mtd: flash drivers set ecc strength
[deliverable/linux.git] / drivers / mtd / nand / rtc_from4.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/mtd/nand/rtc_from4.c
3 *
4 * Copyright (C) 2004 Red Hat, Inc.
61b03bd7 5 *
1da177e4
LT
6 * Derived from drivers/mtd/nand/spia.c
7 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
8 *
1da177e4
LT
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * Overview:
14 * This is a device driver for the AG-AND flash device found on the
61b03bd7
TG
15 * Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4),
16 * which utilizes the Renesas HN29V1G91T-30 part.
1da177e4
LT
17 * This chip is a 1 GBibit (128MiB x 8 bits) AG-AND flash device.
18 */
19
20#include <linux/delay.h>
21#include <linux/kernel.h>
22#include <linux/init.h>
23#include <linux/slab.h>
24#include <linux/rslib.h>
1605cd3d 25#include <linux/bitrev.h>
1da177e4 26#include <linux/module.h>
1da177e4
LT
27#include <linux/mtd/mtd.h>
28#include <linux/mtd/nand.h>
29#include <linux/mtd/partitions.h>
30#include <asm/io.h>
31
32/*
33 * MTD structure for Renesas board
34 */
35static struct mtd_info *rtc_from4_mtd = NULL;
36
37#define RTC_FROM4_MAX_CHIPS 2
38
39/* HS77x9 processor register defines */
40#define SH77X9_BCR1 ((volatile unsigned short *)(0xFFFFFF60))
41#define SH77X9_BCR2 ((volatile unsigned short *)(0xFFFFFF62))
42#define SH77X9_WCR1 ((volatile unsigned short *)(0xFFFFFF64))
43#define SH77X9_WCR2 ((volatile unsigned short *)(0xFFFFFF66))
44#define SH77X9_MCR ((volatile unsigned short *)(0xFFFFFF68))
45#define SH77X9_PCR ((volatile unsigned short *)(0xFFFFFF6C))
46#define SH77X9_FRQCR ((volatile unsigned short *)(0xFFFFFF80))
47
48/*
49 * Values specific to the Renesas Technology Corp. FROM_BOARD4 (used with HS77x9 processor)
50 */
51/* Address where flash is mapped */
52#define RTC_FROM4_FIO_BASE 0x14000000
53
54/* CLE and ALE are tied to address lines 5 & 4, respectively */
55#define RTC_FROM4_CLE (1 << 5)
56#define RTC_FROM4_ALE (1 << 4)
57
58/* address lines A24-A22 used for chip selection */
59#define RTC_FROM4_NAND_ADDR_SLOT3 (0x00800000)
60#define RTC_FROM4_NAND_ADDR_SLOT4 (0x00C00000)
61#define RTC_FROM4_NAND_ADDR_FPGA (0x01000000)
62/* mask address lines A24-A22 used for chip selection */
63#define RTC_FROM4_NAND_ADDR_MASK (RTC_FROM4_NAND_ADDR_SLOT3 | RTC_FROM4_NAND_ADDR_SLOT4 | RTC_FROM4_NAND_ADDR_FPGA)
64
65/* FPGA status register for checking device ready (bit zero) */
66#define RTC_FROM4_FPGA_SR (RTC_FROM4_NAND_ADDR_FPGA | 0x00000002)
67#define RTC_FROM4_DEVICE_READY 0x0001
68
69/* FPGA Reed-Solomon ECC Control register */
70
71#define RTC_FROM4_RS_ECC_CTL (RTC_FROM4_NAND_ADDR_FPGA | 0x00000050)
72#define RTC_FROM4_RS_ECC_CTL_CLR (1 << 7)
73#define RTC_FROM4_RS_ECC_CTL_GEN (1 << 6)
74#define RTC_FROM4_RS_ECC_CTL_FD_E (1 << 5)
75
76/* FPGA Reed-Solomon ECC code base */
