memory: omap-gpmc: Prevent GPMC_STATUS from being accessed via gpmc_regs
[deliverable/linux.git] / drivers / mtd / nand / omap2.c
CommitLineData
67ce04bf
VS
1/*
2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11#include <linux/platform_device.h>
763e7359 12#include <linux/dmaengine.h>
67ce04bf
VS
13#include <linux/dma-mapping.h>
14#include <linux/delay.h>
a0e5cc58 15#include <linux/module.h>
4e070376 16#include <linux/interrupt.h>
c276aca4 17#include <linux/jiffies.h>
18#include <linux/sched.h>
67ce04bf
VS
19#include <linux/mtd/mtd.h>
20#include <linux/mtd/nand.h>
21#include <linux/mtd/partitions.h>
763e7359 22#include <linux/omap-dma.h>
67ce04bf 23#include <linux/io.h>
5a0e3ad6 24#include <linux/slab.h>
62116e51
PA
25#include <linux/of.h>
26#include <linux/of_device.h>
c9711ec5 27#include <linux/of_mtd.h>
67ce04bf 28
32d42a85 29#include <linux/mtd/nand_bch.h>
62116e51 30#include <linux/platform_data/elm.h>
0e618ef0 31
c509aefd 32#include <linux/omap-gpmc.h>
2203747c 33#include <linux/platform_data/mtd-nand-omap2.h>
67ce04bf 34
67ce04bf 35#define DRIVER_NAME "omap2-nand"
4e070376 36#define OMAP_NAND_TIMEOUT_MS 5000
67ce04bf 37
67ce04bf
VS
38#define NAND_Ecc_P1e (1 << 0)
39#define NAND_Ecc_P2e (1 << 1)
40#define NAND_Ecc_P4e (1 << 2)
41#define NAND_Ecc_P8e (1 << 3)
42#define NAND_Ecc_P16e (1 << 4)
43#define NAND_Ecc_P32e (1 << 5)
44#define NAND_Ecc_P64e (1 << 6)
45#define NAND_Ecc_P128e (1 << 7)
46#define NAND_Ecc_P256e (1 << 8)
47#define NAND_Ecc_P512e (1 << 9)
48#define NAND_Ecc_P1024e (1 << 10)
49#define NAND_Ecc_P2048e (1 << 11)
50
51#define NAND_Ecc_P1o (1 << 16)
52#define NAND_Ecc_P2o (1 << 17)
53#define NAND_Ecc_P4o (1 << 18)
54#define NAND_Ecc_P8o (1 << 19)
55#define NAND_Ecc_P16o (1 << 20)
56#define NAND_Ecc_P32o (1 << 21)
57#define NAND_Ecc_P64o (1 << 22)
58#define NAND_Ecc_P128o (1 << 23)
59#define NAND_Ecc_P256o (1 << 24)
60#define NAND_Ecc_P512o (1 << 25)
61#define NAND_Ecc_P1024o (1 << 26)
62#define NAND_Ecc_P2048o (1 << 27)
63
64#define TF(value) (value ? 1 : 0)
65
66#define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
67#define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
68#define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
69#define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
70#define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
71#define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
72#define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
73#define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
74
75#define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
76#define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
77#define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
78#define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
79#define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
80#define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
81#define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
82#define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
83
84#define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
85#define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
86#define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
87#define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
88#define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
89#define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
90#define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
91#define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
92
93#define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
94#define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
95#define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
96#define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
97#define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
98#define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
99#define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
100#define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
101
102#define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
103#define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
104
65b97cf6
AM
105#define PREFETCH_CONFIG1_CS_SHIFT 24
106#define ECC_CONFIG_CS_SHIFT 1
107#define CS_MASK 0x7
108#define ENABLE_PREFETCH (0x1 << 7)
109#define DMA_MPU_MODE_SHIFT 2
2ef9f3dd 110#define ECCSIZE0_SHIFT 12
65b97cf6
AM
111#define ECCSIZE1_SHIFT 22
112#define ECC1RESULTSIZE 0x1
113#define ECCCLEAR 0x100
114#define ECC1 0x1
47f88af4
AM
115#define PREFETCH_FIFOTHRESHOLD_MAX 0x40
116#define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
117#define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
118#define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
119#define STATUS_BUFF_EMPTY 0x00000001
65b97cf6 120
d5e7c864
LV
121#define OMAP24XX_DMA_GPMC 4
122
62116e51
PA
123#define SECTOR_BYTES 512
124/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
125#define BCH4_BIT_PAD 4
62116e51
PA
126
127/* GPMC ecc engine settings for read */
128#define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
129#define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
130#define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
131#define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
132#define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
133
134/* GPMC ecc engine settings for write */
135#define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
136#define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
137#define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
138
b491da72 139#define BADBLOCK_MARKER_LENGTH 2
a919e511 140
9748fff9 141static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
142 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
143 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
144 0x07, 0x0e};
62116e51
PA
145static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
146 0xac, 0x6b, 0xff, 0x99, 0x7b};
147static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
62116e51 148
1dc338e8
RL
149/* Shared among all NAND instances to synchronize access to the ECC Engine */
150static struct nand_hw_control omap_gpmc_controller = {
151 .lock = __SPIN_LOCK_UNLOCKED(omap_gpmc_controller.lock),
152 .wq = __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller.wq),
153};
59e9c5ae 154
67ce04bf 155struct omap_nand_info {
67ce04bf
VS
156 struct nand_chip nand;
157 struct platform_device *pdev;
158
159 int gpmc_cs;
01b95fc6
RQ
160 bool dev_ready;
161 enum nand_io xfer_type;
162 int devsize;
4e558072 163 enum omap_ecc ecc_opt;
01b95fc6
RQ
164 struct device_node *elm_of_node;
165
166 unsigned long phys_base;
dfe32893 167 struct completion comp;
763e7359 168 struct dma_chan *dma;
5c468455
AM
169 int gpmc_irq_fifo;
170 int gpmc_irq_count;
4e070376
SG
171 enum {
172 OMAP_NAND_IO_READ = 0, /* read */
173 OMAP_NAND_IO_WRITE, /* write */
174 } iomode;
175 u_char *buf;
176 int buf_len;
c509aefd 177 /* Interface to GPMC */
65b97cf6 178 struct gpmc_nand_regs reg;
c509aefd 179 struct gpmc_nand_ops *ops;
c9711ec5 180 bool flash_bbt;
94cb4ee0
RL
181 /* generated at runtime depending on ECC algorithm and layout selected */
182 struct nand_ecclayout oobinfo;
a919e511 183 /* fields specific for BCHx_HW ECC scheme */
62116e51 184 struct device *elm_dev;
67ce04bf
VS
185};
186
4578ea9a
BB
187static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
188{
432420c0 189 return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
4578ea9a 190}
432420c0 191
65b97cf6
AM
192/**
193 * omap_prefetch_enable - configures and starts prefetch transfer
194 * @cs: cs (chip select) number
195 * @fifo_th: fifo threshold to be used for read/ write
196 * @dma_mode: dma mode enable (1) or disable (0)
197 * @u32_count: number of bytes to be transferred
198 * @is_write: prefetch read(0) or write post(1) mode
199 */
200static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
201 unsigned int u32_count, int is_write, struct omap_nand_info *info)
202{
203 u32 val;
204
205 if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
206 return -1;
207
208 if (readl(info->reg.gpmc_prefetch_control))
209 return -EBUSY;
210
211 /* Set the amount of bytes to be prefetched */
212 writel(u32_count, info->reg.gpmc_prefetch_config2);
213
214 /* Set dma/mpu mode, the prefetch read / post write and
215 * enable the engine. Set which cs is has requested for.
216 */
217 val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
218 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
219 (dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write));
220 writel(val, info->reg.gpmc_prefetch_config1);
221
222 /* Start the prefetch engine */
223 writel(0x1, info->reg.gpmc_prefetch_control);
224
225 return 0;
226}
227
228/**
229 * omap_prefetch_reset - disables and stops the prefetch engine
230 */
231static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
232{
233 u32 config1;
234
235 /* check if the same module/cs is trying to reset */
236 config1 = readl(info->reg.gpmc_prefetch_config1);
237 if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
238 return -EINVAL;
239
240 /* Stop the PFPW engine */
241 writel(0x0, info->reg.gpmc_prefetch_control);
242
243 /* Reset/disable the PFPW engine */
244 writel(0x0, info->reg.gpmc_prefetch_config1);
245
246 return 0;
247}
248
67ce04bf
VS
249/**
250 * omap_hwcontrol - hardware specific access to control-lines
251 * @mtd: MTD device structure
252 * @cmd: command to device
253 * @ctrl:
254 * NAND_NCE: bit 0 -> don't care
255 * NAND_CLE: bit 1 -> Command Latch
256 * NAND_ALE: bit 2 -> Address Latch
257 *
258 * NOTE: boards may use different bits for these!!
