UBI: use list_move_tail instead of list_del/list_add_tail
[deliverable/linux.git] / drivers / mtd / ubi / attach.c
CommitLineData
801c135c
AB
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Artem Bityutskiy (Битюцкий Артём)
19 */
20
21/*
fbd0107f 22 * UBI attaching sub-system.
801c135c 23 *
fbd0107f
AB
24 * This sub-system is responsible for attaching MTD devices and it also
25 * implements flash media scanning.
801c135c 26 *
a4e6042f 27 * The attaching information is represented by a &struct ubi_attach_info'
fbd0107f
AB
28 * object. Information about volumes is represented by &struct ubi_ainf_volume
29 * objects which are kept in volume RB-tree with root at the @volumes field.
30 * The RB-tree is indexed by the volume ID.
801c135c 31 *
fbd0107f
AB
32 * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
33 * objects are kept in per-volume RB-trees with the root at the corresponding
34 * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
35 * per-volume objects and each of these objects is the root of RB-tree of
36 * per-LEB objects.
801c135c
AB
37 *
38 * Corrupted physical eraseblocks are put to the @corr list, free physical
39 * eraseblocks are put to the @free list and the physical eraseblock to be
40 * erased are put to the @erase list.
0525dac9 41 *
fef2deb3
AB
42 * About corruptions
43 * ~~~~~~~~~~~~~~~~~
44 *
45 * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
46 * whether the headers are corrupted or not. Sometimes UBI also protects the
47 * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
48 * when it moves the contents of a PEB for wear-leveling purposes.
49 *
0525dac9 50 * UBI tries to distinguish between 2 types of corruptions.
fef2deb3
AB
51 *
52 * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
53 * tries to handle them gracefully, without printing too many warnings and
fbd0107f
AB
54 * error messages. The idea is that we do not lose important data in these
55 * cases - we may lose only the data which were being written to the media just
56 * before the power cut happened, and the upper layers (e.g., UBIFS) are
57 * supposed to handle such data losses (e.g., by using the FS journal).
fef2deb3
AB
58 *
59 * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
60 * the reason is a power cut, UBI puts this PEB to the @erase list, and all
61 * PEBs in the @erase list are scheduled for erasure later.
0525dac9
AB
62 *
63 * 2. Unexpected corruptions which are not caused by power cuts. During
fbd0107f 64 * attaching, such PEBs are put to the @corr list and UBI preserves them.
fef2deb3
AB
65 * Obviously, this lessens the amount of available PEBs, and if at some point
66 * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
67 * about such PEBs every time the MTD device is attached.
45aafd32
AB
68 *
69 * However, it is difficult to reliably distinguish between these types of
fbd0107f
AB
70 * corruptions and UBI's strategy is as follows (in case of attaching by
71 * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
72 * the data area does not contain all 0xFFs, and there were no bit-flips or
73 * integrity errors (e.g., ECC errors in case of NAND) while reading the data
74 * area. Otherwise UBI assumes corruption type 1. So the decision criteria
75 * are as follows.
76 * o If the data area contains only 0xFFs, there are no data, and it is safe
fef2deb3
AB
77 * to just erase this PEB - this is corruption type 1.
78 * o If the data area has bit-flips or data integrity errors (ECC errors on
45aafd32 79 * NAND), it is probably a PEB which was being erased when power cut
fef2deb3
AB
80 * happened, so this is corruption type 1. However, this is just a guess,
81 * which might be wrong.
55393ba1 82 * o Otherwise this is corruption type 2.
801c135c
AB
83 */
84
85#include <linux/err.h>
5a0e3ad6 86#include <linux/slab.h>
801c135c 87#include <linux/crc32.h>
3013ee31 88#include <linux/math64.h>
095751a6 89#include <linux/random.h>
801c135c
AB
90#include "ubi.h"
91
a4e6042f 92static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
801c135c
AB
93
94/* Temporary variables used during scanning */
95static struct ubi_ec_hdr *ech;
96static struct ubi_vid_hdr *vidh;
97
941dfb07 98/**
78d87c95 99 * add_to_list - add physical eraseblock to a list.
a4e6042f 100 * @ai: attaching information
78d87c95 101 * @pnum: physical eraseblock number to add
6dd3bc7e
JR
102 * @vol_id: the last used volume id for the PEB
103 * @lnum: the last used LEB number for the PEB
78d87c95 104 * @ec: erase counter of the physical eraseblock
0525dac9 105 * @to_head: if not zero, add to the head of the list
78d87c95
AB
106 * @list: the list to add to
107 *
fbd0107f
AB
108 * This function allocates a 'struct ubi_ainf_peb' object for physical
109 * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
6dd3bc7e
JR
110 * It stores the @lnum and @vol_id alongside, which can both be
111 * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
0525dac9
AB
112 * If @to_head is not zero, PEB will be added to the head of the list, which
113 * basically means it will be processed first later. E.g., we add corrupted
114 * PEBs (corrupted due to power cuts) to the head of the erase list to make
115 * sure we erase them first and get rid of corruptions ASAP. This function
116 * returns zero in case of success and a negative error code in case of
3fb34124 117 * failure.
78d87c95 118 */
6dd3bc7e
JR
119static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
120 int lnum, int ec, int to_head, struct list_head *list)
801c135c 121{
2c5ec5ce 122 struct ubi_ainf_peb *aeb;
801c135c 123
a4e6042f 124 if (list == &ai->free) {
801c135c 125 dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
a4e6042f 126 } else if (list == &ai->erase) {
801c135c 127 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
a4e6042f 128 } else if (list == &ai->alien) {
801c135c 129 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
a4e6042f 130 ai->alien_peb_count += 1;
33789fb9 131 } else
801c135c
AB
132 BUG();
133
1fc2e3e5 134 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
2c5ec5ce 135 if (!aeb)
801c135c
AB
136 return -ENOMEM;
137
2c5ec5ce 138 aeb->pnum = pnum;
6dd3bc7e
JR
139 aeb->vol_id = vol_id;
140 aeb->lnum = lnum;
2c5ec5ce 141 aeb->ec = ec;
0525dac9 142 if (to_head)
2c5ec5ce 143 list_add(&aeb->u.list, list);
0525dac9 144 else
2c5ec5ce 145 list_add_tail(&aeb->u.list, list);
801c135c
AB
146 return 0;
147}
148
3fb34124
AB
149/**
150 * add_corrupted - add a corrupted physical eraseblock.
a4e6042f 151 * @ai: attaching information
3fb34124
AB
152 * @pnum: physical eraseblock number to add
153 * @ec: erase counter of the physical eraseblock
154 *
fbd0107f
AB
155 * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
156 * physical eraseblock @pnum and adds it to the 'corr' list. The corruption
157 * was presumably not caused by a power cut. Returns zero in case of success
158 * and a negative error code in case of failure.
3fb34124 159 */
a4e6042f 160static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
3fb34124 161{
2c5ec5ce 162 struct ubi_ainf_peb *aeb;
3fb34124
AB
163
164 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
165
1fc2e3e5 166 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
2c5ec5ce 167 if (!aeb)
3fb34124
AB
168 return -ENOMEM;
169
a4e6042f 170 ai->corr_peb_count += 1;
2c5ec5ce
AB
171 aeb->pnum = pnum;
172 aeb->ec = ec;
a4e6042f 173 list_add(&aeb->u.list, &ai->corr);
3fb34124
AB
174 return 0;
175}
176
801c135c 177/**
ebaaf1af 178 * validate_vid_hdr - check volume identifier header.
801c135c 179 * @vid_hdr: the volume identifier header to check
517af48c 180 * @av: information about the volume this logical eraseblock belongs to
801c135c
AB
181 * @pnum: physical eraseblock number the VID header came from
182 *
183 * This function checks that data stored in @vid_hdr is consistent. Returns
184 * non-zero if an inconsistency was found and zero if not.
185 *
186 * Note, UBI does sanity check of everything it reads from the flash media.
85c6e6e2 187 * Most of the checks are done in the I/O sub-system. Here we check that the
801c135c
AB
188 * information in the VID header is consistent to the information in other VID
189 * headers of the same volume.
190 */
191static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
517af48c 192 const struct ubi_ainf_volume *av, int pnum)
801c135c
AB
193{
194 int vol_type = vid_hdr->vol_type;
3261ebd7
CH
195 int vol_id = be32_to_cpu(vid_hdr->vol_id);
196 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
197 int data_pad = be32_to_cpu(vid_hdr->data_pad);
801c135c 198
517af48c
AB
199 if (av->leb_count != 0) {
200 int av_vol_type;
801c135c
AB
201
202 /*
203 * This is not the first logical eraseblock belonging to this
204 * volume. Ensure that the data in its VID header is consistent
205 * to the data in previous logical eraseblock headers.
