UBI: fix kmem_cache_free on error patch
[deliverable/linux.git] / drivers / mtd / ubi / eba.c
CommitLineData
801c135c
AB
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Artem Bityutskiy (Битюцкий Артём)
19 */
20
21/*
85c6e6e2 22 * The UBI Eraseblock Association (EBA) sub-system.
801c135c 23 *
85c6e6e2 24 * This sub-system is responsible for I/O to/from logical eraseblock.
801c135c
AB
25 *
26 * Although in this implementation the EBA table is fully kept and managed in
27 * RAM, which assumes poor scalability, it might be (partially) maintained on
28 * flash in future implementations.
29 *
85c6e6e2
AB
30 * The EBA sub-system implements per-logical eraseblock locking. Before
31 * accessing a logical eraseblock it is locked for reading or writing. The
32 * per-logical eraseblock locking is implemented by means of the lock tree. The
33 * lock tree is an RB-tree which refers all the currently locked logical
34 * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
35 * They are indexed by (@vol_id, @lnum) pairs.
801c135c
AB
36 *
37 * EBA also maintains the global sequence counter which is incremented each
38 * time a logical eraseblock is mapped to a physical eraseblock and it is
39 * stored in the volume identifier header. This means that each VID header has
40 * a unique sequence number. The sequence number is only increased an we assume
41 * 64 bits is enough to never overflow.
42 */
43
44#include <linux/slab.h>
45#include <linux/crc32.h>
46#include <linux/err.h>
47#include "ubi.h"
48
e8823bd6
AB
49/* Number of physical eraseblocks reserved for atomic LEB change operation */
50#define EBA_RESERVED_PEBS 1
51
801c135c
AB
52/**
53 * next_sqnum - get next sequence number.
54 * @ubi: UBI device description object
55 *
56 * This function returns next sequence number to use, which is just the current
57 * global sequence counter value. It also increases the global sequence
58 * counter.
59 */
60static unsigned long long next_sqnum(struct ubi_device *ubi)
61{
62 unsigned long long sqnum;
63
64 spin_lock(&ubi->ltree_lock);
65 sqnum = ubi->global_sqnum++;
66 spin_unlock(&ubi->ltree_lock);
67
68 return sqnum;
69}
70
71/**
72 * ubi_get_compat - get compatibility flags of a volume.
73 * @ubi: UBI device description object
74 * @vol_id: volume ID
75 *
76 * This function returns compatibility flags for an internal volume. User
77 * volumes have no compatibility flags, so %0 is returned.
78 */
79static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
80{
91f2d53c 81 if (vol_id == UBI_LAYOUT_VOLUME_ID)
801c135c
AB
82 return UBI_LAYOUT_VOLUME_COMPAT;
83 return 0;
84}
85
86/**
87 * ltree_lookup - look up the lock tree.
88 * @ubi: UBI device description object
89 * @vol_id: volume ID
90 * @lnum: logical eraseblock number
91 *
3a8d4642 92 * This function returns a pointer to the corresponding &struct ubi_ltree_entry
801c135c
AB
93 * object if the logical eraseblock is locked and %NULL if it is not.
94 * @ubi->ltree_lock has to be locked.
95 */
3a8d4642
AB
96static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
97 int lnum)
801c135c
AB
98{
99 struct rb_node *p;
100
101 p = ubi->ltree.rb_node;
102 while (p) {
3a8d4642 103 struct ubi_ltree_entry *le;
801c135c 104
3a8d4642 105 le = rb_entry(p, struct ubi_ltree_entry, rb);
801c135c
AB
106
107 if (vol_id < le->vol_id)
108 p = p->rb_left;
109 else if (vol_id > le->vol_id)
110 p = p->rb_right;
111 else {
112 if (lnum < le->lnum)
113 p = p->rb_left;
114 else if (lnum > le->lnum)
115 p = p->rb_right;
116 else
117 return le;
118 }
119 }
120
121 return NULL;
122}
123
124/**
125 * ltree_add_entry - add new entry to the lock tree.
126 * @ubi: UBI device description object
127 * @vol_id: volume ID
128 * @lnum: logical eraseblock number
129 *
130 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
131 * lock tree. If such entry is already there, its usage counter is increased.
132 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
133 * failed.
134 */
3a8d4642
AB
135static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
136 int vol_id, int lnum)
801c135c 137{
3a8d4642 138 struct ubi_ltree_entry *le, *le1, *le_free;
801c135c 139
b9a06623 140 le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
801c135c
AB
141 if (!le)
142 return ERR_PTR(-ENOMEM);
143
b9a06623
AB
144 le->users = 0;
145 init_rwsem(&le->mutex);
801c135c
AB
146 le->vol_id = vol_id;
147 le->lnum = lnum;
148
149 spin_lock(&ubi->ltree_lock);
150 le1 = ltree_lookup(ubi, vol_id, lnum);
151
152 if (le1) {
153 /*
154 * This logical eraseblock is already locked. The newly
155 * allocated lock entry is not needed.
156 */
157 le_free = le;
158 le = le1;
159 } else {
160 struct rb_node **p, *parent = NULL;
161
162 /*
163 * No lock entry, add the newly allocated one to the
164 * @ubi->ltree RB-tree.
