UBI: fix buffer padding
[deliverable/linux.git] / drivers / mtd / ubi / eba.c
CommitLineData
801c135c
AB
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Artem Bityutskiy (Битюцкий Артём)
19 */
20
21/*
22 * The UBI Eraseblock Association (EBA) unit.
23 *
24 * This unit is responsible for I/O to/from logical eraseblock.
25 *
26 * Although in this implementation the EBA table is fully kept and managed in
27 * RAM, which assumes poor scalability, it might be (partially) maintained on
28 * flash in future implementations.
29 *
30 * The EBA unit implements per-logical eraseblock locking. Before accessing a
31 * logical eraseblock it is locked for reading or writing. The per-logical
32 * eraseblock locking is implemented by means of the lock tree. The lock tree
33 * is an RB-tree which refers all the currently locked logical eraseblocks. The
3a8d4642 34 * lock tree elements are &struct ubi_ltree_entry objects. They are indexed by
801c135c
AB
35 * (@vol_id, @lnum) pairs.
36 *
37 * EBA also maintains the global sequence counter which is incremented each
38 * time a logical eraseblock is mapped to a physical eraseblock and it is
39 * stored in the volume identifier header. This means that each VID header has
40 * a unique sequence number. The sequence number is only increased an we assume
41 * 64 bits is enough to never overflow.
42 */
43
44#include <linux/slab.h>
45#include <linux/crc32.h>
46#include <linux/err.h>
47#include "ubi.h"
48
e8823bd6
AB
49/* Number of physical eraseblocks reserved for atomic LEB change operation */
50#define EBA_RESERVED_PEBS 1
51
801c135c
AB
52/**
53 * next_sqnum - get next sequence number.
54 * @ubi: UBI device description object
55 *
56 * This function returns next sequence number to use, which is just the current
57 * global sequence counter value. It also increases the global sequence
58 * counter.
59 */
60static unsigned long long next_sqnum(struct ubi_device *ubi)
61{
62 unsigned long long sqnum;
63
64 spin_lock(&ubi->ltree_lock);
65 sqnum = ubi->global_sqnum++;
66 spin_unlock(&ubi->ltree_lock);
67
68 return sqnum;
69}
70
71/**
72 * ubi_get_compat - get compatibility flags of a volume.
73 * @ubi: UBI device description object
74 * @vol_id: volume ID
75 *
76 * This function returns compatibility flags for an internal volume. User
77 * volumes have no compatibility flags, so %0 is returned.
78 */
79static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
80{
91f2d53c 81 if (vol_id == UBI_LAYOUT_VOLUME_ID)
801c135c
AB
82 return UBI_LAYOUT_VOLUME_COMPAT;
83 return 0;
84}
85
86/**
87 * ltree_lookup - look up the lock tree.
88 * @ubi: UBI device description object
89 * @vol_id: volume ID
90 * @lnum: logical eraseblock number
91 *
3a8d4642 92 * This function returns a pointer to the corresponding &struct ubi_ltree_entry
801c135c
AB
93 * object if the logical eraseblock is locked and %NULL if it is not.
94 * @ubi->ltree_lock has to be locked.
95 */
3a8d4642
AB
96static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
97 int lnum)
801c135c
AB
98{
99 struct rb_node *p;
100
101 p = ubi->ltree.rb_node;
102 while (p) {
3a8d4642 103 struct ubi_ltree_entry *le;
801c135c 104
3a8d4642 105 le = rb_entry(p, struct ubi_ltree_entry, rb);
801c135c
AB
106
107 if (vol_id < le->vol_id)
108 p = p->rb_left;
109 else if (vol_id > le->vol_id)
110 p = p->rb_right;
111 else {
112 if (lnum < le->lnum)
113 p = p->rb_left;
114 else if (lnum > le->lnum)
115 p = p->rb_right;
116 else
117 return le;
118 }
119 }
120
121 return NULL;
122}
123
124/**
125 * ltree_add_entry - add new entry to the lock tree.
126 * @ubi: UBI device description object
127 * @vol_id: volume ID
128 * @lnum: logical eraseblock number
129 *
130 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
131 * lock tree. If such entry is already there, its usage counter is increased.
132 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
133 * failed.
134 */
3a8d4642
AB
135static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
136 int vol_id, int lnum)
801c135c 137{
3a8d4642 138 struct ubi_ltree_entry *le, *le1, *le_free;
801c135c 139
b9a06623 140 le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
801c135c
AB
141 if (!le)
142 return ERR_PTR(-ENOMEM);
143
b9a06623
AB
144 le->users = 0;
145 init_rwsem(&le->mutex);
801c135c
AB
146 le->vol_id = vol_id;
147 le->lnum = lnum;
148
149 spin_lock(&ubi->ltree_lock);
150 le1 = ltree_lookup(ubi, vol_id, lnum);
151
152 if (le1) {
153 /*
154 * This logical eraseblock is already locked. The newly
155 * allocated lock entry is not needed.
156 */
157 le_free = le;
158 le = le1;
159 } else {
160 struct rb_node **p, *parent = NULL;
161
162 /*
163 * No lock entry, add the newly allocated one to the
164 * @ubi->ltree RB-tree.