206 */
207
517af48c 208 if (vol_id != av->vol_id) {
e2986827 209 ubi_err("inconsistent vol_id");
801c135c
AB
210 goto bad;
211 }
212
517af48c
AB
213 if (av->vol_type == UBI_STATIC_VOLUME)
214 av_vol_type = UBI_VID_STATIC;
801c135c 215 else
517af48c 216 av_vol_type = UBI_VID_DYNAMIC;
801c135c 217
517af48c 218 if (vol_type != av_vol_type) {
e2986827 219 ubi_err("inconsistent vol_type");
801c135c
AB
220 goto bad;
221 }
222
517af48c 223 if (used_ebs != av->used_ebs) {
e2986827 224 ubi_err("inconsistent used_ebs");
801c135c
AB
225 goto bad;
226 }
227
517af48c 228 if (data_pad != av->data_pad) {
e2986827 229 ubi_err("inconsistent data_pad");
801c135c
AB
230 goto bad;
231 }
232 }
233
234 return 0;
235
236bad:
237 ubi_err("inconsistent VID header at PEB %d", pnum);
a904e3f1 238 ubi_dump_vid_hdr(vid_hdr);
517af48c 239 ubi_dump_av(av);
801c135c
AB
240 return -EINVAL;
241}
242
243/**
a4e6042f
AB
244 * add_volume - add volume to the attaching information.
245 * @ai: attaching information
801c135c
AB
246 * @vol_id: ID of the volume to add
247 * @pnum: physical eraseblock number
248 * @vid_hdr: volume identifier header
249 *
250 * If the volume corresponding to the @vid_hdr logical eraseblock is already
a4e6042f
AB
251 * present in the attaching information, this function does nothing. Otherwise
252 * it adds corresponding volume to the attaching information. Returns a pointer
fbd0107f
AB
253 * to the allocated "av" object in case of success and a negative error code in
254 * case of failure.
801c135c 255 */
a4e6042f 256static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
afc15a81 257 int vol_id, int pnum,
801c135c
AB
258 const struct ubi_vid_hdr *vid_hdr)
259{
517af48c 260 struct ubi_ainf_volume *av;
a4e6042f 261 struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
801c135c 262
3261ebd7 263 ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
801c135c
AB
264
265 /* Walk the volume RB-tree to look if this volume is already present */
266 while (*p) {
267 parent = *p;
517af48c 268 av = rb_entry(parent, struct ubi_ainf_volume, rb);
801c135c 269
517af48c
AB
270 if (vol_id == av->vol_id)
271 return av;
801c135c 272
517af48c 273 if (vol_id > av->vol_id)
801c135c
AB
274 p = &(*p)->rb_left;
275 else
276 p = &(*p)->rb_right;
277 }
278
279 /* The volume is absent - add it */
517af48c
AB
280 av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
281 if (!av)
801c135c
AB
282 return ERR_PTR(-ENOMEM);
283
517af48c
AB
284 av->highest_lnum = av->leb_count = 0;
285 av->vol_id = vol_id;
286 av->root = RB_ROOT;
287 av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
288 av->data_pad = be32_to_cpu(vid_hdr->data_pad);
289 av->compat = vid_hdr->compat;
290 av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
801c135c 291 : UBI_STATIC_VOLUME;
a4e6042f
AB
292 if (vol_id > ai->highest_vol_id)
293 ai->highest_vol_id = vol_id;
801c135c 294
517af48c
AB
295 rb_link_node(&av->rb, parent, p);
296 rb_insert_color(&av->rb, &ai->volumes);
a4e6042f 297 ai->vols_found += 1;
801c135c 298 dbg_bld("added volume %d", vol_id);
517af48c 299 return av;
801c135c
AB
300}
301
302/**
dac6e208 303 * ubi_compare_lebs - find out which logical eraseblock is newer.
801c135c 304 * @ubi: UBI device description object
2c5ec5ce 305 * @aeb: first logical eraseblock to compare
801c135c
AB
306 * @pnum: physical eraseblock number of the second logical eraseblock to
307 * compare
308 * @vid_hdr: volume identifier header of the second logical eraseblock
309 *
310 * This function compares 2 copies of a LEB and informs which one is newer. In
311 * case of success this function returns a positive value, in case of failure, a
312 * negative error code is returned. The success return codes use the following
313 * bits:
2c5ec5ce 314 * o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
801c135c
AB
315 * second PEB (described by @pnum and @vid_hdr);
316 * o bit 0 is set: the second PEB is newer;
317 * o bit 1 is cleared: no bit-flips were detected in the newer LEB;
318 * o bit 1 is set: bit-flips were detected in the newer LEB;
319 * o bit 2 is cleared: the older LEB is not corrupted;
320 * o bit 2 is set: the older LEB is corrupted.
321 */
dac6e208 322int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
e88d6e10 323 int pnum, const struct ubi_vid_hdr *vid_hdr)
801c135c
AB
324{
325 void *buf;
326 int len, err, second_is_newer, bitflips = 0, corrupted = 0;
327 uint32_t data_crc, crc;
8bc22961 328 struct ubi_vid_hdr *vh = NULL;
3261ebd7 329 unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
801c135c 330
2c5ec5ce 331 if (sqnum2 == aeb->sqnum) {
801c135c 332 /*
9869cd80
AB
333 * This must be a really ancient UBI image which has been
334 * created before sequence numbers support has been added. At
335 * that times we used 32-bit LEB versions stored in logical
336 * eraseblocks. That was before UBI got into mainline. We do not
0525dac9
AB
337 * support these images anymore. Well, those images still work,
338 * but only if no unclean reboots happened.
801c135c 339 */
dac6e208 340 ubi_err("unsupported on-flash UBI format");
9869cd80
AB
341 return -EINVAL;
342 }
64203195 343
9869cd80 344 /* Obviously the LEB with lower sequence counter is older */
2c5ec5ce 345 second_is_newer = (sqnum2 > aeb->sqnum);
801c135c
AB
346
347 /*
348 * Now we know which copy is newer. If the copy flag of the PEB with
349 * newer version is not set, then we just return, otherwise we have to
350 * check data CRC. For the second PEB we already have the VID header,
351 * for the first one - we'll need to re-read it from flash.
352 *
9869cd80 353 * Note: this may be optimized so that we wouldn't read twice.
801c135c
AB
354 */
355
356 if (second_is_newer) {
357 if (!vid_hdr->copy_flag) {
358 /* It is not a copy, so it is newer */
359 dbg_bld("second PEB %d is newer, copy_flag is unset",
360 pnum);
361 return 1;
362 }
363 } else {
2c5ec5ce 364 if (!aeb->copy_flag) {
fb22b59b
AB
365 /* It is not a copy, so it is newer */
366 dbg_bld("first PEB %d is newer, copy_flag is unset",
367 pnum);
368 return bitflips << 1;
369 }
801c135c 370
33818bbb 371 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
8bc22961 372 if (!vh)
801c135c
AB
373 return -ENOMEM;
374
2c5ec5ce 375 pnum = aeb->pnum;
8bc22961 376 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
801c135c
AB
377 if (err) {
378 if (err == UBI_IO_BITFLIPS)
379 bitflips = 1;
380 else {
049333ce
AB
381 ubi_err("VID of PEB %d header is bad, but it was OK earlier, err %d",
382 pnum, err);
801c135c
AB
383 if (err > 0)
384 err = -EIO;
385
386 goto out_free_vidh;
387 }
388 }
389
8bc22961 390 vid_hdr = vh;
801c135c
AB
391 }
392
393 /* Read the data of the copy and check the CRC */
394
3261ebd7 395 len = be32_to_cpu(vid_hdr->data_size);
92ad8f37 396 buf = vmalloc(len);
801c135c
AB
397 if (!buf) {
398 err = -ENOMEM;
399 goto out_free_vidh;
400 }
401
402 err = ubi_io_read_data(ubi, buf, pnum, 0, len);
d57f4054 403 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
801c135c
AB
404 goto out_free_buf;
405
3261ebd7 406 data_crc = be32_to_cpu(vid_hdr->data_crc);
801c135c
AB
407 crc = crc32(UBI_CRC32_INIT, buf, len);
408 if (crc != data_crc) {
409 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
410 pnum, crc, data_crc);
411 corrupted = 1;
412 bitflips = 0;
413 second_is_newer = !second_is_newer;
414 } else {
415 dbg_bld("PEB %d CRC is OK", pnum);
416 bitflips = !!err;
417 }
418
92ad8f37 419 vfree(buf);
8bc22961 420 ubi_free_vid_hdr(ubi, vh);
801c135c
AB
421
422 if (second_is_newer)
423 dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
424 else
425 dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
426
427 return second_is_newer | (bitflips << 1) | (corrupted << 2);
428
429out_free_buf:
92ad8f37 430 vfree(buf);
801c135c 431out_free_vidh:
8bc22961 432 ubi_free_vid_hdr(ubi, vh);
801c135c
AB
433 return err;
434}
435
436/**
fbd0107f 437 * ubi_add_to_av - add used physical eraseblock to the attaching information.