165 */
166 le_free = NULL;
167
168 p = &ubi->ltree.rb_node;
169 while (*p) {
170 parent = *p;
3a8d4642 171 le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
801c135c
AB
172
173 if (vol_id < le1->vol_id)
174 p = &(*p)->rb_left;
175 else if (vol_id > le1->vol_id)
176 p = &(*p)->rb_right;
177 else {
178 ubi_assert(lnum != le1->lnum);
179 if (lnum < le1->lnum)
180 p = &(*p)->rb_left;
181 else
182 p = &(*p)->rb_right;
183 }
184 }
185
186 rb_link_node(&le->rb, parent, p);
187 rb_insert_color(&le->rb, &ubi->ltree);
188 }
189 le->users += 1;
190 spin_unlock(&ubi->ltree_lock);
191
9c9ec147 192 kfree(le_free);
801c135c
AB
193 return le;
194}
195
196/**
197 * leb_read_lock - lock logical eraseblock for reading.
198 * @ubi: UBI device description object
199 * @vol_id: volume ID
200 * @lnum: logical eraseblock number
201 *
202 * This function locks a logical eraseblock for reading. Returns zero in case
203 * of success and a negative error code in case of failure.
204 */
205static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
206{
3a8d4642 207 struct ubi_ltree_entry *le;
801c135c
AB
208
209 le = ltree_add_entry(ubi, vol_id, lnum);
210 if (IS_ERR(le))
211 return PTR_ERR(le);
212 down_read(&le->mutex);
213 return 0;
214}
215
216/**
217 * leb_read_unlock - unlock logical eraseblock.
218 * @ubi: UBI device description object
219 * @vol_id: volume ID
220 * @lnum: logical eraseblock number
221 */
222static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
223{
3a8d4642 224 struct ubi_ltree_entry *le;
801c135c
AB
225
226 spin_lock(&ubi->ltree_lock);
227 le = ltree_lookup(ubi, vol_id, lnum);
228 le->users -= 1;
229 ubi_assert(le->users >= 0);
23add745 230 up_read(&le->mutex);
801c135c
AB
231 if (le->users == 0) {
232 rb_erase(&le->rb, &ubi->ltree);
23add745 233 kfree(le);
801c135c
AB
234 }
235 spin_unlock(&ubi->ltree_lock);
801c135c
AB
236}
237
238/**
239 * leb_write_lock - lock logical eraseblock for writing.
240 * @ubi: UBI device description object
241 * @vol_id: volume ID
242 * @lnum: logical eraseblock number
243 *
244 * This function locks a logical eraseblock for writing. Returns zero in case
245 * of success and a negative error code in case of failure.
246 */
247static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
248{
3a8d4642 249 struct ubi_ltree_entry *le;
801c135c
AB
250
251 le = ltree_add_entry(ubi, vol_id, lnum);
252 if (IS_ERR(le))
253 return PTR_ERR(le);
254 down_write(&le->mutex);
255 return 0;
256}
257
43f9b25a
AB
258/**
259 * leb_write_lock - lock logical eraseblock for writing.
260 * @ubi: UBI device description object
261 * @vol_id: volume ID
262 * @lnum: logical eraseblock number
263 *
264 * This function locks a logical eraseblock for writing if there is no
265 * contention and does nothing if there is contention. Returns %0 in case of
266 * success, %1 in case of contention, and and a negative error code in case of
267 * failure.
268 */
269static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
270{
43f9b25a
AB
271 struct ubi_ltree_entry *le;
272
273 le = ltree_add_entry(ubi, vol_id, lnum);
274 if (IS_ERR(le))
275 return PTR_ERR(le);
276 if (down_write_trylock(&le->mutex))
277 return 0;
278
279 /* Contention, cancel */
280 spin_lock(&ubi->ltree_lock);
281 le->users -= 1;
282 ubi_assert(le->users >= 0);
283 if (le->users == 0) {
284 rb_erase(&le->rb, &ubi->ltree);
b9a06623 285 kfree(le);
23add745
AB
286 }
287 spin_unlock(&ubi->ltree_lock);
43f9b25a
AB
288
289 return 1;
290}
291
801c135c
AB
292/**
293 * leb_write_unlock - unlock logical eraseblock.
294 * @ubi: UBI device description object
295 * @vol_id: volume ID
296 * @lnum: logical eraseblock number
297 */
298static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
299{
3a8d4642 300 struct ubi_ltree_entry *le;
801c135c
AB
301
302 spin_lock(&ubi->ltree_lock);
303 le = ltree_lookup(ubi, vol_id, lnum);
304 le->users -= 1;
305 ubi_assert(le->users >= 0);
23add745 306 up_write(&le->mutex);
801c135c
AB
307 if (le->users == 0) {
308 rb_erase(&le->rb, &ubi->ltree);
b9a06623 309 kfree(le);
23add745
AB
310 }
311 spin_unlock(&ubi->ltree_lock);
801c135c
AB
312}
313
314/**
315 * ubi_eba_unmap_leb - un-map logical eraseblock.
316 * @ubi: UBI device description object
89b96b69 317 * @vol: volume description object
801c135c
AB
318 * @lnum: logical eraseblock number
319 *
320 * This function un-maps logical eraseblock @lnum and schedules corresponding
321 * physical eraseblock for erasure. Returns zero in case of success and a
322 * negative error code in case of failure.
323 */
89b96b69
AB
324int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
325 int lnum)
801c135c 326{
89b96b69 327 int err, pnum, vol_id = vol->vol_id;
801c135c
AB
328
329 if (ubi->ro_mode)
330 return -EROFS;
331
332 err = leb_write_lock(ubi, vol_id, lnum);
333 if (err)
334 return err;
335
336 pnum = vol->eba_tbl[lnum];
337 if (pnum < 0)
338 /* This logical eraseblock is already unmapped */
339 goto out_unlock;
340
341 dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
342
343 vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
344 err = ubi_wl_put_peb(ubi, pnum, 0);
345
346out_unlock:
347 leb_write_unlock(ubi, vol_id, lnum);
348 return err;
349}
350
351/**
352 * ubi_eba_read_leb - read data.
