Merge tag 'for-linus-4.5-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / mtd / ubi / eba.c
CommitLineData
801c135c
AB
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Artem Bityutskiy (Битюцкий Артём)
19 */
20
21/*
85c6e6e2 22 * The UBI Eraseblock Association (EBA) sub-system.
801c135c 23 *
85c6e6e2 24 * This sub-system is responsible for I/O to/from logical eraseblock.
801c135c
AB
25 *
26 * Although in this implementation the EBA table is fully kept and managed in
27 * RAM, which assumes poor scalability, it might be (partially) maintained on
28 * flash in future implementations.
29 *
85c6e6e2
AB
30 * The EBA sub-system implements per-logical eraseblock locking. Before
31 * accessing a logical eraseblock it is locked for reading or writing. The
32 * per-logical eraseblock locking is implemented by means of the lock tree. The
33 * lock tree is an RB-tree which refers all the currently locked logical
34 * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
35 * They are indexed by (@vol_id, @lnum) pairs.
801c135c
AB
36 *
37 * EBA also maintains the global sequence counter which is incremented each
38 * time a logical eraseblock is mapped to a physical eraseblock and it is
39 * stored in the volume identifier header. This means that each VID header has
40 * a unique sequence number. The sequence number is only increased an we assume
41 * 64 bits is enough to never overflow.
42 */
43
44#include <linux/slab.h>
45#include <linux/crc32.h>
46#include <linux/err.h>
47#include "ubi.h"
48
e8823bd6
AB
49/* Number of physical eraseblocks reserved for atomic LEB change operation */
50#define EBA_RESERVED_PEBS 1
51
801c135c
AB
52/**
53 * next_sqnum - get next sequence number.
54 * @ubi: UBI device description object
55 *
56 * This function returns next sequence number to use, which is just the current
57 * global sequence counter value. It also increases the global sequence
58 * counter.
59 */
a7306653 60unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
801c135c
AB
61{
62 unsigned long long sqnum;
63
64 spin_lock(&ubi->ltree_lock);
65 sqnum = ubi->global_sqnum++;
66 spin_unlock(&ubi->ltree_lock);
67
68 return sqnum;
69}
70
71/**
72 * ubi_get_compat - get compatibility flags of a volume.
73 * @ubi: UBI device description object
74 * @vol_id: volume ID
75 *
76 * This function returns compatibility flags for an internal volume. User
77 * volumes have no compatibility flags, so %0 is returned.
78 */
79static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
80{
91f2d53c 81 if (vol_id == UBI_LAYOUT_VOLUME_ID)
801c135c
AB
82 return UBI_LAYOUT_VOLUME_COMPAT;
83 return 0;
84}
85
86/**
87 * ltree_lookup - look up the lock tree.
88 * @ubi: UBI device description object
89 * @vol_id: volume ID
90 * @lnum: logical eraseblock number
91 *
3a8d4642 92 * This function returns a pointer to the corresponding &struct ubi_ltree_entry
801c135c
AB
93 * object if the logical eraseblock is locked and %NULL if it is not.
94 * @ubi->ltree_lock has to be locked.
95 */
3a8d4642
AB
96static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
97 int lnum)
801c135c
AB
98{
99 struct rb_node *p;
100
101 p = ubi->ltree.rb_node;
102 while (p) {
3a8d4642 103 struct ubi_ltree_entry *le;
801c135c 104
3a8d4642 105 le = rb_entry(p, struct ubi_ltree_entry, rb);
801c135c
AB
106
107 if (vol_id < le->vol_id)
108 p = p->rb_left;
109 else if (vol_id > le->vol_id)
110 p = p->rb_right;
111 else {
112 if (lnum < le->lnum)
113 p = p->rb_left;
114 else if (lnum > le->lnum)
115 p = p->rb_right;
116 else
117 return le;
118 }
119 }
120
121 return NULL;
122}
123
124/**
125 * ltree_add_entry - add new entry to the lock tree.
126 * @ubi: UBI device description object
127 * @vol_id: volume ID
128 * @lnum: logical eraseblock number
129 *
130 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
131 * lock tree. If such entry is already there, its usage counter is increased.
132 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
133 * failed.
134 */
3a8d4642
AB
135static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
136 int vol_id, int lnum)
801c135c 137{
3a8d4642 138 struct ubi_ltree_entry *le, *le1, *le_free;
801c135c 139
b9a06623 140 le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
801c135c
AB
141 if (!le)
142 return ERR_PTR(-ENOMEM);
143
b9a06623
AB
144 le->users = 0;
145 init_rwsem(&le->mutex);
801c135c
AB
146 le->vol_id = vol_id;
147 le->lnum = lnum;
148
149 spin_lock(&ubi->ltree_lock);
150 le1 = ltree_lookup(ubi, vol_id, lnum);
151
152 if (le1) {
153 /*
154 * This logical eraseblock is already locked. The newly
155 * allocated lock entry is not needed.
156 */
157 le_free = le;
158 le = le1;
159 } else {
160 struct rb_node **p, *parent = NULL;
161
162 /*
163 * No lock entry, add the newly allocated one to the
164 * @ubi->ltree RB-tree.
165 */
166 le_free = NULL;
167
168 p = &ubi->ltree.rb_node;
169 while (*p) {
170 parent = *p;
3a8d4642 171 le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
801c135c
AB
172
173 if (vol_id < le1->vol_id)
174 p = &(*p)->rb_left;
175 else if (vol_id > le1->vol_id)
176 p = &(*p)->rb_right;
177 else {
178 ubi_assert(lnum != le1->lnum);
179 if (lnum < le1->lnum)
180 p = &(*p)->rb_left;
181 else
182 p = &(*p)->rb_right;
183 }
184 }
185
186 rb_link_node(&le->rb, parent, p);
187 rb_insert_color(&le->rb, &ubi->ltree);
188 }
189 le->users += 1;
190 spin_unlock(&ubi->ltree_lock);
191
9c9ec147 192 kfree(le_free);
801c135c
AB
193 return le;
194}
195
196/**
197 * leb_read_lock - lock logical eraseblock for reading.
198 * @ubi: UBI device description object
199 * @vol_id: volume ID
200 * @lnum: logical eraseblock number
201 *
202 * This function locks a logical eraseblock for reading. Returns zero in case
203 * of success and a negative error code in case of failure.
204 */
205static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
206{
3a8d4642 207 struct ubi_ltree_entry *le;
801c135c
AB
208
209 le = ltree_add_entry(ubi, vol_id, lnum);
210 if (IS_ERR(le))
211 return PTR_ERR(le);
212 down_read(&le->mutex);
213 return 0;
214}
215
216/**
217 * leb_read_unlock - unlock logical eraseblock.