165 */
166 le_free = NULL;
167
168 p = &ubi->ltree.rb_node;
169 while (*p) {
170 parent = *p;
3a8d4642 171 le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
801c135c
AB
172
173 if (vol_id < le1->vol_id)
174 p = &(*p)->rb_left;
175 else if (vol_id > le1->vol_id)
176 p = &(*p)->rb_right;
177 else {
178 ubi_assert(lnum != le1->lnum);
179 if (lnum < le1->lnum)
180 p = &(*p)->rb_left;
181 else
182 p = &(*p)->rb_right;
183 }
184 }
185
186 rb_link_node(&le->rb, parent, p);
187 rb_insert_color(&le->rb, &ubi->ltree);
188 }
189 le->users += 1;
190 spin_unlock(&ubi->ltree_lock);
191
192 if (le_free)
b9a06623 193 kfree(le_free);
801c135c
AB
194
195 return le;
196}
197
198/**
199 * leb_read_lock - lock logical eraseblock for reading.
200 * @ubi: UBI device description object
201 * @vol_id: volume ID
202 * @lnum: logical eraseblock number
203 *
204 * This function locks a logical eraseblock for reading. Returns zero in case
205 * of success and a negative error code in case of failure.
206 */
207static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
208{
3a8d4642 209 struct ubi_ltree_entry *le;
801c135c
AB
210
211 le = ltree_add_entry(ubi, vol_id, lnum);
212 if (IS_ERR(le))
213 return PTR_ERR(le);
214 down_read(&le->mutex);
215 return 0;
216}
217
218/**
219 * leb_read_unlock - unlock logical eraseblock.
220 * @ubi: UBI device description object
221 * @vol_id: volume ID
222 * @lnum: logical eraseblock number
223 */
224static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
225{
226 int free = 0;
3a8d4642 227 struct ubi_ltree_entry *le;
801c135c
AB
228
229 spin_lock(&ubi->ltree_lock);
230 le = ltree_lookup(ubi, vol_id, lnum);
231 le->users -= 1;
232 ubi_assert(le->users >= 0);
233 if (le->users == 0) {
234 rb_erase(&le->rb, &ubi->ltree);
235 free = 1;
236 }
237 spin_unlock(&ubi->ltree_lock);
238
239 up_read(&le->mutex);
240 if (free)
b9a06623 241 kfree(le);
801c135c
AB
242}
243
244/**
245 * leb_write_lock - lock logical eraseblock for writing.
246 * @ubi: UBI device description object
247 * @vol_id: volume ID
248 * @lnum: logical eraseblock number
249 *
250 * This function locks a logical eraseblock for writing. Returns zero in case
251 * of success and a negative error code in case of failure.
252 */
253static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
254{
3a8d4642 255 struct ubi_ltree_entry *le;
801c135c
AB
256
257 le = ltree_add_entry(ubi, vol_id, lnum);
258 if (IS_ERR(le))
259 return PTR_ERR(le);
260 down_write(&le->mutex);
261 return 0;
262}
263
43f9b25a
AB
264/**
265 * leb_write_lock - lock logical eraseblock for writing.
266 * @ubi: UBI device description object
267 * @vol_id: volume ID
268 * @lnum: logical eraseblock number
269 *
270 * This function locks a logical eraseblock for writing if there is no
271 * contention and does nothing if there is contention. Returns %0 in case of
272 * success, %1 in case of contention, and and a negative error code in case of
273 * failure.
274 */
275static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
276{
277 int free;
278 struct ubi_ltree_entry *le;
279
280 le = ltree_add_entry(ubi, vol_id, lnum);
281 if (IS_ERR(le))
282 return PTR_ERR(le);
283 if (down_write_trylock(&le->mutex))
284 return 0;
285
286 /* Contention, cancel */
287 spin_lock(&ubi->ltree_lock);
288 le->users -= 1;
289 ubi_assert(le->users >= 0);
290 if (le->users == 0) {
291 rb_erase(&le->rb, &ubi->ltree);
292 free = 1;
293 } else
294 free = 0;
295 spin_unlock(&ubi->ltree_lock);
296 if (free)
b9a06623 297 kfree(le);
43f9b25a
AB
298
299 return 1;
300}
301
801c135c
AB
302/**
303 * leb_write_unlock - unlock logical eraseblock.
304 * @ubi: UBI device description object
305 * @vol_id: volume ID
306 * @lnum: logical eraseblock number
307 */
308static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
309{
310 int free;
3a8d4642 311 struct ubi_ltree_entry *le;
801c135c
AB
312
313 spin_lock(&ubi->ltree_lock);
314 le = ltree_lookup(ubi, vol_id, lnum);
315 le->users -= 1;
316 ubi_assert(le->users >= 0);
317 if (le->users == 0) {
318 rb_erase(&le->rb, &ubi->ltree);
319 free = 1;
320 } else
321 free = 0;
322 spin_unlock(&ubi->ltree_lock);
323
324 up_write(&le->mutex);
325 if (free)
b9a06623 326 kfree(le);
801c135c
AB
327}
328
329/**
330 * ubi_eba_unmap_leb - un-map logical eraseblock.
331 * @ubi: UBI device description object
89b96b69 332 * @vol: volume description object
801c135c
AB
333 * @lnum: logical eraseblock number
334 *
335 * This function un-maps logical eraseblock @lnum and schedules corresponding
336 * physical eraseblock for erasure. Returns zero in case of success and a
337 * negative error code in case of failure.