77#define RTC_FROM4_RS_ECC (RTC_FROM4_NAND_ADDR_FPGA | 0x00000060)
78#define RTC_FROM4_RS_ECCN (RTC_FROM4_NAND_ADDR_FPGA | 0x00000080)
79
80/* FPGA Reed-Solomon ECC check register */
81#define RTC_FROM4_RS_ECC_CHK (RTC_FROM4_NAND_ADDR_FPGA | 0x00000070)
82#define RTC_FROM4_RS_ECC_CHK_ERROR (1 << 7)
83
ed3786a5
DM
84#define ERR_STAT_ECC_AVAILABLE 0x20
85
1da177e4
LT
86/* Undefine for software ECC */
87#define RTC_FROM4_HWECC 1
88
ed3786a5
DM
89/* Define as 1 for no virtual erase blocks (in JFFS2) */
90#define RTC_FROM4_NO_VIRTBLOCKS 0
91
1da177e4
LT
92/*
93 * Module stuff
94 */
97f1a087 95static void __iomem *rtc_from4_fio_base = (void *)P2SEGADDR(RTC_FROM4_FIO_BASE);
1da177e4 96
3c6bee1d 97static const struct mtd_partition partition_info[] = {
e0c7d767
DW
98 {
99 .name = "Renesas flash partition 1",
100 .offset = 0,
101 .size = MTDPART_SIZ_FULL},
1da177e4 102};
e0c7d767 103
1da177e4
LT
104#define NUM_PARTITIONS 1
105
61b03bd7 106/*
1da177e4 107 * hardware specific flash bbt decriptors
61b03bd7 108 * Note: this is to allow debugging by disabling
1da177e4
LT
109 * NAND_BBT_CREATE and/or NAND_BBT_WRITE
110 *
111 */
e0c7d767
DW
112static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
113static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1da177e4
LT
114
115static struct nand_bbt_descr rtc_from4_bbt_main_descr = {
116 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
117 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
118 .offs = 40,
119 .len = 4,
120 .veroffs = 44,
121 .maxblocks = 4,
122 .pattern = bbt_pattern
123};
124
125static struct nand_bbt_descr rtc_from4_bbt_mirror_descr = {
126 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
127 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
128 .offs = 40,
129 .len = 4,
130 .veroffs = 44,
131 .maxblocks = 4,
132 .pattern = mirror_pattern
133};
134
1da177e4
LT
135#ifdef RTC_FROM4_HWECC
136
137/* the Reed Solomon control structure */
138static struct rs_control *rs_decoder;
139
61b03bd7 140/*
1da177e4
LT
141 * hardware specific Out Of Band information
142 */
5bd34c09 143static struct nand_ecclayout rtc_from4_nand_oobinfo = {
1da177e4
LT
144 .eccbytes = 32,
145 .eccpos = {
e0c7d767
DW
146 0, 1, 2, 3, 4, 5, 6, 7,
147 8, 9, 10, 11, 12, 13, 14, 15,
148 16, 17, 18, 19, 20, 21, 22, 23,
149 24, 25, 26, 27, 28, 29, 30, 31},
150 .oobfree = {{32, 32}}
1da177e4
LT
151};
152
1da177e4
LT
153#endif
154
61b03bd7 155/*
1da177e4
LT
156 * rtc_from4_hwcontrol - hardware specific access to control-lines
157 * @mtd: MTD device structure
158 * @cmd: hardware control command
159 *
61b03bd7 160 * Address lines (A5 and A4) are used to control Command and Address Latch
1da177e4
LT
161 * Enable on this board, so set the read/write address appropriately.
162 *
61b03bd7 163 * Chip Enable is also controlled by the Chip Select (CS5) and
1da177e4
LT
164 * Address lines (A24-A22), so no action is required here.