218 * @ubi: UBI device description object
219 * @vol_id: volume ID
220 * @lnum: logical eraseblock number
221 */
222static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
223{
3a8d4642 224 struct ubi_ltree_entry *le;
801c135c
AB
225
226 spin_lock(&ubi->ltree_lock);
227 le = ltree_lookup(ubi, vol_id, lnum);
228 le->users -= 1;
229 ubi_assert(le->users >= 0);
23add745 230 up_read(&le->mutex);
801c135c
AB
231 if (le->users == 0) {
232 rb_erase(&le->rb, &ubi->ltree);
23add745 233 kfree(le);
801c135c
AB
234 }
235 spin_unlock(&ubi->ltree_lock);
801c135c
AB
236}
237
238/**
239 * leb_write_lock - lock logical eraseblock for writing.
240 * @ubi: UBI device description object
241 * @vol_id: volume ID
242 * @lnum: logical eraseblock number
243 *
244 * This function locks a logical eraseblock for writing. Returns zero in case
245 * of success and a negative error code in case of failure.
246 */
247static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
248{
3a8d4642 249 struct ubi_ltree_entry *le;
801c135c
AB
250
251 le = ltree_add_entry(ubi, vol_id, lnum);
252 if (IS_ERR(le))
253 return PTR_ERR(le);
254 down_write(&le->mutex);
255 return 0;
256}
257
43f9b25a
AB
258/**
259 * leb_write_lock - lock logical eraseblock for writing.
260 * @ubi: UBI device description object
261 * @vol_id: volume ID
262 * @lnum: logical eraseblock number
263 *
264 * This function locks a logical eraseblock for writing if there is no
265 * contention and does nothing if there is contention. Returns %0 in case of
266 * success, %1 in case of contention, and and a negative error code in case of
267 * failure.
268 */
269static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
270{
43f9b25a
AB
271 struct ubi_ltree_entry *le;
272
273 le = ltree_add_entry(ubi, vol_id, lnum);
274 if (IS_ERR(le))
275 return PTR_ERR(le);
276 if (down_write_trylock(&le->mutex))
277 return 0;
278
279 /* Contention, cancel */
280 spin_lock(&ubi->ltree_lock);
281 le->users -= 1;
282 ubi_assert(le->users >= 0);
283 if (le->users == 0) {
284 rb_erase(&le->rb, &ubi->ltree);
b9a06623 285 kfree(le);
23add745
AB
286 }
287 spin_unlock(&ubi->ltree_lock);
43f9b25a
AB
288
289 return 1;
290}
291
801c135c
AB
292/**
293 * leb_write_unlock - unlock logical eraseblock.
294 * @ubi: UBI device description object
295 * @vol_id: volume ID
296 * @lnum: logical eraseblock number
297 */
298static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
299{
3a8d4642 300 struct ubi_ltree_entry *le;
801c135c
AB
301
302 spin_lock(&ubi->ltree_lock);
303 le = ltree_lookup(ubi, vol_id, lnum);
304 le->users -= 1;
305 ubi_assert(le->users >= 0);
23add745 306 up_write(&le->mutex);
801c135c
AB
307 if (le->users == 0) {
308 rb_erase(&le->rb, &ubi->ltree);
b9a06623 309 kfree(le);
23add745
AB
310 }
311 spin_unlock(&ubi->ltree_lock);
801c135c
AB
312}
313
314/**
315 * ubi_eba_unmap_leb - un-map logical eraseblock.
316 * @ubi: UBI device description object
89b96b69 317 * @vol: volume description object
801c135c
AB
318 * @lnum: logical eraseblock number
319 *
320 * This function un-maps logical eraseblock @lnum and schedules corresponding
321 * physical eraseblock for erasure. Returns zero in case of success and a
322 * negative error code in case of failure.
323 */
89b96b69
AB
324int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
325 int lnum)
801c135c 326{
89b96b69 327 int err, pnum, vol_id = vol->vol_id;
801c135c
AB
328
329 if (ubi->ro_mode)
330 return -EROFS;
331
332 err = leb_write_lock(ubi, vol_id, lnum);
333 if (err)
334 return err;
335
336 pnum = vol->eba_tbl[lnum];
337 if (pnum < 0)
338 /* This logical eraseblock is already unmapped */
339 goto out_unlock;
340
341 dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
342
111ab0b2 343 down_read(&ubi->fm_eba_sem);
801c135c 344 vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
111ab0b2 345 up_read(&ubi->fm_eba_sem);
d36e59e6 346 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
801c135c
AB
347
348out_unlock:
349 leb_write_unlock(ubi, vol_id, lnum);
350 return err;
351}
352
353/**
354 * ubi_eba_read_leb - read data.
355 * @ubi: UBI device description object
89b96b69 356 * @vol: volume description object
801c135c
AB
357 * @lnum: logical eraseblock number
358 * @buf: buffer to store the read data
359 * @offset: offset from where to read
360 * @len: how many bytes to read
361 * @check: data CRC check flag
362 *
363 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
364 * bytes. The @check flag only makes sense for static volumes and forces
365 * eraseblock data CRC checking.
366 *
367 * In case of success this function returns zero. In case of a static volume,
368 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
369 * returned for any volume type if an ECC error was detected by the MTD device
370 * driver. Other negative error cored may be returned in case of other errors.
371 */
89b96b69
AB
372int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
373 void *buf, int offset, int len, int check)
801c135c 374{
89b96b69 375 int err, pnum, scrub = 0, vol_id = vol->vol_id;
801c135c 376 struct ubi_vid_hdr *vid_hdr;
a6343afb 377 uint32_t uninitialized_var(crc);
801c135c
AB
378
379 err = leb_read_lock(ubi, vol_id, lnum);
380 if (err)
381 return err;
382
383 pnum = vol->eba_tbl[lnum];
384 if (pnum < 0) {
385 /*
386 * The logical eraseblock is not mapped, fill the whole buffer
387 * with 0xFF bytes. The exception is static volumes for which
388 * it is an error to read unmapped logical eraseblocks.
389 */
390 dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
391 len, offset, vol_id, lnum);
392 leb_read_unlock(ubi, vol_id, lnum);
393 ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
394 memset(buf, 0xFF, len);
395 return 0;
396 }
397
398 dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
399 len, offset, vol_id, lnum, pnum);
400
401 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
402 check = 0;
403
404retry:
405 if (check) {
33818bbb 406 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
801c135c
AB
407 if (!vid_hdr) {
408 err = -ENOMEM;
409 goto out_unlock;
410 }
411
412 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
413 if (err && err != UBI_IO_BITFLIPS) {
414 if (err > 0) {
415 /*
416 * The header is either absent or corrupted.
417 * The former case means there is a bug -
418 * switch to read-only mode just in case.
419 * The latter case means a real corruption - we
420 * may try to recover data. FIXME: but this is
421 * not implemented.