801c135c 438 * @ubi: UBI device description object
a4e6042f 439 * @ai: attaching information
801c135c
AB
440 * @pnum: the physical eraseblock number
441 * @ec: erase counter
442 * @vid_hdr: the volume identifier header
443 * @bitflips: if bit-flips were detected when this physical eraseblock was read
444 *
79b510c0
AB
445 * This function adds information about a used physical eraseblock to the
446 * 'used' tree of the corresponding volume. The function is rather complex
447 * because it has to handle cases when this is not the first physical
448 * eraseblock belonging to the same logical eraseblock, and the newer one has
449 * to be picked, while the older one has to be dropped. This function returns
450 * zero in case of success and a negative error code in case of failure.
801c135c 451 */
3561188a
AB
452int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
453 int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
801c135c
AB
454{
455 int err, vol_id, lnum;
801c135c 456 unsigned long long sqnum;
517af48c 457 struct ubi_ainf_volume *av;
2c5ec5ce 458 struct ubi_ainf_peb *aeb;
801c135c
AB
459 struct rb_node **p, *parent = NULL;
460
3261ebd7
CH
461 vol_id = be32_to_cpu(vid_hdr->vol_id);
462 lnum = be32_to_cpu(vid_hdr->lnum);
463 sqnum = be64_to_cpu(vid_hdr->sqnum);
801c135c 464
9869cd80
AB
465 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
466 pnum, vol_id, lnum, ec, sqnum, bitflips);
801c135c 467
517af48c
AB
468 av = add_volume(ai, vol_id, pnum, vid_hdr);
469 if (IS_ERR(av))
470 return PTR_ERR(av);
801c135c 471
a4e6042f
AB
472 if (ai->max_sqnum < sqnum)
473 ai->max_sqnum = sqnum;
76eafe47 474
801c135c
AB
475 /*
476 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
477 * if this is the first instance of this logical eraseblock or not.
478 */
517af48c 479 p = &av->root.rb_node;
801c135c
AB
480 while (*p) {
481 int cmp_res;
482
483 parent = *p;
2c5ec5ce
AB
484 aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
485 if (lnum != aeb->lnum) {
486 if (lnum < aeb->lnum)
801c135c
AB
487 p = &(*p)->rb_left;
488 else
489 p = &(*p)->rb_right;
490 continue;
491 }
492
493 /*
494 * There is already a physical eraseblock describing the same
495 * logical eraseblock present.
496 */
497
2c5ec5ce
AB
498 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
499 aeb->pnum, aeb->sqnum, aeb->ec);
801c135c
AB
500
501 /*
502 * Make sure that the logical eraseblocks have different
503 * sequence numbers. Otherwise the image is bad.
504 *
9869cd80
AB
505 * However, if the sequence number is zero, we assume it must
506 * be an ancient UBI image from the era when UBI did not have
507 * sequence numbers. We still can attach these images, unless
508 * there is a need to distinguish between old and new
509 * eraseblocks, in which case we'll refuse the image in
dac6e208 510 * 'ubi_compare_lebs()'. In other words, we attach old clean
9869cd80
AB
511 * images, but refuse attaching old images with duplicated
512 * logical eraseblocks because there was an unclean reboot.
801c135c 513 */
2c5ec5ce 514 if (aeb->sqnum == sqnum && sqnum != 0) {
801c135c
AB
515 ubi_err("two LEBs with same sequence number %llu",
516 sqnum);
2c5ec5ce 517 ubi_dump_aeb(aeb, 0);
a904e3f1 518 ubi_dump_vid_hdr(vid_hdr);
801c135c
AB
519 return -EINVAL;
520 }
521
522 /*
523 * Now we have to drop the older one and preserve the newer
524 * one.
525 */
dac6e208 526 cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr);
801c135c
AB
527 if (cmp_res < 0)
528 return cmp_res;
529
530 if (cmp_res & 1) {
531 /*
3f502622 532 * This logical eraseblock is newer than the one
801c135c
AB
533 * found earlier.
534 */
517af48c 535 err = validate_vid_hdr(vid_hdr, av, pnum);
801c135c
AB
536 if (err)
537 return err;
538
6dd3bc7e
JR
539 err = add_to_list(ai, aeb->pnum, aeb->vol_id,
540 aeb->lnum, aeb->ec, cmp_res & 4,
a4e6042f 541 &ai->erase);
801c135c
AB
542 if (err)
543 return err;
544
2c5ec5ce
AB
545 aeb->ec = ec;
546 aeb->pnum = pnum;
6dd3bc7e
JR
547 aeb->vol_id = vol_id;
548 aeb->lnum = lnum;
2c5ec5ce
AB
549 aeb->scrub = ((cmp_res & 2) || bitflips);
550 aeb->copy_flag = vid_hdr->copy_flag;
551 aeb->sqnum = sqnum;
801c135c 552
517af48c
AB
553 if (av->highest_lnum == lnum)
554 av->last_data_size =
3261ebd7 555 be32_to_cpu(vid_hdr->data_size);
801c135c
AB
556
557 return 0;
558 } else {
559 /*
025dfdaf 560 * This logical eraseblock is older than the one found
801c135c
AB
561 * previously.
562 */
6dd3bc7e
JR
563 return add_to_list(ai, pnum, vol_id, lnum, ec,
564 cmp_res & 4, &ai->erase);
801c135c
AB
565 }
566 }
567
568 /*
569 * We've met this logical eraseblock for the first time, add it to the
a4e6042f 570 * attaching information.
801c135c
AB
571 */
572
517af48c 573 err = validate_vid_hdr(vid_hdr, av, pnum);
801c135c
AB
574 if (err)
575 return err;
576
1fc2e3e5 577 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
2c5ec5ce 578 if (!aeb)
801c135c
AB
579 return -ENOMEM;
580
2c5ec5ce
AB
581 aeb->ec = ec;
582 aeb->pnum = pnum;
6dd3bc7e 583 aeb->vol_id = vol_id;
2c5ec5ce
AB
584 aeb->lnum = lnum;
585 aeb->scrub = bitflips;
586 aeb->copy_flag = vid_hdr->copy_flag;
587 aeb->sqnum = sqnum;
801c135c 588
517af48c
AB
589 if (av->highest_lnum <= lnum) {
590 av->highest_lnum = lnum;
591 av->last_data_size = be32_to_cpu(vid_hdr->data_size);
801c135c
AB
592 }
593
517af48c 594 av->leb_count += 1;
2c5ec5ce 595 rb_link_node(&aeb->u.rb, parent, p);
517af48c 596 rb_insert_color(&aeb->u.rb, &av->root);
801c135c
AB
597 return 0;
598}
599
600/**
dcd85fdd 601 * ubi_find_av - find volume in the attaching information.
a4e6042f 602 * @ai: attaching information
801c135c
AB
603 * @vol_id: the requested volume ID
604 *
605 * This function returns a pointer to the volume description or %NULL if there
a4e6042f 606 * are no data about this volume in the attaching information.
801c135c 607 */
dcd85fdd
AB
608struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
609 int vol_id)
801c135c 610{
517af48c 611 struct ubi_ainf_volume *av;
a4e6042f 612 struct rb_node *p = ai->volumes.rb_node;
801c135c
AB
613
614 while (p) {
517af48c 615 av = rb_entry(p, struct ubi_ainf_volume, rb);
801c135c 616
517af48c
AB
617 if (vol_id == av->vol_id)
618 return av;
801c135c 619
517af48c 620 if (vol_id > av->vol_id)
801c135c
AB
621 p = p->rb_left;
622 else
623 p = p->rb_right;
624 }
625
626 return NULL;
627}
628
801c135c 629/**
d717dc2f 630 * ubi_remove_av - delete attaching information about a volume.
a4e6042f 631 * @ai: attaching information
517af48c 632 * @av: the volume attaching information to delete
801c135c 633 */
d717dc2f 634void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
801c135c
AB
635{
636 struct rb_node *rb;
2c5ec5ce 637 struct ubi_ainf_peb *aeb;
801c135c 638
517af48c 639 dbg_bld("remove attaching information about volume %d", av->vol_id);
801c135c 640
517af48c 641 while ((rb = rb_first(&av->root))) {
2c5ec5ce 642 aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb);
517af48c 643 rb_erase(&aeb->u.rb, &av->root);
a4e6042f 644 list_add_tail(&aeb->u.list, &ai->erase);
801c135c
AB
645 }
646
517af48c
AB
647 rb_erase(&av->rb, &ai->volumes);
648 kfree(av);
a4e6042f 649 ai->vols_found -= 1;
801c135c
AB
650}
651
652/**
13d33dad 653 * early_erase_peb - erase a physical eraseblock.