259 */
260static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
261{
4578ea9a 262 struct omap_nand_info *info = mtd_to_omap(mtd);
67ce04bf 263
2c01946c
SG
264 if (cmd != NAND_CMD_NONE) {
265 if (ctrl & NAND_CLE)
65b97cf6 266 writeb(cmd, info->reg.gpmc_nand_command);
2c01946c
SG
267
268 else if (ctrl & NAND_ALE)
65b97cf6 269 writeb(cmd, info->reg.gpmc_nand_address);
2c01946c
SG
270
271 else /* NAND_NCE */
65b97cf6 272 writeb(cmd, info->reg.gpmc_nand_data);
2c01946c 273 }
67ce04bf
VS
274}
275
59e9c5ae 276/**
277 * omap_read_buf8 - read data from NAND controller into buffer
278 * @mtd: MTD device structure
279 * @buf: buffer to store date
280 * @len: number of bytes to read
281 */
282static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
283{
4bd4ebcc 284 struct nand_chip *nand = mtd_to_nand(mtd);
59e9c5ae 285
286 ioread8_rep(nand->IO_ADDR_R, buf, len);
287}
288
289/**
290 * omap_write_buf8 - write buffer to NAND controller
291 * @mtd: MTD device structure
292 * @buf: data buffer
293 * @len: number of bytes to write
294 */
295static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
296{
4578ea9a 297 struct omap_nand_info *info = mtd_to_omap(mtd);
59e9c5ae 298 u_char *p = (u_char *)buf;
d6e55216 299 bool status;
59e9c5ae 300
301 while (len--) {
302 iowrite8(*p++, info->nand.IO_ADDR_W);
2c01946c
SG
303 /* wait until buffer is available for write */
304 do {
d6e55216 305 status = info->ops->nand_writebuffer_empty();
2c01946c 306 } while (!status);
59e9c5ae 307 }
308}
309
67ce04bf
VS
310/**
311 * omap_read_buf16 - read data from NAND controller into buffer
312 * @mtd: MTD device structure
313 * @buf: buffer to store date
314 * @len: number of bytes to read
315 */
316static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
317{
4bd4ebcc 318 struct nand_chip *nand = mtd_to_nand(mtd);
67ce04bf 319
59e9c5ae 320 ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
67ce04bf
VS
321}
322
323/**
324 * omap_write_buf16 - write buffer to NAND controller
325 * @mtd: MTD device structure
326 * @buf: data buffer
327 * @len: number of bytes to write
328 */
329static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
330{
4578ea9a 331 struct omap_nand_info *info = mtd_to_omap(mtd);
67ce04bf 332 u16 *p = (u16 *) buf;
d6e55216 333 bool status;
67ce04bf
VS
334 /* FIXME try bursts of writesw() or DMA ... */
335 len >>= 1;
336
337 while (len--) {
59e9c5ae 338 iowrite16(*p++, info->nand.IO_ADDR_W);
2c01946c
SG
339 /* wait until buffer is available for write */
340 do {
d6e55216 341 status = info->ops->nand_writebuffer_empty();
2c01946c 342 } while (!status);
67ce04bf
VS
343 }
344}
59e9c5ae 345
346/**
347 * omap_read_buf_pref - read data from NAND controller into buffer
348 * @mtd: MTD device structure
349 * @buf: buffer to store date
350 * @len: number of bytes to read
351 */
352static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
353{
4578ea9a 354 struct omap_nand_info *info = mtd_to_omap(mtd);
2c01946c 355 uint32_t r_count = 0;
59e9c5ae 356 int ret = 0;
357 u32 *p = (u32 *)buf;
358
359 /* take care of subpage reads */
c3341d0c
VS
360 if (len % 4) {
361 if (info->nand.options & NAND_BUSWIDTH_16)
362 omap_read_buf16(mtd, buf, len % 4);
363 else
364 omap_read_buf8(mtd, buf, len % 4);
365 p = (u32 *) (buf + len % 4);
366 len -= len % 4;
59e9c5ae 367 }
59e9c5ae 368
369 /* configure and start prefetch transfer */
65b97cf6
AM
370 ret = omap_prefetch_enable(info->gpmc_cs,
371 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
59e9c5ae 372 if (ret) {
373 /* PFPW engine is busy, use cpu copy method */
374 if (info->nand.options & NAND_BUSWIDTH_16)
c5d8c0ca 375 omap_read_buf16(mtd, (u_char *)p, len);
59e9c5ae 376 else
c5d8c0ca 377 omap_read_buf8(mtd, (u_char *)p, len);
59e9c5ae 378 } else {
379 do {
65b97cf6 380 r_count = readl(info->reg.gpmc_prefetch_status);
47f88af4 381 r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
2c01946c
SG
382 r_count = r_count >> 2;
383 ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
59e9c5ae 384 p += r_count;
385 len -= r_count << 2;
386 } while (len);
59e9c5ae 387 /* disable and stop the PFPW engine */
65b97cf6 388 omap_prefetch_reset(info->gpmc_cs, info);
59e9c5ae 389 }
390}
391
392/**
393 * omap_write_buf_pref - write buffer to NAND controller
394 * @mtd: MTD device structure
395 * @buf: data buffer
396 * @len: number of bytes to write
397 */
398static void omap_write_buf_pref(struct mtd_info *mtd,
399 const u_char *buf, int len)
400{
4578ea9a 401 struct omap_nand_info *info = mtd_to_omap(mtd);
4e070376 402 uint32_t w_count = 0;
59e9c5ae 403 int i = 0, ret = 0;
c5d8c0ca 404 u16 *p = (u16 *)buf;
4e070376 405 unsigned long tim, limit;
65b97cf6 406 u32 val;
59e9c5ae 407
408 /* take care of subpage writes */
409 if (len % 2 != 0) {
2c01946c 410 writeb(*buf, info->nand.IO_ADDR_W);
59e9c5ae 411 p = (u16 *)(buf + 1);
412 len--;
413 }
414
415 /* configure and start prefetch transfer */
65b97cf6
AM
416 ret = omap_prefetch_enable(info->gpmc_cs,
417 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
59e9c5ae 418 if (ret) {
419 /* PFPW engine is busy, use cpu copy method */
420 if (info->nand.options & NAND_BUSWIDTH_16)
c5d8c0ca 421 omap_write_buf16(mtd, (u_char *)p, len);
59e9c5ae 422 else
c5d8c0ca 423 omap_write_buf8(mtd, (u_char *)p, len);
59e9c5ae 424 } else {
2c01946c 425 while (len) {
65b97cf6 426 w_count = readl(info->reg.gpmc_prefetch_status);
47f88af4 427 w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
2c01946c 428 w_count = w_count >> 1;
59e9c5ae 429 for (i = 0; (i < w_count) && len; i++, len -= 2)
2c01946c 430 iowrite16(*p++, info->nand.IO_ADDR_W);
59e9c5ae 431 }
2c01946c 432 /* wait for data to flushed-out before reset the prefetch */
4e070376
SG
433 tim = 0;
434 limit = (loops_per_jiffy *
435 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
65b97cf6 436 do {
4e070376 437 cpu_relax();
65b97cf6 438 val = readl(info->reg.gpmc_prefetch_status);
47f88af4 439 val = PREFETCH_STATUS_COUNT(val);
65b97cf6 440 } while (val && (tim++ < limit));
4e070376 441
59e9c5ae 442 /* disable and stop the PFPW engine */
65b97cf6 443 omap_prefetch_reset(info->gpmc_cs, info);
59e9c5ae 444 }
445}
446
dfe32893 447/*
2df41d05 448 * omap_nand_dma_callback: callback on the completion of dma transfer
dfe32893 449 * @data: pointer to completion data structure
450 */
763e7359
RK
451static void omap_nand_dma_callback(void *data)
452{
453 complete((struct completion *) data);
454}
dfe32893 455
456/*
4cacbe22 457 * omap_nand_dma_transfer: configure and start dma transfer
dfe32893 458 * @mtd: MTD device structure
459 * @addr: virtual address in RAM of source/destination
460 * @len: number of data bytes to be transferred
461 * @is_write: flag for read/write operation
462 */
463static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
464 unsigned int len, int is_write)
465{
4578ea9a 466 struct omap_nand_info *info = mtd_to_omap(mtd);
2df41d05 467 struct dma_async_tx_descriptor *tx;
dfe32893 468 enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
469 DMA_FROM_DEVICE;
2df41d05 470 struct scatterlist sg;
4e070376 471 unsigned long tim, limit;
2df41d05
RK
472 unsigned n;
473 int ret;
65b97cf6 474 u32 val;
dfe32893 475
476 if (addr >= high_memory) {
477 struct page *p1;
478
479 if (((size_t)addr & PAGE_MASK) !=
480 ((size_t)(addr + len - 1) & PAGE_MASK))
481 goto out_copy;
482 p1 = vmalloc_to_page(addr);
483 if (!p1)
484 goto out_copy;
485 addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
486 }
487
2df41d05
RK
488 sg_init_one(&sg, addr, len);
489 n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
490 if (n == 0) {
dfe32893 491 dev_err(&info->pdev->dev,
492 "Couldn't DMA map a %d byte buffer\n", len);
493 goto out_copy;
494 }
495
2df41d05
RK
496 tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
497 is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
498 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
499 if (!tx)
500 goto out_copy_unmap;
501
502 tx->callback = omap_nand_dma_callback;
503 tx->callback_param = &info->comp;
504 dmaengine_submit(tx);
505
65b97cf6
AM
506 /* configure and start prefetch transfer */
507 ret = omap_prefetch_enable(info->gpmc_cs,
508 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
dfe32893 509 if (ret)
4e070376 510 /* PFPW engine is busy, use cpu copy method */
d7efe228 511 goto out_copy_unmap;
dfe32893 512
513 init_completion(&info->comp);
2df41d05 514 dma_async_issue_pending(info->dma);
dfe32893 515
516 /* setup and start DMA using dma_addr */
517 wait_for_completion(&info->comp);
4e070376
SG
518 tim = 0;
519 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
65b97cf6
AM
520
521 do {
4e070376 522 cpu_relax();
65b97cf6 523 val = readl(info->reg.gpmc_prefetch_status);
47f88af4 524 val = PREFETCH_STATUS_COUNT(val);
65b97cf6 525 } while (val && (tim++ < limit));
dfe32893 526
dfe32893 527 /* disable and stop the PFPW engine */
65b97cf6 528 omap_prefetch_reset(info->gpmc_cs, info);
dfe32893 529
2df41d05 530 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
dfe32893 531 return 0;
532
d7efe228 533out_copy_unmap:
2df41d05 534 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
dfe32893 535out_copy:
536 if (info->nand.options & NAND_BUSWIDTH_16)
537 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
538 : omap_write_buf16(mtd, (u_char *) addr, len);
539 else
540 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
541 : omap_write_buf8(mtd, (u_char *) addr, len);
542 return 0;
543}
dfe32893 544
545/**
546 * omap_read_buf_dma_pref - read data from NAND controller into buffer
547 * @mtd: MTD device structure
548 * @buf: buffer to store date
549 * @len: number of bytes to read
550 */
551static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
552{
553 if (len <= mtd->oobsize)
554 omap_read_buf_pref(mtd, buf, len);
555 else
556 /* start transfer in DMA mode */
557 omap_nand_dma_transfer(mtd, buf, len, 0x0);
558}
559
560/**
561 * omap_write_buf_dma_pref - write buffer to NAND controller
562 * @mtd: MTD device structure
563 * @buf: data buffer
564 * @len: number of bytes to write
565 */
566static void omap_write_buf_dma_pref(struct mtd_info *mtd,
567 const u_char *buf, int len)
568{
569 if (len <= mtd->oobsize)
570 omap_write_buf_pref(mtd, buf, len);
571 else
572 /* start transfer in DMA mode */
bdaefc41 573 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
dfe32893 574}
575
4e070376 576/*
4cacbe22 577 * omap_nand_irq - GPMC irq handler
4e070376
SG
578 * @this_irq: gpmc irq number
579 * @dev: omap_nand_info structure pointer is passed here
580 */
581static irqreturn_t omap_nand_irq(int this_irq, void *dev)