422 */
756e1df1 423 if (err == UBI_IO_BAD_HDR_EBADMSG ||
eb89580e 424 err == UBI_IO_BAD_HDR) {
32608703 425 ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d",
049333ce 426 pnum, vol_id, lnum);
801c135c 427 err = -EBADMSG;
b388e6a7 428 } else {
0e707ae7 429 err = -EINVAL;
801c135c 430 ubi_ro_mode(ubi);
b388e6a7 431 }
801c135c
AB
432 }
433 goto out_free;
434 } else if (err == UBI_IO_BITFLIPS)
435 scrub = 1;
436
3261ebd7
CH
437 ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
438 ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
801c135c 439
3261ebd7 440 crc = be32_to_cpu(vid_hdr->data_crc);
801c135c
AB
441 ubi_free_vid_hdr(ubi, vid_hdr);
442 }
443
444 err = ubi_io_read_data(ubi, buf, pnum, offset, len);
445 if (err) {
170505f5 446 if (err == UBI_IO_BITFLIPS)
801c135c 447 scrub = 1;
170505f5 448 else if (mtd_is_eccerr(err)) {
801c135c
AB
449 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
450 goto out_unlock;
451 scrub = 1;
452 if (!check) {
32608703 453 ubi_msg(ubi, "force data checking");
801c135c
AB
454 check = 1;
455 goto retry;
456 }
457 } else
458 goto out_unlock;
459 }
460
461 if (check) {
2ab934b8 462 uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
801c135c 463 if (crc1 != crc) {
32608703 464 ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x",
801c135c
AB
465 crc1, crc);
466 err = -EBADMSG;
467 goto out_unlock;
468 }
469 }
470
471 if (scrub)
472 err = ubi_wl_scrub_peb(ubi, pnum);
473
474 leb_read_unlock(ubi, vol_id, lnum);
475 return err;
476
477out_free:
478 ubi_free_vid_hdr(ubi, vid_hdr);
479out_unlock:
480 leb_read_unlock(ubi, vol_id, lnum);
481 return err;
482}
483
9ff08979
RW
484/**
485 * ubi_eba_read_leb_sg - read data into a scatter gather list.
486 * @ubi: UBI device description object
487 * @vol: volume description object
488 * @lnum: logical eraseblock number
489 * @sgl: UBI scatter gather list to store the read data
490 * @offset: offset from where to read
491 * @len: how many bytes to read
492 * @check: data CRC check flag
493 *
494 * This function works exactly like ubi_eba_read_leb(). But instead of
495 * storing the read data into a buffer it writes to an UBI scatter gather
496 * list.
497 */
498int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol,
499 struct ubi_sgl *sgl, int lnum, int offset, int len,
500 int check)
501{
502 int to_read;
503 int ret;
504 struct scatterlist *sg;
505
506 for (;;) {
507 ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT);
508 sg = &sgl->sg[sgl->list_pos];
509 if (len < sg->length - sgl->page_pos)
510 to_read = len;
511 else
512 to_read = sg->length - sgl->page_pos;
513
514 ret = ubi_eba_read_leb(ubi, vol, lnum,
515 sg_virt(sg) + sgl->page_pos, offset,
516 to_read, check);
517 if (ret < 0)
518 return ret;
519
520 offset += to_read;
521 len -= to_read;
522 if (!len) {
523 sgl->page_pos += to_read;
524 if (sgl->page_pos == sg->length) {
525 sgl->list_pos++;
526 sgl->page_pos = 0;
527 }
528
529 break;
530 }
531
532 sgl->list_pos++;
533 sgl->page_pos = 0;
534 }
535
536 return ret;
537}
538
801c135c
AB
539/**
540 * recover_peb - recover from write failure.
541 * @ubi: UBI device description object
542 * @pnum: the physical eraseblock to recover
543 * @vol_id: volume ID
544 * @lnum: logical eraseblock number
545 * @buf: data which was not written because of the write failure
546 * @offset: offset of the failed write
547 * @len: how many bytes should have been written
548 *
549 * This function is called in case of a write failure and moves all good data
550 * from the potentially bad physical eraseblock to a good physical eraseblock.
551 * This function also writes the data which was not written due to the failure.
552 * Returns new physical eraseblock number in case of success, and a negative
553 * error code in case of failure.
554 */
555static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
556 const void *buf, int offset, int len)
557{
558 int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
559 struct ubi_volume *vol = ubi->volumes[idx];
560 struct ubi_vid_hdr *vid_hdr;
801c135c 561
33818bbb 562 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
9c9ec147 563 if (!vid_hdr)
801c135c 564 return -ENOMEM;
801c135c
AB
565
566retry:
b36a261e 567 new_pnum = ubi_wl_get_peb(ubi);
801c135c
AB
568 if (new_pnum < 0) {
569 ubi_free_vid_hdr(ubi, vid_hdr);
111ab0b2 570 up_read(&ubi->fm_eba_sem);
801c135c
AB
571 return new_pnum;
572 }
573
32608703
TB
574 ubi_msg(ubi, "recover PEB %d, move data to PEB %d",
575 pnum, new_pnum);
801c135c
AB
576
577 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
578 if (err && err != UBI_IO_BITFLIPS) {
579 if (err > 0)
580 err = -EIO;
111ab0b2 581 up_read(&ubi->fm_eba_sem);
801c135c
AB
582 goto out_put;
583 }
584
a7306653 585 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
801c135c 586 err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
8fb2a514 587 if (err) {
111ab0b2 588 up_read(&ubi->fm_eba_sem);
801c135c 589 goto write_error;
8fb2a514 590 }
801c135c
AB
591
592 data_size = offset + len;
4df581f3 593 mutex_lock(&ubi->buf_mutex);
0ca39d74 594 memset(ubi->peb_buf + offset, 0xFF, len);
801c135c
AB
595
596 /* Read everything before the area where the write failure happened */
597 if (offset > 0) {
0ca39d74 598 err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
8fb2a514 599 if (err && err != UBI_IO_BITFLIPS) {
111ab0b2 600 up_read(&ubi->fm_eba_sem);
4df581f3 601 goto out_unlock;
8fb2a514 602 }
801c135c
AB
603 }
604
0ca39d74 605 memcpy(ubi->peb_buf + offset, buf, len);
801c135c 606
0ca39d74 607 err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
4df581f3
AB
608 if (err) {
609 mutex_unlock(&ubi->buf_mutex);
111ab0b2 610 up_read(&ubi->fm_eba_sem);
801c135c 611 goto write_error;
4df581f3 612 }
801c135c 613
e88d6e10 614 mutex_unlock(&ubi->buf_mutex);
801c135c
AB
615 ubi_free_vid_hdr(ubi, vid_hdr);
616
617 vol->eba_tbl[lnum] = new_pnum;
111ab0b2 618 up_read(&ubi->fm_eba_sem);
d36e59e6 619 ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
801c135c 620
32608703 621 ubi_msg(ubi, "data was successfully recovered");
801c135c
AB
622 return 0;
623
4df581f3 624out_unlock:
e88d6e10 625 mutex_unlock(&ubi->buf_mutex);
4df581f3 626out_put:
d36e59e6 627 ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
801c135c
AB
628 ubi_free_vid_hdr(ubi, vid_hdr);
629 return err;
630
631write_error:
632 /*
633 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
634 * get another one.