801c135c 654 * @ubi: UBI device description object
a4e6042f 655 * @ai: attaching information
801c135c 656 * @pnum: physical eraseblock number to erase;
9c47fb2f 657 * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
801c135c
AB
658 *
659 * This function erases physical eraseblock 'pnum', and writes the erase
660 * counter header to it. This function should only be used on UBI device
85c6e6e2
AB
661 * initialization stages, when the EBA sub-system had not been yet initialized.
662 * This function returns zero in case of success and a negative error code in
663 * case of failure.
801c135c 664 */
13d33dad
AB
665static int early_erase_peb(struct ubi_device *ubi,
666 const struct ubi_attach_info *ai, int pnum, int ec)
801c135c
AB
667{
668 int err;
669 struct ubi_ec_hdr *ec_hdr;
670
801c135c
AB
671 if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
672 /*
673 * Erase counter overflow. Upgrade UBI and use 64-bit
674 * erase counters internally.
675 */
676 ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
677 return -EINVAL;
678 }
679
dcec4c3b
FM
680 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
681 if (!ec_hdr)
682 return -ENOMEM;
683
3261ebd7 684 ec_hdr->ec = cpu_to_be64(ec);
801c135c
AB
685
686 err = ubi_io_sync_erase(ubi, pnum, 0);
687 if (err < 0)
688 goto out_free;
689
690 err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
691
692out_free:
693 kfree(ec_hdr);
694 return err;
695}
696
697/**
c87fbd7d 698 * ubi_early_get_peb - get a free physical eraseblock.
801c135c 699 * @ubi: UBI device description object
a4e6042f 700 * @ai: attaching information
801c135c
AB
701 *
702 * This function returns a free physical eraseblock. It is supposed to be
85c6e6e2
AB
703 * called on the UBI initialization stages when the wear-leveling sub-system is
704 * not initialized yet. This function picks a physical eraseblocks from one of
705 * the lists, writes the EC header if it is needed, and removes it from the
706 * list.
801c135c 707 *
fbd0107f
AB
708 * This function returns a pointer to the "aeb" of the found free PEB in case
709 * of success and an error code in case of failure.
801c135c 710 */
c87fbd7d
AB
711struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
712 struct ubi_attach_info *ai)
801c135c 713{
5fc01ab6 714 int err = 0;
2c5ec5ce 715 struct ubi_ainf_peb *aeb, *tmp_aeb;
801c135c 716
a4e6042f
AB
717 if (!list_empty(&ai->free)) {
718 aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
2c5ec5ce
AB
719 list_del(&aeb->u.list);
720 dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
721 return aeb;
801c135c
AB
722 }
723
5fc01ab6
AB
724 /*
725 * We try to erase the first physical eraseblock from the erase list
726 * and pick it if we succeed, or try to erase the next one if not. And
727 * so forth. We don't want to take care about bad eraseblocks here -
728 * they'll be handled later.
729 */
a4e6042f 730 list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
9c47fb2f 731 if (aeb->ec == UBI_UNKNOWN)
a4e6042f 732 aeb->ec = ai->mean_ec;
801c135c 733
13d33dad 734 err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
5fc01ab6
AB
735 if (err)
736 continue;
801c135c 737
2c5ec5ce
AB
738 aeb->ec += 1;
739 list_del(&aeb->u.list);
740 dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
741 return aeb;
801c135c
AB
742 }
743
5fc01ab6 744 ubi_err("no free eraseblocks");
801c135c
AB
745 return ERR_PTR(-ENOSPC);
746}
747
feeba4b8 748/**
45aafd32 749 * check_corruption - check the data area of PEB.
feeba4b8 750 * @ubi: UBI device description object
dac6e208 751 * @vid_hdr: the (corrupted) VID header of this PEB
feeba4b8
AB
752 * @pnum: the physical eraseblock number to check
753 *
754 * This is a helper function which is used to distinguish between VID header
755 * corruptions caused by power cuts and other reasons. If the PEB contains only
45aafd32 756 * 0xFF bytes in the data area, the VID header is most probably corrupted
feeba4b8 757 * because of a power cut (%0 is returned in this case). Otherwise, it was
45aafd32
AB
758 * probably corrupted for some other reasons (%1 is returned in this case). A
759 * negative error code is returned if a read error occurred.
feeba4b8
AB
760 *
761 * If the corruption reason was a power cut, UBI can safely erase this PEB.
762 * Otherwise, it should preserve it to avoid possibly destroying important
763 * information.
764 */
45aafd32
AB
765static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
766 int pnum)
feeba4b8
AB
767{
768 int err;
769
770 mutex_lock(&ubi->buf_mutex);
0ca39d74 771 memset(ubi->peb_buf, 0x00, ubi->leb_size);
feeba4b8 772
0ca39d74 773 err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
feeba4b8 774 ubi->leb_size);
d57f4054 775 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
45aafd32
AB
776 /*
777 * Bit-flips or integrity errors while reading the data area.
778 * It is difficult to say for sure what type of corruption is
779 * this, but presumably a power cut happened while this PEB was
780 * erased, so it became unstable and corrupted, and should be
781 * erased.
782 */
1b1d76e2
DC
783 err = 0;
784 goto out_unlock;
45aafd32
AB
785 }
786
787 if (err)
1b1d76e2 788 goto out_unlock;
feeba4b8 789
0ca39d74 790 if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
1b1d76e2 791 goto out_unlock;
feeba4b8 792
049333ce
AB
793 ubi_err("PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
794 pnum);
795 ubi_err("this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
a904e3f1 796 ubi_dump_vid_hdr(vid_hdr);
719bb840
AB
797 pr_err("hexdump of PEB %d offset %d, length %d",
798 pnum, ubi->leb_start, ubi->leb_size);
feeba4b8 799 ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
0ca39d74 800 ubi->peb_buf, ubi->leb_size, 1);
1b1d76e2
DC
801 err = 1;
802
803out_unlock:
feeba4b8 804 mutex_unlock(&ubi->buf_mutex);
1b1d76e2 805 return err;
feeba4b8
AB
806}
807
801c135c 808/**
fbd0107f 809 * scan_peb - scan and process UBI headers of a PEB.
801c135c 810 * @ubi: UBI device description object
a4e6042f 811 * @ai: attaching information
801c135c 812 * @pnum: the physical eraseblock number
dac6e208
RW
813 * @vid: The volume ID of the found volume will be stored in this pointer
814 * @sqnum: The sqnum of the found volume will be stored in this pointer
801c135c 815 *
fbd0107f
AB
816 * This function reads UBI headers of PEB @pnum, checks them, and adds
817 * information about this PEB to the corresponding list or RB-tree in the
818 * "attaching info" structure. Returns zero if the physical eraseblock was
819 * successfully handled and a negative error code in case of failure.
801c135c 820 */
fbd0107f 821static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
dac6e208 822 int pnum, int *vid, unsigned long long *sqnum)
801c135c 823{
c18a8418 824 long long uninitialized_var(ec);
dac6e208 825 int err, bitflips = 0, vol_id = -1, ec_err = 0;
801c135c
AB
826
827 dbg_bld("scan PEB %d", pnum);
828
829 /* Skip bad physical eraseblocks */
830 err = ubi_io_is_bad(ubi, pnum);
831 if (err < 0)
832 return err;
833 else if (err) {
a4e6042f 834 ai->bad_peb_count += 1;
801c135c
AB
835 return 0;
836 }
837
838 err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
839 if (err < 0)
840 return err;
b3321508
AB
841 switch (err) {
842 case 0:
843 break;
844 case UBI_IO_BITFLIPS:
801c135c 845 bitflips = 1;
b3321508
AB
846 break;
847 case UBI_IO_FF:
a4e6042f 848 ai->empty_peb_count += 1;
6dd3bc7e
JR
849 return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
850 UBI_UNKNOWN, 0, &ai->erase);
b3321508 851 case UBI_IO_FF_BITFLIPS:
a4e6042f 852 ai->empty_peb_count += 1;
6dd3bc7e
JR
853 return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
854 UBI_UNKNOWN, 1, &ai->erase);
b3321508 855 case UBI_IO_BAD_HDR_EBADMSG:
b3321508 856 case UBI_IO_BAD_HDR:
801c135c
AB
857 /*
858 * We have to also look at the VID header, possibly it is not
859 * corrupted. Set %bitflips flag in order to make this PEB be
860 * moved and EC be re-created.