582{
583 struct omap_nand_info *info = (struct omap_nand_info *) dev;
584 u32 bytes;
4e070376 585
65b97cf6 586 bytes = readl(info->reg.gpmc_prefetch_status);
47f88af4 587 bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
4e070376
SG
588 bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */
589 if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
5c468455 590 if (this_irq == info->gpmc_irq_count)
4e070376
SG
591 goto done;
592
593 if (info->buf_len && (info->buf_len < bytes))
594 bytes = info->buf_len;
595 else if (!info->buf_len)
596 bytes = 0;
597 iowrite32_rep(info->nand.IO_ADDR_W,
598 (u32 *)info->buf, bytes >> 2);
599 info->buf = info->buf + bytes;
600 info->buf_len -= bytes;
601
602 } else {
603 ioread32_rep(info->nand.IO_ADDR_R,
604 (u32 *)info->buf, bytes >> 2);
605 info->buf = info->buf + bytes;
606
5c468455 607 if (this_irq == info->gpmc_irq_count)
4e070376
SG
608 goto done;
609 }
4e070376
SG
610
611 return IRQ_HANDLED;
612
613done:
614 complete(&info->comp);
4e070376 615
5c468455
AM
616 disable_irq_nosync(info->gpmc_irq_fifo);
617 disable_irq_nosync(info->gpmc_irq_count);
4e070376
SG
618
619 return IRQ_HANDLED;
620}
621
622/*
623 * omap_read_buf_irq_pref - read data from NAND controller into buffer
624 * @mtd: MTD device structure
625 * @buf: buffer to store date
626 * @len: number of bytes to read
627 */
628static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
629{
4578ea9a 630 struct omap_nand_info *info = mtd_to_omap(mtd);
4e070376
SG
631 int ret = 0;
632
633 if (len <= mtd->oobsize) {
634 omap_read_buf_pref(mtd, buf, len);
635 return;
636 }
637
638 info->iomode = OMAP_NAND_IO_READ;
639 info->buf = buf;
640 init_completion(&info->comp);
641
642 /* configure and start prefetch transfer */
65b97cf6
AM
643 ret = omap_prefetch_enable(info->gpmc_cs,
644 PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
4e070376
SG
645 if (ret)
646 /* PFPW engine is busy, use cpu copy method */
647 goto out_copy;
648
649 info->buf_len = len;
5c468455
AM
650
651 enable_irq(info->gpmc_irq_count);
652 enable_irq(info->gpmc_irq_fifo);
4e070376
SG
653
654 /* waiting for read to complete */
655 wait_for_completion(&info->comp);
656
657 /* disable and stop the PFPW engine */
65b97cf6 658 omap_prefetch_reset(info->gpmc_cs, info);
4e070376
SG
659 return;
660
661out_copy:
662 if (info->nand.options & NAND_BUSWIDTH_16)
663 omap_read_buf16(mtd, buf, len);
664 else
665 omap_read_buf8(mtd, buf, len);
666}
667
668/*
669 * omap_write_buf_irq_pref - write buffer to NAND controller
670 * @mtd: MTD device structure
671 * @buf: data buffer
672 * @len: number of bytes to write
673 */
674static void omap_write_buf_irq_pref(struct mtd_info *mtd,
675 const u_char *buf, int len)
676{
4578ea9a 677 struct omap_nand_info *info = mtd_to_omap(mtd);
4e070376
SG
678 int ret = 0;
679 unsigned long tim, limit;
65b97cf6 680 u32 val;
4e070376
SG
681
682 if (len <= mtd->oobsize) {
683 omap_write_buf_pref(mtd, buf, len);
684 return;
685 }
686
687 info->iomode = OMAP_NAND_IO_WRITE;
688 info->buf = (u_char *) buf;
689 init_completion(&info->comp);
690
317379a9 691 /* configure and start prefetch transfer : size=24 */
65b97cf6
AM
692 ret = omap_prefetch_enable(info->gpmc_cs,
693 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
4e070376
SG
694 if (ret)
695 /* PFPW engine is busy, use cpu copy method */
696 goto out_copy;
697
698 info->buf_len = len;
5c468455
AM
699
700 enable_irq(info->gpmc_irq_count);
701 enable_irq(info->gpmc_irq_fifo);
4e070376
SG
702
703 /* waiting for write to complete */
704 wait_for_completion(&info->comp);
5c468455 705
4e070376
SG
706 /* wait for data to flushed-out before reset the prefetch */
707 tim = 0;
708 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
65b97cf6
AM
709 do {
710 val = readl(info->reg.gpmc_prefetch_status);
47f88af4 711 val = PREFETCH_STATUS_COUNT(val);
4e070376 712 cpu_relax();
65b97cf6 713 } while (val && (tim++ < limit));
4e070376
SG
714
715 /* disable and stop the PFPW engine */
65b97cf6 716 omap_prefetch_reset(info->gpmc_cs, info);
4e070376
SG
717 return;
718
719out_copy:
720 if (info->nand.options & NAND_BUSWIDTH_16)
721 omap_write_buf16(mtd, buf, len);
722 else
723 omap_write_buf8(mtd, buf, len);
724}
725
67ce04bf
VS
726/**
727 * gen_true_ecc - This function will generate true ECC value
728 * @ecc_buf: buffer to store ecc code
729 *
730 * This generated true ECC value can be used when correcting
731 * data read from NAND flash memory core
732 */
733static void gen_true_ecc(u8 *ecc_buf)
734{
735 u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
736 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
737
738 ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
739 P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
740 ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
741 P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
742 ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
743 P1e(tmp) | P2048o(tmp) | P2048e(tmp));
744}
745
746/**
747 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
748 * @ecc_data1: ecc code from nand spare area
749 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
750 * @page_data: page data
751 *
752 * This function compares two ECC's and indicates if there is an error.
753 * If the error can be corrected it will be corrected to the buffer.
74f1b724
JO
754 * If there is no error, %0 is returned. If there is an error but it
755 * was corrected, %1 is returned. Otherwise, %-1 is returned.
67ce04bf
VS
756 */
757static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
758 u8 *ecc_data2, /* read from register */
759 u8 *page_data)
760{
761 uint i;
762 u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
763 u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
764 u8 ecc_bit[24];
765 u8 ecc_sum = 0;
766 u8 find_bit = 0;
767 uint find_byte = 0;
768 int isEccFF;
769
770 isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
771
772 gen_true_ecc(ecc_data1);
773 gen_true_ecc(ecc_data2);
774
775 for (i = 0; i <= 2; i++) {
776 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
777 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
778 }
779
780 for (i = 0; i < 8; i++) {
781 tmp0_bit[i] = *ecc_data1 % 2;
782 *ecc_data1 = *ecc_data1 / 2;
783 }
784
785 for (i = 0; i < 8; i++) {
786 tmp1_bit[i] = *(ecc_data1 + 1) % 2;
787 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
788 }
789
790 for (i = 0; i < 8; i++) {
791 tmp2_bit[i] = *(ecc_data1 + 2) % 2;
792 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
793 }
794
795 for (i = 0; i < 8; i++) {
796 comp0_bit[i] = *ecc_data2 % 2;
797 *ecc_data2 = *ecc_data2 / 2;
798 }
799
800 for (i = 0; i < 8; i++) {
801 comp1_bit[i] = *(ecc_data2 + 1) % 2;
802 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
803 }
804
805 for (i = 0; i < 8; i++) {
806 comp2_bit[i] = *(ecc_data2 + 2) % 2;
807 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
808 }
809
810 for (i = 0; i < 6; i++)
811 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
812
813 for (i = 0; i < 8; i++)
814 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
815
816 for (i = 0; i < 8; i++)
817 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
818
819 ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
820 ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
821
822 for (i = 0; i < 24; i++)
823 ecc_sum += ecc_bit[i];
824
825 switch (ecc_sum) {
826 case 0:
827 /* Not reached because this function is not called if
828 * ECC values are equal
829 */
830 return 0;
831
832 case 1:
833 /* Uncorrectable error */
289c0522 834 pr_debug("ECC UNCORRECTED_ERROR 1\n");
6e941192 835 return -EBADMSG;
67ce04bf
VS
836
837 case 11:
838 /* UN-Correctable error */
289c0522 839 pr_debug("ECC UNCORRECTED_ERROR B\n");
6e941192 840 return -EBADMSG;
67ce04bf
VS
841
842 case 12:
843 /* Correctable error */
844 find_byte = (ecc_bit[23] << 8) +
845 (ecc_bit[21] << 7) +
846 (ecc_bit[19] << 6) +
847 (ecc_bit[17] << 5) +
848 (ecc_bit[15] << 4) +
849 (ecc_bit[13] << 3) +
850 (ecc_bit[11] << 2) +
851 (ecc_bit[9] << 1) +
852 ecc_bit[7];
853
854 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
855
0a32a102
BN
856 pr_debug("Correcting single bit ECC error at offset: "
857 "%d, bit: %d\n", find_byte, find_bit);
67ce04bf
VS
858
859 page_data[find_byte] ^= (1 << find_bit);
860
74f1b724 861 return 1;
67ce04bf
VS
862 default:
863 if (isEccFF) {
864 if (ecc_data2[0] == 0 &&
865 ecc_data2[1] == 0 &&
866 ecc_data2[2] == 0)
867 return 0;
868 }
289c0522 869 pr_debug("UNCORRECTED_ERROR default\n");
6e941192 870 return -EBADMSG;
67ce04bf
VS
871 }
872}
873
874/**
875 * omap_correct_data - Compares the ECC read with HW generated ECC
876 * @mtd: MTD device structure
877 * @dat: page data
878 * @read_ecc: ecc read from nand flash
879 * @calc_ecc: ecc read from HW ECC registers
880 *
881 * Compares the ecc read from nand spare area with ECC registers values
74f1b724
JO
882 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
883 * detection and correction. If there are no errors, %0 is returned. If
884 * there were errors and all of the errors were corrected, the number of
885 * corrected errors is returned. If uncorrectable errors exist, %-1 is
886 * returned.
67ce04bf
VS
887 */
888static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
889 u_char *read_ecc, u_char *calc_ecc)
890{
4578ea9a 891 struct omap_nand_info *info = mtd_to_omap(mtd);
67ce04bf 892 int blockCnt = 0, i = 0, ret = 0;
74f1b724 893 int stat = 0;
67ce04bf
VS
894
895 /* Ex NAND_ECC_HW12_2048 */
896 if ((info->nand.ecc.mode == NAND_ECC_HW) &&
897 (info->nand.ecc.size == 2048))
898 blockCnt = 4;
899 else
900 blockCnt = 1;
901
902 for (i = 0; i < blockCnt; i++) {
903 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
904 ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
905 if (ret < 0)
906 return ret;
74f1b724
JO
907 /* keep track of the number of corrected errors */
908 stat += ret;
67ce04bf
VS
909 }
910 read_ecc += 3;
911 calc_ecc += 3;
912 dat += 512;
913 }
74f1b724 914 return stat;
67ce04bf
VS
915}
916
917/**
918 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
919 * @mtd: MTD device structure
920 * @dat: The pointer to data on which ecc is computed
921 * @ecc_code: The ecc_code buffer
922 *
923 * Using noninverted ECC can be considered ugly since writing a blank
924 * page ie. padding will clear the ECC bytes. This is no problem as long
925 * nobody is trying to write data on the seemingly unused page. Reading
926 * an erased page will produce an ECC mismatch between generated and read
927 * ECC bytes that has to be dealt with separately.