635 */
32608703 636 ubi_warn(ubi, "failed to write to PEB %d", new_pnum);
d36e59e6 637 ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
801c135c
AB
638 if (++tries > UBI_IO_RETRIES) {
639 ubi_free_vid_hdr(ubi, vid_hdr);
640 return err;
641 }
32608703 642 ubi_msg(ubi, "try again");
801c135c
AB
643 goto retry;
644}
645
646/**
647 * ubi_eba_write_leb - write data to dynamic volume.
648 * @ubi: UBI device description object
89b96b69 649 * @vol: volume description object
801c135c
AB
650 * @lnum: logical eraseblock number
651 * @buf: the data to write
652 * @offset: offset within the logical eraseblock where to write
653 * @len: how many bytes to write
801c135c
AB
654 *
655 * This function writes data to logical eraseblock @lnum of a dynamic volume
89b96b69 656 * @vol. Returns zero in case of success and a negative error code in case
801c135c
AB
657 * of failure. In case of error, it is possible that something was still
658 * written to the flash media, but may be some garbage.
659 */
89b96b69 660int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
b36a261e 661 const void *buf, int offset, int len)
801c135c 662{
89b96b69 663 int err, pnum, tries = 0, vol_id = vol->vol_id;
801c135c
AB
664 struct ubi_vid_hdr *vid_hdr;
665
666 if (ubi->ro_mode)
667 return -EROFS;
668
669 err = leb_write_lock(ubi, vol_id, lnum);
670 if (err)
671 return err;
672
673 pnum = vol->eba_tbl[lnum];
674 if (pnum >= 0) {
675 dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
676 len, offset, vol_id, lnum, pnum);
677
678 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
679 if (err) {
32608703 680 ubi_warn(ubi, "failed to write data to PEB %d", pnum);
801c135c 681 if (err == -EIO && ubi->bad_allowed)
89b96b69
AB
682 err = recover_peb(ubi, pnum, vol_id, lnum, buf,
683 offset, len);
801c135c
AB
684 if (err)
685 ubi_ro_mode(ubi);
686 }
687 leb_write_unlock(ubi, vol_id, lnum);
688 return err;
689 }
690
691 /*
692 * The logical eraseblock is not mapped. We have to get a free physical
693 * eraseblock and write the volume identifier header there first.
694 */
33818bbb 695 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
801c135c
AB
696 if (!vid_hdr) {
697 leb_write_unlock(ubi, vol_id, lnum);
698 return -ENOMEM;
699 }
700
701 vid_hdr->vol_type = UBI_VID_DYNAMIC;
a7306653 702 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
3261ebd7
CH
703 vid_hdr->vol_id = cpu_to_be32(vol_id);
704 vid_hdr->lnum = cpu_to_be32(lnum);
801c135c 705 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
3261ebd7 706 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
801c135c
AB
707
708retry:
b36a261e 709 pnum = ubi_wl_get_peb(ubi);
801c135c
AB
710 if (pnum < 0) {
711 ubi_free_vid_hdr(ubi, vid_hdr);
712 leb_write_unlock(ubi, vol_id, lnum);
111ab0b2 713 up_read(&ubi->fm_eba_sem);
801c135c
AB
714 return pnum;
715 }
716
717 dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
718 len, offset, vol_id, lnum, pnum);
719
720 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
721 if (err) {
32608703 722 ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
801c135c 723 vol_id, lnum, pnum);
111ab0b2 724 up_read(&ubi->fm_eba_sem);
801c135c
AB
725 goto write_error;
726 }
727
393852ec
AB
728 if (len) {
729 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
730 if (err) {
32608703 731 ubi_warn(ubi, "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
049333ce 732 len, offset, vol_id, lnum, pnum);
111ab0b2 733 up_read(&ubi->fm_eba_sem);
393852ec
AB
734 goto write_error;
735 }
801c135c
AB
736 }
737
738 vol->eba_tbl[lnum] = pnum;
111ab0b2 739 up_read(&ubi->fm_eba_sem);
801c135c
AB
740
741 leb_write_unlock(ubi, vol_id, lnum);
742 ubi_free_vid_hdr(ubi, vid_hdr);
743 return 0;
744
745write_error:
746 if (err != -EIO || !ubi->bad_allowed) {
747 ubi_ro_mode(ubi);
748 leb_write_unlock(ubi, vol_id, lnum);
749 ubi_free_vid_hdr(ubi, vid_hdr);
750 return err;
751 }
752
753 /*
754 * Fortunately, this is the first write operation to this physical
755 * eraseblock, so just put it and request a new one. We assume that if
756 * this physical eraseblock went bad, the erase code will handle that.
757 */
d36e59e6 758 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
801c135c
AB
759 if (err || ++tries > UBI_IO_RETRIES) {
760 ubi_ro_mode(ubi);
761 leb_write_unlock(ubi, vol_id, lnum);
762 ubi_free_vid_hdr(ubi, vid_hdr);
763 return err;
764 }
765
a7306653 766 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
32608703 767 ubi_msg(ubi, "try another PEB");
801c135c
AB
768 goto retry;
769}
770
771/**
772 * ubi_eba_write_leb_st - write data to static volume.
773 * @ubi: UBI device description object
89b96b69 774 * @vol: volume description object
801c135c
AB
775 * @lnum: logical eraseblock number
776 * @buf: data to write
777 * @len: how many bytes to write
801c135c
AB
778 * @used_ebs: how many logical eraseblocks will this volume contain
779 *
780 * This function writes data to logical eraseblock @lnum of static volume
89b96b69 781 * @vol. The @used_ebs argument should contain total number of logical
801c135c
AB
782 * eraseblock in this static volume.
783 *
784 * When writing to the last logical eraseblock, the @len argument doesn't have
785 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
786 * to the real data size, although the @buf buffer has to contain the
787 * alignment. In all other cases, @len has to be aligned.
788 *
025dfdaf 789 * It is prohibited to write more than once to logical eraseblocks of static
801c135c
AB
790 * volumes. This function returns zero in case of success and a negative error
791 * code in case of failure.