861 */
e0e718c2 862 ec_err = err;
9c47fb2f 863 ec = UBI_UNKNOWN;
801c135c 864 bitflips = 1;
b3321508
AB
865 break;
866 default:
867 ubi_err("'ubi_io_read_ec_hdr()' returned unknown code %d", err);
868 return -EINVAL;
801c135c
AB
869 }
870
e0e718c2 871 if (!ec_err) {
fe96efc1
AB
872 int image_seq;
873
801c135c
AB
874 /* Make sure UBI version is OK */
875 if (ech->version != UBI_VERSION) {
876 ubi_err("this UBI version is %d, image version is %d",
877 UBI_VERSION, (int)ech->version);
878 return -EINVAL;
879 }
880
3261ebd7 881 ec = be64_to_cpu(ech->ec);
801c135c
AB
882 if (ec > UBI_MAX_ERASECOUNTER) {
883 /*
884 * Erase counter overflow. The EC headers have 64 bits
885 * reserved, but we anyway make use of only 31 bit
886 * values, as this seems to be enough for any existing
887 * flash. Upgrade UBI and use 64-bit erase counters
888 * internally.
889 */
890 ubi_err("erase counter overflow, max is %d",
891 UBI_MAX_ERASECOUNTER);
a904e3f1 892 ubi_dump_ec_hdr(ech);
801c135c
AB
893 return -EINVAL;
894 }
fe96efc1 895
32bc4820
AH
896 /*
897 * Make sure that all PEBs have the same image sequence number.
898 * This allows us to detect situations when users flash UBI
899 * images incorrectly, so that the flash has the new UBI image
900 * and leftovers from the old one. This feature was added
901 * relatively recently, and the sequence number was always
902 * zero, because old UBI implementations always set it to zero.
903 * For this reasons, we do not panic if some PEBs have zero
904 * sequence number, while other PEBs have non-zero sequence
905 * number.
906 */
3dc948da 907 image_seq = be32_to_cpu(ech->image_seq);
2eadaad6 908 if (!ubi->image_seq && image_seq)
fe96efc1 909 ubi->image_seq = image_seq;
2eadaad6
AB
910 if (ubi->image_seq && image_seq &&
911 ubi->image_seq != image_seq) {
049333ce
AB
912 ubi_err("bad image sequence number %d in PEB %d, expected %d",
913 image_seq, pnum, ubi->image_seq);
a904e3f1 914 ubi_dump_ec_hdr(ech);
fe96efc1
AB
915 return -EINVAL;
916 }
801c135c
AB
917 }
918
919 /* OK, we've done with the EC header, let's look at the VID header */
920
921 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
922 if (err < 0)
923 return err;
b3321508
AB
924 switch (err) {
925 case 0:
926 break;
927 case UBI_IO_BITFLIPS:
801c135c 928 bitflips = 1;
b3321508
AB
929 break;
930 case UBI_IO_BAD_HDR_EBADMSG:
0525dac9
AB
931 if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
932 /*
933 * Both EC and VID headers are corrupted and were read
934 * with data integrity error, probably this is a bad
935 * PEB, bit it is not marked as bad yet. This may also
936 * be a result of power cut during erasure.
937 */
a4e6042f 938 ai->maybe_bad_peb_count += 1;
b3321508 939 case UBI_IO_BAD_HDR:
feeba4b8
AB
940 if (ec_err)
941 /*
942 * Both headers are corrupted. There is a possibility
943 * that this a valid UBI PEB which has corresponding
944 * LEB, but the headers are corrupted. However, it is
945 * impossible to distinguish it from a PEB which just
45aafd32 946 * contains garbage because of a power cut during erase
feeba4b8 947 * operation. So we just schedule this PEB for erasure.
7ac760c2 948 *
25985edc 949 * Besides, in case of NOR flash, we deliberately
7ac760c2
AB
950 * corrupt both headers because NOR flash erasure is
951 * slow and can start from the end.
feeba4b8
AB
952 */
953 err = 0;
954 else
955 /*
956 * The EC was OK, but the VID header is corrupted. We
957 * have to check what is in the data area.
958 */
45aafd32 959 err = check_corruption(ubi, vidh, pnum);
df3fca4c
AB
960
961 if (err < 0)
962 return err;
963 else if (!err)
feeba4b8 964 /* This corruption is caused by a power cut */
6dd3bc7e
JR
965 err = add_to_list(ai, pnum, UBI_UNKNOWN,
966 UBI_UNKNOWN, ec, 1, &ai->erase);
feeba4b8
AB
967 else
968 /* This is an unexpected corruption */
a4e6042f 969 err = add_corrupted(ai, pnum, ec);
feeba4b8
AB
970 if (err)
971 return err;
972 goto adjust_mean_ec;
b3321508 973 case UBI_IO_FF_BITFLIPS:
6dd3bc7e
JR
974 err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
975 ec, 1, &ai->erase);
801c135c
AB
976 if (err)
977 return err;
978 goto adjust_mean_ec;
b3321508 979 case UBI_IO_FF:
193819cf 980 if (ec_err || bitflips)
6dd3bc7e
JR
981 err = add_to_list(ai, pnum, UBI_UNKNOWN,
982 UBI_UNKNOWN, ec, 1, &ai->erase);
b3321508 983 else
6dd3bc7e
JR
984 err = add_to_list(ai, pnum, UBI_UNKNOWN,
985 UBI_UNKNOWN, ec, 0, &ai->free);
801c135c
AB
986 if (err)
987 return err;
988 goto adjust_mean_ec;
b3321508
AB
989 default:
990 ubi_err("'ubi_io_read_vid_hdr()' returned unknown code %d",
991 err);
992 return -EINVAL;
801c135c
AB
993 }
994
3261ebd7 995 vol_id = be32_to_cpu(vidh->vol_id);
dac6e208
RW
996 if (vid)
997 *vid = vol_id;
998 if (sqnum)
999 *sqnum = be64_to_cpu(vidh->sqnum);
91f2d53c 1000 if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
3261ebd7 1001 int lnum = be32_to_cpu(vidh->lnum);
801c135c
AB
1002
1003 /* Unsupported internal volume */
1004 switch (vidh->compat) {
1005 case UBI_COMPAT_DELETE:
dac6e208
RW
1006 if (vol_id != UBI_FM_SB_VOLUME_ID
1007 && vol_id != UBI_FM_DATA_VOLUME_ID) {
1008 ubi_msg("\"delete\" compatible internal volume %d:%d found, will remove it",
1009 vol_id, lnum);
1010 }
6dd3bc7e
JR
1011 err = add_to_list(ai, pnum, vol_id, lnum,
1012 ec, 1, &ai->erase);
801c135c
AB
1013 if (err)
1014 return err;
158132c9 1015 return 0;
801c135c
AB
1016
1017 case UBI_COMPAT_RO:
049333ce 1018 ubi_msg("read-only compatible internal volume %d:%d found, switch to read-only mode",
801c135c
AB
1019 vol_id, lnum);
1020 ubi->ro_mode = 1;
1021 break;
1022
1023 case UBI_COMPAT_PRESERVE:
049333ce
AB
1024 ubi_msg("\"preserve\" compatible internal volume %d:%d found",
1025 vol_id, lnum);
6dd3bc7e
JR
1026 err = add_to_list(ai, pnum, vol_id, lnum,
1027 ec, 0, &ai->alien);
801c135c
AB
1028 if (err)
1029 return err;
801c135c
AB
1030 return 0;
1031
1032 case UBI_COMPAT_REJECT:
1033 ubi_err("incompatible internal volume %d:%d found",
1034 vol_id, lnum);
1035 return -EINVAL;
1036 }
1037 }
1038
e0e718c2 1039 if (ec_err)
29a88c99
AB
1040 ubi_warn("valid VID header but corrupted EC header at PEB %d",
1041 pnum);
3561188a 1042 err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
801c135c
AB
1043 if (err)
1044 return err;
1045
1046adjust_mean_ec:
e0e718c2 1047 if (!ec_err) {
a4e6042f
AB
1048 ai->ec_sum += ec;
1049 ai->ec_count += 1;
1050 if (ec > ai->max_ec)
1051 ai->max_ec = ec;
1052 if (ec < ai->min_ec)
1053 ai->min_ec = ec;
801c135c
AB
1054 }
1055
1056 return 0;
1057}
1058
0798cea8 1059/**
fbd0107f 1060 * late_analysis - analyze the overall situation with PEB.