353 * @ubi: UBI device description object
89b96b69 354 * @vol: volume description object
801c135c
AB
355 * @lnum: logical eraseblock number
356 * @buf: buffer to store the read data
357 * @offset: offset from where to read
358 * @len: how many bytes to read
359 * @check: data CRC check flag
360 *
361 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
362 * bytes. The @check flag only makes sense for static volumes and forces
363 * eraseblock data CRC checking.
364 *
365 * In case of success this function returns zero. In case of a static volume,
366 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
367 * returned for any volume type if an ECC error was detected by the MTD device
368 * driver. Other negative error cored may be returned in case of other errors.
369 */
89b96b69
AB
370int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
371 void *buf, int offset, int len, int check)
801c135c 372{
89b96b69 373 int err, pnum, scrub = 0, vol_id = vol->vol_id;
801c135c 374 struct ubi_vid_hdr *vid_hdr;
a6343afb 375 uint32_t uninitialized_var(crc);
801c135c
AB
376
377 err = leb_read_lock(ubi, vol_id, lnum);
378 if (err)
379 return err;
380
381 pnum = vol->eba_tbl[lnum];
382 if (pnum < 0) {
383 /*
384 * The logical eraseblock is not mapped, fill the whole buffer
385 * with 0xFF bytes. The exception is static volumes for which
386 * it is an error to read unmapped logical eraseblocks.
387 */
388 dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
389 len, offset, vol_id, lnum);
390 leb_read_unlock(ubi, vol_id, lnum);
391 ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
392 memset(buf, 0xFF, len);
393 return 0;
394 }
395
396 dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
397 len, offset, vol_id, lnum, pnum);
398
399 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
400 check = 0;
401
402retry:
403 if (check) {
33818bbb 404 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
801c135c
AB
405 if (!vid_hdr) {
406 err = -ENOMEM;
407 goto out_unlock;
408 }
409
410 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
411 if (err && err != UBI_IO_BITFLIPS) {
412 if (err > 0) {
413 /*
414 * The header is either absent or corrupted.
415 * The former case means there is a bug -
416 * switch to read-only mode just in case.
417 * The latter case means a real corruption - we
418 * may try to recover data. FIXME: but this is
419 * not implemented.
420 */
421 if (err == UBI_IO_BAD_VID_HDR) {
b86a2c56
AB
422 ubi_warn("corrupted VID header at PEB "
423 "%d, LEB %d:%d", pnum, vol_id,
424 lnum);
801c135c
AB
425 err = -EBADMSG;
426 } else
427 ubi_ro_mode(ubi);
428 }
429 goto out_free;
430 } else if (err == UBI_IO_BITFLIPS)
431 scrub = 1;
432
3261ebd7
CH
433 ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
434 ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
801c135c 435
3261ebd7 436 crc = be32_to_cpu(vid_hdr->data_crc);
801c135c
AB
437 ubi_free_vid_hdr(ubi, vid_hdr);
438 }
439
440 err = ubi_io_read_data(ubi, buf, pnum, offset, len);
441 if (err) {
442 if (err == UBI_IO_BITFLIPS) {
443 scrub = 1;
444 err = 0;
445 } else if (err == -EBADMSG) {
446 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
447 goto out_unlock;
448 scrub = 1;
449 if (!check) {
450 ubi_msg("force data checking");
451 check = 1;
452 goto retry;
453 }
454 } else
455 goto out_unlock;
456 }
457
458 if (check) {
2ab934b8 459 uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
801c135c
AB
460 if (crc1 != crc) {
461 ubi_warn("CRC error: calculated %#08x, must be %#08x",
462 crc1, crc);
463 err = -EBADMSG;
464 goto out_unlock;
465 }
466 }
467
468 if (scrub)
469 err = ubi_wl_scrub_peb(ubi, pnum);
470
471 leb_read_unlock(ubi, vol_id, lnum);
472 return err;
473
474out_free:
475 ubi_free_vid_hdr(ubi, vid_hdr);
476out_unlock:
477 leb_read_unlock(ubi, vol_id, lnum);
478 return err;
479}
480
481/**
482 * recover_peb - recover from write failure.
483 * @ubi: UBI device description object
484 * @pnum: the physical eraseblock to recover
485 * @vol_id: volume ID
486 * @lnum: logical eraseblock number
487 * @buf: data which was not written because of the write failure
488 * @offset: offset of the failed write
489 * @len: how many bytes should have been written
490 *
491 * This function is called in case of a write failure and moves all good data
492 * from the potentially bad physical eraseblock to a good physical eraseblock.
493 * This function also writes the data which was not written due to the failure.
494 * Returns new physical eraseblock number in case of success, and a negative
495 * error code in case of failure.