165 *
166 */
7abd3ef9
TG
167static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd,
168 unsigned int ctrl)
1da177e4 169{
7abd3ef9 170 struct nand_chip *chip = (mtd->priv);
61b03bd7 171
7abd3ef9
TG
172 if (cmd == NAND_CMD_NONE)
173 return;
61b03bd7 174
7abd3ef9
TG
175 if (ctrl & NAND_CLE)
176 writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_CLE);
177 else
178 writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_ALE);
1da177e4
LT
179}
180
1da177e4
LT
181/*
182 * rtc_from4_nand_select_chip - hardware specific chip select
183 * @mtd: MTD device structure
184 * @chip: Chip to select (0 == slot 3, 1 == slot 4)
185 *
186 * The chip select is based on address lines A24-A22.
187 * This driver uses flash slots 3 and 4 (A23-A22).
188 *
189 */
190static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip)
191{
e0c7d767 192 struct nand_chip *this = mtd->priv;
1da177e4
LT
193
194 this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R & ~RTC_FROM4_NAND_ADDR_MASK);
195 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_NAND_ADDR_MASK);
196
e0c7d767 197 switch (chip) {
1da177e4 198
e0c7d767 199 case 0: /* select slot 3 chip */
1da177e4
LT
200 this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT3);
201 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT3);
e0c7d767
DW
202 break;
203 case 1: /* select slot 4 chip */
1da177e4
LT
204 this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT4);
205 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT4);
e0c7d767 206 break;
1da177e4 207
e0c7d767 208 }
1da177e4
LT
209}
210
1da177e4
LT
211/*
212 * rtc_from4_nand_device_ready - hardware specific ready/busy check
213 * @mtd: MTD device structure
214 *
215 * This board provides the Ready/Busy state in the status register
216 * of the FPGA. Bit zero indicates the RDY(1)/BSY(0) signal.
217 *
218 */
219static int rtc_from4_nand_device_ready(struct mtd_info *mtd)
220{
221 unsigned short status;
222
223 status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_FPGA_SR));
224
225 return (status & RTC_FROM4_DEVICE_READY);
226
227}
228
97f1a087
DM
229/*
230 * deplete - code to perform device recovery in case there was a power loss
231 * @mtd: MTD device structure
232 * @chip: Chip to select (0 == slot 3, 1 == slot 4)
233 *
61b03bd7 234 * If there was a sudden loss of power during an erase operation, a
97f1a087
DM
235 * "device recovery" operation must be performed when power is restored
236 * to ensure correct operation. This routine performs the required steps
237 * for the requested chip.
238 *
239 * See page 86 of the data sheet for details.
240 *
241 */
242static void deplete(struct mtd_info *mtd, int chip)
243{
e0c7d767 244 struct nand_chip *this = mtd->priv;
97f1a087 245
e0c7d767
DW
246 /* wait until device is ready */
247 while (!this->dev_ready(mtd)) ;
97f1a087
DM
248
249 this->select_chip(mtd, chip);
61b03bd7 250
97f1a087 251 /* Send the commands for device recovery, phase 1 */
e0c7d767
DW
252 this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0000);
253 this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
97f1a087
DM
254
255 /* Send the commands for device recovery, phase 2 */
e0c7d767
DW
256 this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0004);
257 this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
97f1a087
DM
258
259}
260
1da177e4
LT
261#ifdef RTC_FROM4_HWECC
262/*
263 * rtc_from4_enable_hwecc - hardware specific hardware ECC enable function
264 * @mtd: MTD device structure
265 * @mode: I/O mode; read or write
266 *
61b03bd7 267 * enable hardware ECC for data read or write
1da177e4
LT
268 *
269 */
270static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode)
271{
e0c7d767 272 volatile unsigned short *rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL);
1da177e4
LT
273 unsigned short status;
274
275 switch (mode) {
e0c7d767
DW
276 case NAND_ECC_READ:
277 status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_FD_E;
1da177e4
LT
278
279 *rs_ecc_ctl = status;
280 break;
281
e0c7d767
DW
282 case NAND_ECC_READSYN:
283 status = 0x00;
1da177e4
LT
284
285 *rs_ecc_ctl = status;
286 break;
287
e0c7d767
DW
288 case NAND_ECC_WRITE:
289 status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_GEN | RTC_FROM4_RS_ECC_CTL_FD_E;
1da177e4
LT
290
291 *rs_ecc_ctl = status;
292 break;
293
e0c7d767 294 default:
1da177e4
LT
295 BUG();
296 break;
297 }
298
299}
300
301/*
302 * rtc_from4_calculate_ecc - hardware specific code to read ECC code
303 * @mtd: MTD device structure
304 * @dat: buffer containing the data to generate ECC codes
305 * @ecc_code ECC codes calculated
306 *
307 * The ECC code is calculated by the FPGA. All we have to do is read the values
308 * from the FPGA registers.