0798cea8 1061 * @ubi: UBI device description object
a4e6042f 1062 * @ai: attaching information
0798cea8 1063 *
fbd0107f
AB
1064 * This is a helper function which takes a look what PEBs we have after we
1065 * gather information about all of them ("ai" is compete). It decides whether
1066 * the flash is empty and should be formatted of whether there are too many
1067 * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1068 * should proceed with attaching the MTD device, and %-EINVAL if we should not.
0798cea8 1069 */
fbd0107f 1070static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
0798cea8 1071{
2c5ec5ce 1072 struct ubi_ainf_peb *aeb;
0525dac9 1073 int max_corr, peb_count;
0798cea8 1074
a4e6042f 1075 peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
0525dac9 1076 max_corr = peb_count / 20 ?: 8;
0798cea8
AB
1077
1078 /*
0525dac9 1079 * Few corrupted PEBs is not a problem and may be just a result of
0798cea8
AB
1080 * unclean reboots. However, many of them may indicate some problems
1081 * with the flash HW or driver.
1082 */
a4e6042f 1083 if (ai->corr_peb_count) {
0525dac9 1084 ubi_err("%d PEBs are corrupted and preserved",
a4e6042f 1085 ai->corr_peb_count);
e28453bb 1086 pr_err("Corrupted PEBs are:");
a4e6042f 1087 list_for_each_entry(aeb, &ai->corr, u.list)
e28453bb
AB
1088 pr_cont(" %d", aeb->pnum);
1089 pr_cont("\n");
0798cea8
AB
1090
1091 /*
1092 * If too many PEBs are corrupted, we refuse attaching,
1093 * otherwise, only print a warning.
1094 */
a4e6042f 1095 if (ai->corr_peb_count >= max_corr) {
feddbb34 1096 ubi_err("too many corrupted PEBs, refusing");
0798cea8
AB
1097 return -EINVAL;
1098 }
1099 }
1100
a4e6042f 1101 if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
0525dac9
AB
1102 /*
1103 * All PEBs are empty, or almost all - a couple PEBs look like
1104 * they may be bad PEBs which were not marked as bad yet.
1105 *
1106 * This piece of code basically tries to distinguish between
1107 * the following situations:
1108 *
1109 * 1. Flash is empty, but there are few bad PEBs, which are not
1110 * marked as bad so far, and which were read with error. We
1111 * want to go ahead and format this flash. While formatting,
1112 * the faulty PEBs will probably be marked as bad.
1113 *
1114 * 2. Flash contains non-UBI data and we do not want to format
1115 * it and destroy possibly important information.
1116 */
a4e6042f
AB
1117 if (ai->maybe_bad_peb_count <= 2) {
1118 ai->is_empty = 1;
0798cea8 1119 ubi_msg("empty MTD device detected");
0525dac9
AB
1120 get_random_bytes(&ubi->image_seq,
1121 sizeof(ubi->image_seq));
0798cea8 1122 } else {
049333ce 1123 ubi_err("MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
0798cea8
AB
1124 return -EINVAL;
1125 }
0525dac9 1126
0798cea8
AB
1127 }
1128
0798cea8
AB
1129 return 0;
1130}
1131
dac6e208
RW
1132/**
1133 * destroy_av - free volume attaching information.
1134 * @av: volume attaching information
1135 * @ai: attaching information
1136 *
1137 * This function destroys the volume attaching information.
1138 */
1139static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
1140{
1141 struct ubi_ainf_peb *aeb;
1142 struct rb_node *this = av->root.rb_node;
1143
1144 while (this) {
1145 if (this->rb_left)
1146 this = this->rb_left;
1147 else if (this->rb_right)
1148 this = this->rb_right;
1149 else {
1150 aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1151 this = rb_parent(this);
1152 if (this) {
1153 if (this->rb_left == &aeb->u.rb)
1154 this->rb_left = NULL;
1155 else
1156 this->rb_right = NULL;
1157 }
1158
1159 kmem_cache_free(ai->aeb_slab_cache, aeb);
1160 }
1161 }
1162 kfree(av);
1163}
1164
1165/**
1166 * destroy_ai - destroy attaching information.
1167 * @ai: attaching information
1168 */
1169static void destroy_ai(struct ubi_attach_info *ai)
1170{
1171 struct ubi_ainf_peb *aeb, *aeb_tmp;
1172 struct ubi_ainf_volume *av;
1173 struct rb_node *rb;
1174
1175 list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1176 list_del(&aeb->u.list);
1177 kmem_cache_free(ai->aeb_slab_cache, aeb);
1178 }
1179 list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1180 list_del(&aeb->u.list);
1181 kmem_cache_free(ai->aeb_slab_cache, aeb);
1182 }
1183 list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1184 list_del(&aeb->u.list);
1185 kmem_cache_free(ai->aeb_slab_cache, aeb);
1186 }
1187 list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1188 list_del(&aeb->u.list);
1189 kmem_cache_free(ai->aeb_slab_cache, aeb);
1190 }
1191
1192 /* Destroy the volume RB-tree */
1193 rb = ai->volumes.rb_node;
1194 while (rb) {
1195 if (rb->rb_left)
1196 rb = rb->rb_left;
1197 else if (rb->rb_right)
1198 rb = rb->rb_right;
1199 else {
1200 av = rb_entry(rb, struct ubi_ainf_volume, rb);
1201
1202 rb = rb_parent(rb);
1203 if (rb) {
1204 if (rb->rb_left == &av->rb)
1205 rb->rb_left = NULL;
1206 else
1207 rb->rb_right = NULL;
1208 }
1209
1210 destroy_av(ai, av);
1211 }
1212 }
1213
1214 if (ai->aeb_slab_cache)
1215 kmem_cache_destroy(ai->aeb_slab_cache);
1216
1217 kfree(ai);
1218}
1219
801c135c 1220/**
47e1ec70 1221 * scan_all - scan entire MTD device.
801c135c 1222 * @ubi: UBI device description object
dac6e208
RW
1223 * @ai: attach info object
1224 * @start: start scanning at this PEB
801c135c
AB
1225 *
1226 * This function does full scanning of an MTD device and returns complete
fbd0107f
AB
1227 * information about it in form of a "struct ubi_attach_info" object. In case
1228 * of failure, an error code is returned.
801c135c 1229 */
dac6e208
RW
1230static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai,
1231 int start)
801c135c
AB
1232{
1233 int err, pnum;
1234 struct rb_node *rb1, *rb2;
517af48c 1235 struct ubi_ainf_volume *av;
2c5ec5ce 1236 struct ubi_ainf_peb *aeb;
801c135c
AB
1237
1238 err = -ENOMEM;
6c1e875c 1239
801c135c
AB
1240 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1241 if (!ech)
dac6e208 1242 return err;
801c135c 1243
33818bbb 1244 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
801c135c
AB
1245 if (!vidh)
1246 goto out_ech;
1247
dac6e208 1248 for (pnum = start; pnum < ubi->peb_count; pnum++) {
801c135c
AB
1249 cond_resched();
1250
c8566350 1251 dbg_gen("process PEB %d", pnum);
dac6e208 1252 err = scan_peb(ubi, ai, pnum, NULL, NULL);
801c135c
AB
1253 if (err < 0)
1254 goto out_vidh;
1255 }
1256
719bb840 1257 ubi_msg("scanning is finished");
801c135c 1258
4bc1dca4 1259 /* Calculate mean erase counter */
a4e6042f
AB
1260 if (ai->ec_count)
1261 ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
801c135c 1262
fbd0107f 1263 err = late_analysis(ubi, ai);
0798cea8
AB
1264 if (err)
1265 goto out_vidh;
4a406856 1266
801c135c
AB
1267 /*
1268 * In case of unknown erase counter we use the mean erase counter
1269 * value.
1270 */
517af48c
AB
1271 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1272 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
9c47fb2f 1273 if (aeb->ec == UBI_UNKNOWN)
a4e6042f 1274 aeb->ec = ai->mean_ec;
801c135c
AB
1275 }
1276
a4e6042f 1277 list_for_each_entry(aeb, &ai->free, u.list) {
9c47fb2f 1278 if (aeb->ec == UBI_UNKNOWN)
a4e6042f 1279 aeb->ec = ai->mean_ec;
801c135c
AB
1280 }
1281
a4e6042f 1282 list_for_each_entry(aeb, &ai->corr, u.list)
9c47fb2f 1283 if (aeb->ec == UBI_UNKNOWN)
a4e6042f 1284 aeb->ec = ai->mean_ec;
801c135c 1285
a4e6042f 1286 list_for_each_entry(aeb, &ai->erase, u.list)
9c47fb2f 1287 if (aeb->ec == UBI_UNKNOWN)
a4e6042f 1288 aeb->ec = ai->mean_ec;
801c135c 1289
a4e6042f 1290 err = self_check_ai(ubi, ai);
adbf05e3 1291 if (err)
801c135c 1292 goto out_vidh;
801c135c
AB
1293
1294 ubi_free_vid_hdr(ubi, vidh);
1295 kfree(ech);
1296
dac6e208 1297 return 0;
801c135c
AB
1298
1299out_vidh:
1300 ubi_free_vid_hdr(ubi, vidh);
1301out_ech:
1302 kfree(ech);
dac6e208
RW
1303 return err;
1304}
1305
1306#ifdef CONFIG_MTD_UBI_FASTMAP
1307
1308/**
1309 * scan_fastmap - try to find a fastmap and attach from it.