496 */
497static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
498 const void *buf, int offset, int len)
499{
500 int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
501 struct ubi_volume *vol = ubi->volumes[idx];
502 struct ubi_vid_hdr *vid_hdr;
801c135c 503
33818bbb 504 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
9c9ec147 505 if (!vid_hdr)
801c135c 506 return -ENOMEM;
801c135c
AB
507
508retry:
509 new_pnum = ubi_wl_get_peb(ubi, UBI_UNKNOWN);
510 if (new_pnum < 0) {
511 ubi_free_vid_hdr(ubi, vid_hdr);
512 return new_pnum;
513 }
514
515 ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum);
516
517 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
518 if (err && err != UBI_IO_BITFLIPS) {
519 if (err > 0)
520 err = -EIO;
521 goto out_put;
522 }
523
3261ebd7 524 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
801c135c
AB
525 err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
526 if (err)
527 goto write_error;
528
529 data_size = offset + len;
4df581f3 530 mutex_lock(&ubi->buf_mutex);
e88d6e10 531 memset(ubi->peb_buf1 + offset, 0xFF, len);
801c135c
AB
532
533 /* Read everything before the area where the write failure happened */
534 if (offset > 0) {
e88d6e10
AB
535 err = ubi_io_read_data(ubi, ubi->peb_buf1, pnum, 0, offset);
536 if (err && err != UBI_IO_BITFLIPS)
4df581f3 537 goto out_unlock;
801c135c
AB
538 }
539
e88d6e10 540 memcpy(ubi->peb_buf1 + offset, buf, len);
801c135c 541
e88d6e10 542 err = ubi_io_write_data(ubi, ubi->peb_buf1, new_pnum, 0, data_size);
4df581f3
AB
543 if (err) {
544 mutex_unlock(&ubi->buf_mutex);
801c135c 545 goto write_error;
4df581f3 546 }
801c135c 547
e88d6e10 548 mutex_unlock(&ubi->buf_mutex);
801c135c
AB
549 ubi_free_vid_hdr(ubi, vid_hdr);
550
551 vol->eba_tbl[lnum] = new_pnum;
552 ubi_wl_put_peb(ubi, pnum, 1);
553
554 ubi_msg("data was successfully recovered");
555 return 0;
556
4df581f3 557out_unlock:
e88d6e10 558 mutex_unlock(&ubi->buf_mutex);
4df581f3 559out_put:
801c135c
AB
560 ubi_wl_put_peb(ubi, new_pnum, 1);
561 ubi_free_vid_hdr(ubi, vid_hdr);
562 return err;
563
564write_error:
565 /*
566 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
567 * get another one.
568 */
569 ubi_warn("failed to write to PEB %d", new_pnum);
570 ubi_wl_put_peb(ubi, new_pnum, 1);
571 if (++tries > UBI_IO_RETRIES) {
572 ubi_free_vid_hdr(ubi, vid_hdr);
573 return err;
574 }
575 ubi_msg("try again");
576 goto retry;
577}
578
579/**
580 * ubi_eba_write_leb - write data to dynamic volume.
581 * @ubi: UBI device description object
89b96b69 582 * @vol: volume description object
801c135c
AB
583 * @lnum: logical eraseblock number
584 * @buf: the data to write
585 * @offset: offset within the logical eraseblock where to write
586 * @len: how many bytes to write
587 * @dtype: data type
588 *
589 * This function writes data to logical eraseblock @lnum of a dynamic volume
89b96b69 590 * @vol. Returns zero in case of success and a negative error code in case
801c135c
AB
591 * of failure. In case of error, it is possible that something was still
592 * written to the flash media, but may be some garbage.
593 */
89b96b69 594int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
801c135c
AB
595 const void *buf, int offset, int len, int dtype)
596{
89b96b69 597 int err, pnum, tries = 0, vol_id = vol->vol_id;
801c135c
AB
598 struct ubi_vid_hdr *vid_hdr;
599
600 if (ubi->ro_mode)
601 return -EROFS;
602
603 err = leb_write_lock(ubi, vol_id, lnum);
604 if (err)
605 return err;
606
607 pnum = vol->eba_tbl[lnum];
608 if (pnum >= 0) {
609 dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
610 len, offset, vol_id, lnum, pnum);
611
612 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
613 if (err) {
614 ubi_warn("failed to write data to PEB %d", pnum);
615 if (err == -EIO && ubi->bad_allowed)
89b96b69
AB
616 err = recover_peb(ubi, pnum, vol_id, lnum, buf,
617 offset, len);
801c135c
AB
618 if (err)
619 ubi_ro_mode(ubi);
620 }
621 leb_write_unlock(ubi, vol_id, lnum);
622 return err;
623 }
624
625 /*
626 * The logical eraseblock is not mapped. We have to get a free physical
627 * eraseblock and write the volume identifier header there first.
628 */
33818bbb 629 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
801c135c
AB
630 if (!vid_hdr) {
631 leb_write_unlock(ubi, vol_id, lnum);
632 return -ENOMEM;
633 }
634
635 vid_hdr->vol_type = UBI_VID_DYNAMIC;
3261ebd7
CH
636 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
637 vid_hdr->vol_id = cpu_to_be32(vol_id);
638 vid_hdr->lnum = cpu_to_be32(lnum);
801c135c 639 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
3261ebd7 640 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
801c135c
AB
641
642retry:
643 pnum = ubi_wl_get_peb(ubi, dtype);
644 if (pnum < 0) {
645 ubi_free_vid_hdr(ubi, vid_hdr);
646 leb_write_unlock(ubi, vol_id, lnum);
647 return pnum;
648 }
649
650 dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
651 len, offset, vol_id, lnum, pnum);
652
653 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
654 if (err) {
655 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
656 vol_id, lnum, pnum);
657 goto write_error;
658 }
659
393852ec
AB
660 if (len) {
661 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
662 if (err) {
663 ubi_warn("failed to write %d bytes at offset %d of "
664 "LEB %d:%d, PEB %d", len, offset, vol_id,
665 lnum, pnum);
666 goto write_error;
667 }
801c135c
AB
668 }
669
670 vol->eba_tbl[lnum] = pnum;
671
672 leb_write_unlock(ubi, vol_id, lnum);
673 ubi_free_vid_hdr(ubi, vid_hdr);
674 return 0;
675
676write_error:
677 if (err != -EIO || !ubi->bad_allowed) {
678 ubi_ro_mode(ubi);
679 leb_write_unlock(ubi, vol_id, lnum);
680 ubi_free_vid_hdr(ubi, vid_hdr);
681 return err;
682 }
683
684 /*
685 * Fortunately, this is the first write operation to this physical
686 * eraseblock, so just put it and request a new one. We assume that if
687 * this physical eraseblock went bad, the erase code will handle that.