792 */
89b96b69 793int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
b36a261e 794 int lnum, const void *buf, int len, int used_ebs)
801c135c 795{
89b96b69 796 int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
801c135c
AB
797 struct ubi_vid_hdr *vid_hdr;
798 uint32_t crc;
799
800 if (ubi->ro_mode)
801 return -EROFS;
802
803 if (lnum == used_ebs - 1)
804 /* If this is the last LEB @len may be unaligned */
805 len = ALIGN(data_size, ubi->min_io_size);
806 else
cadb40cc 807 ubi_assert(!(len & (ubi->min_io_size - 1)));
801c135c 808
33818bbb 809 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
801c135c
AB
810 if (!vid_hdr)
811 return -ENOMEM;
812
813 err = leb_write_lock(ubi, vol_id, lnum);
814 if (err) {
815 ubi_free_vid_hdr(ubi, vid_hdr);
816 return err;
817 }
818
a7306653 819 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
3261ebd7
CH
820 vid_hdr->vol_id = cpu_to_be32(vol_id);
821 vid_hdr->lnum = cpu_to_be32(lnum);
801c135c 822 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
3261ebd7 823 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
801c135c
AB
824
825 crc = crc32(UBI_CRC32_INIT, buf, data_size);
826 vid_hdr->vol_type = UBI_VID_STATIC;
3261ebd7
CH
827 vid_hdr->data_size = cpu_to_be32(data_size);
828 vid_hdr->used_ebs = cpu_to_be32(used_ebs);
829 vid_hdr->data_crc = cpu_to_be32(crc);
801c135c
AB
830
831retry:
b36a261e 832 pnum = ubi_wl_get_peb(ubi);
801c135c
AB
833 if (pnum < 0) {
834 ubi_free_vid_hdr(ubi, vid_hdr);
835 leb_write_unlock(ubi, vol_id, lnum);
111ab0b2 836 up_read(&ubi->fm_eba_sem);
801c135c
AB
837 return pnum;
838 }
839
840 dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
841 len, vol_id, lnum, pnum, used_ebs);
842
843 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
844 if (err) {
32608703 845 ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
801c135c 846 vol_id, lnum, pnum);
111ab0b2 847 up_read(&ubi->fm_eba_sem);
801c135c
AB
848 goto write_error;
849 }
850
851 err = ubi_io_write_data(ubi, buf, pnum, 0, len);
852 if (err) {
32608703 853 ubi_warn(ubi, "failed to write %d bytes of data to PEB %d",
801c135c 854 len, pnum);
111ab0b2 855 up_read(&ubi->fm_eba_sem);
801c135c
AB
856 goto write_error;
857 }
858
859 ubi_assert(vol->eba_tbl[lnum] < 0);
860 vol->eba_tbl[lnum] = pnum;
111ab0b2 861 up_read(&ubi->fm_eba_sem);
801c135c
AB
862
863 leb_write_unlock(ubi, vol_id, lnum);
864 ubi_free_vid_hdr(ubi, vid_hdr);
865 return 0;
866
867write_error:
868 if (err != -EIO || !ubi->bad_allowed) {
869 /*
870 * This flash device does not admit of bad eraseblocks or
871 * something nasty and unexpected happened. Switch to read-only
872 * mode just in case.
873 */
874 ubi_ro_mode(ubi);
875 leb_write_unlock(ubi, vol_id, lnum);
876 ubi_free_vid_hdr(ubi, vid_hdr);
877 return err;
878 }
879
d36e59e6 880 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
801c135c
AB
881 if (err || ++tries > UBI_IO_RETRIES) {
882 ubi_ro_mode(ubi);
883 leb_write_unlock(ubi, vol_id, lnum);
884 ubi_free_vid_hdr(ubi, vid_hdr);
885 return err;
886 }
887
a7306653 888 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
32608703 889 ubi_msg(ubi, "try another PEB");
801c135c
AB
890 goto retry;
891}
892
893/*
894 * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
895 * @ubi: UBI device description object
c63a491d 896 * @vol: volume description object
801c135c
AB
897 * @lnum: logical eraseblock number
898 * @buf: data to write
899 * @len: how many bytes to write
801c135c
AB
900 *
901 * This function changes the contents of a logical eraseblock atomically. @buf
902 * has to contain new logical eraseblock data, and @len - the length of the
903 * data, which has to be aligned. This function guarantees that in case of an
904 * unclean reboot the old contents is preserved. Returns zero in case of
905 * success and a negative error code in case of failure.
e8823bd6
AB
906 *
907 * UBI reserves one LEB for the "atomic LEB change" operation, so only one
908 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
801c135c 909 */
89b96b69 910int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
b36a261e 911 int lnum, const void *buf, int len)
801c135c 912{
36a87e44 913 int err, pnum, old_pnum, tries = 0, vol_id = vol->vol_id;
801c135c
AB
914 struct ubi_vid_hdr *vid_hdr;
915 uint32_t crc;
916
917 if (ubi->ro_mode)
918 return -EROFS;
919
60c03153
AB
920 if (len == 0) {
921 /*
922 * Special case when data length is zero. In this case the LEB
923 * has to be unmapped and mapped somewhere else.
924 */
925 err = ubi_eba_unmap_leb(ubi, vol, lnum);
926 if (err)
927 return err;
b36a261e 928 return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
60c03153
AB
929 }
930
33818bbb 931 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
801c135c
AB
932 if (!vid_hdr)
933 return -ENOMEM;
934
e8823bd6 935 mutex_lock(&ubi->alc_mutex);
801c135c 936 err = leb_write_lock(ubi, vol_id, lnum);
e8823bd6
AB
937 if (err)
938 goto out_mutex;
801c135c 939
a7306653 940 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
3261ebd7
CH
941 vid_hdr->vol_id = cpu_to_be32(vol_id);
942 vid_hdr->lnum = cpu_to_be32(lnum);
801c135c 943 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
3261ebd7 944 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
801c135c
AB
945
946 crc = crc32(UBI_CRC32_INIT, buf, len);
84a92580 947 vid_hdr->vol_type = UBI_VID_DYNAMIC;
3261ebd7 948 vid_hdr->data_size = cpu_to_be32(len);
801c135c 949 vid_hdr->copy_flag = 1;
3261ebd7 950 vid_hdr->data_crc = cpu_to_be32(crc);
801c135c
AB
951
952retry:
b36a261e 953 pnum = ubi_wl_get_peb(ubi);
801c135c 954 if (pnum < 0) {
e8823bd6 955 err = pnum;
111ab0b2 956 up_read(&ubi->fm_eba_sem);
e8823bd6 957 goto out_leb_unlock;
801c135c
AB
958 }
959
960 dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
961 vol_id, lnum, vol->eba_tbl[lnum], pnum);
962
963 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
964 if (err) {
32608703 965 ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
801c135c 966 vol_id, lnum, pnum);
111ab0b2 967 up_read(&ubi->fm_eba_sem);
801c135c
AB
968 goto write_error;
969 }
970
971 err = ubi_io_write_data(ubi, buf, pnum, 0, len);
972 if (err) {
32608703 973 ubi_warn(ubi, "failed to write %d bytes of data to PEB %d",
801c135c 974 len, pnum);
111ab0b2 975 up_read(&ubi->fm_eba_sem);
801c135c
AB
976 goto write_error;
977 }
978
36a87e44 979 old_pnum = vol->eba_tbl[lnum];
801c135c 980 vol->eba_tbl[lnum] = pnum;
111ab0b2 981 up_read(&ubi->fm_eba_sem);
e8823bd6 982
36a87e44
RW
983 if (old_pnum >= 0) {
984 err = ubi_wl_put_peb(ubi, vol_id, lnum, old_pnum, 0);
985 if (err)
986 goto out_leb_unlock;
987 }
988
e8823bd6 989out_leb_unlock:
801c135c 990 leb_write_unlock(ubi, vol_id, lnum);
e8823bd6
AB
991out_mutex:
992 mutex_unlock(&ubi->alc_mutex);
801c135c 993 ubi_free_vid_hdr(ubi, vid_hdr);
e8823bd6 994 return err;
801c135c
AB
995
996write_error:
997 if (err != -EIO || !ubi->bad_allowed) {
998 /*
999 * This flash device does not admit of bad eraseblocks or
1000 * something nasty and unexpected happened. Switch to read-only
1001 * mode just in case.