309 *
310 * Note: We read from the inverted registers, since data is inverted before
311 * the code is calculated. So all 0xff data (blank page) results in all 0xff rs code
312 *
313 */
314static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
315{
e0c7d767 316 volatile unsigned short *rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN);
1da177e4
LT
317 unsigned short value;
318 int i;
319
320 for (i = 0; i < 8; i++) {
321 value = *rs_eccn;
322 ecc_code[i] = (unsigned char)value;
323 rs_eccn++;
324 }
325 ecc_code[7] |= 0x0f; /* set the last four bits (not used) */
326}
327
328/*
329 * rtc_from4_correct_data - hardware specific code to correct data using ECC code
330 * @mtd: MTD device structure
331 * @buf: buffer containing the data to generate ECC codes
332 * @ecc1 ECC codes read
333 * @ecc2 ECC codes calculated
334 *
335 * The FPGA tells us fast, if there's an error or not. If no, we go back happy
336 * else we read the ecc results from the fpga and call the rs library to decode
ed3786a5 337 * and hopefully correct the error.
1da177e4 338 *
1da177e4
LT
339 */
340static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_char *ecc1, u_char *ecc2)
341{
342 int i, j, res;
61b03bd7 343 unsigned short status;
97f1a087 344 uint16_t par[6], syn[6];
1da177e4 345 uint8_t ecc[8];
e0c7d767 346 volatile unsigned short *rs_ecc;
1da177e4
LT
347
348 status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CHK));
349
350 if (!(status & RTC_FROM4_RS_ECC_CHK_ERROR)) {
351 return 0;
352 }
353
7854d3f7 354 /* Read the syndrome pattern from the FPGA and correct the bitorder */
1da177e4 355 rs_ecc = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC);
e0c7d767 356 for (i = 0; i < 8; i++) {
ce106049 357 ecc[i] = bitrev8(*rs_ecc);
e0c7d767
DW
358 rs_ecc++;
359 }
1da177e4
LT
360
361 /* convert into 6 10bit syndrome fields */
e0c7d767
DW
362 par[5] = rs_decoder->index_of[(((uint16_t) ecc[0] >> 0) & 0x0ff) | (((uint16_t) ecc[1] << 8) & 0x300)];
363 par[4] = rs_decoder->index_of[(((uint16_t) ecc[1] >> 2) & 0x03f) | (((uint16_t) ecc[2] << 6) & 0x3c0)];
364 par[3] = rs_decoder->index_of[(((uint16_t) ecc[2] >> 4) & 0x00f) | (((uint16_t) ecc[3] << 4) & 0x3f0)];
365 par[2] = rs_decoder->index_of[(((uint16_t) ecc[3] >> 6) & 0x003) | (((uint16_t) ecc[4] << 2) & 0x3fc)];
366 par[1] = rs_decoder->index_of[(((uint16_t) ecc[5] >> 0) & 0x0ff) | (((uint16_t) ecc[6] << 8) & 0x300)];
367 par[0] = (((uint16_t) ecc[6] >> 2) & 0x03f) | (((uint16_t) ecc[7] << 6) & 0x3c0);
1da177e4
LT
368
369 /* Convert to computable syndrome */
370 for (i = 0; i < 6; i++) {
371 syn[i] = par[0];
372 for (j = 1; j < 6; j++)
373 if (par[j] != rs_decoder->nn)
374 syn[i] ^= rs_decoder->alpha_to[rs_modnn(rs_decoder, par[j] + i * j)];
375
376 /* Convert to index form */