688 */
689 err = ubi_wl_put_peb(ubi, pnum, 1);
690 if (err || ++tries > UBI_IO_RETRIES) {
691 ubi_ro_mode(ubi);
692 leb_write_unlock(ubi, vol_id, lnum);
693 ubi_free_vid_hdr(ubi, vid_hdr);
694 return err;
695 }
696
3261ebd7 697 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
801c135c
AB
698 ubi_msg("try another PEB");
699 goto retry;
700}
701
702/**
703 * ubi_eba_write_leb_st - write data to static volume.
704 * @ubi: UBI device description object
89b96b69 705 * @vol: volume description object
801c135c
AB
706 * @lnum: logical eraseblock number
707 * @buf: data to write
708 * @len: how many bytes to write
709 * @dtype: data type
710 * @used_ebs: how many logical eraseblocks will this volume contain
711 *
712 * This function writes data to logical eraseblock @lnum of static volume
89b96b69 713 * @vol. The @used_ebs argument should contain total number of logical
801c135c
AB
714 * eraseblock in this static volume.
715 *
716 * When writing to the last logical eraseblock, the @len argument doesn't have
717 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
718 * to the real data size, although the @buf buffer has to contain the
719 * alignment. In all other cases, @len has to be aligned.
720 *
025dfdaf 721 * It is prohibited to write more than once to logical eraseblocks of static
801c135c
AB
722 * volumes. This function returns zero in case of success and a negative error
723 * code in case of failure.
724 */
89b96b69
AB
725int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
726 int lnum, const void *buf, int len, int dtype,
727 int used_ebs)
801c135c 728{
89b96b69 729 int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
801c135c
AB
730 struct ubi_vid_hdr *vid_hdr;
731 uint32_t crc;
732
733 if (ubi->ro_mode)
734 return -EROFS;
735
736 if (lnum == used_ebs - 1)
737 /* If this is the last LEB @len may be unaligned */
738 len = ALIGN(data_size, ubi->min_io_size);
739 else
cadb40cc 740 ubi_assert(!(len & (ubi->min_io_size - 1)));
801c135c 741
33818bbb 742 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
801c135c
AB
743 if (!vid_hdr)
744 return -ENOMEM;
745
746 err = leb_write_lock(ubi, vol_id, lnum);
747 if (err) {
748 ubi_free_vid_hdr(ubi, vid_hdr);
749 return err;
750 }
751
3261ebd7
CH
752 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
753 vid_hdr->vol_id = cpu_to_be32(vol_id);
754 vid_hdr->lnum = cpu_to_be32(lnum);
801c135c 755 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
3261ebd7 756 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
801c135c
AB
757
758 crc = crc32(UBI_CRC32_INIT, buf, data_size);
759 vid_hdr->vol_type = UBI_VID_STATIC;
3261ebd7
CH
760 vid_hdr->data_size = cpu_to_be32(data_size);
761 vid_hdr->used_ebs = cpu_to_be32(used_ebs);
762 vid_hdr->data_crc = cpu_to_be32(crc);
801c135c
AB
763
764retry:
765 pnum = ubi_wl_get_peb(ubi, dtype);
766 if (pnum < 0) {
767 ubi_free_vid_hdr(ubi, vid_hdr);
768 leb_write_unlock(ubi, vol_id, lnum);
769 return pnum;
770 }
771
772 dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
773 len, vol_id, lnum, pnum, used_ebs);
774
775 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
776 if (err) {
777 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
778 vol_id, lnum, pnum);
779 goto write_error;
780 }
781
782 err = ubi_io_write_data(ubi, buf, pnum, 0, len);
783 if (err) {
784 ubi_warn("failed to write %d bytes of data to PEB %d",
785 len, pnum);
786 goto write_error;
787 }
788
789 ubi_assert(vol->eba_tbl[lnum] < 0);
790 vol->eba_tbl[lnum] = pnum;
791
792 leb_write_unlock(ubi, vol_id, lnum);
793 ubi_free_vid_hdr(ubi, vid_hdr);
794 return 0;
795
796write_error:
797 if (err != -EIO || !ubi->bad_allowed) {
798 /*
799 * This flash device does not admit of bad eraseblocks or
800 * something nasty and unexpected happened. Switch to read-only
801 * mode just in case.
802 */
803 ubi_ro_mode(ubi);
804 leb_write_unlock(ubi, vol_id, lnum);
805 ubi_free_vid_hdr(ubi, vid_hdr);
806 return err;
807 }
808
809 err = ubi_wl_put_peb(ubi, pnum, 1);
810 if (err || ++tries > UBI_IO_RETRIES) {
811 ubi_ro_mode(ubi);
812 leb_write_unlock(ubi, vol_id, lnum);
813 ubi_free_vid_hdr(ubi, vid_hdr);
814 return err;
815 }
816
3261ebd7 817 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
801c135c
AB
818 ubi_msg("try another PEB");
819 goto retry;
820}
821
822/*
823 * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
824 * @ubi: UBI device description object
c63a491d 825 * @vol: volume description object
801c135c
AB
826 * @lnum: logical eraseblock number
827 * @buf: data to write
828 * @len: how many bytes to write
829 * @dtype: data type
830 *
831 * This function changes the contents of a logical eraseblock atomically. @buf
832 * has to contain new logical eraseblock data, and @len - the length of the
833 * data, which has to be aligned. This function guarantees that in case of an
834 * unclean reboot the old contents is preserved. Returns zero in case of
835 * success and a negative error code in case of failure.