1310 * @ubi: UBI device description object
1311 * @ai: attach info object
1312 *
1313 * Returns 0 on success, negative return values indicate an internal
1314 * error.
1315 * UBI_NO_FASTMAP denotes that no fastmap was found.
1316 * UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
1317 */
1318static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info *ai)
1319{
1320 int err, pnum, fm_anchor = -1;
1321 unsigned long long max_sqnum = 0;
1322
1323 err = -ENOMEM;
1324
1325 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1326 if (!ech)
1327 goto out;
1328
1329 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1330 if (!vidh)
1331 goto out_ech;
1332
1333 for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) {
1334 int vol_id = -1;
1335 unsigned long long sqnum = -1;
1336 cond_resched();
1337
1338 dbg_gen("process PEB %d", pnum);
1339 err = scan_peb(ubi, ai, pnum, &vol_id, &sqnum);
1340 if (err < 0)
1341 goto out_vidh;
1342
1343 if (vol_id == UBI_FM_SB_VOLUME_ID && sqnum > max_sqnum) {
1344 max_sqnum = sqnum;
1345 fm_anchor = pnum;
1346 }
1347 }
1348
1349 ubi_free_vid_hdr(ubi, vidh);
1350 kfree(ech);
1351
1352 if (fm_anchor < 0)
1353 return UBI_NO_FASTMAP;
1354
1355 return ubi_scan_fastmap(ubi, ai, fm_anchor);
1356
1357out_vidh:
1358 ubi_free_vid_hdr(ubi, vidh);
1359out_ech:
1360 kfree(ech);
1361out:
1362 return err;
1363}
1364
1365#endif
1366
1367static struct ubi_attach_info *alloc_ai(const char *slab_name)
1368{
1369 struct ubi_attach_info *ai;
1370
1371 ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1372 if (!ai)
1373 return ai;
1374
1375 INIT_LIST_HEAD(&ai->corr);
1376 INIT_LIST_HEAD(&ai->free);
1377 INIT_LIST_HEAD(&ai->erase);
1378 INIT_LIST_HEAD(&ai->alien);
1379 ai->volumes = RB_ROOT;
1380 ai->aeb_slab_cache = kmem_cache_create(slab_name,
1381 sizeof(struct ubi_ainf_peb),
1382 0, 0, NULL);
1383 if (!ai->aeb_slab_cache) {
1384 kfree(ai);
1385 ai = NULL;
1386 }
1387
1388 return ai;
801c135c
AB
1389}
1390
47e1ec70
AB
1391/**
1392 * ubi_attach - attach an MTD device.
1393 * @ubi: UBI device descriptor
dac6e208 1394 * @force_scan: if set to non-zero attach by scanning
47e1ec70
AB
1395 *
1396 * This function returns zero in case of success and a negative error code in
1397 * case of failure.
1398 */
dac6e208 1399int ubi_attach(struct ubi_device *ubi, int force_scan)
47e1ec70
AB
1400{
1401 int err;
1402 struct ubi_attach_info *ai;
1403
dac6e208
RW
1404 ai = alloc_ai("ubi_aeb_slab_cache");
1405 if (!ai)
1406 return -ENOMEM;
1407
1408#ifdef CONFIG_MTD_UBI_FASTMAP
1409 /* On small flash devices we disable fastmap in any case. */
1410 if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) {
1411 ubi->fm_disabled = 1;
1412 force_scan = 1;
1413 }
1414
1415 if (force_scan)
1416 err = scan_all(ubi, ai, 0);
1417 else {
1418 err = scan_fast(ubi, ai);
1419 if (err > 0) {
1420 if (err != UBI_NO_FASTMAP) {
1421 destroy_ai(ai);
1422 ai = alloc_ai("ubi_aeb_slab_cache2");
1423 if (!ai)
1424 return -ENOMEM;
1425 }
1426
1427 err = scan_all(ubi, ai, UBI_FM_MAX_START);
1428 }
1429 }
1430#else
1431 err = scan_all(ubi, ai, 0);
1432#endif
1433 if (err)
1434 goto out_ai;
47e1ec70
AB
1435
1436 ubi->bad_peb_count = ai->bad_peb_count;
1437 ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
1438 ubi->corr_peb_count = ai->corr_peb_count;
1439 ubi->max_ec = ai->max_ec;
1440 ubi->mean_ec = ai->mean_ec;
719bb840 1441 dbg_gen("max. sequence number: %llu", ai->max_sqnum);
47e1ec70
AB
1442
1443 err = ubi_read_volume_table(ubi, ai);
1444 if (err)
1445 goto out_ai;
1446
1447 err = ubi_wl_init(ubi, ai);
1448 if (err)
1449 goto out_vtbl;
1450
1451 err = ubi_eba_init(ubi, ai);
1452 if (err)
1453 goto out_wl;
1454
dac6e208
RW
1455#ifdef CONFIG_MTD_UBI_FASTMAP
1456 if (ubi->fm && ubi->dbg->chk_gen) {
1457 struct ubi_attach_info *scan_ai;
1458
1459 scan_ai = alloc_ai("ubi_ckh_aeb_slab_cache");
1460 if (!scan_ai)
1461 goto out_wl;
1462
1463 err = scan_all(ubi, scan_ai, 0);
1464 if (err) {
1465 destroy_ai(scan_ai);
1466 goto out_wl;
1467 }
1468
1469 err = self_check_eba(ubi, ai, scan_ai);
1470 destroy_ai(scan_ai);
1471
1472 if (err)
1473 goto out_wl;
1474 }
1475#endif
1476
1477 destroy_ai(ai);
47e1ec70
AB
1478 return 0;
1479
1480out_wl:
1481 ubi_wl_close(ubi);
1482out_vtbl:
1483 ubi_free_internal_volumes(ubi);
1484 vfree(ubi->vtbl);
1485out_ai:
dac6e208 1486 destroy_ai(ai);
47e1ec70
AB
1487 return err;
1488}
1489
801c135c 1490/**
a4e6042f 1491 * self_check_ai - check the attaching information.
801c135c 1492 * @ubi: UBI device description object
a4e6042f 1493 * @ai: attaching information
801c135c 1494 *
a4e6042f 1495 * This function returns zero if the attaching information is all right, and a
adbf05e3 1496 * negative error code if not or if an error occurred.
801c135c 1497 */
a4e6042f 1498static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
801c135c
AB
1499{
1500 int pnum, err, vols_found = 0;
1501 struct rb_node *rb1, *rb2;
517af48c 1502 struct ubi_ainf_volume *av;
2c5ec5ce 1503 struct ubi_ainf_peb *aeb, *last_aeb;
801c135c
AB
1504 uint8_t *buf;
1505
2a734bb8 1506 if (!ubi->dbg->chk_gen)
92d124f5
AB
1507 return 0;
1508
801c135c 1509 /*
a4e6042f 1510 * At first, check that attaching information is OK.
