b95fc6
RQ
158 bool dev_ready;
159 enum nand_io xfer_type;
160 int devsize;
4e558072 161 enum omap_ecc ecc_opt;
01b95fc6
RQ
162 struct device_node *elm_of_node;
163
164 unsigned long phys_base;
dfe32893 165 struct completion comp;
763e7359 166 struct dma_chan *dma;
5c468455
AM
167 int gpmc_irq_fifo;
168 int gpmc_irq_count;
4e070376
SG
169 enum {
170 OMAP_NAND_IO_READ = 0, /* read */
171 OMAP_NAND_IO_WRITE, /* write */
172 } iomode;
173 u_char *buf;
174 int buf_len;
c509aefd 175 /* Interface to GPMC */
65b97cf6 176 struct gpmc_nand_regs reg;
c509aefd 177 struct gpmc_nand_ops *ops;
c9711ec5 178 bool flash_bbt;
a919e511 179 /* fields specific for BCHx_HW ECC scheme */
62116e51 180 struct device *elm_dev;
10f22ee3
RQ
181 /* NAND ready gpio */
182 struct gpio_desc *ready_gpiod;
67ce04bf
VS
183};
184
4578ea9a
BB
185static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
186{
432420c0 187 return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
4578ea9a 188}
432420c0 189
65b97cf6
AM
190/**
191 * omap_prefetch_enable - configures and starts prefetch transfer
192 * @cs: cs (chip select) number
193 * @fifo_th: fifo threshold to be used for read/ write
194 * @dma_mode: dma mode enable (1) or disable (0)
195 * @u32_count: number of bytes to be transferred
196 * @is_write: prefetch read(0) or write post(1) mode
197 */
198static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
199 unsigned int u32_count, int is_write, struct omap_nand_info *info)
200{
201 u32 val;
202
203 if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
204 return -1;
205
206 if (readl(info->reg.gpmc_prefetch_control))
207 return -EBUSY;
208
209 /* Set the amount of bytes to be prefetched */
210 writel(u32_count, info->reg.gpmc_prefetch_config2);
211
212 /* Set dma/mpu mode, the prefetch read / post write and
213 * enable the engine. Set which cs is has requested for.
214 */
215 val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
216 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
57a605b1 217 (dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1));
65b97cf6
AM
218 writel(val, info->reg.gpmc_prefetch_config1);
219
220 /* Start the prefetch engine */
221 writel(0x1, info->reg.gpmc_prefetch_control);
222
223 return 0;
224}
225
226/**
227 * omap_prefetch_reset - disables and stops the prefetch engine
228 */
229static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
230{
231 u32 config1;
232
233 /* check if the same module/cs is trying to reset */
234 config1 = readl(info->reg.gpmc_prefetch_config1);
235 if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
236 return -EINVAL;
237
238 /* Stop the PFPW engine */
239 writel(0x0, info->reg.gpmc_prefetch_control);
240
241 /* Reset/disable the PFPW engine */
242 writel(0x0, info->reg.gpmc_prefetch_config1);
243
244 return 0;
245}
246
67ce04bf
VS
247/**
248 * omap_hwcontrol - hardware specific access to control-lines
249 * @mtd: MTD device structure
250 * @cmd: command to device
251 * @ctrl:
252 * NAND_NCE: bit 0 -> don't care
253 * NAND_CLE: bit 1 -> Command Latch
254 * NAND_ALE: bit 2 -> Address Latch
255 *
256 * NOTE: boards may use different bits for these!!
257 */
258static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
259{
4578ea9a 260 struct omap_nand_info *info = mtd_to_omap(mtd);
67ce04bf 261
2c01946c
SG
262 if (cmd != NAND_CMD_NONE) {
263 if (ctrl & NAND_CLE)
65b97cf6 264 writeb(cmd, info->reg.gpmc_nand_command);
2c01946c
SG
265
266 else if (ctrl & NAND_ALE)
65b97cf6 267 writeb(cmd, info->reg.gpmc_nand_address);
2c01946c
SG
268
269 else /* NAND_NCE */
65b97cf6 270 writeb(cmd, info->reg.gpmc_nand_data);
2c01946c 271 }
67ce04bf
VS
272}
273
59e9c5ae 274/**
275 * omap_read_buf8 - read data from NAND controller into buffer
276 * @mtd: MTD device structure
277 * @buf: buffer to store date
278 * @len: number of bytes to read
279 */
280static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
281{
4bd4ebcc 282 struct nand_chip *nand = mtd_to_nand(mtd);
59e9c5ae 283
284 ioread8_rep(nand->IO_ADDR_R, buf, len);
285}
286
287/**
288 * omap_write_buf8 - write buffer to NAND controller
289 * @mtd: MTD device structure
290 * @buf: data buffer
291 * @len: number of bytes to write
292 */
293static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
294{
4578ea9a 295 struct omap_nand_info *info = mtd_to_omap(mtd);
59e9c5ae 296 u_char *p = (u_char *)buf;
d6e55216 297 bool status;
59e9c5ae 298
299 while (len--) {
300 iowrite8(*p++, info->nand.IO_ADDR_W);
2c01946c
SG
301 /* wait until buffer is available for write */
302 do {
d6e55216 303 status = info->ops->nand_writebuffer_empty();
2c01946c 304 } while (!status);
59e9c5ae 305 }
306}
307
67ce04bf
VS
308/**
309 * omap_read_buf16 - read data from NAND controller into buffer
310 * @mtd: MTD device structure
311 * @buf: buffer to store date
312 * @len: number of bytes to read
313 */
314static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
315{
4bd4ebcc 316 struct nand_chip *nand = mtd_to_nand(mtd);
67ce04bf 317
59e9c5ae 318 ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
67ce04bf
VS
319}
320
321/**
322 * omap_write_buf16 - write buffer to NAND controller
323 * @mtd: MTD device structure
324 * @buf: data buffer
325 * @len: number of bytes to write
326 */
327static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
328{
4578ea9a 329 struct omap_nand_info *info = mtd_to_omap(mtd);
67ce04bf 330 u16 *p = (u16 *) buf;
d6e55216 331 bool status;
67ce04bf
VS
332 /* FIXME try bursts of writesw() or DMA ... */
333 len >>= 1;
334
335 while (len--) {
59e9c5ae 336 iowrite16(*p++, info->nand.IO_ADDR_W);
2c01946c
SG
337 /* wait until buffer is available for write */
338 do {
d6e55216 339 status = info->ops->nand_writebuffer_empty();
2c01946c 340 } while (!status);
67ce04bf
VS
341 }
342}
59e9c5ae 343
344/**
345 * omap_read_buf_pref - read data from NAND controller into buffer
346 * @mtd: MTD device structure
347 * @buf: buffer to store date
348 * @len: number of bytes to read
349 */
350static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
351{
4578ea9a 352 struct omap_nand_info *info = mtd_to_omap(mtd);
2c01946c 353 uint32_t r_count = 0;
59e9c5ae 354 int ret = 0;
355 u32 *p = (u32 *)buf;
356
357 /* take care of subpage reads */
c3341d0c
VS
358 if (len % 4) {
359 if (info->nand.options & NAND_BUSWIDTH_16)
360 omap_read_buf16(mtd, buf, len % 4);
361 else
362 omap_read_buf8(mtd, buf, len % 4);
363 p = (u32 *) (buf + len % 4);
364 len -= len % 4;
59e9c5ae 365 }
59e9c5ae 366
367 /* configure and start prefetch transfer */
65b97cf6
AM
368 ret = omap_prefetch_enable(info->gpmc_cs,
369 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
59e9c5ae 370 if (ret) {
371 /* PFPW engine is busy, use cpu copy method */
372 if (info->nand.options & NAND_BUSWIDTH_16)
c5d8c0ca 373 omap_read_buf16(mtd, (u_char *)p, len);
59e9c5ae 374 else
c5d8c0ca 375 omap_read_buf8(mtd, (u_char *)p, len);
59e9c5ae 376 } else {
377 do {
65b97cf6 378 r_count = readl(info->reg.gpmc_prefetch_status);
47f88af4 379 r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
2c01946c
SG
380 r_count = r_count >> 2;
381 ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
59e9c5ae 382 p += r_count;
383 len -= r_count << 2;
384 } while (len);
59e9c5ae 385 /* disable and stop the PFPW engine */
65b97cf6 386 omap_prefetch_reset(info->gpmc_cs, info);
59e9c5ae 387 }
388}
389
390/**
391 * omap_write_buf_pref - write buffer to NAND controller
392 * @mtd: MTD device structure
393 * @buf: data buffer
394 * @len: number of bytes to write
395 */
396static void omap_write_buf_pref(struct mtd_info *mtd,
397 const u_char *buf, int len)
398{
4578ea9a 399 struct omap_nand_info *info = mtd_to_omap(mtd);
4e070376 400 uint32_t w_count = 0;
59e9c5ae 401 int i = 0, ret = 0;
c5d8c0ca 402 u16 *p = (u16 *)buf;
4e070376 403 unsigned long tim, limit;
65b97cf6 404 u32 val;
59e9c5ae 405
406 /* take care of subpage writes */
407 if (len % 2 != 0) {
2c01946c 408 writeb(*buf, info->nand.IO_ADDR_W);
59e9c5ae 409 p = (u16 *)(buf + 1);
410 len--;
411 }
412
413 /* configure and start prefetch transfer */
65b97cf6
AM
414 ret = omap_prefetch_enable(info->gpmc_cs,
415 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
59e9c5ae 416 if (ret) {
417 /* PFPW engine is busy, use cpu copy method */
418 if (info->nand.options & NAND_BUSWIDTH_16)
c5d8c0ca 419 omap_write_buf16(mtd, (u_char *)p, len);
59e9c5ae 420 else
c5d8c0ca 421 omap_write_buf8(mtd, (u_char *)p, len);
59e9c5ae 422 } else {
2c01946c 423 while (len) {
65b97cf6 424 w_count = readl(info->reg.gpmc_prefetch_status);
47f88af4 425 w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
2c01946c 426 w_count = w_count >> 1;
59e9c5ae 427 for (i = 0; (i < w_count) && len; i++, len -= 2)
2c01946c 428 iowrite16(*p++, info->nand.IO_ADDR_W);
59e9c5ae 429 }
2c01946c 430 /* wait for data to flushed-out before reset the prefetch */
4e070376
SG
431 tim = 0;
432 limit = (loops_per_jiffy *
433 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
65b97cf6 434 do {
4e070376 435 cpu_relax();
65b97cf6 436 val = readl(info->reg.gpmc_prefetch_status);
47f88af4 437 val = PREFETCH_STATUS_COUNT(val);
65b97cf6 438 } while (val && (tim++ < limit));
4e070376 439
59e9c5ae 440 /* disable and stop the PFPW engine */
65b97cf6 441 omap_prefetch_reset(info->gpmc_cs, info);
59e9c5ae 442 }
443}
444
dfe32893 445/*
2df41d05 446 * omap_nand_dma_callback: callback on the completion of dma transfer