1002 */
1003 ubi_ro_mode(ubi);
e8823bd6 1004 goto out_leb_unlock;
801c135c
AB
1005 }
1006
d36e59e6 1007 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
801c135c
AB
1008 if (err || ++tries > UBI_IO_RETRIES) {
1009 ubi_ro_mode(ubi);
e8823bd6 1010 goto out_leb_unlock;
801c135c
AB
1011 }
1012
a7306653 1013 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
32608703 1014 ubi_msg(ubi, "try another PEB");
801c135c
AB
1015 goto retry;
1016}
1017
6b5c94c6
AB
1018/**
1019 * is_error_sane - check whether a read error is sane.
1020 * @err: code of the error happened during reading
1021 *
1022 * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
1023 * cannot read data from the target PEB (an error @err happened). If the error
1024 * code is sane, then we treat this error as non-fatal. Otherwise the error is
1025 * fatal and UBI will be switched to R/O mode later.
1026 *
1027 * The idea is that we try not to switch to R/O mode if the read error is
1028 * something which suggests there was a real read problem. E.g., %-EIO. Or a
1029 * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
1030 * mode, simply because we do not know what happened at the MTD level, and we
1031 * cannot handle this. E.g., the underlying driver may have become crazy, and
1032 * it is safer to switch to R/O mode to preserve the data.
1033 *
1034 * And bear in mind, this is about reading from the target PEB, i.e. the PEB
1035 * which we have just written.
1036 */
1037static int is_error_sane(int err)
1038{
786d7831 1039 if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
756e1df1 1040 err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
6b5c94c6
AB
1041 return 0;
1042 return 1;
1043}
1044
801c135c
AB
1045/**
1046 * ubi_eba_copy_leb - copy logical eraseblock.
1047 * @ubi: UBI device description object
1048 * @from: physical eraseblock number from where to copy
1049 * @to: physical eraseblock number where to copy
1050 * @vid_hdr: VID header of the @from physical eraseblock
1051 *
1052 * This function copies logical eraseblock from physical eraseblock @from to
1053 * physical eraseblock @to. The @vid_hdr buffer may be changed by this
43f9b25a 1054 * function. Returns:
6fa6f5bb 1055 * o %0 in case of success;
cc831464 1056 * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
6fa6f5bb 1057 * o a negative error code in case of failure.
801c135c
AB
1058 */
1059int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
1060 struct ubi_vid_hdr *vid_hdr)
1061{
43f9b25a 1062 int err, vol_id, lnum, data_size, aldata_size, idx;
801c135c
AB
1063 struct ubi_volume *vol;
1064 uint32_t crc;
801c135c 1065
3261ebd7
CH
1066 vol_id = be32_to_cpu(vid_hdr->vol_id);
1067 lnum = be32_to_cpu(vid_hdr->lnum);
801c135c 1068
87960c0b 1069 dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
801c135c
AB
1070
1071 if (vid_hdr->vol_type == UBI_VID_STATIC) {
3261ebd7 1072 data_size = be32_to_cpu(vid_hdr->data_size);
801c135c
AB
1073 aldata_size = ALIGN(data_size, ubi->min_io_size);
1074 } else
1075 data_size = aldata_size =
3261ebd7 1076 ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
801c135c 1077
801c135c 1078 idx = vol_id2idx(ubi, vol_id);
43f9b25a 1079 spin_lock(&ubi->volumes_lock);
801c135c 1080 /*
43f9b25a
AB
1081 * Note, we may race with volume deletion, which means that the volume
1082 * this logical eraseblock belongs to might be being deleted. Since the
6fa6f5bb 1083 * volume deletion un-maps all the volume's logical eraseblocks, it will
43f9b25a 1084 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
801c135c 1085 */
801c135c 1086 vol = ubi->volumes[idx];
90bf0265 1087 spin_unlock(&ubi->volumes_lock);
801c135c 1088 if (!vol) {
43f9b25a 1089 /* No need to do further work, cancel */
87960c0b 1090 dbg_wl("volume %d is being removed, cancel", vol_id);
90bf0265 1091 return MOVE_CANCEL_RACE;
801c135c
AB
1092 }
1093
43f9b25a
AB
1094 /*
1095 * We do not want anybody to write to this logical eraseblock while we
1096 * are moving it, so lock it.
1097 *
1098 * Note, we are using non-waiting locking here, because we cannot sleep
1099 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1100 * unmapping the LEB which is mapped to the PEB we are going to move
1101 * (@from). This task locks the LEB and goes sleep in the
1102 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1103 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
90bf0265 1104 * LEB is already locked, we just do not move it and return
e801e128
BP
1105 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1106 * we do not know the reasons of the contention - it may be just a
1107 * normal I/O on this LEB, so we want to re-try.
43f9b25a
AB
1108 */
1109 err = leb_write_trylock(ubi, vol_id, lnum);
1110 if (err) {
87960c0b 1111 dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
e801e128 1112 return MOVE_RETRY;
801c135c 1113 }
801c135c 1114
43f9b25a
AB
1115 /*
1116 * The LEB might have been put meanwhile, and the task which put it is
1117 * probably waiting on @ubi->move_mutex. No need to continue the work,
1118 * cancel it.
1119 */
1120 if (vol->eba_tbl[lnum] != from) {
049333ce
AB
1121 dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1122 vol_id, lnum, from, vol->eba_tbl[lnum]);
90bf0265 1123 err = MOVE_CANCEL_RACE;
43f9b25a
AB
1124 goto out_unlock_leb;
1125 }
801c135c 1126
43f9b25a 1127 /*
b77bcb07 1128 * OK, now the LEB is locked and we can safely start moving it. Since
0ca39d74 1129 * this function utilizes the @ubi->peb_buf buffer which is shared
90bf0265 1130 * with some other functions - we lock the buffer by taking the
43f9b25a
AB
1131 * @ubi->buf_mutex.