801c135c 1511 */
517af48c 1512 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
801c135c
AB
1513 int leb_count = 0;
1514
1515 cond_resched();
1516
1517 vols_found += 1;
1518
a4e6042f 1519 if (ai->is_empty) {
801c135c 1520 ubi_err("bad is_empty flag");
517af48c 1521 goto bad_av;
801c135c
AB
1522 }
1523
517af48c
AB
1524 if (av->vol_id < 0 || av->highest_lnum < 0 ||
1525 av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1526 av->data_pad < 0 || av->last_data_size < 0) {
801c135c 1527 ubi_err("negative values");
517af48c 1528 goto bad_av;
801c135c
AB
1529 }
1530
517af48c
AB
1531 if (av->vol_id >= UBI_MAX_VOLUMES &&
1532 av->vol_id < UBI_INTERNAL_VOL_START) {
801c135c 1533 ubi_err("bad vol_id");
517af48c 1534 goto bad_av;
801c135c
AB
1535 }
1536
517af48c 1537 if (av->vol_id > ai->highest_vol_id) {
801c135c 1538 ubi_err("highest_vol_id is %d, but vol_id %d is there",
517af48c 1539 ai->highest_vol_id, av->vol_id);
801c135c
AB
1540 goto out;
1541 }
1542
517af48c
AB
1543 if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1544 av->vol_type != UBI_STATIC_VOLUME) {
801c135c 1545 ubi_err("bad vol_type");
517af48c 1546 goto bad_av;
801c135c
AB
1547 }
1548
517af48c 1549 if (av->data_pad > ubi->leb_size / 2) {
801c135c 1550 ubi_err("bad data_pad");
517af48c 1551 goto bad_av;
801c135c
AB
1552 }
1553
2c5ec5ce 1554 last_aeb = NULL;
517af48c 1555 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
801c135c
AB
1556 cond_resched();
1557
2c5ec5ce 1558 last_aeb = aeb;
801c135c
AB
1559 leb_count += 1;
1560
2c5ec5ce 1561 if (aeb->pnum < 0 || aeb->ec < 0) {
801c135c 1562 ubi_err("negative values");
2c5ec5ce 1563 goto bad_aeb;
801c135c
AB
1564 }
1565
a4e6042f
AB
1566 if (aeb->ec < ai->min_ec) {
1567 ubi_err("bad ai->min_ec (%d), %d found",
1568 ai->min_ec, aeb->ec);
2c5ec5ce 1569 goto bad_aeb;
801c135c
AB
1570 }
1571
a4e6042f
AB
1572 if (aeb->ec > ai->max_ec) {
1573 ubi_err("bad ai->max_ec (%d), %d found",
1574 ai->max_ec, aeb->ec);
2c5ec5ce 1575 goto bad_aeb;
801c135c
AB
1576 }
1577
2c5ec5ce 1578 if (aeb->pnum >= ubi->peb_count) {
801c135c 1579 ubi_err("too high PEB number %d, total PEBs %d",
2c5ec5ce
AB
1580 aeb->pnum, ubi->peb_count);
1581 goto bad_aeb;
801c135c
AB
1582 }
1583
517af48c
AB
1584 if (av->vol_type == UBI_STATIC_VOLUME) {
1585 if (aeb->lnum >= av->used_ebs) {
801c135c 1586 ubi_err("bad lnum or used_ebs");
2c5ec5ce 1587 goto bad_aeb;
801c135c
AB
1588 }
1589 } else {
517af48c 1590 if (av->used_ebs != 0) {
801c135c 1591 ubi_err("non-zero used_ebs");
2c5ec5ce 1592 goto bad_aeb;
801c135c
AB
1593 }
1594 }
1595
517af48c 1596 if (aeb->lnum > av->highest_lnum) {
801c135c 1597 ubi_err("incorrect highest_lnum or lnum");
2c5ec5ce 1598 goto bad_aeb;
801c135c
AB
1599 }
1600 }
1601
517af48c 1602 if (av->leb_count != leb_count) {
801c135c
AB
1603 ubi_err("bad leb_count, %d objects in the tree",
1604 leb_count);
517af48c 1605 goto bad_av;
801c135c
AB
1606 }
1607
2c5ec5ce 1608 if (!last_aeb)
801c135c
AB
1609 continue;
1610
2c5ec5ce 1611 aeb = last_aeb;
801c135c 1612
517af48c 1613 if (aeb->lnum != av->highest_lnum) {
801c135c 1614 ubi_err("bad highest_lnum");
2c5ec5ce 1615 goto bad_aeb;
801c135c
AB
1616 }
1617 }
1618
a4e6042f
AB
1619 if (vols_found != ai->vols_found) {
1620 ubi_err("bad ai->vols_found %d, should be %d",
1621 ai->vols_found, vols_found);
801c135c
AB
1622 goto out;
1623 }
1624
a4e6042f 1625 /* Check that attaching information is correct */
517af48c 1626 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
2c5ec5ce 1627 last_aeb = NULL;
517af48c 1628 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
801c135c
AB
1629 int vol_type;
1630
1631 cond_resched();
1632
2c5ec5ce 1633 last_aeb = aeb;
801c135c 1634
2c5ec5ce 1635 err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1);
801c135c
AB
1636 if (err && err != UBI_IO_BITFLIPS) {
1637 ubi_err("VID header is not OK (%d)", err);
1638 if (err > 0)
1639 err = -EIO;
1640 return err;
1641 }
1642
1643 vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1644 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
517af48c 1645 if (av->vol_type != vol_type) {
801c135c
AB
1646 ubi_err("bad vol_type");
1647 goto bad_vid_hdr;
1648 }
1649
2c5ec5ce
AB
1650 if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1651 ubi_err("bad sqnum %llu", aeb->sqnum);
801c135c
AB
1652 goto bad_vid_hdr;
1653 }
1654
517af48c
AB
1655 if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1656 ubi_err("bad vol_id %d", av->vol_id);
801c135c
AB
1657 goto bad_vid_hdr;
1658 }
1659
517af48c 1660 if (av->compat != vidh->compat) {
801c135c
AB
1661 ubi_err("bad compat %d", vidh->compat);
1662 goto bad_vid_hdr;
1663 }
1664
2c5ec5ce
AB
1665 if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1666 ubi_err("bad lnum %d", aeb->lnum);
801c135c
AB
1667 goto bad_vid_hdr;
1668 }
1669
517af48c
AB
1670 if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1671 ubi_err("bad used_ebs %d", av->used_ebs);
801c135c
AB
1672 goto bad_vid_hdr;
1673 }
1674
517af48c
AB
1675 if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1676 ubi_err("bad data_pad %d", av->data_pad);
801c135c
AB
1677 goto bad_vid_hdr;
1678 }
801c135c
AB
1679 }
1680
2c5ec5ce 1681 if (!last_aeb)
801c135c
AB
1682 continue;
1683
517af48c
AB
1684 if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1685 ubi_err("bad highest_lnum %d", av->highest_lnum);
801c135c
AB
1686 goto bad_vid_hdr;
1687 }
1688
517af48c
AB
1689 if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1690 ubi_err("bad last_data_size %d", av->last_data_size);
801c135c
AB
1691 goto bad_vid_hdr;
1692 }
1693 }
1694
1695 /*
1696 * Make sure that all the physical eraseblocks are in one of the lists
1697 * or trees.
1698 */
d9b0744d 1699 buf = kzalloc(ubi->peb_count, GFP_KERNEL);
801c135c
AB
1700 if (!buf)
1701 return -ENOMEM;
1702
801c135c
AB
1703 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1704 err = ubi_io_is_bad(ubi, pnum);
341e1a0c
AB
1705 if (err < 0) {
1706 kfree(buf);
801c135c 1707 return err;
9c9ec147 1708 } else if (err)
d9b0744d 1709 buf[pnum] = 1;
801c135c
AB
1710 }
1711
517af48c
AB
1712 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1713 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
2c5ec5ce 1714 buf[aeb->pnum] = 1;
801c135c 1715
a4e6042f 1716 list_for_each_entry(aeb, &ai->free, u.list)
2c5ec5ce 1717 buf[aeb->pnum] = 1;
801c135c 1718
a4e6042f 1719 list_for_each_entry(aeb, &ai->corr, u.list)
2c5ec5ce 1720 buf[aeb->pnum] = 1;
801c135c 1721
a4e6042f 1722 list_for_each_entry(aeb, &ai->erase, u.list)
2c5ec5ce 1723 buf[aeb->pnum] = 1;
801c135c 1724
a4e6042f 1725 list_for_each_entry(aeb, &ai->alien, u.list)
2c5ec5ce 1726 buf[aeb->pnum] = 1;
801c135c
AB
1727
1728 err = 0;
1729 for (pnum = 0; pnum < ubi->peb_count; pnum++)
d9b0744d 1730 if (!buf[pnum]) {
801c135c
AB
1731 ubi_err("PEB %d is not referred", pnum);
1732 err = 1;
1733 }
1734
1735 kfree(buf);
1736 if (err)
1737 goto out;
1738 return 0;
1739
2c5ec5ce 1740bad_aeb:
a4e6042f 1741 ubi_err("bad attaching information about LEB %d", aeb->lnum);
2c5ec5ce 1742 ubi_dump_aeb(aeb, 0);
517af48c 1743 ubi_dump_av(av);
801c135c
AB
1744 goto out;
1745
517af48c
AB
1746bad_av:
1747 ubi_err("bad attaching information about volume %d", av->vol_id);
1748 ubi_dump_av(av);
801c135c
AB
1749 goto out;
1750
1751bad_vid_hdr:
517af48c
AB
1752 ubi_err("bad attaching information about volume %d", av->vol_id);
1753 ubi_dump_av(av);
a904e3f1 1754 ubi_dump_vid_hdr(vidh);
801c135c
AB
1755
1756out:
25886a36 1757 dump_stack();
adbf05e3 1758 return -EINVAL;
801c135c 1759}
This page took 0.48305 seconds and 5 git commands to generate.