dfe32893 447 * @data: pointer to completion data structure
448 */
763e7359
RK
449static void omap_nand_dma_callback(void *data)
450{
451 complete((struct completion *) data);
452}
dfe32893 453
454/*
4cacbe22 455 * omap_nand_dma_transfer: configure and start dma transfer
dfe32893 456 * @mtd: MTD device structure
457 * @addr: virtual address in RAM of source/destination
458 * @len: number of data bytes to be transferred
459 * @is_write: flag for read/write operation
460 */
461static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
462 unsigned int len, int is_write)
463{
4578ea9a 464 struct omap_nand_info *info = mtd_to_omap(mtd);
2df41d05 465 struct dma_async_tx_descriptor *tx;
dfe32893 466 enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
467 DMA_FROM_DEVICE;
2df41d05 468 struct scatterlist sg;
4e070376 469 unsigned long tim, limit;
2df41d05
RK
470 unsigned n;
471 int ret;
65b97cf6 472 u32 val;
dfe32893 473
8c6f0fc4
CJF
474 if (!virt_addr_valid(addr))
475 goto out_copy;
dfe32893 476
2df41d05
RK
477 sg_init_one(&sg, addr, len);
478 n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
479 if (n == 0) {
dfe32893 480 dev_err(&info->pdev->dev,
481 "Couldn't DMA map a %d byte buffer\n", len);
482 goto out_copy;
483 }
484
2df41d05
RK
485 tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
486 is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
487 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
488 if (!tx)
489 goto out_copy_unmap;
490
491 tx->callback = omap_nand_dma_callback;
492 tx->callback_param = &info->comp;
493 dmaengine_submit(tx);
494
03d3a1df
CJF
495 init_completion(&info->comp);
496
497 /* setup and start DMA using dma_addr */
498 dma_async_issue_pending(info->dma);
499
65b97cf6
AM
500 /* configure and start prefetch transfer */
501 ret = omap_prefetch_enable(info->gpmc_cs,
502 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
dfe32893 503 if (ret)
4e070376 504 /* PFPW engine is busy, use cpu copy method */
d7efe228 505 goto out_copy_unmap;
dfe32893 506
dfe32893 507 wait_for_completion(&info->comp);
4e070376
SG
508 tim = 0;
509 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
65b97cf6
AM
510
511 do {
4e070376 512 cpu_relax();
65b97cf6 513 val = readl(info->reg.gpmc_prefetch_status);
47f88af4 514 val = PREFETCH_STATUS_COUNT(val);
65b97cf6 515 } while (val && (tim++ < limit));
dfe32893 516
dfe32893 517 /* disable and stop the PFPW engine */
65b97cf6 518 omap_prefetch_reset(info->gpmc_cs, info);
dfe32893 519
2df41d05 520 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
dfe32893 521 return 0;
522
d7efe228 523out_copy_unmap:
2df41d05 524 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
dfe32893 525out_copy:
526 if (info->nand.options & NAND_BUSWIDTH_16)
527 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
528 : omap_write_buf16(mtd, (u_char *) addr, len);
529 else
530 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
531 : omap_write_buf8(mtd, (u_char *) addr, len);
532 return 0;
533}
dfe32893 534
535/**
536 * omap_read_buf_dma_pref - read data from NAND controller into buffer
537 * @mtd: MTD device structure
538 * @buf: buffer to store date
539 * @len: number of bytes to read
540 */
541static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
542{
543 if (len <= mtd->oobsize)
544 omap_read_buf_pref(mtd, buf, len);
545 else
546 /* start transfer in DMA mode */
547 omap_nand_dma_transfer(mtd, buf, len, 0x0);
548}
549
550/**
551 * omap_write_buf_dma_pref - write buffer to NAND controller
552 * @mtd: MTD device structure
553 * @buf: data buffer
554 * @len: number of bytes to write
555 */
556static void omap_write_buf_dma_pref(struct mtd_info *mtd,
557 const u_char *buf, int len)
558{
559 if (len <= mtd->oobsize)
560 omap_write_buf_pref(mtd, buf, len);
561 else
562 /* start transfer in DMA mode */
bdaefc41 563 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
dfe32893 564}
565
4e070376 566/*
4cacbe22 567 * omap_nand_irq - GPMC irq handler
4e070376
SG
568 * @this_irq: gpmc irq number
569 * @dev: omap_nand_info structure pointer is passed here
570 */
571static irqreturn_t omap_nand_irq(int this_irq, void *dev)
572{
573 struct omap_nand_info *info = (struct omap_nand_info *) dev;
574 u32 bytes;
4e070376 575
65b97cf6 576 bytes = readl(info->reg.gpmc_prefetch_status);
47f88af4 577 bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
4e070376
SG
578 bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */
579 if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
5c468455 580 if (this_irq == info->gpmc_irq_count)
4e070376
SG
581 goto done;
582
583 if (info->buf_len && (info->buf_len < bytes))
584 bytes = info->buf_len;
585 else if (!info->buf_len)
586 bytes = 0;
587 iowrite32_rep(info->nand.IO_ADDR_W,
588 (u32 *)info->buf, bytes >> 2);
589 info->buf = info->buf + bytes;
590 info->buf_len -= bytes;
591
592 } else {
593 ioread32_rep(info->nand.IO_ADDR_R,
594 (u32 *)info->buf, bytes >> 2);
595 info->buf = info->buf + bytes;
596
5c468455 597 if (this_irq == info->gpmc_irq_count)
4e070376
SG
598 goto done;
599 }
4e070376
SG
600
601 return IRQ_HANDLED;
602
603done:
604 complete(&info->comp);
4e070376 605
5c468455
AM
606 disable_irq_nosync(info->gpmc_irq_fifo);
607 disable_irq_nosync(info->gpmc_irq_count);
4e070376
SG
608
609 return IRQ_HANDLED;
610}
611
612/*
613 * omap_read_buf_irq_pref - read data from NAND controller into buffer
614 * @mtd: MTD device structure
615 * @buf: buffer to store date
616 * @len: number of bytes to read
617 */
618static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
619{
4578ea9a 620 struct omap_nand_info *info = mtd_to_omap(mtd);
4e070376
SG
621 int ret = 0;
622
623 if (len <= mtd->oobsize) {
624 omap_read_buf_pref(mtd, buf, len);
625 return;
626 }
627
628 info->iomode = OMAP_NAND_IO_READ;
629 info->buf = buf;
630 init_completion(&info->comp);
631
632 /* configure and start prefetch transfer */
65b97cf6
AM
633 ret = omap_prefetch_enable(info->gpmc_cs,
634 PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
4e070376
SG
635 if (ret)
636 /* PFPW engine is busy, use cpu copy method */
637 goto out_copy;
638
639 info->buf_len = len;
5c468455
AM
640
641 enable_irq(info->gpmc_irq_count);
642 enable_irq(info->gpmc_irq_fifo);
4e070376
SG
643
644 /* waiting for read to complete */
645 wait_for_completion(&info->comp);
646
647 /* disable and stop the PFPW engine */
65b97cf6 648 omap_prefetch_reset(info->gpmc_cs, info);
4e070376
SG
649 return;
650
651out_copy:
652 if (info->nand.options & NAND_BUSWIDTH_16)
653 omap_read_buf16(mtd, buf, len);
654 else
655 omap_read_buf8(mtd, buf, len);
656}
657
658/*
659 * omap_write_buf_irq_pref - write buffer to NAND controller
660 * @mtd: MTD device structure
661 * @buf: data buffer
662 * @len: number of bytes to write
663 */
664static void omap_write_buf_irq_pref(struct mtd_info *mtd,
665 const u_char *buf, int len)
666{
4578ea9a 667 struct omap_nand_info *info = mtd_to_omap(mtd);
4e070376
SG
668 int ret = 0;
669 unsigned long tim, limit;
65b97cf6 670 u32 val;
4e070376
SG
671
672 if (len <= mtd->oobsize) {
673 omap_write_buf_pref(mtd, buf, len);
674 return;
675 }
676
677 info->iomode = OMAP_NAND_IO_WRITE;
678 info->buf = (u_char *) buf;
679 init_completion(&info->comp);
680
317379a9 681 /* configure and start prefetch transfer : size=24 */
65b97cf6
AM
682 ret = omap_prefetch_enable(info->gpmc_cs,
683 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
4e070376
SG
684 if (ret)
685 /* PFPW engine is busy, use cpu copy method */
686 goto out_copy;
687
688 info->buf_len = len;
5c468455
AM
689
690 enable_irq(info->gpmc_irq_count);
691 enable_irq(info->gpmc_irq_fifo);
4e070376
SG
692
693 /* waiting for write to complete */
694 wait_for_completion(&info->comp);
5c468455 695
4e070376
SG
696 /* wait for data to flushed-out before reset the prefetch */
697 tim = 0;
698 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
65b97cf6
AM
699 do {
700 val = readl(info->reg.gpmc_prefetch_status);
47f88af4 701 val = PREFETCH_STATUS_COUNT(val);
4e070376 702 cpu_relax();
65b97cf6 703 } while (val && (tim++ < limit));
4e070376
SG
704
705 /* disable and stop the PFPW engine */
65b97cf6 706 omap_prefetch_reset(info->gpmc_cs, info);
4e070376
SG
707 return;
708
709out_copy:
710 if (info->nand.options & NAND_BUSWIDTH_16)
711 omap_write_buf16(mtd, buf, len);
712 else
713 omap_write_buf8(mtd, buf, len);
714}
715
67ce04bf
VS
716/**
717 * gen_true_ecc - This function will generate true ECC value
718 * @ecc_buf: buffer to store ecc code
719 *
720 * This generated true ECC value can be used when correcting
721 * data read from NAND flash memory core
722 */
723static void gen_true_ecc(u8 *ecc_buf)
724{
725 u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
726 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
727
728 ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
729 P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
730 ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
731 P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
732 ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
733 P1e(tmp) | P2048o(tmp) | P2048e(tmp));
734}
735
736/**
737 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
738 * @ecc_data1: ecc code from nand spare area
739 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
740 * @page_data: page data
741 *
742 * This function compares two ECC's and indicates if there is an error.