928 */
929static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
930 u_char *ecc_code)
931{
4578ea9a 932 struct omap_nand_info *info = mtd_to_omap(mtd);
65b97cf6
AM
933 u32 val;
934
935 val = readl(info->reg.gpmc_ecc_config);
40ddbf50 936 if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
65b97cf6
AM
937 return -EINVAL;
938
939 /* read ecc result */
940 val = readl(info->reg.gpmc_ecc1_result);
941 *ecc_code++ = val; /* P128e, ..., P1e */
942 *ecc_code++ = val >> 16; /* P128o, ..., P1o */
943 /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
944 *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
945
946 return 0;
67ce04bf
VS
947}
948
949/**
950 * omap_enable_hwecc - This function enables the hardware ecc functionality
951 * @mtd: MTD device structure
952 * @mode: Read/Write mode
953 */
954static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
955{
4578ea9a 956 struct omap_nand_info *info = mtd_to_omap(mtd);
4bd4ebcc 957 struct nand_chip *chip = mtd_to_nand(mtd);
67ce04bf 958 unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
65b97cf6
AM
959 u32 val;
960
961 /* clear ecc and enable bits */
962 val = ECCCLEAR | ECC1;
963 writel(val, info->reg.gpmc_ecc_control);
67ce04bf 964
65b97cf6
AM
965 /* program ecc and result sizes */
966 val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
967 ECC1RESULTSIZE);
968 writel(val, info->reg.gpmc_ecc_size_config);
969
970 switch (mode) {
971 case NAND_ECC_READ:
972 case NAND_ECC_WRITE:
973 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
974 break;
975 case NAND_ECC_READSYN:
976 writel(ECCCLEAR, info->reg.gpmc_ecc_control);
977 break;
978 default:
979 dev_info(&info->pdev->dev,
980 "error: unrecognized Mode[%d]!\n", mode);
981 break;
982 }
67ce04bf 983
65b97cf6
AM
984 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
985 val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
986 writel(val, info->reg.gpmc_ecc_config);
67ce04bf 987}
2c01946c 988
67ce04bf
VS
989/**
990 * omap_wait - wait until the command is done
991 * @mtd: MTD device structure
992 * @chip: NAND Chip structure
993 *
994 * Wait function is called during Program and erase operations and
995 * the way it is called from MTD layer, we should wait till the NAND
996 * chip is ready after the programming/erase operation has completed.
997 *
998 * Erase can take up to 400ms and program up to 20ms according to
999 * general NAND and SmartMedia specs
1000 */
1001static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
1002{
4bd4ebcc 1003 struct nand_chip *this = mtd_to_nand(mtd);
4578ea9a 1004 struct omap_nand_info *info = mtd_to_omap(mtd);
67ce04bf 1005 unsigned long timeo = jiffies;
a9c465f0 1006 int status, state = this->state;
67ce04bf
VS
1007
1008 if (state == FL_ERASING)
4ff6772b 1009 timeo += msecs_to_jiffies(400);
67ce04bf 1010 else
4ff6772b 1011 timeo += msecs_to_jiffies(20);
67ce04bf 1012
65b97cf6 1013 writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
67ce04bf 1014 while (time_before(jiffies, timeo)) {
65b97cf6 1015 status = readb(info->reg.gpmc_nand_data);
c276aca4 1016 if (status & NAND_STATUS_READY)
67ce04bf 1017 break;
c276aca4 1018 cond_resched();
67ce04bf 1019 }
a9c465f0 1020
4ea1e4ba 1021 status = readb(info->reg.gpmc_nand_data);
67ce04bf
VS
1022 return status;
1023}
1024
1025/**
1026 * omap_dev_ready - calls the platform specific dev_ready function
1027 * @mtd: MTD device structure
1028 */
1029static int omap_dev_ready(struct mtd_info *mtd)
1030{
2c01946c 1031 unsigned int val = 0;
4578ea9a 1032 struct omap_nand_info *info = mtd_to_omap(mtd);
67ce04bf 1033
65b97cf6
AM
1034 val = readl(info->reg.gpmc_status);
1035
67ce04bf 1036 if ((val & 0x100) == 0x100) {
65b97cf6 1037 return 1;
67ce04bf 1038 } else {
65b97cf6 1039 return 0;
67ce04bf 1040 }
67ce04bf
VS
1041}
1042
0e618ef0 1043/**
7c977c3e 1044 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
0e618ef0
ID
1045 * @mtd: MTD device structure
1046 * @mode: Read/Write mode
62116e51 1047 *
0760e818
NMG
1048 * When using BCH with SW correction (i.e. no ELM), sector size is set
1049 * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
1050 * for both reading and writing with:
62116e51
PA
1051 * eccsize0 = 0 (no additional protected byte in spare area)
1052 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
0e618ef0 1053 */
7c977c3e 1054static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode)
0e618ef0 1055{
16e69322 1056 unsigned int bch_type;
2ef9f3dd 1057 unsigned int dev_width, nsectors;
4578ea9a 1058 struct omap_nand_info *info = mtd_to_omap(mtd);
c5957a32 1059 enum omap_ecc ecc_opt = info->ecc_opt;
4bd4ebcc 1060 struct nand_chip *chip = mtd_to_nand(mtd);
62116e51
PA
1061 u32 val, wr_mode;
1062 unsigned int ecc_size1, ecc_size0;
1063
c5957a32
PG
1064 /* GPMC configurations for calculating ECC */
1065 switch (ecc_opt) {
1066 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
16e69322
PG
1067 bch_type = 0;
1068 nsectors = 1;
0760e818
NMG
1069 wr_mode = BCH_WRAPMODE_6;
1070 ecc_size0 = BCH_ECC_SIZE0;
1071 ecc_size1 = BCH_ECC_SIZE1;
c5957a32
PG
1072 break;
1073 case OMAP_ECC_BCH4_CODE_HW:
16e69322
PG
1074 bch_type = 0;
1075 nsectors = chip->ecc.steps;
c5957a32
PG
1076 if (mode == NAND_ECC_READ) {
1077 wr_mode = BCH_WRAPMODE_1;
1078 ecc_size0 = BCH4R_ECC_SIZE0;
1079 ecc_size1 = BCH4R_ECC_SIZE1;
1080 } else {
1081 wr_mode = BCH_WRAPMODE_6;
1082 ecc_size0 = BCH_ECC_SIZE0;
1083 ecc_size1 = BCH_ECC_SIZE1;
1084 }
1085 break;
1086 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
16e69322
PG
1087 bch_type = 1;
1088 nsectors = 1;
0760e818
NMG
1089 wr_mode = BCH_WRAPMODE_6;
1090 ecc_size0 = BCH_ECC_SIZE0;
1091 ecc_size1 = BCH_ECC_SIZE1;
c5957a32
PG
1092 break;
1093 case OMAP_ECC_BCH8_CODE_HW:
16e69322
PG
1094 bch_type = 1;
1095 nsectors = chip->ecc.steps;
c5957a32
PG
1096 if (mode == NAND_ECC_READ) {
1097 wr_mode = BCH_WRAPMODE_1;
1098 ecc_size0 = BCH8R_ECC_SIZE0;
1099 ecc_size1 = BCH8R_ECC_SIZE1;
1100 } else {
1101 wr_mode = BCH_WRAPMODE_6;
1102 ecc_size0 = BCH_ECC_SIZE0;
1103 ecc_size1 = BCH_ECC_SIZE1;
1104 }
1105 break;
9748fff9 1106 case OMAP_ECC_BCH16_CODE_HW:
1107 bch_type = 0x2;
1108 nsectors = chip->ecc.steps;
1109 if (mode == NAND_ECC_READ) {
1110 wr_mode = 0x01;
1111 ecc_size0 = 52; /* ECC bits in nibbles per sector */
1112 ecc_size1 = 0; /* non-ECC bits in nibbles per sector */
1113 } else {
1114 wr_mode = 0x01;
1115 ecc_size0 = 0; /* extra bits in nibbles per sector */
1116 ecc_size1 = 52; /* OOB bits in nibbles per sector */
1117 }
1118 break;
c5957a32
PG
1119 default:
1120 return;
1121 }
2ef9f3dd
AM
1122
1123 writel(ECC1, info->reg.gpmc_ecc_control);
1124
62116e51
PA
1125 /* Configure ecc size for BCH */
1126 val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
2ef9f3dd
AM
1127 writel(val, info->reg.gpmc_ecc_size_config);
1128
62116e51
PA
1129 dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1130
2ef9f3dd
AM
1131 /* BCH configuration */
1132 val = ((1 << 16) | /* enable BCH */
16e69322 1133 (bch_type << 12) | /* BCH4/BCH8/BCH16 */
62116e51 1134 (wr_mode << 8) | /* wrap mode */
2ef9f3dd
AM
1135 (dev_width << 7) | /* bus width */
1136 (((nsectors-1) & 0x7) << 4) | /* number of sectors */
1137 (info->gpmc_cs << 1) | /* ECC CS */
1138 (0x1)); /* enable ECC */
1139
1140 writel(val, info->reg.gpmc_ecc_config);
1141
62116e51 1142 /* Clear ecc and enable bits */
2ef9f3dd 1143 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
0e618ef0 1144}
7c977c3e 1145
2c9f2365 1146static u8 bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
7bcd1dca
PG
1147static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1148 0x97, 0x79, 0xe5, 0x24, 0xb5};
0e618ef0 1149
62116e51 1150/**
a4c7ca00 1151 * omap_calculate_ecc_bch - Generate bytes of ECC bytes
62116e51
PA
1152 * @mtd: MTD device structure
1153 * @dat: The pointer to data on which ecc is computed
1154 * @ecc_code: The ecc_code buffer
1155 *
1156 * Support calculating of BCH4/8 ecc vectors for the page
1157 */
a4c7ca00 1158static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd,
f5dc06fb 1159 const u_char *dat, u_char *ecc_calc)
62116e51 1160{
4578ea9a 1161 struct omap_nand_info *info = mtd_to_omap(mtd);
f5dc06fb
PG
1162 int eccbytes = info->nand.ecc.bytes;
1163 struct gpmc_nand_regs *gpmc_regs = &info->reg;
1164 u8 *ecc_code;
62116e51 1165 unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4;
9748fff9 1166 u32 val;
2913aae5 1167 int i, j;
62116e51
PA
1168
1169 nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