1132 */
1133 mutex_lock(&ubi->buf_mutex);
87960c0b 1134 dbg_wl("read %d bytes of data", aldata_size);
0ca39d74 1135 err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
801c135c 1136 if (err && err != UBI_IO_BITFLIPS) {
32608703 1137 ubi_warn(ubi, "error %d while reading data from PEB %d",
801c135c 1138 err, from);
6b5c94c6 1139 err = MOVE_SOURCE_RD_ERR;
43f9b25a 1140 goto out_unlock_buf;
801c135c
AB
1141 }
1142
1143 /*
fd589a8f 1144 * Now we have got to calculate how much data we have to copy. In
801c135c
AB
1145 * case of a static volume it is fairly easy - the VID header contains
1146 * the data size. In case of a dynamic volume it is more difficult - we
1147 * have to read the contents, cut 0xFF bytes from the end and copy only
1148 * the first part. We must do this to avoid writing 0xFF bytes as it
1149 * may have some side-effects. And not only this. It is important not
1150 * to include those 0xFFs to CRC because later the they may be filled
1151 * by data.
1152 */
1153 if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1154 aldata_size = data_size =
0ca39d74 1155 ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
801c135c
AB
1156
1157 cond_resched();
0ca39d74 1158 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
801c135c
AB
1159 cond_resched();
1160
1161 /*
90bf0265 1162 * It may turn out to be that the whole @from physical eraseblock
801c135c
AB
1163 * contains only 0xFF bytes. Then we have to only write the VID header
1164 * and do not write any data. This also means we should not set
1165 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1166 */
1167 if (data_size > 0) {
1168 vid_hdr->copy_flag = 1;
3261ebd7
CH
1169 vid_hdr->data_size = cpu_to_be32(data_size);
1170 vid_hdr->data_crc = cpu_to_be32(crc);
801c135c 1171 }
a7306653 1172 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
801c135c
AB
1173
1174 err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
6fa6f5bb
AB
1175 if (err) {
1176 if (err == -EIO)
90bf0265 1177 err = MOVE_TARGET_WR_ERR;
43f9b25a 1178 goto out_unlock_buf;
6fa6f5bb 1179 }
801c135c
AB
1180
1181 cond_resched();
1182
1183 /* Read the VID header back and check if it was written correctly */
1184 err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1185 if (err) {
b86a2c56 1186 if (err != UBI_IO_BITFLIPS) {
32608703 1187 ubi_warn(ubi, "error %d while reading VID header back from PEB %d",
049333ce 1188 err, to);
6b5c94c6 1189 if (is_error_sane(err))
b86a2c56
AB
1190 err = MOVE_TARGET_RD_ERR;
1191 } else
cc831464 1192 err = MOVE_TARGET_BITFLIPS;
43f9b25a 1193 goto out_unlock_buf;
801c135c
AB
1194 }
1195
1196 if (data_size > 0) {
0ca39d74 1197 err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
6fa6f5bb
AB
1198 if (err) {
1199 if (err == -EIO)
90bf0265 1200 err = MOVE_TARGET_WR_ERR;
43f9b25a 1201 goto out_unlock_buf;
6fa6f5bb 1202 }
801c135c 1203
e88d6e10
AB
1204 cond_resched();
1205
801c135c
AB
1206 /*
1207 * We've written the data and are going to read it back to make
1208 * sure it was written correctly.
1209 */
0ca39d74
AB
1210 memset(ubi->peb_buf, 0xFF, aldata_size);
1211 err = ubi_io_read_data(ubi, ubi->peb_buf, to, 0, aldata_size);
801c135c 1212 if (err) {
b86a2c56 1213 if (err != UBI_IO_BITFLIPS) {
32608703 1214 ubi_warn(ubi, "error %d while reading data back from PEB %d",
049333ce 1215 err, to);
6b5c94c6 1216 if (is_error_sane(err))
b86a2c56
AB
1217 err = MOVE_TARGET_RD_ERR;
1218 } else
cc831464 1219 err = MOVE_TARGET_BITFLIPS;
43f9b25a 1220 goto out_unlock_buf;
801c135c
AB
1221 }
1222
1223 cond_resched();
1224
0ca39d74 1225 if (crc != crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size)) {
32608703 1226 ubi_warn(ubi, "read data back from PEB %d and it is different",
049333ce 1227 to);
6fa6f5bb 1228 err = -EINVAL;
43f9b25a 1229 goto out_unlock_buf;
801c135c
AB
1230 }
1231 }
1232
1233 ubi_assert(vol->eba_tbl[lnum] == from);
111ab0b2 1234 down_read(&ubi->fm_eba_sem);
801c135c 1235 vol->eba_tbl[lnum] = to;
111ab0b2 1236 up_read(&ubi->fm_eba_sem);
801c135c 1237
43f9b25a 1238out_unlock_buf:
e88d6e10 1239 mutex_unlock(&ubi->buf_mutex);
43f9b25a 1240out_unlock_leb:
801c135c 1241 leb_write_unlock(ubi, vol_id, lnum);
801c135c
AB
1242 return err;
1243}
1244
64d4b4c9
AB
1245/**
1246 * print_rsvd_warning - warn about not having enough reserved PEBs.
1247 * @ubi: UBI device description object
1248 *
41e0cd9d 1249 * This is a helper function for 'ubi_eba_init()' which is called when UBI
64d4b4c9
AB
1250 * cannot reserve enough PEBs for bad block handling. This function makes a
1251 * decision whether we have to print a warning or not. The algorithm is as
1252 * follows:
1253 * o if this is a new UBI image, then just print the warning
1254 * o if this is an UBI image which has already been used for some time, print
1255 * a warning only if we can reserve less than 10% of the expected amount of
1256 * the reserved PEB.
1257 *
1258 * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1259 * of PEBs becomes smaller, which is normal and we do not want to scare users
1260 * with a warning every time they attach the MTD device. This was an issue
1261 * reported by real users.
1262 */
1263static void print_rsvd_warning(struct ubi_device *ubi,
a4e6042f 1264 struct ubi_attach_info *ai)
64d4b4c9
AB
1265{
1266 /*
1267 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1268 * large number to distinguish between newly flashed and used images.
1269 */
a4e6042f 1270 if (ai->max_sqnum > (1 << 18)) {
64d4b4c9
AB
1271 int min = ubi->beb_rsvd_level / 10;
1272
1273 if (!min)
1274 min = 1;
1275 if (ubi->beb_rsvd_pebs > min)
1276 return;
1277 }
1278
32608703 1279 ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
049333ce 1280 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
5fc01ab6 1281 if (ubi->corr_peb_count)
32608703 1282 ubi_warn(ubi, "%d PEBs are corrupted and not used",
049333ce 1283 ubi->corr_peb_count);
64d4b4c9
AB
1284}
1285
00abf304
RW
1286/**
1287 * self_check_eba - run a self check on the EBA table constructed by fastmap.