743 * If the error can be corrected it will be corrected to the buffer.
74f1b724
JO
744 * If there is no error, %0 is returned. If there is an error but it
745 * was corrected, %1 is returned. Otherwise, %-1 is returned.
67ce04bf
VS
746 */
747static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
748 u8 *ecc_data2, /* read from register */
749 u8 *page_data)
750{
751 uint i;
752 u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
753 u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
754 u8 ecc_bit[24];
755 u8 ecc_sum = 0;
756 u8 find_bit = 0;
757 uint find_byte = 0;
758 int isEccFF;
759
760 isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
761
762 gen_true_ecc(ecc_data1);
763 gen_true_ecc(ecc_data2);
764
765 for (i = 0; i <= 2; i++) {
766 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
767 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
768 }
769
770 for (i = 0; i < 8; i++) {
771 tmp0_bit[i] = *ecc_data1 % 2;
772 *ecc_data1 = *ecc_data1 / 2;
773 }
774
775 for (i = 0; i < 8; i++) {
776 tmp1_bit[i] = *(ecc_data1 + 1) % 2;
777 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
778 }
779
780 for (i = 0; i < 8; i++) {
781 tmp2_bit[i] = *(ecc_data1 + 2) % 2;
782 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
783 }
784
785 for (i = 0; i < 8; i++) {
786 comp0_bit[i] = *ecc_data2 % 2;
787 *ecc_data2 = *ecc_data2 / 2;
788 }
789
790 for (i = 0; i < 8; i++) {
791 comp1_bit[i] = *(ecc_data2 + 1) % 2;
792 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
793 }
794
795 for (i = 0; i < 8; i++) {
796 comp2_bit[i] = *(ecc_data2 + 2) % 2;
797 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
798 }
799
800 for (i = 0; i < 6; i++)
801 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
802
803 for (i = 0; i < 8; i++)
804 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
805
806 for (i = 0; i < 8; i++)
807 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
808
809 ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
810 ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
811
812 for (i = 0; i < 24; i++)
813 ecc_sum += ecc_bit[i];
814
815 switch (ecc_sum) {
816 case 0:
817 /* Not reached because this function is not called if
818 * ECC values are equal
819 */
820 return 0;
821
822 case 1:
823 /* Uncorrectable error */
289c0522 824 pr_debug("ECC UNCORRECTED_ERROR 1\n");
6e941192 825 return -EBADMSG;
67ce04bf
VS
826
827 case 11:
828 /* UN-Correctable error */
289c0522 829 pr_debug("ECC UNCORRECTED_ERROR B\n");
6e941192 830 return -EBADMSG;
67ce04bf
VS
831
832 case 12:
833 /* Correctable error */
834 find_byte = (ecc_bit[23] << 8) +
835 (ecc_bit[21] << 7) +
836 (ecc_bit[19] << 6) +
837 (ecc_bit[17] << 5) +
838 (ecc_bit[15] << 4) +
839 (ecc_bit[13] << 3) +
840 (ecc_bit[11] << 2) +
841 (ecc_bit[9] << 1) +
842 ecc_bit[7];
843
844 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
845
0a32a102
BN
846 pr_debug("Correcting single bit ECC error at offset: "
847 "%d, bit: %d\n", find_byte, find_bit);
67ce04bf
VS
848
849 page_data[find_byte] ^= (1 << find_bit);
850
74f1b724 851 return 1;
67ce04bf
VS
852 default:
853 if (isEccFF) {
854 if (ecc_data2[0] == 0 &&
855 ecc_data2[1] == 0 &&
856 ecc_data2[2] == 0)
857 return 0;
858 }
289c0522 859 pr_debug("UNCORRECTED_ERROR default\n");
6e941192 860 return -EBADMSG;
67ce04bf
VS
861 }
862}
863
864/**
865 * omap_correct_data - Compares the ECC read with HW generated ECC
866 * @mtd: MTD device structure
867 * @dat: page data
868 * @read_ecc: ecc read from nand flash
869 * @calc_ecc: ecc read from HW ECC registers
870 *
871 * Compares the ecc read from nand spare area with ECC registers values
74f1b724
JO
872 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
873 * detection and correction. If there are no errors, %0 is returned. If
874 * there were errors and all of the errors were corrected, the number of
875 * corrected errors is returned. If uncorrectable errors exist, %-1 is
876 * returned.
67ce04bf
VS
877 */
878static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
879 u_char *read_ecc, u_char *calc_ecc)
880{
4578ea9a 881 struct omap_nand_info *info = mtd_to_omap(mtd);
67ce04bf 882 int blockCnt = 0, i = 0, ret = 0;
74f1b724 883 int stat = 0;
67ce04bf
VS
884
885 /* Ex NAND_ECC_HW12_2048 */
886 if ((info->nand.ecc.mode == NAND_ECC_HW) &&
887 (info->nand.ecc.size == 2048))
888 blockCnt = 4;
889 else
890 blockCnt = 1;
891
892 for (i = 0; i < blockCnt; i++) {
893 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
894 ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
895 if (ret < 0)
896 return ret;
74f1b724
JO
897 /* keep track of the number of corrected errors */
898 stat += ret;
67ce04bf
VS
899 }
900 read_ecc += 3;
901 calc_ecc += 3;
902 dat += 512;
903 }
74f1b724 904 return stat;
67ce04bf
VS
905}
906
907/**
908 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
909 * @mtd: MTD device structure
910 * @dat: The pointer to data on which ecc is computed
911 * @ecc_code: The ecc_code buffer
912 *
913 * Using noninverted ECC can be considered ugly since writing a blank
914 * page ie. padding will clear the ECC bytes. This is no problem as long
915 * nobody is trying to write data on the seemingly unused page. Reading
916 * an erased page will produce an ECC mismatch between generated and read
917 * ECC bytes that has to be dealt with separately.
918 */
919static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
920 u_char *ecc_code)
921{
4578ea9a 922 struct omap_nand_info *info = mtd_to_omap(mtd);
65b97cf6
AM
923 u32 val;
924
925 val = readl(info->reg.gpmc_ecc_config);
40ddbf50 926 if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
65b97cf6
AM
927 return -EINVAL;
928
929 /* read ecc result */
930 val = readl(info->reg.gpmc_ecc1_result);
931 *ecc_code++ = val; /* P128e, ..., P1e */
932 *ecc_code++ = val >> 16; /* P128o, ..., P1o */
933 /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
934 *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
935
936 return 0;
67ce04bf
VS
937}
938
939/**
940 * omap_enable_hwecc - This function enables the hardware ecc functionality
941 * @mtd: MTD device structure
942 * @mode: Read/Write mode
943 */
944static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
945{
4578ea9a 946 struct omap_nand_info *info = mtd_to_omap(mtd);
4bd4ebcc 947 struct nand_chip *chip = mtd_to_nand(mtd);
67ce04bf 948 unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
65b97cf6
AM
949 u32 val;
950
951 /* clear ecc and enable bits */
952 val = ECCCLEAR | ECC1;
953 writel(val, info->reg.gpmc_ecc_control);
67ce04bf 954
65b97cf6
AM
955 /* program ecc and result sizes */
956 val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
957 ECC1RESULTSIZE);
958 writel(val, info->reg.gpmc_ecc_size_config);
959
960 switch (mode) {
961 case NAND_ECC_READ:
962 case NAND_ECC_WRITE:
963 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
964 break;
965 case NAND_ECC_READSYN:
966 writel(ECCCLEAR, info->reg.gpmc_ecc_control);
967 break;
968 default:
969 dev_info(&info->pdev->dev,
970 "error: unrecognized Mode[%d]!\n", mode);
971 break;
972 }
67ce04bf 973
65b97cf6
AM
974 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
975 val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
976 writel(val, info->reg.gpmc_ecc_config);
67ce04bf 977}
2c01946c 978
67ce04bf
VS
979/**
980 * omap_wait - wait until the command is done
981 * @mtd: MTD device structure
982 * @chip: NAND Chip structure
983 *
984 * Wait function is called during Program and erase operations and
985 * the way it is called from MTD layer, we should wait till the NAND
986 * chip is ready after the programming/erase operation has completed.
987 *
988 * Erase can take up to 400ms and program up to 20ms according to
989 * general NAND and SmartMedia specs
990 */
991static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
992{
4bd4ebcc 993 struct nand_chip *this = mtd_to_nand(mtd);
4578ea9a 994 struct omap_nand_info *info = mtd_to_omap(mtd);
67ce04bf 995 unsigned long timeo = jiffies;
a9c465f0 996 int status, state = this->state;
67ce04bf
VS
997
998 if (state == FL_ERASING)
4ff6772b 999 timeo += msecs_to_jiffies(400);
67ce04bf 1000 else
4ff6772b 1001 timeo += msecs_to_jiffies(20);
67ce04bf 1002
65b97cf6 1003 writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
67ce04bf 1004 while (time_before(jiffies, timeo)) {
65b97cf6 1005 status = readb(info->reg.gpmc_nand_data);
c276aca4 1006 if (status & NAND_STATUS_READY)
67ce04bf 1007 break;
c276aca4 1008 cond_resched();
67ce04bf 1009 }
a9c465f0 1010
4ea1e4ba 1011 status = readb(info->reg.gpmc_nand_data);
67ce04bf
VS
1012 return status;
1013}
1014
1015/**
10f22ee3 1016 * omap_dev_ready - checks the NAND Ready GPIO line
67ce04bf 1017 * @mtd: MTD device structure
10f22ee3
RQ
1018 *
1019 * Returns true if ready and false if busy.