377 syn[i] = rs_decoder->index_of[syn[i]];
378 }
379
e0c7d767
DW
380 /* Let the library code do its magic. */
381 res = decode_rs8(rs_decoder, (uint8_t *) buf, par, 512, syn, 0, NULL, 0xff, NULL);
1da177e4 382 if (res > 0) {
289c0522 383 pr_debug("rtc_from4_correct_data: " "ECC corrected %d errors on read\n", res);
1da177e4
LT
384 }
385 return res;
386}
ed3786a5 387
ed3786a5
DM
388/**
389 * rtc_from4_errstat - perform additional error status checks
390 * @mtd: MTD device structure
391 * @this: NAND chip structure
392 * @state: state or the operation
393 * @status: status code returned from read status
394 * @page: startpage inside the chip, must be called with (page & this->pagemask)
61b03bd7
TG
395 *
396 * Perform additional error status checks on erase and write failures
397 * to determine if errors are correctable. For this device, correctable
ed3786a5
DM
398 * 1-bit errors on erase and write are considered acceptable.
399 *
400 * note: see pages 34..37 of data sheet for details.
401 *
402 */
f5bbdacc
TG
403static int rtc_from4_errstat(struct mtd_info *mtd, struct nand_chip *this,
404 int state, int status, int page)
ed3786a5 405{
e0c7d767
DW
406 int er_stat = 0;
407 int rtn, retlen;
408 size_t len;
ed3786a5 409 uint8_t *buf;
e0c7d767 410 int i;
ed3786a5 411
e0c7d767 412 this->cmdfunc(mtd, NAND_CMD_STATUS_CLEAR, -1, -1);
ed3786a5 413
e0c7d767 414 if (state == FL_ERASING) {
f5bbdacc 415
e0c7d767 416 for (i = 0; i < 4; i++) {
f5bbdacc
TG
417 if (!(status & 1 << (i + 1)))
418 continue;
419 this->cmdfunc(mtd, (NAND_CMD_STATUS_ERROR + i + 1),
420 -1, -1);
421 rtn = this->read_byte(mtd);
422 this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
423
424 /* err_ecc_not_avail */
425 if (!(rtn & ERR_STAT_ECC_AVAILABLE))
426 er_stat |= 1 << (i + 1);
ed3786a5 427 }
f5bbdacc 428
ed3786a5 429 } else if (state == FL_WRITING) {
f5bbdacc
TG
430
431 unsigned long corrected = mtd->ecc_stats.corrected;
432
ed3786a5 433 /* single bank write logic */
e0c7d767 434 this->cmdfunc(mtd, NAND_CMD_STATUS_ERROR, -1, -1);
ed3786a5 435 rtn = this->read_byte(mtd);
e0c7d767 436 this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
f5bbdacc 437
ed3786a5 438 if (!(rtn & ERR_STAT_ECC_AVAILABLE)) {
f5bbdacc
TG
439 /* err_ecc_not_avail */
440 er_stat |= 1 << 1;
441 goto out;
ed3786a5 442 }
f5bbdacc
TG
443
444 len = mtd->writesize;
445 buf = kmalloc(len, GFP_KERNEL);
446 if (!buf) {
f5bbdacc
TG
447 er_stat = 1;
448 goto out;
449 }
450
451 /* recovery read */
452 rtn = nand_do_read(mtd, page, len, &retlen, buf);
453
454 /* if read failed or > 1-bit error corrected */
7dcb483d 455 if (rtn || (mtd->ecc_stats.corrected - corrected) > 1)
f5bbdacc
TG
456 er_stat |= 1 << 1;
457 kfree(buf);
ed3786a5 458 }
6f5afaed 459out:
ed3786a5 460 rtn = status;