1288 * @ubi: UBI device description object
1289 * @ai_fastmap: UBI attach info object created by fastmap
1290 * @ai_scan: UBI attach info object created by scanning
1291 *
1292 * Returns < 0 in case of an internal error, 0 otherwise.
1293 * If a bad EBA table entry was found it will be printed out and
1294 * ubi_assert() triggers.
1295 */
1296int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
1297 struct ubi_attach_info *ai_scan)
1298{
1299 int i, j, num_volumes, ret = 0;
1300 int **scan_eba, **fm_eba;
1301 struct ubi_ainf_volume *av;
1302 struct ubi_volume *vol;
1303 struct ubi_ainf_peb *aeb;
1304 struct rb_node *rb;
1305
1306 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1307
1308 scan_eba = kmalloc(sizeof(*scan_eba) * num_volumes, GFP_KERNEL);
1309 if (!scan_eba)
1310 return -ENOMEM;
1311
1312 fm_eba = kmalloc(sizeof(*fm_eba) * num_volumes, GFP_KERNEL);
1313 if (!fm_eba) {
1314 kfree(scan_eba);
1315 return -ENOMEM;
1316 }
1317
1318 for (i = 0; i < num_volumes; i++) {
1319 vol = ubi->volumes[i];
1320 if (!vol)
1321 continue;
1322
1323 scan_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**scan_eba),
1324 GFP_KERNEL);
1325 if (!scan_eba[i]) {
1326 ret = -ENOMEM;
1327 goto out_free;
1328 }
1329
1330 fm_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**fm_eba),
1331 GFP_KERNEL);
1332 if (!fm_eba[i]) {
1333 ret = -ENOMEM;
1334 goto out_free;
1335 }
1336
1337 for (j = 0; j < vol->reserved_pebs; j++)
1338 scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
1339
1340 av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
1341 if (!av)
1342 continue;
1343
1344 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1345 scan_eba[i][aeb->lnum] = aeb->pnum;
1346
1347 av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
1348 if (!av)
1349 continue;
1350
1351 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1352 fm_eba[i][aeb->lnum] = aeb->pnum;
1353
1354 for (j = 0; j < vol->reserved_pebs; j++) {
1355 if (scan_eba[i][j] != fm_eba[i][j]) {
1356 if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
1357 fm_eba[i][j] == UBI_LEB_UNMAPPED)
1358 continue;
1359
32608703 1360 ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!",
5347417e 1361 vol->vol_id, j, fm_eba[i][j],
00abf304
RW
1362 scan_eba[i][j]);
1363 ubi_assert(0);
1364 }
1365 }
1366 }
1367
1368out_free:
1369 for (i = 0; i < num_volumes; i++) {
1370 if (!ubi->volumes[i])
1371 continue;
1372
1373 kfree(scan_eba[i]);
1374 kfree(fm_eba[i]);
1375 }
1376
1377 kfree(scan_eba);
1378 kfree(fm_eba);
1379 return ret;
1380}
1381
801c135c 1382/**
41e0cd9d 1383 * ubi_eba_init - initialize the EBA sub-system using attaching information.
801c135c 1384 * @ubi: UBI device description object
a4e6042f 1385 * @ai: attaching information
801c135c
AB
1386 *
1387 * This function returns zero in case of success and a negative error code in
1388 * case of failure.
1389 */
41e0cd9d 1390int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
801c135c
AB
1391{
1392 int i, j, err, num_volumes;
517af48c 1393 struct ubi_ainf_volume *av;
801c135c 1394 struct ubi_volume *vol;
2c5ec5ce 1395 struct ubi_ainf_peb *aeb;
801c135c
AB
1396 struct rb_node *rb;
1397
85c6e6e2 1398 dbg_eba("initialize EBA sub-system");
801c135c
AB
1399
1400 spin_lock_init(&ubi->ltree_lock);
e8823bd6 1401 mutex_init(&ubi->alc_mutex);
801c135c
AB
1402 ubi->ltree = RB_ROOT;
1403
a4e6042f 1404 ubi->global_sqnum = ai->max_sqnum + 1;
801c135c
AB
1405 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1406
1407 for (i = 0; i < num_volumes; i++) {
1408 vol = ubi->volumes[i];
1409 if (!vol)
1410 continue;
1411
1412 cond_resched();
1413
1414 vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
1415 GFP_KERNEL);
1416 if (!vol->eba_tbl) {
1417 err = -ENOMEM;
1418 goto out_free;
1419 }
1420
1421 for (j = 0; j < vol->reserved_pebs; j++)
1422 vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
1423
dcd85fdd 1424 av = ubi_find_av(ai, idx2vol_id(ubi, i));
517af48c 1425 if (!av)
801c135c
AB
1426 continue;
1427
517af48c 1428 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
2c5ec5ce 1429 if (aeb->lnum >= vol->reserved_pebs)
801c135c
AB
1430 /*
1431 * This may happen in case of an unclean reboot
1432 * during re-size.
1433 */
0bae2887 1434 ubi_move_aeb_to_list(av, aeb, &ai->erase);
d74adbdb
BN
1435 else
1436 vol->eba_tbl[aeb->lnum] = aeb->pnum;
801c135c
AB
1437 }
1438 }
1439
94780d4d 1440 if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
32608703 1441 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
94780d4d 1442 ubi->avail_pebs, EBA_RESERVED_PEBS);
5fc01ab6 1443 if (ubi->corr_peb_count)
32608703 1444 ubi_err(ubi, "%d PEBs are corrupted and not used",
5fc01ab6 1445 ubi->corr_peb_count);
94780d4d
AB
1446 err = -ENOSPC;
1447 goto out_free;
1448 }
1449 ubi->avail_pebs -= EBA_RESERVED_PEBS;
1450 ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1451
801c135c
AB
1452 if (ubi->bad_allowed) {
1453 ubi_calculate_reserved(ubi);
1454
1455 if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1456 /* No enough free physical eraseblocks */
1457 ubi->beb_rsvd_pebs = ubi->avail_pebs;
a4e6042f 1458 print_rsvd_warning(ubi, ai);
801c135c
AB
1459 } else
1460 ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1461
1462 ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1463 ubi->rsvd_pebs += ubi->beb_rsvd_pebs;
1464 }
1465
85c6e6e2 1466 dbg_eba("EBA sub-system is initialized");
801c135c
AB
1467 return 0;
1468
1469out_free:
1470 for (i = 0; i < num_volumes; i++) {
1471 if (!ubi->volumes[i])
1472 continue;
1473 kfree(ubi->volumes[i]->eba_tbl);
7194e6f9 1474 ubi->volumes[i]->eba_tbl = NULL;
801c135c 1475 }
801c135c
AB
1476 return err;
1477}
This page took 0.692604 seconds and 5 git commands to generate.