338 */
89b96b69
AB
339int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
340 int lnum)
801c135c 341{
89b96b69 342 int err, pnum, vol_id = vol->vol_id;
801c135c
AB
343
344 if (ubi->ro_mode)
345 return -EROFS;
346
347 err = leb_write_lock(ubi, vol_id, lnum);
348 if (err)
349 return err;
350
351 pnum = vol->eba_tbl[lnum];
352 if (pnum < 0)
353 /* This logical eraseblock is already unmapped */
354 goto out_unlock;
355
356 dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
357
358 vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
359 err = ubi_wl_put_peb(ubi, pnum, 0);
360
361out_unlock:
362 leb_write_unlock(ubi, vol_id, lnum);
363 return err;
364}
365
366/**
367 * ubi_eba_read_leb - read data.
368 * @ubi: UBI device description object
89b96b69 369 * @vol: volume description object
801c135c
AB
370 * @lnum: logical eraseblock number
371 * @buf: buffer to store the read data
372 * @offset: offset from where to read
373 * @len: how many bytes to read
374 * @check: data CRC check flag
375 *
376 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
377 * bytes. The @check flag only makes sense for static volumes and forces
378 * eraseblock data CRC checking.
379 *
380 * In case of success this function returns zero. In case of a static volume,
381 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
382 * returned for any volume type if an ECC error was detected by the MTD device
383 * driver. Other negative error cored may be returned in case of other errors.
384 */
89b96b69
AB
385int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
386 void *buf, int offset, int len, int check)
801c135c 387{
89b96b69 388 int err, pnum, scrub = 0, vol_id = vol->vol_id;
801c135c 389 struct ubi_vid_hdr *vid_hdr;
a6343afb 390 uint32_t uninitialized_var(crc);
801c135c
AB
391
392 err = leb_read_lock(ubi, vol_id, lnum);
393 if (err)
394 return err;
395
396 pnum = vol->eba_tbl[lnum];
397 if (pnum < 0) {
398 /*
399 * The logical eraseblock is not mapped, fill the whole buffer
400 * with 0xFF bytes. The exception is static volumes for which
401 * it is an error to read unmapped logical eraseblocks.
402 */
403 dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
404 len, offset, vol_id, lnum);
405 leb_read_unlock(ubi, vol_id, lnum);
406 ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
407 memset(buf, 0xFF, len);
408 return 0;
409 }
410
411 dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
412 len, offset, vol_id, lnum, pnum);
413
414 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
415 check = 0;
416
417retry:
418 if (check) {
33818bbb 419 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
801c135c
AB
420 if (!vid_hdr) {
421 err = -ENOMEM;
422 goto out_unlock;
423 }
424
425 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
426 if (err && err != UBI_IO_BITFLIPS) {
427 if (err > 0) {
428 /*
429 * The header is either absent or corrupted.
430 * The former case means there is a bug -
431 * switch to read-only mode just in case.
432 * The latter case means a real corruption - we
433 * may try to recover data. FIXME: but this is
434 * not implemented.
435 */
436 if (err == UBI_IO_BAD_VID_HDR) {
437 ubi_warn("bad VID header at PEB %d, LEB"
438 "%d:%d", pnum, vol_id, lnum);
439 err = -EBADMSG;
440 } else
441 ubi_ro_mode(ubi);
442 }
443 goto out_free;
444 } else if (err == UBI_IO_BITFLIPS)
445 scrub = 1;
446
3261ebd7
CH
447 ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
448 ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
801c135c 449
3261ebd7 450 crc = be32_to_cpu(vid_hdr->data_crc);
801c135c
AB
451 ubi_free_vid_hdr(ubi, vid_hdr);
452 }
453
454 err = ubi_io_read_data(ubi, buf, pnum, offset, len);
455 if (err) {
456 if (err == UBI_IO_BITFLIPS) {
457 scrub = 1;
458 err = 0;
459 } else if (err == -EBADMSG) {
460 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
461 goto out_unlock;
462 scrub = 1;
463 if (!check) {
464 ubi_msg("force data checking");
465 check = 1;
466 goto retry;
467 }
468 } else
469 goto out_unlock;
470 }
471
472 if (check) {
2ab934b8 473 uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
801c135c
AB
474 if (crc1 != crc) {
475 ubi_warn("CRC error: calculated %#08x, must be %#08x",
476 crc1, crc);
477 err = -EBADMSG;
478 goto out_unlock;
479 }
480 }
481
482 if (scrub)
483 err = ubi_wl_scrub_peb(ubi, pnum);
484
485 leb_read_unlock(ubi, vol_id, lnum);
486 return err;
487
488out_free:
489 ubi_free_vid_hdr(ubi, vid_hdr);
490out_unlock:
491 leb_read_unlock(ubi, vol_id, lnum);
492 return err;
493}
494
495/**
496 * recover_peb - recover from write failure.
497 * @ubi: UBI device description object
498 * @pnum: the physical eraseblock to recover
499 * @vol_id: volume ID
500 * @lnum: logical eraseblock number
501 * @buf: data which was not written because of the write failure
502 * @offset: offset of the failed write
503 * @len: how many bytes should have been written
504 *
505 * This function is called in case of a write failure and moves all good data
506 * from the potentially bad physical eraseblock to a good physical eraseblock.
507 * This function also writes the data which was not written due to the failure.
508 * Returns new physical eraseblock number in case of success, and a negative
509 * error code in case of failure.