e0c7d767 461 if (er_stat == 0) { /* if ECC is available */
ed3786a5
DM
462 rtn = (status & ~NAND_STATUS_FAIL); /* clear the error bit */
463 }
464
465 return rtn;
466}
1da177e4
LT
467#endif
468
469/*
470 * Main initialization routine
471 */
cead4dbc 472static int __init rtc_from4_init(void)
1da177e4
LT
473{
474 struct nand_chip *this;
475 unsigned short bcr1, bcr2, wcr2;
97f1a087 476 int i;
c27e9b80 477 int ret;
1da177e4
LT
478
479 /* Allocate memory for MTD device structure and private data */
e0c7d767 480 rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
1da177e4 481 if (!rtc_from4_mtd) {
e0c7d767 482 printk("Unable to allocate Renesas NAND MTD device structure.\n");
1da177e4
LT
483 return -ENOMEM;
484 }
485
486 /* Get pointer to private data */
e0c7d767 487 this = (struct nand_chip *)(&rtc_from4_mtd[1]);
1da177e4
LT
488
489 /* Initialize structures */
e0c7d767
DW
490 memset(rtc_from4_mtd, 0, sizeof(struct mtd_info));
491 memset(this, 0, sizeof(struct nand_chip));
1da177e4
LT
492
493 /* Link the private data with the MTD structure */
494 rtc_from4_mtd->priv = this;
552d9205 495 rtc_from4_mtd->owner = THIS_MODULE;
1da177e4
LT
496
497 /* set area 5 as PCMCIA mode to clear the spec of tDH(Data hold time;9ns min) */
498 bcr1 = *SH77X9_BCR1 & ~0x0002;
499 bcr1 |= 0x0002;
500 *SH77X9_BCR1 = bcr1;
501
502 /* set */
503 bcr2 = *SH77X9_BCR2 & ~0x0c00;
504 bcr2 |= 0x0800;
505 *SH77X9_BCR2 = bcr2;
506
507 /* set area 5 wait states */
508 wcr2 = *SH77X9_WCR2 & ~0x1c00;
509 wcr2 |= 0x1c00;
510 *SH77X9_WCR2 = wcr2;
511
512 /* Set address of NAND IO lines */
513 this->IO_ADDR_R = rtc_from4_fio_base;
514 this->IO_ADDR_W = rtc_from4_fio_base;
515 /* Set address of hardware control function */
7abd3ef9 516 this->cmd_ctrl = rtc_from4_hwcontrol;
1da177e4 517 /* Set address of chip select function */
e0c7d767 518 this->select_chip = rtc_from4_nand_select_chip;
1da177e4
LT
519 /* command delay time (in us) */
520 this->chip_delay = 100;
521 /* return the status of the Ready/Busy line */
522 this->dev_ready = rtc_from4_nand_device_ready;
523
524#ifdef RTC_FROM4_HWECC
525 printk(KERN_INFO "rtc_from4_init: using hardware ECC detection.\n");
526
6dfc6d25
TG
527 this->ecc.mode = NAND_ECC_HW_SYNDROME;
528 this->ecc.size = 512;
529 this->ecc.bytes = 8;
6a918bad 530 this->ecc.strength = 3;
ed3786a5
DM
531 /* return the status of extra status and ECC checks */
532 this->errstat = rtc_from4_errstat;
1da177e4 533 /* set the nand_oobinfo to support FPGA H/W error detection */
5bd34c09 534 this->ecc.layout = &rtc_from4_nand_oobinfo;
6dfc6d25
TG
535 this->ecc.hwctl = rtc_from4_enable_hwecc;
536 this->ecc.calculate = rtc_from4_calculate_ecc;
537 this->ecc.correct = rtc_from4_correct_data;
c27e9b80
SS
538
539 /* We could create the decoder on demand, if memory is a concern.