62116e51 1170 for (i = 0; i < nsectors; i++) {
f5dc06fb
PG
1171 ecc_code = ecc_calc;
1172 switch (info->ecc_opt) {
7bcd1dca 1173 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
f5dc06fb
PG
1174 case OMAP_ECC_BCH8_CODE_HW:
1175 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1176 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1177 bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
1178 bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
62116e51
PA
1179 *ecc_code++ = (bch_val4 & 0xFF);
1180 *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1181 *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1182 *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1183 *ecc_code++ = (bch_val3 & 0xFF);
1184 *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1185 *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1186 *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1187 *ecc_code++ = (bch_val2 & 0xFF);
1188 *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1189 *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1190 *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1191 *ecc_code++ = (bch_val1 & 0xFF);
f5dc06fb 1192 break;
2c9f2365 1193 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
f5dc06fb
PG
1194 case OMAP_ECC_BCH4_CODE_HW:
1195 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1196 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
62116e51
PA
1197 *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1198 *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1199 *ecc_code++ = ((bch_val2 & 0xF) << 4) |
1200 ((bch_val1 >> 28) & 0xF);
1201 *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1202 *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1203 *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1204 *ecc_code++ = ((bch_val1 & 0xF) << 4);
f5dc06fb 1205 break;
9748fff9 1206 case OMAP_ECC_BCH16_CODE_HW:
1207 val = readl(gpmc_regs->gpmc_bch_result6[i]);
1208 ecc_code[0] = ((val >> 8) & 0xFF);
1209 ecc_code[1] = ((val >> 0) & 0xFF);
1210 val = readl(gpmc_regs->gpmc_bch_result5[i]);
1211 ecc_code[2] = ((val >> 24) & 0xFF);
1212 ecc_code[3] = ((val >> 16) & 0xFF);
1213 ecc_code[4] = ((val >> 8) & 0xFF);
1214 ecc_code[5] = ((val >> 0) & 0xFF);
1215 val = readl(gpmc_regs->gpmc_bch_result4[i]);
1216 ecc_code[6] = ((val >> 24) & 0xFF);
1217 ecc_code[7] = ((val >> 16) & 0xFF);
1218 ecc_code[8] = ((val >> 8) & 0xFF);
1219 ecc_code[9] = ((val >> 0) & 0xFF);
1220 val = readl(gpmc_regs->gpmc_bch_result3[i]);
1221 ecc_code[10] = ((val >> 24) & 0xFF);
1222 ecc_code[11] = ((val >> 16) & 0xFF);
1223 ecc_code[12] = ((val >> 8) & 0xFF);
1224 ecc_code[13] = ((val >> 0) & 0xFF);
1225 val = readl(gpmc_regs->gpmc_bch_result2[i]);
1226 ecc_code[14] = ((val >> 24) & 0xFF);
1227 ecc_code[15] = ((val >> 16) & 0xFF);
1228 ecc_code[16] = ((val >> 8) & 0xFF);
1229 ecc_code[17] = ((val >> 0) & 0xFF);
1230 val = readl(gpmc_regs->gpmc_bch_result1[i]);
1231 ecc_code[18] = ((val >> 24) & 0xFF);
1232 ecc_code[19] = ((val >> 16) & 0xFF);
1233 ecc_code[20] = ((val >> 8) & 0xFF);
1234 ecc_code[21] = ((val >> 0) & 0xFF);
1235 val = readl(gpmc_regs->gpmc_bch_result0[i]);
1236 ecc_code[22] = ((val >> 24) & 0xFF);
1237 ecc_code[23] = ((val >> 16) & 0xFF);
1238 ecc_code[24] = ((val >> 8) & 0xFF);
1239 ecc_code[25] = ((val >> 0) & 0xFF);
1240 break;
f5dc06fb
PG
1241 default:
1242 return -EINVAL;
62116e51 1243 }
f5dc06fb
PG
1244
1245 /* ECC scheme specific syndrome customizations */
1246 switch (info->ecc_opt) {
2c9f2365
PG
1247 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1248 /* Add constant polynomial to remainder, so that
1249 * ECC of blank pages results in 0x0 on reading back */
2913aae5
TJ
1250 for (j = 0; j < eccbytes; j++)
1251 ecc_calc[j] ^= bch4_polynomial[j];
2c9f2365 1252 break;
f5dc06fb
PG
1253 case OMAP_ECC_BCH4_CODE_HW:
1254 /* Set 8th ECC byte as 0x0 for ROM compatibility */
1255 ecc_calc[eccbytes - 1] = 0x0;
1256 break;
7bcd1dca
PG
1257 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1258 /* Add constant polynomial to remainder, so that
1259 * ECC of blank pages results in 0x0 on reading back */
2913aae5
TJ
1260 for (j = 0; j < eccbytes; j++)
1261 ecc_calc[j] ^= bch8_polynomial[j];
7bcd1dca 1262 break;
f5dc06fb
PG
1263 case OMAP_ECC_BCH8_CODE_HW:
1264 /* Set 14th ECC byte as 0x0 for ROM compatibility */
1265 ecc_calc[eccbytes - 1] = 0x0;
1266 break;
9748fff9 1267 case OMAP_ECC_BCH16_CODE_HW:
1268 break;
f5dc06fb
PG
1269 default:
1270 return -EINVAL;
1271 }
1272
1273 ecc_calc += eccbytes;
62116e51
PA
1274 }
1275
1276 return 0;
1277}
1278
1279/**
1280 * erased_sector_bitflips - count bit flips
1281 * @data: data sector buffer
1282 * @oob: oob buffer
1283 * @info: omap_nand_info
1284 *
1285 * Check the bit flips in erased page falls below correctable level.
1286 * If falls below, report the page as erased with correctable bit
1287 * flip, else report as uncorrectable page.
1288 */
1289static int erased_sector_bitflips(u_char *data, u_char *oob,
1290 struct omap_nand_info *info)
1291{
1292 int flip_bits = 0, i;
1293
1294 for (i = 0; i < info->nand.ecc.size; i++) {
1295 flip_bits += hweight8(~data[i]);
1296 if (flip_bits > info->nand.ecc.strength)
1297 return 0;
1298 }
1299
1300 for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1301 flip_bits += hweight8(~oob[i]);
1302 if (flip_bits > info->nand.ecc.strength)
1303 return 0;
1304 }
1305
1306 /*
1307 * Bit flips falls in correctable level.
1308 * Fill data area with 0xFF
1309 */
1310 if (flip_bits) {
1311 memset(data, 0xFF, info->nand.ecc.size);
1312 memset(oob, 0xFF, info->nand.ecc.bytes);
1313 }
1314
1315 return flip_bits;
1316}
1317
1318/**
1319 * omap_elm_correct_data - corrects page data area in case error reported
1320 * @mtd: MTD device structure
1321 * @data: page data
1322 * @read_ecc: ecc read from nand flash
1323 * @calc_ecc: ecc read from HW ECC registers
1324 *
1325 * Calculated ecc vector reported as zero in case of non-error pages.
78f43c53
PG
1326 * In case of non-zero ecc vector, first filter out erased-pages, and
1327 * then process data via ELM to detect bit-flips.
62116e51
PA
1328 */
1329static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
1330 u_char *read_ecc, u_char *calc_ecc)
1331{
4578ea9a 1332 struct omap_nand_info *info = mtd_to_omap(mtd);
de0a4d69 1333 struct nand_ecc_ctrl *ecc = &info->nand.ecc;
62116e51
PA
1334 int eccsteps = info->nand.ecc.steps;
1335 int i , j, stat = 0;
de0a4d69 1336 int eccflag, actual_eccbytes;
62116e51
PA
1337 struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1338 u_char *ecc_vec = calc_ecc;
1339 u_char *spare_ecc = read_ecc;
1340 u_char *erased_ecc_vec;
78f43c53
PG
1341 u_char *buf;
1342 int bitflip_count;
62116e51 1343 bool is_error_reported = false;
b08e1f63 1344 u32 bit_pos, byte_pos, error_max, pos;
13fbe064 1345 int err;
62116e51 1346
de0a4d69
PG
1347 switch (info->ecc_opt) {
1348 case OMAP_ECC_BCH4_CODE_HW:
1349 /* omit 7th ECC byte reserved for ROM code compatibility */
1350 actual_eccbytes = ecc->bytes - 1;
78f43c53 1351 erased_ecc_vec = bch4_vector;
de0a4d69
PG
1352 break;
1353 case OMAP_ECC_BCH8_CODE_HW:
1354 /* omit 14th ECC byte reserved for ROM code compatibility */
1355 actual_eccbytes = ecc->bytes - 1;
78f43c53 1356 erased_ecc_vec = bch8_vector;
de0a4d69 1357 break;
9748fff9 1358 case OMAP_ECC_BCH16_CODE_HW:
1359 actual_eccbytes = ecc->bytes;
1360 erased_ecc_vec = bch16_vector;
1361 break;
de0a4d69 1362 default:
d2f08c75 1363 dev_err(&info->pdev->dev, "invalid driver configuration\n");
de0a4d69
PG
1364 return -EINVAL;
1365 }
1366
62116e51
PA
1367 /* Initialize elm error vector to zero */
1368 memset(err_vec, 0, sizeof(err_vec));
1369
62116e51
PA
1370 for (i = 0; i < eccsteps ; i++) {
1371 eccflag = 0; /* initialize eccflag */
1372
1373 /*
1374 * Check any error reported,
1375 * In case of error, non zero ecc reported.
1376 */
de0a4d69 1377 for (j = 0; j < actual_eccbytes; j++) {
62116e51
PA
1378 if (calc_ecc[j] != 0) {
1379 eccflag = 1; /* non zero ecc, error present */
1380 break;
1381 }
1382 }
1383
1384 if (eccflag == 1) {
78f43c53
PG
1385 if (memcmp(calc_ecc, erased_ecc_vec,
1386 actual_eccbytes) == 0) {
62116e51 1387 /*
78f43c53
PG
1388 * calc_ecc[] matches pattern for ECC(all 0xff)
1389 * so this is definitely an erased-page
62116e51 1390 */
62116e51 1391 } else {
78f43c53
PG
1392 buf = &data[info->nand.ecc.size * i];
1393 /*
1394 * count number of 0-bits in read_buf.