e8823bd6
AB
836 *
837 * UBI reserves one LEB for the "atomic LEB change" operation, so only one
838 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
801c135c 839 */
89b96b69
AB
840int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
841 int lnum, const void *buf, int len, int dtype)
801c135c 842{
89b96b69 843 int err, pnum, tries = 0, vol_id = vol->vol_id;
801c135c
AB
844 struct ubi_vid_hdr *vid_hdr;
845 uint32_t crc;
846
847 if (ubi->ro_mode)
848 return -EROFS;
849
60c03153
AB
850 if (len == 0) {
851 /*
852 * Special case when data length is zero. In this case the LEB
853 * has to be unmapped and mapped somewhere else.
854 */
855 err = ubi_eba_unmap_leb(ubi, vol, lnum);
856 if (err)
857 return err;
858 return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0, dtype);
859 }
860
33818bbb 861 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
801c135c
AB
862 if (!vid_hdr)
863 return -ENOMEM;
864
e8823bd6 865 mutex_lock(&ubi->alc_mutex);
801c135c 866 err = leb_write_lock(ubi, vol_id, lnum);
e8823bd6
AB
867 if (err)
868 goto out_mutex;
801c135c 869
3261ebd7
CH
870 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
871 vid_hdr->vol_id = cpu_to_be32(vol_id);
872 vid_hdr->lnum = cpu_to_be32(lnum);
801c135c 873 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
3261ebd7 874 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
801c135c
AB
875
876 crc = crc32(UBI_CRC32_INIT, buf, len);
84a92580 877 vid_hdr->vol_type = UBI_VID_DYNAMIC;
3261ebd7 878 vid_hdr->data_size = cpu_to_be32(len);
801c135c 879 vid_hdr->copy_flag = 1;
3261ebd7 880 vid_hdr->data_crc = cpu_to_be32(crc);
801c135c
AB
881
882retry:
883 pnum = ubi_wl_get_peb(ubi, dtype);
884 if (pnum < 0) {
e8823bd6
AB
885 err = pnum;
886 goto out_leb_unlock;
801c135c
AB
887 }
888
889 dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
890 vol_id, lnum, vol->eba_tbl[lnum], pnum);
891
892 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
893 if (err) {
894 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
895 vol_id, lnum, pnum);
896 goto write_error;
897 }
898
899 err = ubi_io_write_data(ubi, buf, pnum, 0, len);
900 if (err) {
901 ubi_warn("failed to write %d bytes of data to PEB %d",
902 len, pnum);
903 goto write_error;
904 }
905
a443db48 906 if (vol->eba_tbl[lnum] >= 0) {
4d88de4b 907 err = ubi_wl_put_peb(ubi, vol->eba_tbl[lnum], 0);
e8823bd6
AB
908 if (err)
909 goto out_leb_unlock;
801c135c
AB
910 }
911
912 vol->eba_tbl[lnum] = pnum;
e8823bd6
AB
913
914out_leb_unlock:
801c135c 915 leb_write_unlock(ubi, vol_id, lnum);
e8823bd6
AB
916out_mutex:
917 mutex_unlock(&ubi->alc_mutex);
801c135c 918 ubi_free_vid_hdr(ubi, vid_hdr);
e8823bd6 919 return err;
801c135c
AB
920
921write_error:
922 if (err != -EIO || !ubi->bad_allowed) {
923 /*
924 * This flash device does not admit of bad eraseblocks or
925 * something nasty and unexpected happened. Switch to read-only
926 * mode just in case.
927 */
928 ubi_ro_mode(ubi);
e8823bd6 929 goto out_leb_unlock;
801c135c
AB
930 }
931
932 err = ubi_wl_put_peb(ubi, pnum, 1);
933 if (err || ++tries > UBI_IO_RETRIES) {
934 ubi_ro_mode(ubi);
e8823bd6 935 goto out_leb_unlock;
801c135c
AB
936 }
937
3261ebd7 938 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
801c135c
AB
939 ubi_msg("try another PEB");
940 goto retry;
941}
942
801c135c
AB
943/**
944 * ubi_eba_copy_leb - copy logical eraseblock.
945 * @ubi: UBI device description object
946 * @from: physical eraseblock number from where to copy
947 * @to: physical eraseblock number where to copy
948 * @vid_hdr: VID header of the @from physical eraseblock
949 *
950 * This function copies logical eraseblock from physical eraseblock @from to
951 * physical eraseblock @to. The @vid_hdr buffer may be changed by this
43f9b25a 952 * function. Returns:
6fa6f5bb 953 * o %0 in case of success;
90bf0265 954 * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, or %MOVE_CANCEL_BITFLIPS;
6fa6f5bb 955 * o a negative error code in case of failure.