67ce04bf
VS
1020 */
1021static int omap_dev_ready(struct mtd_info *mtd)
1022{
4578ea9a 1023 struct omap_nand_info *info = mtd_to_omap(mtd);
67ce04bf 1024
10f22ee3 1025 return gpiod_get_value(info->ready_gpiod);
67ce04bf
VS
1026}
1027
0e618ef0 1028/**
7c977c3e 1029 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
0e618ef0
ID
1030 * @mtd: MTD device structure
1031 * @mode: Read/Write mode
62116e51 1032 *
0760e818
NMG
1033 * When using BCH with SW correction (i.e. no ELM), sector size is set
1034 * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
1035 * for both reading and writing with:
62116e51
PA
1036 * eccsize0 = 0 (no additional protected byte in spare area)
1037 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
0e618ef0 1038 */
7c977c3e 1039static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode)
0e618ef0 1040{
16e69322 1041 unsigned int bch_type;
2ef9f3dd 1042 unsigned int dev_width, nsectors;
4578ea9a 1043 struct omap_nand_info *info = mtd_to_omap(mtd);
c5957a32 1044 enum omap_ecc ecc_opt = info->ecc_opt;
4bd4ebcc 1045 struct nand_chip *chip = mtd_to_nand(mtd);
62116e51
PA
1046 u32 val, wr_mode;
1047 unsigned int ecc_size1, ecc_size0;
1048
c5957a32
PG
1049 /* GPMC configurations for calculating ECC */
1050 switch (ecc_opt) {
1051 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
16e69322
PG
1052 bch_type = 0;
1053 nsectors = 1;
0760e818
NMG
1054 wr_mode = BCH_WRAPMODE_6;
1055 ecc_size0 = BCH_ECC_SIZE0;
1056 ecc_size1 = BCH_ECC_SIZE1;
c5957a32
PG
1057 break;
1058 case OMAP_ECC_BCH4_CODE_HW:
16e69322
PG
1059 bch_type = 0;
1060 nsectors = chip->ecc.steps;
c5957a32
PG
1061 if (mode == NAND_ECC_READ) {
1062 wr_mode = BCH_WRAPMODE_1;
1063 ecc_size0 = BCH4R_ECC_SIZE0;
1064 ecc_size1 = BCH4R_ECC_SIZE1;
1065 } else {
1066 wr_mode = BCH_WRAPMODE_6;
1067 ecc_size0 = BCH_ECC_SIZE0;
1068 ecc_size1 = BCH_ECC_SIZE1;
1069 }
1070 break;
1071 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
16e69322
PG
1072 bch_type = 1;
1073 nsectors = 1;
0760e818
NMG
1074 wr_mode = BCH_WRAPMODE_6;
1075 ecc_size0 = BCH_ECC_SIZE0;
1076 ecc_size1 = BCH_ECC_SIZE1;
c5957a32
PG
1077 break;
1078 case OMAP_ECC_BCH8_CODE_HW:
16e69322
PG
1079 bch_type = 1;
1080 nsectors = chip->ecc.steps;
c5957a32
PG
1081 if (mode == NAND_ECC_READ) {
1082 wr_mode = BCH_WRAPMODE_1;
1083 ecc_size0 = BCH8R_ECC_SIZE0;
1084 ecc_size1 = BCH8R_ECC_SIZE1;
1085 } else {
1086 wr_mode = BCH_WRAPMODE_6;
1087 ecc_size0 = BCH_ECC_SIZE0;
1088 ecc_size1 = BCH_ECC_SIZE1;
1089 }
1090 break;
9748fff9 1091 case OMAP_ECC_BCH16_CODE_HW:
1092 bch_type = 0x2;
1093 nsectors = chip->ecc.steps;
1094 if (mode == NAND_ECC_READ) {
1095 wr_mode = 0x01;
1096 ecc_size0 = 52; /* ECC bits in nibbles per sector */
1097 ecc_size1 = 0; /* non-ECC bits in nibbles per sector */
1098 } else {
1099 wr_mode = 0x01;
1100 ecc_size0 = 0; /* extra bits in nibbles per sector */
1101 ecc_size1 = 52; /* OOB bits in nibbles per sector */
1102 }
1103 break;
c5957a32
PG
1104 default:
1105 return;
1106 }
2ef9f3dd
AM
1107
1108 writel(ECC1, info->reg.gpmc_ecc_control);
1109
62116e51
PA
1110 /* Configure ecc size for BCH */
1111 val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
2ef9f3dd
AM
1112 writel(val, info->reg.gpmc_ecc_size_config);
1113
62116e51
PA
1114 dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1115
2ef9f3dd
AM
1116 /* BCH configuration */
1117 val = ((1 << 16) | /* enable BCH */
16e69322 1118 (bch_type << 12) | /* BCH4/BCH8/BCH16 */
62116e51 1119 (wr_mode << 8) | /* wrap mode */
2ef9f3dd
AM
1120 (dev_width << 7) | /* bus width */
1121 (((nsectors-1) & 0x7) << 4) | /* number of sectors */
1122 (info->gpmc_cs << 1) | /* ECC CS */
1123 (0x1)); /* enable ECC */
1124
1125 writel(val, info->reg.gpmc_ecc_config);
1126
62116e51 1127 /* Clear ecc and enable bits */
2ef9f3dd 1128 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
0e618ef0 1129}
7c977c3e 1130
2c9f2365 1131static u8 bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
7bcd1dca
PG
1132static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1133 0x97, 0x79, 0xe5, 0x24, 0xb5};
0e618ef0 1134
62116e51 1135/**
a4c7ca00 1136 * omap_calculate_ecc_bch - Generate bytes of ECC bytes
62116e51
PA
1137 * @mtd: MTD device structure
1138 * @dat: The pointer to data on which ecc is computed
1139 * @ecc_code: The ecc_code buffer
1140 *
1141 * Support calculating of BCH4/8 ecc vectors for the page
1142 */
a4c7ca00 1143static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd,
f5dc06fb 1144 const u_char *dat, u_char *ecc_calc)
62116e51 1145{
4578ea9a 1146 struct omap_nand_info *info = mtd_to_omap(mtd);
f5dc06fb
PG
1147 int eccbytes = info->nand.ecc.bytes;
1148 struct gpmc_nand_regs *gpmc_regs = &info->reg;
1149 u8 *ecc_code;
62116e51 1150 unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4;
9748fff9 1151 u32 val;
2913aae5 1152 int i, j;
62116e51
PA
1153
1154 nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
62116e51 1155 for (i = 0; i < nsectors; i++) {
f5dc06fb
PG
1156 ecc_code = ecc_calc;
1157 switch (info->ecc_opt) {
7bcd1dca 1158 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
f5dc06fb
PG
1159 case OMAP_ECC_BCH8_CODE_HW:
1160 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1161 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1162 bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
1163 bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
62116e51
PA
1164 *ecc_code++ = (bch_val4 & 0xFF);
1165 *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1166 *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1167 *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1168 *ecc_code++ = (bch_val3 & 0xFF);
1169 *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1170 *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1171 *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1172 *ecc_code++ = (bch_val2 & 0xFF);
1173 *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1174 *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1175 *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1176 *ecc_code++ = (bch_val1 & 0xFF);
f5dc06fb 1177 break;
2c9f2365 1178 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
f5dc06fb
PG
1179 case OMAP_ECC_BCH4_CODE_HW:
1180 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1181 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
62116e51
PA
1182 *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1183 *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1184 *ecc_code++ = ((bch_val2 & 0xF) << 4) |
1185 ((bch_val1 >> 28) & 0xF);
1186 *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1187 *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1188 *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1189 *ecc_code++ = ((bch_val1 & 0xF) << 4);
f5dc06fb 1190 break;
9748fff9 1191 case OMAP_ECC_BCH16_CODE_HW:
1192 val = readl(gpmc_regs->gpmc_bch_result6[i]);
1193 ecc_code[0] = ((val >> 8) & 0xFF);
1194 ecc_code[1] = ((val >> 0) & 0xFF);
1195 val = readl(gpmc_regs->gpmc_bch_result5[i]);
1196 ecc_code[2] = ((val >> 24) & 0xFF);
1197 ecc_code[3] = ((val >> 16) & 0xFF);
1198 ecc_code[4] = ((val >> 8) & 0xFF);
1199 ecc_code[5] = ((val >> 0) & 0xFF);
1200 val = readl(gpmc_regs->gpmc_bch_result4[i]);
1201 ecc_code[6] = ((val >> 24) & 0xFF);
1202 ecc_code[7] = ((val >> 16) & 0xFF);
1203 ecc_code[8] = ((val >> 8) & 0xFF);
1204 ecc_code[9] = ((val >> 0) & 0xFF);
1205 val = readl(gpmc_regs->gpmc_bch_result3[i]);
1206 ecc_code[10] = ((val >> 24) & 0xFF);
1207 ecc_code[11] = ((val >> 16) & 0xFF);
1208 ecc_code[12] = ((val >> 8) & 0xFF);
1209 ecc_code[13] = ((val >> 0) & 0xFF);
1210 val = readl(gpmc_regs->gpmc_bch_result2[i]);
1211 ecc_code[14] = ((val >> 24) & 0xFF);
1212 ecc_code[15] = ((val >> 16) & 0xFF);
1213 ecc_code[16] = ((val >> 8) & 0xFF);
1214 ecc_code[17] = ((val >> 0) & 0xFF);
1215 val = readl(gpmc_regs->gpmc_bch_result1[i]);
1216 ecc_code[18] = ((val >> 24) & 0xFF);
1217 ecc_code[19] = ((val >> 16) & 0xFF);
1218 ecc_code[20] = ((val >> 8) & 0xFF);
1219 ecc_code[21] = ((val >> 0) & 0xFF);
1220 val = readl(gpmc_regs->gpmc_bch_result0[i]);
1221 ecc_code[22] = ((val >> 24) & 0xFF);
1222 ecc_code[23] = ((val >> 16) & 0xFF);
1223 ecc_code[24] = ((val >> 8) & 0xFF);
1224 ecc_code[25] = ((val >> 0) & 0xFF);
1225 break;
f5dc06fb
PG
1226 default:
1227 return -EINVAL;
62116e51 1228 }
f5dc06fb
PG
1229
1230 /* ECC scheme specific syndrome customizations */
1231 switch (info->ecc_opt) {
2c9f2365
PG
1232 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1233 /* Add constant polynomial to remainder, so that
1234 * ECC of blank pages results in 0x0 on reading back */
2913aae5
TJ
1235 for (j = 0; j < eccbytes; j++)
1236 ecc_calc[j] ^= bch4_polynomial[j];
2c9f2365 1237 break;
f5dc06fb
PG
1238 case OMAP_ECC_BCH4_CODE_HW:
1239 /* Set 8th ECC byte as 0x0 for ROM compatibility */
1240 ecc_calc[eccbytes - 1] = 0x0;
1241 break;
7bcd1dca
PG
1242 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1243 /* Add constant polynomial to remainder, so that
1244 * ECC of blank pages results in 0x0 on reading back */
2913aae5
TJ
1245 for (j = 0; j < eccbytes; j++)
1246 ecc_calc[j] ^= bch8_polynomial[j];
7bcd1dca 1247 break;
f5dc06fb
PG
1248 case OMAP_ECC_BCH8_CODE_HW:
1249 /* Set 14th ECC byte as 0x0 for ROM compatibility */
1250 ecc_calc[eccbytes - 1] = 0x0;
1251 break;
9748fff9 1252 case OMAP_ECC_BCH16_CODE_HW:
1253 break;
f5dc06fb
PG
1254 default:
1255 return -EINVAL;
1256 }
1257
1258 ecc_calc += eccbytes;
62116e51
PA
1259 }
1260
1261 return 0;
1262}
1263
1264/**
1265 * erased_sector_bitflips - count bit flips
1266 * @data: data sector buffer
1267 * @oob: oob buffer
1268 * @info: omap_nand_info
1269 *
1270 * Check the bit flips in erased page falls below correctable level.