1395 * This check can be removed once a similar
1396 * check is introduced in generic NAND driver
1397 */
1398 bitflip_count = erased_sector_bitflips(
1399 buf, read_ecc, info);
1400 if (bitflip_count) {
1401 /*
1402 * number of 0-bits within ECC limits
1403 * So this may be an erased-page
1404 */
1405 stat += bitflip_count;
1406 } else {
1407 /*
1408 * Too many 0-bits. It may be a
1409 * - programmed-page, OR
1410 * - erased-page with many bit-flips
1411 * So this page requires check by ELM
1412 */
1413 err_vec[i].error_reported = true;
1414 is_error_reported = true;
62116e51
PA
1415 }
1416 }
1417 }
1418
1419 /* Update the ecc vector */
de0a4d69
PG
1420 calc_ecc += ecc->bytes;
1421 read_ecc += ecc->bytes;
62116e51
PA
1422 }
1423
1424 /* Check if any error reported */
1425 if (!is_error_reported)
f306e8c3 1426 return stat;
62116e51
PA
1427
1428 /* Decode BCH error using ELM module */
1429 elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1430
13fbe064 1431 err = 0;
62116e51 1432 for (i = 0; i < eccsteps; i++) {
13fbe064 1433 if (err_vec[i].error_uncorrectable) {
d2f08c75
EG
1434 dev_err(&info->pdev->dev,
1435 "uncorrectable bit-flips found\n");
13fbe064
PG
1436 err = -EBADMSG;
1437 } else if (err_vec[i].error_reported) {
62116e51 1438 for (j = 0; j < err_vec[i].error_count; j++) {
b08e1f63
PG
1439 switch (info->ecc_opt) {
1440 case OMAP_ECC_BCH4_CODE_HW:
1441 /* Add 4 bits to take care of padding */
62116e51
PA
1442 pos = err_vec[i].error_loc[j] +
1443 BCH4_BIT_PAD;
b08e1f63
PG
1444 break;
1445 case OMAP_ECC_BCH8_CODE_HW:
9748fff9 1446 case OMAP_ECC_BCH16_CODE_HW:
b08e1f63
PG
1447 pos = err_vec[i].error_loc[j];
1448 break;
1449 default:
1450 return -EINVAL;
1451 }
1452 error_max = (ecc->size + actual_eccbytes) * 8;
62116e51
PA
1453 /* Calculate bit position of error */
1454 bit_pos = pos % 8;
1455
1456 /* Calculate byte position of error */
1457 byte_pos = (error_max - pos - 1) / 8;
1458
1459 if (pos < error_max) {
13fbe064
PG
1460 if (byte_pos < 512) {
1461 pr_debug("bitflip@dat[%d]=%x\n",
1462 byte_pos, data[byte_pos]);
62116e51 1463 data[byte_pos] ^= 1 << bit_pos;
13fbe064
PG
1464 } else {
1465 pr_debug("bitflip@oob[%d]=%x\n",
1466 (byte_pos - 512),
1467 spare_ecc[byte_pos - 512]);
62116e51
PA
1468 spare_ecc[byte_pos - 512] ^=
1469 1 << bit_pos;
13fbe064
PG
1470 }
1471 } else {
d2f08c75
EG
1472 dev_err(&info->pdev->dev,
1473 "invalid bit-flip @ %d:%d\n",
1474 byte_pos, bit_pos);
13fbe064 1475 err = -EBADMSG;
62116e51 1476 }
62116e51
PA
1477 }
1478 }
1479
1480 /* Update number of correctable errors */
1481 stat += err_vec[i].error_count;
1482
1483 /* Update page data with sector size */
b08e1f63 1484 data += ecc->size;
de0a4d69 1485 spare_ecc += ecc->bytes;
62116e51
PA
1486 }
1487
13fbe064 1488 return (err) ? err : stat;
62116e51
PA
1489}
1490
62116e51
PA
1491/**
1492 * omap_write_page_bch - BCH ecc based write page function for entire page
1493 * @mtd: mtd info structure
1494 * @chip: nand chip info structure
1495 * @buf: data buffer
1496 * @oob_required: must write chip->oob_poi to OOB
45aaeff9 1497 * @page: page
62116e51
PA
1498 *
1499 * Custom write page method evolved to support multi sector writing in one shot
1500 */
1501static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
45aaeff9 1502 const uint8_t *buf, int oob_required, int page)
62116e51
PA
1503{
1504 int i;
1505 uint8_t *ecc_calc = chip->buffers->ecccalc;
1506 uint32_t *eccpos = chip->ecc.layout->eccpos;
1507
1508 /* Enable GPMC ecc engine */
1509 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1510
1511 /* Write data */
1512 chip->write_buf(mtd, buf, mtd->writesize);
1513
1514 /* Update ecc vector from GPMC result registers */
1515 chip->ecc.calculate(mtd, buf, &ecc_calc[0]);
1516
1517 for (i = 0; i < chip->ecc.total; i++)
1518 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1519
1520 /* Write ecc vector to OOB area */
1521 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1522 return 0;
1523}
1524
1525/**
1526 * omap_read_page_bch - BCH ecc based page read function for entire page
1527 * @mtd: mtd info structure
1528 * @chip: nand chip info structure
1529 * @buf: buffer to store read data
1530 * @oob_required: caller requires OOB data read to chip->oob_poi
1531 * @page: page number to read
1532 *
1533 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1534 * used for error correction.
1535 * Custom method evolved to support ELM error correction & multi sector
1536 * reading. On reading page data area is read along with OOB data with
1537 * ecc engine enabled. ecc vector updated after read of OOB data.
1538 * For non error pages ecc vector reported as zero.
1539 */
1540static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1541 uint8_t *buf, int oob_required, int page)
1542{
1543 uint8_t *ecc_calc = chip->buffers->ecccalc;
1544 uint8_t *ecc_code = chip->buffers->ecccode;
1545 uint32_t *eccpos = chip->ecc.layout->eccpos;
1546 uint8_t *oob = &chip->oob_poi[eccpos[0]];
1547 uint32_t oob_pos = mtd->writesize + chip->ecc.layout->eccpos[0];
1548 int stat;
1549 unsigned int max_bitflips = 0;
1550
1551 /* Enable GPMC ecc engine */
1552 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1553
1554 /* Read data */
1555 chip->read_buf(mtd, buf, mtd->writesize);
1556
1557 /* Read oob bytes */
1558 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
1559 chip->read_buf(mtd, oob, chip->ecc.total);
1560
1561 /* Calculate ecc bytes */
1562 chip->ecc.calculate(mtd, buf, ecc_calc);
1563
1564 memcpy(ecc_code, &chip->oob_poi[eccpos[0]], chip->ecc.total);
1565
1566 stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);
1567
1568 if (stat < 0) {
1569 mtd->ecc_stats.failed++;
1570 } else {
1571 mtd->ecc_stats.corrected += stat;
1572 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1573 }
1574
1575 return max_bitflips;
1576}
1577
0e618ef0 1578/**
a919e511
PG
1579 * is_elm_present - checks for presence of ELM module by scanning DT nodes
1580 * @omap_nand_info: NAND device structure containing platform data
0e618ef0 1581 */
93af53b8
EG
1582static bool is_elm_present(struct omap_nand_info *info,
1583 struct device_node *elm_node)
0e618ef0 1584{
a919e511 1585 struct platform_device *pdev;
93af53b8 1586
a919e511
PG
1587 /* check whether elm-id is passed via DT */
1588 if (!elm_node) {
d2f08c75 1589 dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
93af53b8 1590 return false;
a919e511
PG
1591 }
1592 pdev = of_find_device_by_node(elm_node);
1593 /* check whether ELM device is registered */
1594 if (!pdev) {
d2f08c75 1595 dev_err(&info->pdev->dev, "ELM device not found\n");
93af53b8 1596 return false;
0e618ef0 1597 }
a919e511
PG
1598 /* ELM module available, now configure it */
1599 info->elm_dev = &pdev->dev;
93af53b8
EG
1600 return true;
1601}
3f4eb14b 1602
93af53b8
EG
1603static bool omap2_nand_ecc_check(struct omap_nand_info *info,
1604 struct omap_nand_platform_data *pdata)
1605{
1606 bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
1607
1608 switch (info->ecc_opt) {
1609 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1610 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1611 ecc_needs_omap_bch = false;
1612 ecc_needs_bch = true;
1613 ecc_needs_elm = false;
1614 break;
1615 case OMAP_ECC_BCH4_CODE_HW:
1616 case OMAP_ECC_BCH8_CODE_HW:
1617 case OMAP_ECC_BCH16_CODE_HW:
1618 ecc_needs_omap_bch = true;
1619 ecc_needs_bch = false;
1620 ecc_needs_elm = true;
1621 break;
1622 default:
1623 ecc_needs_omap_bch = false;
1624 ecc_needs_bch = false;
1625 ecc_needs_elm = false;
1626 break;
1627 }
1628
1629 if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH)) {
1630 dev_err(&info->pdev->dev,
1631 "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1632 return false;
1633 }
1634 if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
1635 dev_err(&info->pdev->dev,
1636 "CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1637 return false;
1638 }
01b95fc6 1639 if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) {
93af53b8
EG
1640 dev_err(&info->pdev->dev, "ELM not available\n");
1641 return false;
1642 }
1643
1644 return true;
0e618ef0
ID
1645}
1646
c9711ec5
RQ
1647static const char * const nand_xfer_types[] = {
1648 [NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled",
1649 [NAND_OMAP_POLLED] = "polled",
1650 [NAND_OMAP_PREFETCH_DMA] = "prefetch-dma",
1651 [NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq",
1652};
1653
1654static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info)
1655{
1656 struct device_node *child = dev->of_node;
1657 int i;
1658 const char *s;
1659 u32 cs;
1660
1661 if (of_property_read_u32(child, "reg", &cs) < 0) {