801c135c
AB
956 */
957int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
958 struct ubi_vid_hdr *vid_hdr)
959{
43f9b25a 960 int err, vol_id, lnum, data_size, aldata_size, idx;
801c135c
AB
961 struct ubi_volume *vol;
962 uint32_t crc;
801c135c 963
3261ebd7
CH
964 vol_id = be32_to_cpu(vid_hdr->vol_id);
965 lnum = be32_to_cpu(vid_hdr->lnum);
801c135c 966
87960c0b 967 dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
801c135c
AB
968
969 if (vid_hdr->vol_type == UBI_VID_STATIC) {
3261ebd7 970 data_size = be32_to_cpu(vid_hdr->data_size);
801c135c
AB
971 aldata_size = ALIGN(data_size, ubi->min_io_size);
972 } else
973 data_size = aldata_size =
3261ebd7 974 ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
801c135c 975
801c135c 976 idx = vol_id2idx(ubi, vol_id);
43f9b25a 977 spin_lock(&ubi->volumes_lock);
801c135c 978 /*
43f9b25a
AB
979 * Note, we may race with volume deletion, which means that the volume
980 * this logical eraseblock belongs to might be being deleted. Since the
6fa6f5bb 981 * volume deletion un-maps all the volume's logical eraseblocks, it will
43f9b25a 982 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
801c135c 983 */
801c135c 984 vol = ubi->volumes[idx];
90bf0265 985 spin_unlock(&ubi->volumes_lock);
801c135c 986 if (!vol) {
43f9b25a 987 /* No need to do further work, cancel */
87960c0b 988 dbg_wl("volume %d is being removed, cancel", vol_id);
90bf0265 989 return MOVE_CANCEL_RACE;
801c135c
AB
990 }
991
43f9b25a
AB
992 /*
993 * We do not want anybody to write to this logical eraseblock while we
994 * are moving it, so lock it.
995 *
996 * Note, we are using non-waiting locking here, because we cannot sleep
997 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
998 * unmapping the LEB which is mapped to the PEB we are going to move
999 * (@from). This task locks the LEB and goes sleep in the
1000 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1001 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
90bf0265
AB
1002 * LEB is already locked, we just do not move it and return
1003 * %MOVE_CANCEL_RACE, which means that UBI will re-try, but later.
43f9b25a
AB
1004 */
1005 err = leb_write_trylock(ubi, vol_id, lnum);
1006 if (err) {
87960c0b 1007 dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
90bf0265 1008 return MOVE_CANCEL_RACE;
801c135c 1009 }
801c135c 1010
43f9b25a
AB
1011 /*
1012 * The LEB might have been put meanwhile, and the task which put it is
1013 * probably waiting on @ubi->move_mutex. No need to continue the work,
1014 * cancel it.
1015 */
1016 if (vol->eba_tbl[lnum] != from) {
87960c0b
AB
1017 dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to "
1018 "PEB %d, cancel", vol_id, lnum, from,
1019 vol->eba_tbl[lnum]);
90bf0265 1020 err = MOVE_CANCEL_RACE;
43f9b25a
AB
1021 goto out_unlock_leb;
1022 }
801c135c 1023
43f9b25a 1024 /*
b77bcb07 1025 * OK, now the LEB is locked and we can safely start moving it. Since
90bf0265
AB
1026 * this function utilizes the @ubi->peb_buf1 buffer which is shared
1027 * with some other functions - we lock the buffer by taking the
43f9b25a
AB
1028 * @ubi->buf_mutex.
1029 */
1030 mutex_lock(&ubi->buf_mutex);
87960c0b 1031 dbg_wl("read %d bytes of data", aldata_size);
e88d6e10 1032 err = ubi_io_read_data(ubi, ubi->peb_buf1, from, 0, aldata_size);
801c135c
AB
1033 if (err && err != UBI_IO_BITFLIPS) {
1034 ubi_warn("error %d while reading data from PEB %d",
1035 err, from);
b86a2c56
AB
1036 if (err == -EIO)
1037 err = MOVE_SOURCE_RD_ERR;
43f9b25a 1038 goto out_unlock_buf;
801c135c
AB
1039 }
1040
1041 /*
1042 * Now we have got to calculate how much data we have to to copy. In
1043 * case of a static volume it is fairly easy - the VID header contains
1044 * the data size. In case of a dynamic volume it is more difficult - we
1045 * have to read the contents, cut 0xFF bytes from the end and copy only
1046 * the first part. We must do this to avoid writing 0xFF bytes as it
1047 * may have some side-effects. And not only this. It is important not
1048 * to include those 0xFFs to CRC because later the they may be filled
1049 * by data.
1050 */
1051 if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1052 aldata_size = data_size =
e88d6e10 1053 ubi_calc_data_len(ubi, ubi->peb_buf1, data_size);
801c135c
AB
1054
1055 cond_resched();
e88d6e10 1056 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf1, data_size);
801c135c
AB
1057 cond_resched();
1058
1059 /*
90bf0265 1060 * It may turn out to be that the whole @from physical eraseblock
801c135c
AB
1061 * contains only 0xFF bytes. Then we have to only write the VID header
1062 * and do not write any data. This also means we should not set
1063 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1064 */
1065 if (data_size > 0) {
1066 vid_hdr->copy_flag = 1;
3261ebd7
CH
1067 vid_hdr->data_size = cpu_to_be32(data_size);
1068 vid_hdr->data_crc = cpu_to_be32(crc);
801c135c 1069 }
3261ebd7 1070 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
801c135c
AB
1071
1072 err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
6fa6f5bb
AB
1073 if (err) {
1074 if (err == -EIO)
90bf0265 1075 err = MOVE_TARGET_WR_ERR;
43f9b25a 1076 goto out_unlock_buf;
6fa6f5bb 1077 }
801c135c
AB
1078
1079 cond_resched();
1080
1081 /* Read the VID header back and check if it was written correctly */
1082 err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1083 if (err) {
b86a2c56 1084 if (err != UBI_IO_BITFLIPS) {
801c135c 1085 ubi_warn("cannot read VID header back from PEB %d", to);
b86a2c56
AB
1086 if (err == -EIO)
1087 err = MOVE_TARGET_RD_ERR;
1088 } else
90bf0265 1089 err = MOVE_CANCEL_BITFLIPS;
43f9b25a 1090 goto out_unlock_buf;
801c135c
AB
1091 }
1092
1093 if (data_size > 0) {
e88d6e10 1094 err = ubi_io_write_data(ubi, ubi->peb_buf1, to, 0, aldata_size);
6fa6f5bb
AB
1095 if (err) {
1096 if (err == -EIO)
90bf0265 1097 err = MOVE_TARGET_WR_ERR;
43f9b25a 1098 goto out_unlock_buf;
6fa6f5bb 1099 }
801c135c 1100
e88d6e10
AB
1101 cond_resched();
1102
801c135c
AB
1103 /*
1104 * We've written the data and are going to read it back to make
1105 * sure it was written correctly.