510 */
511static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
512 const void *buf, int offset, int len)
513{
514 int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
515 struct ubi_volume *vol = ubi->volumes[idx];
516 struct ubi_vid_hdr *vid_hdr;
801c135c 517
33818bbb 518 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
801c135c
AB
519 if (!vid_hdr) {
520 return -ENOMEM;
521 }
522
e88d6e10
AB
523 mutex_lock(&ubi->buf_mutex);
524
801c135c
AB
525retry:
526 new_pnum = ubi_wl_get_peb(ubi, UBI_UNKNOWN);
527 if (new_pnum < 0) {
e88d6e10 528 mutex_unlock(&ubi->buf_mutex);
801c135c
AB
529 ubi_free_vid_hdr(ubi, vid_hdr);
530 return new_pnum;
531 }
532
533 ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum);
534
535 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
536 if (err && err != UBI_IO_BITFLIPS) {
537 if (err > 0)
538 err = -EIO;
539 goto out_put;
540 }
541
3261ebd7 542 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
801c135c
AB
543 err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
544 if (err)
545 goto write_error;
546
547 data_size = offset + len;
e88d6e10 548 memset(ubi->peb_buf1 + offset, 0xFF, len);
801c135c
AB
549
550 /* Read everything before the area where the write failure happened */
551 if (offset > 0) {
e88d6e10
AB
552 err = ubi_io_read_data(ubi, ubi->peb_buf1, pnum, 0, offset);
553 if (err && err != UBI_IO_BITFLIPS)
801c135c 554 goto out_put;
801c135c
AB
555 }
556
e88d6e10 557 memcpy(ubi->peb_buf1 + offset, buf, len);
801c135c 558
e88d6e10
AB
559 err = ubi_io_write_data(ubi, ubi->peb_buf1, new_pnum, 0, data_size);
560 if (err)
801c135c 561 goto write_error;
801c135c 562
e88d6e10 563 mutex_unlock(&ubi->buf_mutex);
801c135c
AB
564 ubi_free_vid_hdr(ubi, vid_hdr);
565
566 vol->eba_tbl[lnum] = new_pnum;
567 ubi_wl_put_peb(ubi, pnum, 1);
568
569 ubi_msg("data was successfully recovered");
570 return 0;
571
572out_put:
e88d6e10 573 mutex_unlock(&ubi->buf_mutex);
801c135c
AB
574 ubi_wl_put_peb(ubi, new_pnum, 1);
575 ubi_free_vid_hdr(ubi, vid_hdr);
576 return err;
577
578write_error:
579 /*
580 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
581 * get another one.
582 */
583 ubi_warn("failed to write to PEB %d", new_pnum);
584 ubi_wl_put_peb(ubi, new_pnum, 1);
585 if (++tries > UBI_IO_RETRIES) {
e88d6e10 586 mutex_unlock(&ubi->buf_mutex);
801c135c
AB
587 ubi_free_vid_hdr(ubi, vid_hdr);
588 return err;
589 }
590 ubi_msg("try again");
591 goto retry;
592}
593
594/**
595 * ubi_eba_write_leb - write data to dynamic volume.
596 * @ubi: UBI device description object
89b96b69 597 * @vol: volume description object
801c135c
AB
598 * @lnum: logical eraseblock number
599 * @buf: the data to write
600 * @offset: offset within the logical eraseblock where to write
601 * @len: how many bytes to write
602 * @dtype: data type
603 *
604 * This function writes data to logical eraseblock @lnum of a dynamic volume
89b96b69 605 * @vol. Returns zero in case of success and a negative error code in case
801c135c
AB
606 * of failure. In case of error, it is possible that something was still
607 * written to the flash media, but may be some garbage.
608 */
89b96b69 609int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
801c135c
AB
610 const void *buf, int offset, int len, int dtype)
611{
89b96b69 612 int err, pnum, tries = 0, vol_id = vol->vol_id;
801c135c
AB
613 struct ubi_vid_hdr *vid_hdr;
614
615 if (ubi->ro_mode)
616 return -EROFS;
617
618 err = leb_write_lock(ubi, vol_id, lnum);
619 if (err)
620 return err;
621
622 pnum = vol->eba_tbl[lnum];
623 if (pnum >= 0) {
624 dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
625 len, offset, vol_id, lnum, pnum);
626
627 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
628 if (err) {
629 ubi_warn("failed to write data to PEB %d", pnum);
630 if (err == -EIO && ubi->bad_allowed)
89b96b69
AB
631 err = recover_peb(ubi, pnum, vol_id, lnum, buf,
632 offset, len);
801c135c
AB
633 if (err)
634 ubi_ro_mode(ubi);
635 }
636 leb_write_unlock(ubi, vol_id, lnum);
637 return err;
638 }
639
640 /*
641 * The logical eraseblock is not mapped. We have to get a free physical
642 * eraseblock and write the volume identifier header there first.
643 */
33818bbb 644 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
801c135c
AB
645 if (!vid_hdr) {
646 leb_write_unlock(ubi, vol_id, lnum);
647 return -ENOMEM;
648 }
649
650 vid_hdr->vol_type = UBI_VID_DYNAMIC;
3261ebd7
CH
651 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
652 vid_hdr->vol_id = cpu_to_be32(vol_id);
653 vid_hdr->lnum = cpu_to_be32(lnum);
801c135c 654 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
3261ebd7 655 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
801c135c
AB
656
657retry:
658 pnum = ubi_wl_get_peb(ubi, dtype);
659 if (pnum < 0) {
660 ubi_free_vid_hdr(ubi, vid_hdr);
661 leb_write_unlock(ubi, vol_id, lnum);
662 return pnum;
663 }
664
665 dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
666 len, offset, vol_id, lnum, pnum);
667
668 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
669 if (err) {
670 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
671 vol_id, lnum, pnum);
672 goto write_error;
673 }
674
393852ec
AB
675 if (len) {
676 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
677 if (err) {
678 ubi_warn("failed to write %d bytes at offset %d of "
679 "LEB %d:%d, PEB %d", len, offset, vol_id,
680 lnum, pnum);
681 goto write_error;
682 }
801c135c
AB
683 }
684
685 vol->eba_tbl[lnum] = pnum;
686
687 leb_write_unlock(ubi, vol_id, lnum);
688 ubi_free_vid_hdr(ubi, vid_hdr);
689 return 0;
690
691write_error:
692 if (err != -EIO || !ubi->bad_allowed) {
693 ubi_ro_mode(ubi);
694 leb_write_unlock(ubi, vol_id, lnum);
695 ubi_free_vid_hdr(ubi, vid_hdr);
696 return err;
697 }
698
699 /*
700 * Fortunately, this is the first write operation to this physical
701 * eraseblock, so just put it and request a new one. We assume that if
702 * this physical eraseblock went bad, the erase code will handle that.