1271 * If falls below, report the page as erased with correctable bit
1272 * flip, else report as uncorrectable page.
1273 */
1274static int erased_sector_bitflips(u_char *data, u_char *oob,
1275 struct omap_nand_info *info)
1276{
1277 int flip_bits = 0, i;
1278
1279 for (i = 0; i < info->nand.ecc.size; i++) {
1280 flip_bits += hweight8(~data[i]);
1281 if (flip_bits > info->nand.ecc.strength)
1282 return 0;
1283 }
1284
1285 for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1286 flip_bits += hweight8(~oob[i]);
1287 if (flip_bits > info->nand.ecc.strength)
1288 return 0;
1289 }
1290
1291 /*
1292 * Bit flips falls in correctable level.
1293 * Fill data area with 0xFF
1294 */
1295 if (flip_bits) {
1296 memset(data, 0xFF, info->nand.ecc.size);
1297 memset(oob, 0xFF, info->nand.ecc.bytes);
1298 }
1299
1300 return flip_bits;
1301}
1302
1303/**
1304 * omap_elm_correct_data - corrects page data area in case error reported
1305 * @mtd: MTD device structure
1306 * @data: page data
1307 * @read_ecc: ecc read from nand flash
1308 * @calc_ecc: ecc read from HW ECC registers
1309 *
1310 * Calculated ecc vector reported as zero in case of non-error pages.
78f43c53
PG
1311 * In case of non-zero ecc vector, first filter out erased-pages, and
1312 * then process data via ELM to detect bit-flips.
62116e51
PA
1313 */
1314static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
1315 u_char *read_ecc, u_char *calc_ecc)
1316{
4578ea9a 1317 struct omap_nand_info *info = mtd_to_omap(mtd);
de0a4d69 1318 struct nand_ecc_ctrl *ecc = &info->nand.ecc;
62116e51
PA
1319 int eccsteps = info->nand.ecc.steps;
1320 int i , j, stat = 0;
de0a4d69 1321 int eccflag, actual_eccbytes;
62116e51
PA
1322 struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1323 u_char *ecc_vec = calc_ecc;
1324 u_char *spare_ecc = read_ecc;
1325 u_char *erased_ecc_vec;
78f43c53
PG
1326 u_char *buf;
1327 int bitflip_count;
62116e51 1328 bool is_error_reported = false;
b08e1f63 1329 u32 bit_pos, byte_pos, error_max, pos;
13fbe064 1330 int err;
62116e51 1331
de0a4d69
PG
1332 switch (info->ecc_opt) {
1333 case OMAP_ECC_BCH4_CODE_HW:
1334 /* omit 7th ECC byte reserved for ROM code compatibility */
1335 actual_eccbytes = ecc->bytes - 1;
78f43c53 1336 erased_ecc_vec = bch4_vector;
de0a4d69
PG
1337 break;
1338 case OMAP_ECC_BCH8_CODE_HW:
1339 /* omit 14th ECC byte reserved for ROM code compatibility */
1340 actual_eccbytes = ecc->bytes - 1;
78f43c53 1341 erased_ecc_vec = bch8_vector;
de0a4d69 1342 break;
9748fff9 1343 case OMAP_ECC_BCH16_CODE_HW:
1344 actual_eccbytes = ecc->bytes;
1345 erased_ecc_vec = bch16_vector;
1346 break;
de0a4d69 1347 default:
d2f08c75 1348 dev_err(&info->pdev->dev, "invalid driver configuration\n");
de0a4d69
PG
1349 return -EINVAL;
1350 }
1351
62116e51
PA
1352 /* Initialize elm error vector to zero */
1353 memset(err_vec, 0, sizeof(err_vec));
1354
62116e51
PA
1355 for (i = 0; i < eccsteps ; i++) {
1356 eccflag = 0; /* initialize eccflag */
1357
1358 /*
1359 * Check any error reported,
1360 * In case of error, non zero ecc reported.
1361 */
de0a4d69 1362 for (j = 0; j < actual_eccbytes; j++) {
62116e51
PA
1363 if (calc_ecc[j] != 0) {
1364 eccflag = 1; /* non zero ecc, error present */
1365 break;
1366 }
1367 }
1368
1369 if (eccflag == 1) {
78f43c53
PG
1370 if (memcmp(calc_ecc, erased_ecc_vec,
1371 actual_eccbytes) == 0) {
62116e51 1372 /*
78f43c53
PG
1373 * calc_ecc[] matches pattern for ECC(all 0xff)
1374 * so this is definitely an erased-page
62116e51 1375 */
62116e51 1376 } else {
78f43c53
PG
1377 buf = &data[info->nand.ecc.size * i];
1378 /*
1379 * count number of 0-bits in read_buf.
1380 * This check can be removed once a similar
1381 * check is introduced in generic NAND driver
1382 */
1383 bitflip_count = erased_sector_bitflips(
1384 buf, read_ecc, info);
1385 if (bitflip_count) {
1386 /*
1387 * number of 0-bits within ECC limits
1388 * So this may be an erased-page
1389 */
1390 stat += bitflip_count;
1391 } else {
1392 /*
1393 * Too many 0-bits. It may be a
1394 * - programmed-page, OR
1395 * - erased-page with many bit-flips
1396 * So this page requires check by ELM
1397 */
1398 err_vec[i].error_reported = true;
1399 is_error_reported = true;
62116e51
PA
1400 }
1401 }
1402 }
1403
1404 /* Update the ecc vector */
de0a4d69
PG
1405 calc_ecc += ecc->bytes;
1406 read_ecc += ecc->bytes;
62116e51
PA
1407 }
1408
1409 /* Check if any error reported */
1410 if (!is_error_reported)
f306e8c3 1411 return stat;
62116e51
PA
1412
1413 /* Decode BCH error using ELM module */
1414 elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1415
13fbe064 1416 err = 0;
62116e51 1417 for (i = 0; i < eccsteps; i++) {
13fbe064 1418 if (err_vec[i].error_uncorrectable) {
d2f08c75
EG
1419 dev_err(&info->pdev->dev,
1420 "uncorrectable bit-flips found\n");
13fbe064
PG
1421 err = -EBADMSG;
1422 } else if (err_vec[i].error_reported) {
62116e51 1423 for (j = 0; j < err_vec[i].error_count; j++) {
b08e1f63
PG
1424 switch (info->ecc_opt) {
1425 case OMAP_ECC_BCH4_CODE_HW:
1426 /* Add 4 bits to take care of padding */
62116e51
PA
1427 pos = err_vec[i].error_loc[j] +
1428 BCH4_BIT_PAD;
b08e1f63
PG
1429 break;
1430 case OMAP_ECC_BCH8_CODE_HW:
9748fff9 1431 case OMAP_ECC_BCH16_CODE_HW:
b08e1f63
PG
1432 pos = err_vec[i].error_loc[j];
1433 break;
1434 default:
1435 return -EINVAL;
1436 }
1437 error_max = (ecc->size + actual_eccbytes) * 8;
62116e51
PA
1438 /* Calculate bit position of error */
1439 bit_pos = pos % 8;
1440
1441 /* Calculate byte position of error */
1442 byte_pos = (error_max - pos - 1) / 8;
1443
1444 if (pos < error_max) {
13fbe064
PG
1445 if (byte_pos < 512) {
1446 pr_debug("bitflip@dat[%d]=%x\n",
1447 byte_pos, data[byte_pos]);
62116e51 1448 data[byte_pos] ^= 1 << bit_pos;
13fbe064
PG
1449 } else {
1450 pr_debug("bitflip@oob[%d]=%x\n",
1451 (byte_pos - 512),
1452 spare_ecc[byte_pos - 512]);
62116e51
PA
1453 spare_ecc[byte_pos - 512] ^=
1454 1 << bit_pos;
13fbe064
PG
1455 }
1456 } else {
d2f08c75
EG
1457 dev_err(&info->pdev->dev,
1458 "invalid bit-flip @ %d:%d\n",
1459 byte_pos, bit_pos);
13fbe064 1460 err = -EBADMSG;
62116e51 1461 }
62116e51
PA
1462 }
1463 }
1464
1465 /* Update number of correctable errors */
1466 stat += err_vec[i].error_count;
1467
1468 /* Update page data with sector size */
b08e1f63 1469 data += ecc->size;
de0a4d69 1470 spare_ecc += ecc->bytes;
62116e51
PA
1471 }
1472
13fbe064 1473 return (err) ? err : stat;
62116e51
PA
1474}
1475
62116e51
PA
1476/**
1477 * omap_write_page_bch - BCH ecc based write page function for entire page
1478 * @mtd: mtd info structure
1479 * @chip: nand chip info structure
1480 * @buf: data buffer
1481 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 1482 * @page: page
62116e51
PA
1483 *
1484 * Custom write page method evolved to support multi sector writing in one shot
1485 */
1486static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
45aaeff9 1487 const uint8_t *buf, int oob_required, int page)
62116e51 1488{
8cfc1e8b 1489 int ret;
62116e51 1490 uint8_t *ecc_calc = chip->buffers->ecccalc;
62116e51
PA
1491
1492 /* Enable GPMC ecc engine */
1493 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1494
1495 /* Write data */
1496 chip->write_buf(mtd, buf, mtd->writesize);
1497
1498 /* Update ecc vector from GPMC result registers */
1499 chip->ecc.calculate(mtd, buf, &ecc_calc[0]);
1500
8cfc1e8b
BB
1501 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
1502 chip->ecc.total);
1503 if (ret)
1504 return ret;
62116e51
PA
1505
1506 /* Write ecc vector to OOB area */
1507 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1508 return 0;
1509}
1510
1511/**
1512 * omap_read_page_bch - BCH ecc based page read function for entire page
1513 * @mtd: mtd info structure
1514 * @chip: nand chip info structure
1515 * @buf: buffer to store read data
1516 * @oob_required: caller requires OOB data read to chip->oob_poi
1517 * @page: page number to read
1518 *
1519 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1520 * used for error correction.