1106 */
801c135c 1107
e88d6e10 1108 err = ubi_io_read_data(ubi, ubi->peb_buf2, to, 0, aldata_size);
801c135c 1109 if (err) {
b86a2c56 1110 if (err != UBI_IO_BITFLIPS) {
801c135c
AB
1111 ubi_warn("cannot read data back from PEB %d",
1112 to);
b86a2c56
AB
1113 if (err == -EIO)
1114 err = MOVE_TARGET_RD_ERR;
1115 } else
90bf0265 1116 err = MOVE_CANCEL_BITFLIPS;
43f9b25a 1117 goto out_unlock_buf;
801c135c
AB
1118 }
1119
1120 cond_resched();
1121
e88d6e10 1122 if (memcmp(ubi->peb_buf1, ubi->peb_buf2, aldata_size)) {
6fa6f5bb
AB
1123 ubi_warn("read data back from PEB %d and it is "
1124 "different", to);
1125 err = -EINVAL;
43f9b25a 1126 goto out_unlock_buf;
801c135c
AB
1127 }
1128 }
1129
1130 ubi_assert(vol->eba_tbl[lnum] == from);
1131 vol->eba_tbl[lnum] = to;
1132
43f9b25a 1133out_unlock_buf:
e88d6e10 1134 mutex_unlock(&ubi->buf_mutex);
43f9b25a 1135out_unlock_leb:
801c135c 1136 leb_write_unlock(ubi, vol_id, lnum);
801c135c
AB
1137 return err;
1138}
1139
1140/**
85c6e6e2 1141 * ubi_eba_init_scan - initialize the EBA sub-system using scanning information.
801c135c
AB
1142 * @ubi: UBI device description object
1143 * @si: scanning information
1144 *
1145 * This function returns zero in case of success and a negative error code in
1146 * case of failure.
1147 */
1148int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1149{
1150 int i, j, err, num_volumes;
1151 struct ubi_scan_volume *sv;
1152 struct ubi_volume *vol;
1153 struct ubi_scan_leb *seb;
1154 struct rb_node *rb;
1155
85c6e6e2 1156 dbg_eba("initialize EBA sub-system");
801c135c
AB
1157
1158 spin_lock_init(&ubi->ltree_lock);
e8823bd6 1159 mutex_init(&ubi->alc_mutex);
801c135c
AB
1160 ubi->ltree = RB_ROOT;
1161
801c135c
AB
1162 ubi->global_sqnum = si->max_sqnum + 1;
1163 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1164
1165 for (i = 0; i < num_volumes; i++) {
1166 vol = ubi->volumes[i];
1167 if (!vol)
1168 continue;
1169
1170 cond_resched();
1171
1172 vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
1173 GFP_KERNEL);
1174 if (!vol->eba_tbl) {
1175 err = -ENOMEM;
1176 goto out_free;
1177 }
1178
1179 for (j = 0; j < vol->reserved_pebs; j++)
1180 vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
1181
1182 sv = ubi_scan_find_sv(si, idx2vol_id(ubi, i));
1183 if (!sv)
1184 continue;
1185
1186 ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
1187 if (seb->lnum >= vol->reserved_pebs)
1188 /*
1189 * This may happen in case of an unclean reboot
1190 * during re-size.
1191 */
1192 ubi_scan_move_to_list(sv, seb, &si->erase);
1193 vol->eba_tbl[seb->lnum] = seb->pnum;
1194 }
1195 }
1196
94780d4d
AB
1197 if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1198 ubi_err("no enough physical eraseblocks (%d, need %d)",
1199 ubi->avail_pebs, EBA_RESERVED_PEBS);
1200 err = -ENOSPC;
1201 goto out_free;
1202 }
1203 ubi->avail_pebs -= EBA_RESERVED_PEBS;
1204 ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1205
801c135c
AB
1206 if (ubi->bad_allowed) {
1207 ubi_calculate_reserved(ubi);
1208
1209 if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1210 /* No enough free physical eraseblocks */
1211 ubi->beb_rsvd_pebs = ubi->avail_pebs;
1212 ubi_warn("cannot reserve enough PEBs for bad PEB "
1213 "handling, reserved %d, need %d",
1214 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1215 } else
1216 ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1217
1218 ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1219 ubi->rsvd_pebs += ubi->beb_rsvd_pebs;
1220 }
1221
85c6e6e2 1222 dbg_eba("EBA sub-system is initialized");
801c135c
AB
1223 return 0;
1224
1225out_free:
1226 for (i = 0; i < num_volumes; i++) {
1227 if (!ubi->volumes[i])
1228 continue;
1229 kfree(ubi->volumes[i]->eba_tbl);
1230 }
801c135c
AB
1231 return err;
1232}
This page took 0.507172 seconds and 5 git commands to generate.