703 */
704 err = ubi_wl_put_peb(ubi, pnum, 1);
705 if (err || ++tries > UBI_IO_RETRIES) {
706 ubi_ro_mode(ubi);
707 leb_write_unlock(ubi, vol_id, lnum);
708 ubi_free_vid_hdr(ubi, vid_hdr);
709 return err;
710 }
711
3261ebd7 712 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
801c135c
AB
713 ubi_msg("try another PEB");
714 goto retry;
715}
716
717/**
718 * ubi_eba_write_leb_st - write data to static volume.
719 * @ubi: UBI device description object
89b96b69 720 * @vol: volume description object
801c135c
AB
721 * @lnum: logical eraseblock number
722 * @buf: data to write
723 * @len: how many bytes to write
724 * @dtype: data type
725 * @used_ebs: how many logical eraseblocks will this volume contain
726 *
727 * This function writes data to logical eraseblock @lnum of static volume
89b96b69 728 * @vol. The @used_ebs argument should contain total number of logical
801c135c
AB
729 * eraseblock in this static volume.
730 *
731 * When writing to the last logical eraseblock, the @len argument doesn't have
732 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
733 * to the real data size, although the @buf buffer has to contain the
734 * alignment. In all other cases, @len has to be aligned.
735 *
736 * It is prohibited to write more then once to logical eraseblocks of static
737 * volumes. This function returns zero in case of success and a negative error
738 * code in case of failure.
739 */
89b96b69
AB
740int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
741 int lnum, const void *buf, int len, int dtype,
742 int used_ebs)
801c135c 743{
89b96b69 744 int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
801c135c
AB
745 struct ubi_vid_hdr *vid_hdr;
746 uint32_t crc;
747
748 if (ubi->ro_mode)
749 return -EROFS;
750
751 if (lnum == used_ebs - 1)
752 /* If this is the last LEB @len may be unaligned */
753 len = ALIGN(data_size, ubi->min_io_size);
754 else
755 ubi_assert(len % ubi->min_io_size == 0);
756
33818bbb 757 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
801c135c
AB
758 if (!vid_hdr)
759 return -ENOMEM;
760
761 err = leb_write_lock(ubi, vol_id, lnum);
762 if (err) {
763 ubi_free_vid_hdr(ubi, vid_hdr);
764 return err;
765 }
766
3261ebd7
CH
767 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
768 vid_hdr->vol_id = cpu_to_be32(vol_id);
769 vid_hdr->lnum = cpu_to_be32(lnum);
801c135c 770 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
3261ebd7 771 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
801c135c
AB
772
773 crc = crc32(UBI_CRC32_INIT, buf, data_size);
774 vid_hdr->vol_type = UBI_VID_STATIC;
3261ebd7
CH
775 vid_hdr->data_size = cpu_to_be32(data_size);
776 vid_hdr->used_ebs = cpu_to_be32(used_ebs);
777 vid_hdr->data_crc = cpu_to_be32(crc);
801c135c
AB
778
779retry:
780 pnum = ubi_wl_get_peb(ubi, dtype);
781 if (pnum < 0) {
782 ubi_free_vid_hdr(ubi, vid_hdr);
783 leb_write_unlock(ubi, vol_id, lnum);
784 return pnum;
785 }
786
787 dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
788 len, vol_id, lnum, pnum, used_ebs);
789
790 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
791 if (err) {
792 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
793 vol_id, lnum, pnum);
794 goto write_error;
795 }
796
797 err = ubi_io_write_data(ubi, buf, pnum, 0, len);
798 if (err) {
799 ubi_warn("failed to write %d bytes of data to PEB %d",
800 len, pnum);
801 goto write_error;
802 }
803
804 ubi_assert(vol->eba_tbl[lnum] < 0);
805 vol->eba_tbl[lnum] = pnum;
806
807 leb_write_unlock(ubi, vol_id, lnum);
808 ubi_free_vid_hdr(ubi, vid_hdr);
809 return 0;
810
811write_error:
812 if (err != -EIO || !ubi->bad_allowed) {
813 /*
814 * This flash device does not admit of bad eraseblocks or
815 * something nasty and unexpected happened. Switch to read-only
816 * mode just in case.