1662 dev_err(dev, "reg not found in DT\n");
1663 return -EINVAL;
1664 }
1665
1666 info->gpmc_cs = cs;
1667
1668 /* detect availability of ELM module. Won't be present pre-OMAP4 */
1669 info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0);
1670 if (!info->elm_of_node)
1671 dev_dbg(dev, "ti,elm-id not in DT\n");
1672
1673 /* select ecc-scheme for NAND */
1674 if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) {
1675 dev_err(dev, "ti,nand-ecc-opt not found\n");
1676 return -EINVAL;
1677 }
1678
1679 if (!strcmp(s, "sw")) {
1680 info->ecc_opt = OMAP_ECC_HAM1_CODE_SW;
1681 } else if (!strcmp(s, "ham1") ||
1682 !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) {
1683 info->ecc_opt = OMAP_ECC_HAM1_CODE_HW;
1684 } else if (!strcmp(s, "bch4")) {
1685 if (info->elm_of_node)
1686 info->ecc_opt = OMAP_ECC_BCH4_CODE_HW;
1687 else
1688 info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW;
1689 } else if (!strcmp(s, "bch8")) {
1690 if (info->elm_of_node)
1691 info->ecc_opt = OMAP_ECC_BCH8_CODE_HW;
1692 else
1693 info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
1694 } else if (!strcmp(s, "bch16")) {
1695 info->ecc_opt = OMAP_ECC_BCH16_CODE_HW;
1696 } else {
1697 dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n");
1698 return -EINVAL;
1699 }
1700
1701 /* select data transfer mode */
1702 if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) {
1703 for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) {
1704 if (!strcasecmp(s, nand_xfer_types[i])) {
1705 info->xfer_type = i;
1706 goto next;
1707 }
1708 }
1709
1710 dev_err(dev, "unrecognized value for ti,nand-xfer-type\n");
1711 return -EINVAL;
1712 }
1713
1714next:
1715 of_get_nand_on_flash_bbt(child);
1716
1717 if (of_get_nand_bus_width(child) == 16)
1718 info->devsize = NAND_BUSWIDTH_16;
1719
1720 return 0;
1721}
1722
06f25510 1723static int omap_nand_probe(struct platform_device *pdev)
67ce04bf
VS
1724{
1725 struct omap_nand_info *info;
c9711ec5 1726 struct omap_nand_platform_data *pdata = NULL;
633deb58
PG
1727 struct mtd_info *mtd;
1728 struct nand_chip *nand_chip;
b491da72 1729 struct nand_ecclayout *ecclayout;
67ce04bf 1730 int err;
b491da72 1731 int i;
633deb58
PG
1732 dma_cap_mask_t mask;
1733 unsigned sig;
eae39cb4 1734 unsigned oob_index;
9c4c2f8b 1735 struct resource *res;
c9711ec5 1736 struct device *dev = &pdev->dev;
67ce04bf 1737
70ba6d71
PG
1738 info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
1739 GFP_KERNEL);
67ce04bf
VS
1740 if (!info)
1741 return -ENOMEM;
1742
c9711ec5 1743 info->pdev = pdev;
67ce04bf 1744
c9711ec5
RQ
1745 if (dev->of_node) {
1746 if (omap_get_dt_info(dev, info))
1747 return -EINVAL;
1748 } else {
1749 pdata = dev_get_platdata(&pdev->dev);
1750 if (!pdata) {
1751 dev_err(&pdev->dev, "platform data missing\n");
1752 return -EINVAL;
1753 }
1754
1755 info->gpmc_cs = pdata->cs;
1756 info->reg = pdata->reg;
1757 info->ecc_opt = pdata->ecc_opt;
1758 info->dev_ready = pdata->dev_ready;
1759 info->xfer_type = pdata->xfer_type;
1760 info->devsize = pdata->devsize;
1761 info->elm_of_node = pdata->elm_of_node;
1762 info->flash_bbt = pdata->flash_bbt;
1763 }
1764
1765 platform_set_drvdata(pdev, info);
c509aefd
RQ
1766 info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs);
1767 if (!info->ops) {
1768 dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n");
1769 return -ENODEV;
1770 }
01b95fc6 1771
432420c0
BB
1772 nand_chip = &info->nand;
1773 mtd = nand_to_mtd(nand_chip);
853f1c58 1774 mtd->dev.parent = &pdev->dev;
32d42a85 1775 nand_chip->ecc.priv = NULL;
c9711ec5 1776 nand_set_flash_node(nand_chip, dev->of_node);
67ce04bf 1777
9c4c2f8b 1778 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
00d09891
JH
1779 nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
1780 if (IS_ERR(nand_chip->IO_ADDR_R))
1781 return PTR_ERR(nand_chip->IO_ADDR_R);
67ce04bf 1782
9c4c2f8b 1783 info->phys_base = res->start;
59e9c5ae 1784
1dc338e8 1785 nand_chip->controller = &omap_gpmc_controller;
67ce04bf 1786
633deb58
PG
1787 nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
1788 nand_chip->cmd_ctrl = omap_hwcontrol;
67ce04bf 1789
67ce04bf
VS
1790 /*
1791 * If RDY/BSY line is connected to OMAP then use the omap ready
4cacbe22
PM
1792 * function and the generic nand_wait function which reads the status
1793 * register after monitoring the RDY/BSY line. Otherwise use a standard
67ce04bf
VS
1794 * chip delay which is slightly more than tR (AC Timing) of the NAND
1795 * device and read status register until you get a failure or success
1796 */
01b95fc6 1797 if (info->dev_ready) {
633deb58
PG
1798 nand_chip->dev_ready = omap_dev_ready;
1799 nand_chip->chip_delay = 0;
67ce04bf 1800 } else {
633deb58
PG
1801 nand_chip->waitfunc = omap_wait;
1802 nand_chip->chip_delay = 50;
67ce04bf
VS
1803 }
1804
c9711ec5 1805 if (info->flash_bbt)
fef775ca
EG
1806 nand_chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
1807 else
1808 nand_chip->options |= NAND_SKIP_BBTSCAN;
1809
f18befb5 1810 /* scan NAND device connected to chip controller */
01b95fc6 1811 nand_chip->options |= info->devsize & NAND_BUSWIDTH_16;
f18befb5 1812 if (nand_scan_ident(mtd, 1, NULL)) {
01b95fc6
RQ
1813 dev_err(&info->pdev->dev,
1814 "scan failed, may be bus-width mismatch\n");
f18befb5 1815 err = -ENXIO;
70ba6d71 1816 goto return_error;
f18befb5
PG
1817 }
1818
1819 /* re-populate low-level callbacks based on xfer modes */
01b95fc6 1820 switch (info->xfer_type) {
1b0b323c 1821 case NAND_OMAP_PREFETCH_POLLED:
633deb58
PG
1822 nand_chip->read_buf = omap_read_buf_pref;
1823 nand_chip->write_buf = omap_write_buf_pref;
1b0b323c
SG
1824 break;
1825
1826 case NAND_OMAP_POLLED:
cf0e4d2b 1827 /* Use nand_base defaults for {read,write}_buf */
1b0b323c
SG
1828 break;
1829
1830 case NAND_OMAP_PREFETCH_DMA:
763e7359
RK
1831 dma_cap_zero(mask);
1832 dma_cap_set(DMA_SLAVE, mask);
1833 sig = OMAP24XX_DMA_GPMC;
1834 info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig);
1835 if (!info->dma) {
2df41d05
RK
1836 dev_err(&pdev->dev, "DMA engine request failed\n");
1837 err = -ENXIO;
70ba6d71 1838 goto return_error;
763e7359
RK
1839 } else {
1840 struct dma_slave_config cfg;
763e7359
RK
1841
1842 memset(&cfg, 0, sizeof(cfg));
1843 cfg.src_addr = info->phys_base;
1844 cfg.dst_addr = info->phys_base;
1845 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1846 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1847 cfg.src_maxburst = 16;
1848 cfg.dst_maxburst = 16;
d680e2c1
AB
1849 err = dmaengine_slave_config(info->dma, &cfg);
1850 if (err) {
763e7359 1851 dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
d680e2c1 1852 err);
70ba6d71 1853 goto return_error;
763e7359 1854 }
633deb58
PG
1855 nand_chip->read_buf = omap_read_buf_dma_pref;
1856 nand_chip->write_buf = omap_write_buf_dma_pref;
1b0b323c
SG
1857 }
1858 break;
1859
4e070376 1860 case NAND_OMAP_PREFETCH_IRQ:
5c468455
AM
1861 info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
1862 if (info->gpmc_irq_fifo <= 0) {
1863 dev_err(&pdev->dev, "error getting fifo irq\n");
1864 err = -ENODEV;
70ba6d71 1865 goto return_error;
5c468455 1866 }
70ba6d71
PG
1867 err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo,
1868 omap_nand_irq, IRQF_SHARED,
1869 "gpmc-nand-fifo", info);
4e070376
SG
1870 if (err) {
1871 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
5c468455
AM
1872 info->gpmc_irq_fifo, err);
1873 info->gpmc_irq_fifo = 0;
70ba6d71 1874 goto return_error;
5c468455
AM
1875 }
1876
1877 info->gpmc_irq_count = platform_get_irq(pdev, 1);
1878 if (info->gpmc_irq_count <= 0) {
1879 dev_err(&pdev->dev, "error getting count irq\n");
1880 err = -ENODEV;
70ba6d71 1881 goto return_error;
5c468455 1882 }
70ba6d71
PG
1883 err = devm_request_irq(&pdev->dev, info->gpmc_irq_count,
1884 omap_nand_irq, IRQF_SHARED,
1885 "gpmc-nand-count", info);
5c468455
AM
1886 if (err) {
1887 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1888 info->gpmc_irq_count, err);
1889 info->gpmc_irq_count = 0;
70ba6d71 1890 goto return_error;
4e070376 1891 }
5c468455 1892
633deb58
PG
1893 nand_chip->read_buf = omap_read_buf_irq_pref;
1894 nand_chip->write_buf = omap_write_buf_irq_pref;
5c468455 1895
4e070376
SG
1896 break;
1897
1b0b323c
SG
1898 default:
1899 dev_err(&pdev->dev,
01b95fc6 1900 "xfer_type(%d) not supported!\n", info->xfer_type);
1b0b323c 1901 err = -EINVAL;
70ba6d71 1902 goto return_error;
59e9c5ae 1903 }
59e9c5ae 1904
93af53b8
EG
1905 if (!omap2_nand_ecc_check(info, pdata)) {
1906 err = -EINVAL;
1907 goto return_error;
1908 }
1909
a8c65d50
BB
1910 /*
1911 * Bail out earlier to let NAND_ECC_SOFT code create its own
1912 * ecclayout instead of using ours.