1521 * Custom method evolved to support ELM error correction & multi sector
1522 * reading. On reading page data area is read along with OOB data with
1523 * ecc engine enabled. ecc vector updated after read of OOB data.
1524 * For non error pages ecc vector reported as zero.
1525 */
1526static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1527 uint8_t *buf, int oob_required, int page)
1528{
1529 uint8_t *ecc_calc = chip->buffers->ecccalc;
1530 uint8_t *ecc_code = chip->buffers->ecccode;
8cfc1e8b 1531 int stat, ret;
62116e51
PA
1532 unsigned int max_bitflips = 0;
1533
1534 /* Enable GPMC ecc engine */
1535 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1536
1537 /* Read data */
1538 chip->read_buf(mtd, buf, mtd->writesize);
1539
1540 /* Read oob bytes */
8cfc1e8b
BB
1541 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1542 mtd->writesize + BADBLOCK_MARKER_LENGTH, -1);
1543 chip->read_buf(mtd, chip->oob_poi + BADBLOCK_MARKER_LENGTH,
1544 chip->ecc.total);
62116e51
PA
1545
1546 /* Calculate ecc bytes */
1547 chip->ecc.calculate(mtd, buf, ecc_calc);
1548
8cfc1e8b
BB
1549 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1550 chip->ecc.total);
1551 if (ret)
1552 return ret;
62116e51
PA
1553
1554 stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);
1555
1556 if (stat < 0) {
1557 mtd->ecc_stats.failed++;
1558 } else {
1559 mtd->ecc_stats.corrected += stat;
1560 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1561 }
1562
1563 return max_bitflips;
1564}
1565
0e618ef0 1566/**
a919e511
PG
1567 * is_elm_present - checks for presence of ELM module by scanning DT nodes
1568 * @omap_nand_info: NAND device structure containing platform data
0e618ef0 1569 */
93af53b8
EG
1570static bool is_elm_present(struct omap_nand_info *info,
1571 struct device_node *elm_node)
0e618ef0 1572{
a919e511 1573 struct platform_device *pdev;
93af53b8 1574
a919e511
PG
1575 /* check whether elm-id is passed via DT */
1576 if (!elm_node) {
d2f08c75 1577 dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
93af53b8 1578 return false;
a919e511
PG
1579 }
1580 pdev = of_find_device_by_node(elm_node);
1581 /* check whether ELM device is registered */
1582 if (!pdev) {
d2f08c75 1583 dev_err(&info->pdev->dev, "ELM device not found\n");
93af53b8 1584 return false;
0e618ef0 1585 }
a919e511
PG
1586 /* ELM module available, now configure it */
1587 info->elm_dev = &pdev->dev;
93af53b8
EG
1588 return true;
1589}
3f4eb14b 1590
93af53b8
EG
1591static bool omap2_nand_ecc_check(struct omap_nand_info *info,
1592 struct omap_nand_platform_data *pdata)
1593{
1594 bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
1595
1596 switch (info->ecc_opt) {
1597 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1598 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1599 ecc_needs_omap_bch = false;
1600 ecc_needs_bch = true;
1601 ecc_needs_elm = false;
1602 break;
1603 case OMAP_ECC_BCH4_CODE_HW:
1604 case OMAP_ECC_BCH8_CODE_HW:
1605 case OMAP_ECC_BCH16_CODE_HW:
1606 ecc_needs_omap_bch = true;
1607 ecc_needs_bch = false;
1608 ecc_needs_elm = true;
1609 break;
1610 default:
1611 ecc_needs_omap_bch = false;
1612 ecc_needs_bch = false;
1613 ecc_needs_elm = false;
1614 break;
1615 }
1616
1617 if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH)) {
1618 dev_err(&info->pdev->dev,
1619 "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1620 return false;
1621 }
1622 if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
1623 dev_err(&info->pdev->dev,
1624 "CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1625 return false;
1626 }
01b95fc6 1627 if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) {
93af53b8
EG
1628 dev_err(&info->pdev->dev, "ELM not available\n");
1629 return false;
1630 }
1631
1632 return true;
0e618ef0
ID
1633}
1634
c9711ec5
RQ
1635static const char * const nand_xfer_types[] = {
1636 [NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled",
1637 [NAND_OMAP_POLLED] = "polled",
1638 [NAND_OMAP_PREFETCH_DMA] = "prefetch-dma",
1639 [NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq",
1640};
1641
1642static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info)
1643{
1644 struct device_node *child = dev->of_node;
1645 int i;
1646 const char *s;
1647 u32 cs;
1648
1649 if (of_property_read_u32(child, "reg", &cs) < 0) {
1650 dev_err(dev, "reg not found in DT\n");
1651 return -EINVAL;
1652 }
1653
1654 info->gpmc_cs = cs;
1655
1656 /* detect availability of ELM module. Won't be present pre-OMAP4 */
1657 info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0);
7ce9ea7e
TR
1658 if (!info->elm_of_node) {
1659 info->elm_of_node = of_parse_phandle(child, "elm_id", 0);
1660 if (!info->elm_of_node)
1661 dev_dbg(dev, "ti,elm-id not in DT\n");
1662 }
c9711ec5
RQ
1663
1664 /* select ecc-scheme for NAND */
1665 if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) {
1666 dev_err(dev, "ti,nand-ecc-opt not found\n");
1667 return -EINVAL;
1668 }
1669
1670 if (!strcmp(s, "sw")) {
1671 info->ecc_opt = OMAP_ECC_HAM1_CODE_SW;
1672 } else if (!strcmp(s, "ham1") ||
1673 !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) {
1674 info->ecc_opt = OMAP_ECC_HAM1_CODE_HW;
1675 } else if (!strcmp(s, "bch4")) {
1676 if (info->elm_of_node)
1677 info->ecc_opt = OMAP_ECC_BCH4_CODE_HW;
1678 else
1679 info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW;
1680 } else if (!strcmp(s, "bch8")) {
1681 if (info->elm_of_node)
1682 info->ecc_opt = OMAP_ECC_BCH8_CODE_HW;
1683 else
1684 info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
1685 } else if (!strcmp(s, "bch16")) {
1686 info->ecc_opt = OMAP_ECC_BCH16_CODE_HW;
1687 } else {
1688 dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n");
1689 return -EINVAL;
1690 }
1691
1692 /* select data transfer mode */
1693 if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) {
1694 for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) {
1695 if (!strcasecmp(s, nand_xfer_types[i])) {
1696 info->xfer_type = i;
f679888f 1697 return 0;
c9711ec5
RQ
1698 }
1699 }
1700
1701 dev_err(dev, "unrecognized value for ti,nand-xfer-type\n");
1702 return -EINVAL;
1703 }
1704
c9711ec5
RQ
1705 return 0;
1706}
1707
e04dbf35
BB
1708static int omap_ooblayout_ecc(struct mtd_info *mtd, int section,
1709 struct mtd_oob_region *oobregion)
1710{
1711 struct omap_nand_info *info = mtd_to_omap(mtd);
1712 struct nand_chip *chip = &info->nand;
1713 int off = BADBLOCK_MARKER_LENGTH;
1714
1715 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1716 !(chip->options & NAND_BUSWIDTH_16))
1717 off = 1;
1718
1719 if (section)
1720 return -ERANGE;
1721
1722 oobregion->offset = off;
1723 oobregion->length = chip->ecc.total;
1724
1725 return 0;
1726}
1727
1728static int omap_ooblayout_free(struct mtd_info *mtd, int section,
1729 struct mtd_oob_region *oobregion)
1730{
1731 struct omap_nand_info *info = mtd_to_omap(mtd);
1732 struct nand_chip *chip = &info->nand;
1733 int off = BADBLOCK_MARKER_LENGTH;
1734
1735 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1736 !(chip->options & NAND_BUSWIDTH_16))
1737 off = 1;
1738
1739 if (section)
1740 return -ERANGE;
1741
1742 off += chip->ecc.total;
1743 if (off >= mtd->oobsize)
1744 return -ERANGE;
1745
1746 oobregion->offset = off;
1747 oobregion->length = mtd->oobsize - off;
1748
1749 return 0;
1750}
1751
1752static const struct mtd_ooblayout_ops omap_ooblayout_ops = {
1753 .ecc = omap_ooblayout_ecc,
1754 .free = omap_ooblayout_free,
1755};
1756
1757static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section,
1758 struct mtd_oob_region *oobregion)
1759{
1760 struct nand_chip *chip = mtd_to_nand(mtd);
1761 int off = BADBLOCK_MARKER_LENGTH;
1762
1763 if (section >= chip->ecc.steps)
1764 return -ERANGE;
1765
1766 /*
1767 * When SW correction is employed, one OMAP specific marker byte is
1768 * reserved after each ECC step.