817 */
818 ubi_ro_mode(ubi);
819 leb_write_unlock(ubi, vol_id, lnum);
820 ubi_free_vid_hdr(ubi, vid_hdr);
821 return err;
822 }
823
824 err = ubi_wl_put_peb(ubi, pnum, 1);
825 if (err || ++tries > UBI_IO_RETRIES) {
826 ubi_ro_mode(ubi);
827 leb_write_unlock(ubi, vol_id, lnum);
828 ubi_free_vid_hdr(ubi, vid_hdr);
829 return err;
830 }
831
3261ebd7 832 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
801c135c
AB
833 ubi_msg("try another PEB");
834 goto retry;
835}
836
837/*
838 * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
839 * @ubi: UBI device description object
c63a491d 840 * @vol: volume description object
801c135c
AB
841 * @lnum: logical eraseblock number
842 * @buf: data to write
843 * @len: how many bytes to write
844 * @dtype: data type
845 *
846 * This function changes the contents of a logical eraseblock atomically. @buf
847 * has to contain new logical eraseblock data, and @len - the length of the
848 * data, which has to be aligned. This function guarantees that in case of an
849 * unclean reboot the old contents is preserved. Returns zero in case of
850 * success and a negative error code in case of failure.
e8823bd6
AB
851 *
852 * UBI reserves one LEB for the "atomic LEB change" operation, so only one
853 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
801c135c 854 */
89b96b69
AB
855int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
856 int lnum, const void *buf, int len, int dtype)
801c135c 857{
89b96b69 858 int err, pnum, tries = 0, vol_id = vol->vol_id;
801c135c
AB
859 struct ubi_vid_hdr *vid_hdr;
860 uint32_t crc;
861
862 if (ubi->ro_mode)
863 return -EROFS;
864
60c03153
AB
865 if (len == 0) {
866 /*
867 * Special case when data length is zero. In this case the LEB
868 * has to be unmapped and mapped somewhere else.
869 */
870 err = ubi_eba_unmap_leb(ubi, vol, lnum);
871 if (err)
872 return err;
873 return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0, dtype);
874 }
875
33818bbb 876 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
801c135c
AB
877 if (!vid_hdr)
878 return -ENOMEM;
879
e8823bd6 880 mutex_lock(&ubi->alc_mutex);
801c135c 881 err = leb_write_lock(ubi, vol_id, lnum);
e8823bd6
AB
882 if (err)
883 goto out_mutex;
801c135c 884
3261ebd7
CH
885 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
886 vid_hdr->vol_id = cpu_to_be32(vol_id);
887 vid_hdr->lnum = cpu_to_be32(lnum);
801c135c 888 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
3261ebd7 889 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
801c135c
AB
890
891 crc = crc32(UBI_CRC32_INIT, buf, len);
84a92580 892 vid_hdr->vol_type = UBI_VID_DYNAMIC;
3261ebd7 893 vid_hdr->data_size = cpu_to_be32(len);
801c135c 894 vid_hdr->copy_flag = 1;
3261ebd7 895 vid_hdr->data_crc = cpu_to_be32(crc);
801c135c
AB
896
897retry:
898 pnum = ubi_wl_get_peb(ubi, dtype);
899 if (pnum < 0) {
e8823bd6
AB
900 err = pnum;
901 goto out_leb_unlock;
801c135c
AB
902 }
903
904 dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
905 vol_id, lnum, vol->eba_tbl[lnum], pnum);
906
907 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
908 if (err) {
909 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
910 vol_id, lnum, pnum);
911 goto write_error;
912 }
913
914 err = ubi_io_write_data(ubi, buf, pnum, 0, len);
915 if (err) {
916 ubi_warn("failed to write %d bytes of data to PEB %d",
917 len, pnum);
918 goto write_error;
919 }
920
a443db48
AB
921 if (vol->eba_tbl[lnum] >= 0) {
922 err = ubi_wl_put_peb(ubi, vol->eba_tbl[lnum], 1);
e8823bd6
AB
923 if (err)
924 goto out_leb_unlock;
801c135c
AB
925 }
926
927 vol->eba_tbl[lnum] = pnum;
e8823bd6
AB
928
929out_leb_unlock:
801c135c 930 leb_write_unlock(ubi, vol_id, lnum);
e8823bd6
AB
931out_mutex:
932 mutex_unlock(&ubi->alc_mutex);
801c135c 933 ubi_free_vid_hdr(ubi, vid_hdr);
e8823bd6 934 return err;
801c135c
AB
935
936write_error:
937 if (err != -EIO || !ubi->bad_allowed) {
938 /*
939 * This flash device does not admit of bad eraseblocks or
940 * something nasty and unexpected happened. Switch to read-only
941 * mode just in case.
942 */
943 ubi_ro_mode(ubi);
e8823bd6 944 goto out_leb_unlock;
801c135c
AB
945 }
946
947 err = ubi_wl_put_peb(ubi, pnum, 1);
948 if (err || ++tries > UBI_IO_RETRIES) {
949 ubi_ro_mode(ubi);
e8823bd6 950 goto out_leb_unlock;
801c135c
AB
951 }
952
3261ebd7 953 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
801c135c
AB
954 ubi_msg("try another PEB");
955 goto retry;
956}
957
801c135c
AB
958/**
959 * ubi_eba_copy_leb - copy logical eraseblock.
960 * @ubi: UBI device description object
961 * @from: physical eraseblock number from where to copy
962 * @to: physical eraseblock number where to copy
963 * @vid_hdr: VID header of the @from physical eraseblock
964 *
965 * This function copies logical eraseblock from physical eraseblock @from to
966 * physical eraseblock @to. The @vid_hdr buffer may be changed by this
43f9b25a
AB
967 * function. Returns:
968 * o %0 in case of success;
969 * o %1 if the operation was canceled and should be tried later (e.g.,
970 * because a bit-flip was detected at the target PEB);
971 * o %2 if the volume is being deleted and this LEB should not be moved.