1913 */
1914 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
1915 nand_chip->ecc.mode = NAND_ECC_SOFT;
1916 goto scan_tail;
1917 }
1918
a919e511 1919 /* populate MTD interface based on ECC scheme */
94cb4ee0 1920 ecclayout = &info->oobinfo;
a8c65d50 1921 nand_chip->ecc.layout = ecclayout;
4e558072 1922 switch (info->ecc_opt) {
a919e511
PG
1923 case OMAP_ECC_HAM1_CODE_HW:
1924 pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
1925 nand_chip->ecc.mode = NAND_ECC_HW;
633deb58
PG
1926 nand_chip->ecc.bytes = 3;
1927 nand_chip->ecc.size = 512;
1928 nand_chip->ecc.strength = 1;
1929 nand_chip->ecc.calculate = omap_calculate_ecc;
1930 nand_chip->ecc.hwctl = omap_enable_hwecc;
1931 nand_chip->ecc.correct = omap_correct_data;
b491da72
PG
1932 /* define ECC layout */
1933 ecclayout->eccbytes = nand_chip->ecc.bytes *
1934 (mtd->writesize /
1935 nand_chip->ecc.size);
1936 if (nand_chip->options & NAND_BUSWIDTH_16)
eae39cb4 1937 oob_index = BADBLOCK_MARKER_LENGTH;
b491da72 1938 else
eae39cb4
PG
1939 oob_index = 1;
1940 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1941 ecclayout->eccpos[i] = oob_index;
aa6092f9
PG
1942 /* no reserved-marker in ecclayout for this ecc-scheme */
1943 ecclayout->oobfree->offset =
1944 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
a919e511
PG
1945 break;
1946
1947 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
a919e511
PG
1948 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
1949 nand_chip->ecc.mode = NAND_ECC_HW;
1950 nand_chip->ecc.size = 512;
1951 nand_chip->ecc.bytes = 7;
1952 nand_chip->ecc.strength = 4;
7c977c3e 1953 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
32d42a85 1954 nand_chip->ecc.correct = nand_bch_correct_data;
2c9f2365 1955 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
b491da72
PG
1956 /* define ECC layout */
1957 ecclayout->eccbytes = nand_chip->ecc.bytes *
1958 (mtd->writesize /
1959 nand_chip->ecc.size);
eae39cb4
PG
1960 oob_index = BADBLOCK_MARKER_LENGTH;
1961 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) {
1962 ecclayout->eccpos[i] = oob_index;
1963 if (((i + 1) % nand_chip->ecc.bytes) == 0)
1964 oob_index++;
1965 }
aa6092f9
PG
1966 /* include reserved-marker in ecclayout->oobfree calculation */
1967 ecclayout->oobfree->offset = 1 +
1968 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
a919e511 1969 /* software bch library is used for locating errors */
a8c65d50 1970 nand_chip->ecc.priv = nand_bch_init(mtd);
32d42a85 1971 if (!nand_chip->ecc.priv) {
d2f08c75 1972 dev_err(&info->pdev->dev, "unable to use BCH library\n");
0e618ef0 1973 err = -EINVAL;
d2f08c75 1974 goto return_error;
a919e511
PG
1975 }
1976 break;
a919e511
PG
1977
1978 case OMAP_ECC_BCH4_CODE_HW:
a919e511
PG
1979 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
1980 nand_chip->ecc.mode = NAND_ECC_HW;
1981 nand_chip->ecc.size = 512;
1982 /* 14th bit is kept reserved for ROM-code compatibility */
1983 nand_chip->ecc.bytes = 7 + 1;
1984 nand_chip->ecc.strength = 4;
7c977c3e 1985 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
a919e511 1986 nand_chip->ecc.correct = omap_elm_correct_data;
a4c7ca00 1987 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
a919e511
PG
1988 nand_chip->ecc.read_page = omap_read_page_bch;
1989 nand_chip->ecc.write_page = omap_write_page_bch;
b491da72
PG
1990 /* define ECC layout */
1991 ecclayout->eccbytes = nand_chip->ecc.bytes *
1992 (mtd->writesize /
1993 nand_chip->ecc.size);
eae39cb4
PG
1994 oob_index = BADBLOCK_MARKER_LENGTH;
1995 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1996 ecclayout->eccpos[i] = oob_index;
aa6092f9
PG
1997 /* reserved marker already included in ecclayout->eccbytes */
1998 ecclayout->oobfree->offset =
1999 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
93af53b8
EG
2000
2001 err = elm_config(info->elm_dev, BCH4_ECC,
432420c0 2002 mtd->writesize / nand_chip->ecc.size,
93af53b8
EG
2003 nand_chip->ecc.size, nand_chip->ecc.bytes);
2004 if (err < 0)
70ba6d71 2005 goto return_error;
a919e511 2006 break;
a919e511
PG
2007
2008 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
a919e511
PG
2009 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
2010 nand_chip->ecc.mode = NAND_ECC_HW;
2011 nand_chip->ecc.size = 512;
2012 nand_chip->ecc.bytes = 13;
2013 nand_chip->ecc.strength = 8;
7c977c3e 2014 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
32d42a85 2015 nand_chip->ecc.correct = nand_bch_correct_data;
7bcd1dca 2016 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
b491da72
PG
2017 /* define ECC layout */
2018 ecclayout->eccbytes = nand_chip->ecc.bytes *
2019 (mtd->writesize /
2020 nand_chip->ecc.size);
eae39cb4
PG
2021 oob_index = BADBLOCK_MARKER_LENGTH;
2022 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) {
2023 ecclayout->eccpos[i] = oob_index;
2024 if (((i + 1) % nand_chip->ecc.bytes) == 0)
2025 oob_index++;
2026 }
aa6092f9
PG
2027 /* include reserved-marker in ecclayout->oobfree calculation */
2028 ecclayout->oobfree->offset = 1 +
2029 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
a919e511 2030 /* software bch library is used for locating errors */
a8c65d50 2031 nand_chip->ecc.priv = nand_bch_init(mtd);
32d42a85 2032 if (!nand_chip->ecc.priv) {
d2f08c75 2033 dev_err(&info->pdev->dev, "unable to use BCH library\n");
a919e511 2034 err = -EINVAL;
70ba6d71 2035 goto return_error;
a919e511
PG
2036 }
2037 break;
a919e511
PG
2038
2039 case OMAP_ECC_BCH8_CODE_HW:
a919e511
PG
2040 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
2041 nand_chip->ecc.mode = NAND_ECC_HW;
2042 nand_chip->ecc.size = 512;
2043 /* 14th bit is kept reserved for ROM-code compatibility */
2044 nand_chip->ecc.bytes = 13 + 1;
2045 nand_chip->ecc.strength = 8;
7c977c3e 2046 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
a919e511 2047 nand_chip->ecc.correct = omap_elm_correct_data;
a4c7ca00 2048 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
a919e511
PG
2049 nand_chip->ecc.read_page = omap_read_page_bch;
2050 nand_chip->ecc.write_page = omap_write_page_bch;
93af53b8
EG
2051
2052 err = elm_config(info->elm_dev, BCH8_ECC,
432420c0 2053 mtd->writesize / nand_chip->ecc.size,
93af53b8
EG
2054 nand_chip->ecc.size, nand_chip->ecc.bytes);
2055 if (err < 0)
70ba6d71 2056 goto return_error;
93af53b8 2057
b491da72
PG
2058 /* define ECC layout */
2059 ecclayout->eccbytes = nand_chip->ecc.bytes *
2060 (mtd->writesize /
2061 nand_chip->ecc.size);
eae39cb4
PG
2062 oob_index = BADBLOCK_MARKER_LENGTH;
2063 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
2064 ecclayout->eccpos[i] = oob_index;
aa6092f9
PG
2065 /* reserved marker already included in ecclayout->eccbytes */
2066 ecclayout->oobfree->offset =
2067 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
a919e511 2068 break;
a919e511 2069
9748fff9 2070 case OMAP_ECC_BCH16_CODE_HW:
9748fff9 2071 pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
2072 nand_chip->ecc.mode = NAND_ECC_HW;
2073 nand_chip->ecc.size = 512;
2074 nand_chip->ecc.bytes = 26;
2075 nand_chip->ecc.strength = 16;
2076 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
2077 nand_chip->ecc.correct = omap_elm_correct_data;
2078 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
2079 nand_chip->ecc.read_page = omap_read_page_bch;
2080 nand_chip->ecc.write_page = omap_write_page_bch;
93af53b8
EG
2081
2082 err = elm_config(info->elm_dev, BCH16_ECC,
432420c0 2083 mtd->writesize / nand_chip->ecc.size,
93af53b8
EG
2084 nand_chip->ecc.size, nand_chip->ecc.bytes);
2085 if (err < 0)
9748fff9 2086 goto return_error;
93af53b8 2087
9748fff9 2088 /* define ECC layout */
2089 ecclayout->eccbytes = nand_chip->ecc.bytes *
2090 (mtd->writesize /
2091 nand_chip->ecc.size);
2092 oob_index = BADBLOCK_MARKER_LENGTH;
2093 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
2094 ecclayout->eccpos[i] = oob_index;
2095 /* reserved marker already included in ecclayout->eccbytes */
2096 ecclayout->oobfree->offset =
2097 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
2098 break;
a919e511 2099 default:
d2f08c75 2100 dev_err(&info->pdev->dev, "invalid or unsupported ECC scheme\n");
a919e511 2101 err = -EINVAL;
70ba6d71 2102 goto return_error;
f3d73f36 2103 }
67ce04bf 2104
bb38eefb
PG
2105 /* all OOB bytes from oobfree->offset till end off OOB are free */
2106 ecclayout->oobfree->length = mtd->oobsize - ecclayout->oobfree->offset;
b491da72
PG
2107 /* check if NAND device's OOB is enough to store ECC signatures */
2108 if (mtd->oobsize < (ecclayout->eccbytes + BADBLOCK_MARKER_LENGTH)) {
d2f08c75
EG
2109 dev_err(&info->pdev->dev,
2110 "not enough OOB bytes required = %d, available=%d\n",
2111 ecclayout->eccbytes, mtd->oobsize);
b491da72 2112 err = -EINVAL;
70ba6d71 2113 goto return_error;
f040d332 2114 }
1b0b323c 2115
7d5929c1 2116scan_tail:
a80f1c1f 2117 /* second phase scan */
633deb58 2118 if (nand_scan_tail(mtd)) {
a80f1c1f 2119 err = -ENXIO;
70ba6d71 2120 goto return_error;
a80f1c1f
JW
2121 }
2122
c9711ec5
RQ
2123 if (dev->of_node)
2124 mtd_device_register(mtd, NULL, 0);
2125 else
2126 mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
67ce04bf 2127
633deb58 2128 platform_set_drvdata(pdev, mtd);
67ce04bf
VS
2129
2130 return 0;
2131
70ba6d71 2132return_error:
763e7359
RK
2133 if (info->dma)
2134 dma_release_channel(info->dma);
32d42a85
PG
2135 if (nand_chip->ecc.priv) {
2136 nand_bch_free(nand_chip->ecc.priv);
2137 nand_chip->ecc.priv = NULL;
2138 }
67ce04bf
VS
2139 return err;
2140}
2141
2142static int omap_nand_remove(struct platform_device *pdev)
2143{
2144 struct mtd_info *mtd = platform_get_drvdata(pdev);
4bd4ebcc 2145 struct nand_chip *nand_chip = mtd_to_nand(mtd);
4578ea9a 2146 struct omap_nand_info *info = mtd_to_omap(mtd);
32d42a85
PG
2147 if (nand_chip->ecc.priv) {
2148 nand_bch_free(nand_chip->ecc.priv);
2149 nand_chip->ecc.priv = NULL;
2150 }
763e7359
RK
2151 if (info->dma)
2152 dma_release_channel(info->dma);
633deb58 2153 nand_release(mtd);
67ce04bf
VS
2154 return 0;
2155}
2156
c9711ec5
RQ
2157static const struct of_device_id omap_nand_ids[] = {
2158 { .compatible = "ti,omap2-nand", },
2159 {},
2160};
2161
67ce04bf
VS
2162static struct platform_driver omap_nand_driver = {
2163 .probe = omap_nand_probe,
2164 .remove = omap_nand_remove,
2165 .driver = {
2166 .name = DRIVER_NAME,
c9711ec5 2167 .of_match_table = of_match_ptr(omap_nand_ids),
67ce04bf
VS
2168 },
2169};
2170
f99640de 2171module_platform_driver(omap_nand_driver);
67ce04bf 2172
c804c733 2173MODULE_ALIAS("platform:" DRIVER_NAME);
67ce04bf
VS
2174MODULE_LICENSE("GPL");
2175MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
This page took 0.474935 seconds and 5 git commands to generate.