540 * This way we have it handy, if an error happens
541 *
542 * Symbolsize is 10 (bits)
543 * Primitve polynomial is x^10+x^3+1
544 * first consecutive root is 0
545 * primitve element to generate roots = 1
546 * generator polinomial degree = 6
547 */
548 rs_decoder = init_rs(10, 0x409, 0, 1, 6);
549 if (!rs_decoder) {
550 printk(KERN_ERR "Could not create a RS decoder\n");
551 ret = -ENOMEM;
552 goto err_1;
553 }
1da177e4
LT
554#else
555 printk(KERN_INFO "rtc_from4_init: using software ECC detection.\n");
556
6dfc6d25 557 this->ecc.mode = NAND_ECC_SOFT;
1da177e4
LT
558#endif
559
560 /* set the bad block tables to support debugging */
561 this->bbt_td = &rtc_from4_bbt_main_descr;
562 this->bbt_md = &rtc_from4_bbt_mirror_descr;
563
564 /* Scan to find existence of the device */
565 if (nand_scan(rtc_from4_mtd, RTC_FROM4_MAX_CHIPS)) {
c27e9b80
SS
566 ret = -ENXIO;
567 goto err_2;
1da177e4
LT
568 }
569
97f1a087 570 /* Perform 'device recovery' for each chip in case there was a power loss. */
e0c7d767 571 for (i = 0; i < this->numchips; i++) {
97f1a087
DM
572 deplete(rtc_from4_mtd, i);
573 }
574
ed3786a5
DM
575#if RTC_FROM4_NO_VIRTBLOCKS
576 /* use a smaller erase block to minimize wasted space when a block is bad */
577 /* note: this uses eight times as much RAM as using the default and makes */
578 /* mounts take four times as long. */
579 rtc_from4_mtd->flags |= MTD_NO_VIRTBLOCKS;
580#endif
581
1da177e4 582 /* Register the partitions */
ee0e87b1
JI
583 ret = mtd_device_register(rtc_from4_mtd, partition_info,
584 NUM_PARTITIONS);
c27e9b80
SS
585 if (ret)
586 goto err_3;
1da177e4 587
1da177e4
LT
588 /* Return happy */
589 return 0;
c27e9b80
SS
590err_3:
591 nand_release(rtc_from4_mtd);
592err_2:
593 free_rs(rs_decoder);
594err_1:
595 kfree(rtc_from4_mtd);
596 return ret;
1da177e4 597}
1da177e4 598
e0c7d767 599module_init(rtc_from4_init);
1da177e4
LT
600
601/*
602 * Clean up routine
603 */
e0c7d767 604static void __exit rtc_from4_cleanup(void)
1da177e4
LT
605{
606 /* Release resource, unregister partitions */
607 nand_release(rtc_from4_mtd);
608
609 /* Free the MTD device structure */
e0c7d767 610 kfree(rtc_from4_mtd);
1da177e4
LT
611
612#ifdef RTC_FROM4_HWECC
613 /* Free the reed solomon resources */
614 if (rs_decoder) {
615 free_rs(rs_decoder);
616 }
617#endif
618}
e0c7d767 619
1da177e4 620module_exit(rtc_from4_cleanup);
1da177e4
LT
621
622MODULE_LICENSE("GPL");
623MODULE_AUTHOR("d.marlin <dmarlin@redhat.com");
624MODULE_DESCRIPTION("Board-specific glue layer for AG-AND flash on Renesas FROM_BOARD4");
This page took 0.592845 seconds and 5 git commands to generate.