801c135c
AB
972 */
973int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
974 struct ubi_vid_hdr *vid_hdr)
975{
43f9b25a 976 int err, vol_id, lnum, data_size, aldata_size, idx;
801c135c
AB
977 struct ubi_volume *vol;
978 uint32_t crc;
801c135c 979
3261ebd7
CH
980 vol_id = be32_to_cpu(vid_hdr->vol_id);
981 lnum = be32_to_cpu(vid_hdr->lnum);
801c135c
AB
982
983 dbg_eba("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
984
985 if (vid_hdr->vol_type == UBI_VID_STATIC) {
3261ebd7 986 data_size = be32_to_cpu(vid_hdr->data_size);
801c135c
AB
987 aldata_size = ALIGN(data_size, ubi->min_io_size);
988 } else
989 data_size = aldata_size =
3261ebd7 990 ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
801c135c 991
801c135c 992 idx = vol_id2idx(ubi, vol_id);
43f9b25a 993 spin_lock(&ubi->volumes_lock);
801c135c 994 /*
43f9b25a
AB
995 * Note, we may race with volume deletion, which means that the volume
996 * this logical eraseblock belongs to might be being deleted. Since the
997 * volume deletion unmaps all the volume's logical eraseblocks, it will
998 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
801c135c 999 */
801c135c
AB
1000 vol = ubi->volumes[idx];
1001 if (!vol) {
43f9b25a
AB
1002 /* No need to do further work, cancel */
1003 dbg_eba("volume %d is being removed, cancel", vol_id);
801c135c 1004 spin_unlock(&ubi->volumes_lock);
43f9b25a 1005 return 2;
801c135c 1006 }
43f9b25a 1007 spin_unlock(&ubi->volumes_lock);
801c135c 1008
43f9b25a
AB
1009 /*
1010 * We do not want anybody to write to this logical eraseblock while we
1011 * are moving it, so lock it.
1012 *
1013 * Note, we are using non-waiting locking here, because we cannot sleep
1014 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1015 * unmapping the LEB which is mapped to the PEB we are going to move
1016 * (@from). This task locks the LEB and goes sleep in the
1017 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1018 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1019 * LEB is already locked, we just do not move it and return %1.
1020 */
1021 err = leb_write_trylock(ubi, vol_id, lnum);
1022 if (err) {
1023 dbg_eba("contention on LEB %d:%d, cancel", vol_id, lnum);
1024 return err;
801c135c 1025 }
801c135c 1026
43f9b25a
AB
1027 /*
1028 * The LEB might have been put meanwhile, and the task which put it is
1029 * probably waiting on @ubi->move_mutex. No need to continue the work,
1030 * cancel it.
1031 */
1032 if (vol->eba_tbl[lnum] != from) {
1033 dbg_eba("LEB %d:%d is no longer mapped to PEB %d, mapped to "
1034 "PEB %d, cancel", vol_id, lnum, from,
1035 vol->eba_tbl[lnum]);
1036 err = 1;
1037 goto out_unlock_leb;
1038 }
801c135c 1039
43f9b25a
AB
1040 /*
1041 * OK, now the LEB is locked and we can safely start moving iy. Since
1042 * this function utilizes thie @ubi->peb1_buf buffer which is shared
1043 * with some other functions, so lock the buffer by taking the
1044 * @ubi->buf_mutex.
1045 */
1046 mutex_lock(&ubi->buf_mutex);
801c135c 1047 dbg_eba("read %d bytes of data", aldata_size);
e88d6e10 1048 err = ubi_io_read_data(ubi, ubi->peb_buf1, from, 0, aldata_size);
801c135c
AB
1049 if (err && err != UBI_IO_BITFLIPS) {
1050 ubi_warn("error %d while reading data from PEB %d",
1051 err, from);
43f9b25a 1052 goto out_unlock_buf;
801c135c
AB
1053 }
1054
1055 /*
1056 * Now we have got to calculate how much data we have to to copy. In
1057 * case of a static volume it is fairly easy - the VID header contains
1058 * the data size. In case of a dynamic volume it is more difficult - we
1059 * have to read the contents, cut 0xFF bytes from the end and copy only
1060 * the first part. We must do this to avoid writing 0xFF bytes as it
1061 * may have some side-effects. And not only this. It is important not
1062 * to include those 0xFFs to CRC because later the they may be filled
1063 * by data.
1064 */
1065 if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1066 aldata_size = data_size =
e88d6e10 1067 ubi_calc_data_len(ubi, ubi->peb_buf1, data_size);
801c135c
AB
1068
1069 cond_resched();
e88d6e10 1070 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf1, data_size);
801c135c
AB
1071 cond_resched();
1072
1073 /*
1074 * It may turn out to me that the whole @from physical eraseblock
1075 * contains only 0xFF bytes. Then we have to only write the VID header
1076 * and do not write any data. This also means we should not set
1077 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1078 */
1079 if (data_size > 0) {
1080 vid_hdr->copy_flag = 1;
3261ebd7
CH
1081 vid_hdr->data_size = cpu_to_be32(data_size);
1082 vid_hdr->data_crc = cpu_to_be32(crc);
801c135c 1083 }
3261ebd7 1084 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
801c135c
AB
1085
1086 err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
1087 if (err)
43f9b25a 1088 goto out_unlock_buf;
801c135c
AB
1089
1090 cond_resched();
1091
1092 /* Read the VID header back and check if it was written correctly */
1093 err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1094 if (err) {
1095 if (err != UBI_IO_BITFLIPS)
1096 ubi_warn("cannot read VID header back from PEB %d", to);
43f9b25a
AB
1097 else
1098 err = 1;
1099 goto out_unlock_buf;
801c135c
AB
1100 }
1101
1102 if (data_size > 0) {
e88d6e10 1103 err = ubi_io_write_data(ubi, ubi->peb_buf1, to, 0, aldata_size);
801c135c 1104 if (err)
43f9b25a 1105 goto out_unlock_buf;
801c135c 1106
e88d6e10
AB
1107 cond_resched();
1108
801c135c
AB
1109 /*
1110 * We've written the data and are going to read it back to make
1111 * sure it was written correctly.