1769 */
1770 oobregion->offset = off + (section * (chip->ecc.bytes + 1));
1771 oobregion->length = chip->ecc.bytes;
1772
1773 return 0;
1774}
1775
1776static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section,
1777 struct mtd_oob_region *oobregion)
1778{
1779 struct nand_chip *chip = mtd_to_nand(mtd);
1780 int off = BADBLOCK_MARKER_LENGTH;
1781
1782 if (section)
1783 return -ERANGE;
1784
1785 /*
1786 * When SW correction is employed, one OMAP specific marker byte is
1787 * reserved after each ECC step.
1788 */
1789 off += ((chip->ecc.bytes + 1) * chip->ecc.steps);
1790 if (off >= mtd->oobsize)
1791 return -ERANGE;
1792
1793 oobregion->offset = off;
1794 oobregion->length = mtd->oobsize - off;
1795
1796 return 0;
1797}
1798
1799static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = {
1800 .ecc = omap_sw_ooblayout_ecc,
1801 .free = omap_sw_ooblayout_free,
1802};
1803
06f25510 1804static int omap_nand_probe(struct platform_device *pdev)
67ce04bf
VS
1805{
1806 struct omap_nand_info *info;
c9711ec5 1807 struct omap_nand_platform_data *pdata = NULL;
633deb58
PG
1808 struct mtd_info *mtd;
1809 struct nand_chip *nand_chip;
67ce04bf 1810 int err;
633deb58 1811 dma_cap_mask_t mask;
9c4c2f8b 1812 struct resource *res;
c9711ec5 1813 struct device *dev = &pdev->dev;
e04dbf35
BB
1814 int min_oobbytes = BADBLOCK_MARKER_LENGTH;
1815 int oobbytes_per_step;
67ce04bf 1816
70ba6d71
PG
1817 info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
1818 GFP_KERNEL);
67ce04bf
VS
1819 if (!info)
1820 return -ENOMEM;
1821
c9711ec5 1822 info->pdev = pdev;
67ce04bf 1823
c9711ec5
RQ
1824 if (dev->of_node) {
1825 if (omap_get_dt_info(dev, info))
1826 return -EINVAL;
1827 } else {
1828 pdata = dev_get_platdata(&pdev->dev);
1829 if (!pdata) {
1830 dev_err(&pdev->dev, "platform data missing\n");
1831 return -EINVAL;
1832 }
1833
1834 info->gpmc_cs = pdata->cs;
1835 info->reg = pdata->reg;
1836 info->ecc_opt = pdata->ecc_opt;
10f22ee3
RQ
1837 if (pdata->dev_ready)
1838 dev_info(&pdev->dev, "pdata->dev_ready is deprecated\n");
1839
c9711ec5
RQ
1840 info->xfer_type = pdata->xfer_type;
1841 info->devsize = pdata->devsize;
1842 info->elm_of_node = pdata->elm_of_node;
1843 info->flash_bbt = pdata->flash_bbt;
1844 }
1845
1846 platform_set_drvdata(pdev, info);
c509aefd
RQ
1847 info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs);
1848 if (!info->ops) {
1849 dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n");
1850 return -ENODEV;
1851 }
01b95fc6 1852
432420c0
BB
1853 nand_chip = &info->nand;
1854 mtd = nand_to_mtd(nand_chip);
853f1c58 1855 mtd->dev.parent = &pdev->dev;
32d42a85 1856 nand_chip->ecc.priv = NULL;
c9711ec5 1857 nand_set_flash_node(nand_chip, dev->of_node);
67ce04bf 1858
9c4c2f8b 1859 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
00d09891
JH
1860 nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
1861 if (IS_ERR(nand_chip->IO_ADDR_R))
1862 return PTR_ERR(nand_chip->IO_ADDR_R);
67ce04bf 1863
9c4c2f8b 1864 info->phys_base = res->start;
59e9c5ae 1865
1dc338e8 1866 nand_chip->controller = &omap_gpmc_controller;
67ce04bf 1867
633deb58
PG
1868 nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
1869 nand_chip->cmd_ctrl = omap_hwcontrol;
67ce04bf 1870
10f22ee3
RQ
1871 info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb",
1872 GPIOD_IN);
1873 if (IS_ERR(info->ready_gpiod)) {
1874 dev_err(dev, "failed to get ready gpio\n");
1875 return PTR_ERR(info->ready_gpiod);
1876 }
1877
67ce04bf
VS
1878 /*
1879 * If RDY/BSY line is connected to OMAP then use the omap ready
4cacbe22
PM
1880 * function and the generic nand_wait function which reads the status
1881 * register after monitoring the RDY/BSY line. Otherwise use a standard
67ce04bf
VS
1882 * chip delay which is slightly more than tR (AC Timing) of the NAND
1883 * device and read status register until you get a failure or success
1884 */
10f22ee3 1885 if (info->ready_gpiod) {
633deb58
PG
1886 nand_chip->dev_ready = omap_dev_ready;
1887 nand_chip->chip_delay = 0;
67ce04bf 1888 } else {
633deb58
PG
1889 nand_chip->waitfunc = omap_wait;
1890 nand_chip->chip_delay = 50;
67ce04bf
VS
1891 }
1892
c9711ec5 1893 if (info->flash_bbt)
f679888f 1894 nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
fef775ca 1895
f18befb5 1896 /* scan NAND device connected to chip controller */
01b95fc6 1897 nand_chip->options |= info->devsize & NAND_BUSWIDTH_16;
f18befb5 1898 if (nand_scan_ident(mtd, 1, NULL)) {
01b95fc6
RQ
1899 dev_err(&info->pdev->dev,
1900 "scan failed, may be bus-width mismatch\n");
f18befb5 1901 err = -ENXIO;
70ba6d71 1902 goto return_error;
f18befb5
PG
1903 }
1904
f679888f
BB
1905 if (nand_chip->bbt_options & NAND_BBT_USE_FLASH)
1906 nand_chip->bbt_options |= NAND_BBT_NO_OOB;
1907 else
1908 nand_chip->options |= NAND_SKIP_BBTSCAN;
1909
f18befb5 1910 /* re-populate low-level callbacks based on xfer modes */
01b95fc6 1911 switch (info->xfer_type) {
1b0b323c 1912 case NAND_OMAP_PREFETCH_POLLED:
633deb58
PG
1913 nand_chip->read_buf = omap_read_buf_pref;
1914 nand_chip->write_buf = omap_write_buf_pref;
1b0b323c
SG
1915 break;
1916
1917 case NAND_OMAP_POLLED:
cf0e4d2b 1918 /* Use nand_base defaults for {read,write}_buf */
1b0b323c
SG
1919 break;
1920
1921 case NAND_OMAP_PREFETCH_DMA:
763e7359
RK
1922 dma_cap_zero(mask);
1923 dma_cap_set(DMA_SLAVE, mask);
aa7abd31
CJF
1924 info->dma = dma_request_chan(pdev->dev.parent, "rxtx");
1925
de3bfc4a 1926 if (IS_ERR(info->dma)) {
2df41d05 1927 dev_err(&pdev->dev, "DMA engine request failed\n");
de3bfc4a 1928 err = PTR_ERR(info->dma);
70ba6d71 1929 goto return_error;
763e7359
RK
1930 } else {
1931 struct dma_slave_config cfg;
763e7359
RK
1932
1933 memset(&cfg, 0, sizeof(cfg));
1934 cfg.src_addr = info->phys_base;
1935 cfg.dst_addr = info->phys_base;
1936 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1937 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1938 cfg.src_maxburst = 16;
1939 cfg.dst_maxburst = 16;
d680e2c1
AB
1940 err = dmaengine_slave_config(info->dma, &cfg);
1941 if (err) {
763e7359 1942 dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
d680e2c1 1943 err);
70ba6d71 1944 goto return_error;
763e7359 1945 }
633deb58
PG
1946 nand_chip->read_buf = omap_read_buf_dma_pref;
1947 nand_chip->write_buf = omap_write_buf_dma_pref;
1b0b323c
SG
1948 }
1949 break;
1950
4e070376 1951 case NAND_OMAP_PREFETCH_IRQ:
5c468455
AM
1952 info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
1953 if (info->gpmc_irq_fifo <= 0) {
1954 dev_err(&pdev->dev, "error getting fifo irq\n");
1955 err = -ENODEV;
70ba6d71 1956 goto return_error;
5c468455 1957 }
70ba6d71
PG
1958 err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo,
1959 omap_nand_irq, IRQF_SHARED,
1960 "gpmc-nand-fifo", info);
4e070376
SG
1961 if (err) {
1962 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
5c468455
AM
1963 info->gpmc_irq_fifo, err);
1964 info->gpmc_irq_fifo = 0;
70ba6d71 1965 goto return_error;
5c468455
AM
1966 }
1967
1968 info->gpmc_irq_count = platform_get_irq(pdev, 1);
1969 if (info->gpmc_irq_count <= 0) {
1970 dev_err(&pdev->dev, "error getting count irq\n");
1971 err = -ENODEV;
70ba6d71 1972 goto return_error;
5c468455 1973 }
70ba6d71
PG
1974 err = devm_request_irq(&pdev->dev, info->gpmc_irq_count,
1975 omap_nand_irq, IRQF_SHARED,
1976 "gpmc-nand-count", info);
5c468455
AM
1977 if (err) {
1978 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1979 info->gpmc_irq_count, err);
1980 info->gpmc_irq_count = 0;
70ba6d71 1981 goto return_error;
4e070376 1982 }
5c468455 1983
633deb58
PG
1984 nand_chip->read_buf = omap_read_buf_irq_pref;
1985 nand_chip->write_buf = omap_write_buf_irq_pref;
5c468455 1986
4e070376
SG
1987 break;
1988
1b0b323c
SG
1989 default:
1990 dev_err(&pdev->dev,
01b95fc6 1991 "xfer_type(%d) not supported!\n", info->xfer_type);
1b0b323c 1992 err = -EINVAL;
70ba6d71 1993 goto return_error;
59e9c5ae 1994 }
59e9c5ae 1995
93af53b8
EG
1996 if (!omap2_nand_ecc_check(info, pdata)) {
1997 err = -EINVAL;
1998 goto return_error;
1999 }
2000
a8c65d50
BB
2001 /*
2002 * Bail out earlier to let NAND_ECC_SOFT code create its own
e04dbf35 2003 * ooblayout instead of using ours.
a8c65d50
BB
2004 */
2005 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
2006 nand_chip->ecc.mode = NAND_ECC_SOFT;
d7b83b8a 2007 nand_chip->ecc.algo = NAND_ECC_HAMMING;
a8c65d50
BB
2008 goto scan_tail;
2009 }
2010
a919e511 2011 /* populate MTD interface based on ECC scheme */
4e558072 2012 switch (info->ecc_opt) {
a919e511
PG
2013 case OMAP_ECC_HAM1_CODE_HW:
2014 pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
2015 nand_chip->ecc.mode = NAND_ECC_HW;
633deb58
PG
2016 nand_chip->ecc.bytes = 3;
2017 nand_chip->ecc.size = 512;
2018 nand_chip->ecc.strength = 1;
2019 nand_chip->ecc.calculate = omap_calculate_ecc;
2020 nand_chip->ecc.hwctl = omap_enable_hwecc;
2021 nand_chip->ecc.correct = omap_correct_data;
e04dbf35
BB
2022 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2023 oobbytes_per_step = nand_chip->ecc.bytes;
2024
2025 if (!(nand_chip->options & NAND_BUSWIDTH_16))
2026 min_oobbytes = 1;
2027
a919e511
PG
2028 break;
2029
2030 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
a919e511
PG
2031 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
2032 nand_chip->ecc.mode = NAND_ECC_HW;
2033 nand_chip->ecc.size = 512;
2034 nand_chip->ecc.bytes = 7;
2035 nand_chip->ecc.strength = 4;
7c977c3e 2036 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
32d42a85 2037 nand_chip->ecc.correct = nand_bch_correct_data;
2c9f2365 2038 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
e04dbf35
BB
2039 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2040 /* Reserve one byte for the OMAP marker */
2041 oobbytes_per_step = nand_chip->ecc.bytes + 1;
a919e511 2042 /* software bch library is used for locating errors */
a8c65d50 2043 nand_chip->ecc.priv = nand_bch_init(mtd);
32d42a85 2044 if (!nand_chip->ecc.priv) {
d2f08c75 2045 dev_err(&info->pdev->dev, "unable to use BCH library\n");
0e618ef0 2046 err = -EINVAL;
d2f08c75 2047 goto return_error;
a919e511
PG
2048 }
2049 break;
a919e511
PG
2050
2051 case OMAP_ECC_BCH4_CODE_HW:
a919e511
PG
2052 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
2053 nand_chip->ecc.mode = NAND_ECC_HW;
2054 nand_chip->ecc.size = 512;
2055 /* 14th bit is kept reserved for ROM-code compatibility */
2056 nand_chip->ecc.bytes = 7 + 1;
2057 nand_chip->ecc.strength = 4;
7c977c3e 2058 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
a919e511 2059 nand_chip->ecc.correct = omap_elm_correct_data;
a4c7ca00 2060 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
a919e511
PG
2061 nand_chip->ecc.read_page = omap_read_page_bch;
2062 nand_chip->ecc.write_page = omap_write_page_bch;
e04dbf35
BB
2063 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2064 oobbytes_per_step = nand_chip->ecc.bytes;
93af53b8
EG
2065
2066 err = elm_config(info->elm_dev, BCH4_ECC,
432420c0 2067 mtd->writesize / nand_chip->ecc.size,
93af53b8
EG
2068 nand_chip->ecc.size, nand_chip->ecc.bytes);
2069 if (err < 0)
70ba6d71 2070 goto return_error;
a919e511 2071 break;
a919e511
PG
2072
2073 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
a919e511
PG
2074 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
2075 nand_chip->ecc.mode = NAND_ECC_HW;
2076 nand_chip->ecc.size = 512;
2077 nand_chip->ecc.bytes = 13;
2078 nand_chip->ecc.strength = 8;
7c977c3e 2079 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
32d42a85 2080 nand_chip->ecc.correct = nand_bch_correct_data;
7bcd1dca 2081 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
e04dbf35
BB
2082 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2083 /* Reserve one byte for the OMAP marker */
2084 oobbytes_per_step = nand_chip->ecc.bytes + 1;
a919e511 2085 /* software bch library is used for locating errors */
a8c65d50 2086 nand_chip->ecc.priv = nand_bch_init(mtd);
32d42a85 2087 if (!nand_chip->ecc.priv) {
d2f08c75 2088 dev_err(&info->pdev->dev, "unable to use BCH library\n");
a919e511 2089 err = -EINVAL;
70ba6d71 2090 goto return_error;
a919e511
PG
2091 }
2092 break;
a919e511
PG
2093
2094 case OMAP_ECC_BCH8_CODE_HW:
a919e511
PG
2095 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
2096 nand_chip->ecc.mode = NAND_ECC_HW;
2097 nand_chip->ecc.size = 512;
2098 /* 14th bit is kept reserved for ROM-code compatibility */
2099 nand_chip->ecc.bytes = 13 + 1;
2100 nand_chip->ecc.strength = 8;
7c977c3e 2101 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
a919e511 2102 nand_chip->ecc.correct = omap_elm_correct_data;
a4c7ca00 2103 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
a919e511
PG
2104 nand_chip->ecc.read_page = omap_read_page_bch;
2105 nand_chip->ecc.write_page = omap_write_page_bch;
e04dbf35
BB
2106 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2107 oobbytes_per_step = nand_chip->ecc.bytes;
93af53b8
EG
2108
2109 err = elm_config(info->elm_dev, BCH8_ECC,
432420c0 2110 mtd->writesize / nand_chip->ecc.size,
93af53b8
EG
2111 nand_chip->ecc.size, nand_chip->ecc.bytes);
2112 if (err < 0)
70ba6d71 2113 goto return_error;
93af53b8 2114
a919e511 2115 break;
a919e511 2116
9748fff9 2117 case OMAP_ECC_BCH16_CODE_HW:
9748fff9 2118 pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
2119 nand_chip->ecc.mode = NAND_ECC_HW;
2120 nand_chip->ecc.size = 512;
2121 nand_chip->ecc.bytes = 26;
2122 nand_chip->ecc.strength = 16;
2123 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
2124 nand_chip->ecc.correct = omap_elm_correct_data;
2125 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
2126 nand_chip->ecc.read_page = omap_read_page_bch;
2127 nand_chip->ecc.write_page = omap_write_page_bch;
e04dbf35
BB
2128 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2129 oobbytes_per_step = nand_chip->ecc.bytes;
93af53b8
EG
2130
2131 err = elm_config(info->elm_dev, BCH16_ECC,
432420c0 2132 mtd->writesize / nand_chip->ecc.size,
93af53b8
EG
2133 nand_chip->ecc.size, nand_chip->ecc.bytes);
2134 if (err < 0)
9748fff9 2135 goto return_error;
93af53b8 2136
9748fff9 2137 break;
a919e511 2138 default:
d2f08c75 2139 dev_err(&info->pdev->dev, "invalid or unsupported ECC scheme\n");
a919e511 2140 err = -EINVAL;
70ba6d71 2141 goto return_error;
f3d73f36 2142 }
67ce04bf 2143
b491da72 2144 /* check if NAND device's OOB is enough to store ECC signatures */
e04dbf35
BB
2145 min_oobbytes += (oobbytes_per_step *
2146 (mtd->writesize / nand_chip->ecc.size));
2147 if (mtd->oobsize < min_oobbytes) {
d2f08c75
EG
2148 dev_err(&info->pdev->dev,
2149 "not enough OOB bytes required = %d, available=%d\n",
e04dbf35 2150 min_oobbytes, mtd->oobsize);
b491da72 2151 err = -EINVAL;
70ba6d71 2152 goto return_error;
f040d332 2153 }
1b0b323c 2154
7d5929c1 2155scan_tail:
a80f1c1f 2156 /* second phase scan */
633deb58 2157 if (nand_scan_tail(mtd)) {
a80f1c1f 2158 err = -ENXIO;
70ba6d71 2159 goto return_error;
a80f1c1f
JW
2160 }
2161
c9711ec5
RQ
2162 if (dev->of_node)
2163 mtd_device_register(mtd, NULL, 0);
2164 else
2165 mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
67ce04bf 2166
633deb58 2167 platform_set_drvdata(pdev, mtd);
67ce04bf
VS
2168
2169 return 0;
2170
70ba6d71 2171return_error:
763e7359
RK
2172 if (info->dma)
2173 dma_release_channel(info->dma);
32d42a85
PG
2174 if (nand_chip->ecc.priv) {
2175 nand_bch_free(nand_chip->ecc.priv);
2176 nand_chip->ecc.priv = NULL;
2177 }
67ce04bf
VS
2178 return err;
2179}
2180
2181static int omap_nand_remove(struct platform_device *pdev)
2182{
2183 struct mtd_info *mtd = platform_get_drvdata(pdev);
4bd4ebcc 2184 struct nand_chip *nand_chip = mtd_to_nand(mtd);
4578ea9a 2185 struct omap_nand_info *info = mtd_to_omap(mtd);
32d42a85
PG
2186 if (nand_chip->ecc.priv) {
2187 nand_bch_free(nand_chip->ecc.priv);
2188 nand_chip->ecc.priv = NULL;
2189 }
763e7359
RK
2190 if (info->dma)
2191 dma_release_channel(info->dma);
633deb58 2192 nand_release(mtd);
67ce04bf
VS
2193 return 0;
2194}
2195
c9711ec5
RQ
2196static const struct of_device_id omap_nand_ids[] = {
2197 { .compatible = "ti,omap2-nand", },
2198 {},
2199};
2200
67ce04bf
VS
2201static struct platform_driver omap_nand_driver = {
2202 .probe = omap_nand_probe,
2203 .remove = omap_nand_remove,
2204 .driver = {
2205 .name = DRIVER_NAME,
c9711ec5 2206 .of_match_table = of_match_ptr(omap_nand_ids),
67ce04bf
VS
2207 },
2208};
2209
f99640de 2210module_platform_driver(omap_nand_driver);
67ce04bf 2211
c804c733 2212MODULE_ALIAS("platform:" DRIVER_NAME);
67ce04bf
VS
2213MODULE_LICENSE("GPL");
2214MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
This page took 0.43977 seconds and 5 git commands to generate.