1112 */
801c135c 1113
e88d6e10 1114 err = ubi_io_read_data(ubi, ubi->peb_buf2, to, 0, aldata_size);
801c135c
AB
1115 if (err) {
1116 if (err != UBI_IO_BITFLIPS)
1117 ubi_warn("cannot read data back from PEB %d",
1118 to);
43f9b25a
AB
1119 else
1120 err = 1;
1121 goto out_unlock_buf;
801c135c
AB
1122 }
1123
1124 cond_resched();
1125
e88d6e10 1126 if (memcmp(ubi->peb_buf1, ubi->peb_buf2, aldata_size)) {
801c135c
AB
1127 ubi_warn("read data back from PEB %d - it is different",
1128 to);
43f9b25a 1129 goto out_unlock_buf;
801c135c
AB
1130 }
1131 }
1132
1133 ubi_assert(vol->eba_tbl[lnum] == from);
1134 vol->eba_tbl[lnum] = to;
1135
43f9b25a 1136out_unlock_buf:
e88d6e10 1137 mutex_unlock(&ubi->buf_mutex);
43f9b25a 1138out_unlock_leb:
801c135c 1139 leb_write_unlock(ubi, vol_id, lnum);
801c135c
AB
1140 return err;
1141}
1142
1143/**
1144 * ubi_eba_init_scan - initialize the EBA unit using scanning information.
1145 * @ubi: UBI device description object
1146 * @si: scanning information
1147 *
1148 * This function returns zero in case of success and a negative error code in
1149 * case of failure.
1150 */
1151int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1152{
1153 int i, j, err, num_volumes;
1154 struct ubi_scan_volume *sv;
1155 struct ubi_volume *vol;
1156 struct ubi_scan_leb *seb;
1157 struct rb_node *rb;
1158
1159 dbg_eba("initialize EBA unit");
1160
1161 spin_lock_init(&ubi->ltree_lock);
e8823bd6 1162 mutex_init(&ubi->alc_mutex);
801c135c
AB
1163 ubi->ltree = RB_ROOT;
1164
801c135c
AB
1165 ubi->global_sqnum = si->max_sqnum + 1;
1166 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1167
1168 for (i = 0; i < num_volumes; i++) {
1169 vol = ubi->volumes[i];
1170 if (!vol)
1171 continue;
1172
1173 cond_resched();
1174
1175 vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
1176 GFP_KERNEL);
1177 if (!vol->eba_tbl) {
1178 err = -ENOMEM;
1179 goto out_free;
1180 }
1181
1182 for (j = 0; j < vol->reserved_pebs; j++)
1183 vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
1184
1185 sv = ubi_scan_find_sv(si, idx2vol_id(ubi, i));
1186 if (!sv)
1187 continue;
1188
1189 ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
1190 if (seb->lnum >= vol->reserved_pebs)
1191 /*
1192 * This may happen in case of an unclean reboot
1193 * during re-size.
1194 */
1195 ubi_scan_move_to_list(sv, seb, &si->erase);
1196 vol->eba_tbl[seb->lnum] = seb->pnum;
1197 }
1198 }
1199
94780d4d
AB
1200 if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1201 ubi_err("no enough physical eraseblocks (%d, need %d)",
1202 ubi->avail_pebs, EBA_RESERVED_PEBS);
1203 err = -ENOSPC;
1204 goto out_free;
1205 }
1206 ubi->avail_pebs -= EBA_RESERVED_PEBS;
1207 ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1208
801c135c
AB
1209 if (ubi->bad_allowed) {
1210 ubi_calculate_reserved(ubi);
1211
1212 if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1213 /* No enough free physical eraseblocks */
1214 ubi->beb_rsvd_pebs = ubi->avail_pebs;
1215 ubi_warn("cannot reserve enough PEBs for bad PEB "
1216 "handling, reserved %d, need %d",
1217 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1218 } else
1219 ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1220
1221 ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1222 ubi->rsvd_pebs += ubi->beb_rsvd_pebs;
1223 }
1224
1225 dbg_eba("EBA unit is initialized");
1226 return 0;
1227
1228out_free:
1229 for (i = 0; i < num_volumes; i++) {
1230 if (!ubi->volumes[i])
1231 continue;
1232 kfree(ubi->volumes[i]->eba_tbl);
1233 }
801c135c
AB
1234 return err;
1235}
1236
1237/**
1238 * ubi_eba_close - close EBA unit.
1239 * @ubi: UBI device description object
1240 */
1241void ubi_eba_close(const struct ubi_device *ubi)
1242{
1243 int i, num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1244
1245 dbg_eba("close EBA unit");
1246
1247 for (i = 0; i < num_volumes; i++) {
1248 if (!ubi->volumes[i])
1249 continue;
1250 kfree(ubi->volumes[i]->eba_tbl);
1251 }
801c135c 1252}
This page took 0.203514 seconds and 5 git commands to generate.