UBI: remove duplicate IO error codes
[deliverable/linux.git] / drivers / mtd / ubi / io.c
CommitLineData
801c135c
AB
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём)
20 */
21
22/*
85c6e6e2 23 * UBI input/output sub-system.
801c135c 24 *
85c6e6e2
AB
25 * This sub-system provides a uniform way to work with all kinds of the
26 * underlying MTD devices. It also implements handy functions for reading and
27 * writing UBI headers.
801c135c
AB
28 *
29 * We are trying to have a paranoid mindset and not to trust to what we read
85c6e6e2
AB
30 * from the flash media in order to be more secure and robust. So this
31 * sub-system validates every single header it reads from the flash media.
801c135c
AB
32 *
33 * Some words about how the eraseblock headers are stored.
34 *
35 * The erase counter header is always stored at offset zero. By default, the
36 * VID header is stored after the EC header at the closest aligned offset
37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38 * header at the closest aligned offset. But this default layout may be
39 * changed. For example, for different reasons (e.g., optimization) UBI may be
40 * asked to put the VID header at further offset, and even at an unaligned
41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42 * proper padding in front of it. Data offset may also be changed but it has to
43 * be aligned.
44 *
45 * About minimal I/O units. In general, UBI assumes flash device model where
46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50 * to do different optimizations.
51 *
52 * This is extremely useful in case of NAND flashes which admit of several
53 * write operations to one NAND page. In this case UBI can fit EC and VID
54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57 * users.
58 *
59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61 * headers.
62 *
63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64 * device, e.g., make @ubi->min_io_size = 512 in the example above?
65 *
66 * A: because when writing a sub-page, MTD still writes a full 2K page but the
be436f62
SK
67 * bytes which are not relevant to the sub-page are 0xFF. So, basically,
68 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
69 * Thus, we prefer to use sub-pages only for EC and VID headers.
801c135c
AB
70 *
71 * As it was noted above, the VID header may start at a non-aligned offset.
72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73 * the VID header may reside at offset 1984 which is the last 64 bytes of the
74 * last sub-page (EC header is always at offset zero). This causes some
75 * difficulties when reading and writing VID headers.
76 *
77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78 * the data and want to write this VID header out. As we can only write in
79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80 * to offset 448 of this buffer.
81 *
85c6e6e2
AB
82 * The I/O sub-system does the following trick in order to avoid this extra
83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85 * When the VID header is being written out, it shifts the VID header pointer
86 * back and writes the whole sub-page.
801c135c
AB
87 */
88
89#include <linux/crc32.h>
90#include <linux/err.h>
5a0e3ad6 91#include <linux/slab.h>
801c135c
AB
92#include "ubi.h"
93
94#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
95static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
96static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
97static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
98 const struct ubi_ec_hdr *ec_hdr);
99static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
100static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
101 const struct ubi_vid_hdr *vid_hdr);
801c135c
AB
102#else
103#define paranoid_check_not_bad(ubi, pnum) 0
104#define paranoid_check_peb_ec_hdr(ubi, pnum) 0
105#define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0
106#define paranoid_check_peb_vid_hdr(ubi, pnum) 0
107#define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
801c135c
AB
108#endif
109
110/**
111 * ubi_io_read - read data from a physical eraseblock.
112 * @ubi: UBI device description object
113 * @buf: buffer where to store the read data
114 * @pnum: physical eraseblock number to read from
115 * @offset: offset within the physical eraseblock from where to read
116 * @len: how many bytes to read
117 *
118 * This function reads data from offset @offset of physical eraseblock @pnum
119 * and stores the read data in the @buf buffer. The following return codes are
120 * possible:
121 *
122 * o %0 if all the requested data were successfully read;
123 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
124 * correctable bit-flips were detected; this is harmless but may indicate
125 * that this eraseblock may become bad soon (but do not have to);
63b6c1ed
AB
126 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
127 * example it can be an ECC error in case of NAND; this most probably means
128 * that the data is corrupted;
801c135c
AB
129 * o %-EIO if some I/O error occurred;
130 * o other negative error codes in case of other errors.
131 */
132int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
133 int len)
134{
135 int err, retries = 0;
136 size_t read;
137 loff_t addr;
138
139 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
140
141 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
142 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
143 ubi_assert(len > 0);
144
145 err = paranoid_check_not_bad(ubi, pnum);
146 if (err)
adbf05e3 147 return err;
801c135c
AB
148
149 addr = (loff_t)pnum * ubi->peb_size + offset;
150retry:
151 err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
152 if (err) {
f5d5b1f8 153 const char *errstr = (err == -EBADMSG) ? " (ECC error)" : "";
1a49af2c 154
801c135c
AB
155 if (err == -EUCLEAN) {
156 /*
157 * -EUCLEAN is reported if there was a bit-flip which
158 * was corrected, so this is harmless.
8c1e6ee1
AB
159 *
160 * We do not report about it here unless debugging is
161 * enabled. A corresponding message will be printed
162 * later, when it is has been scrubbed.
801c135c 163 */
8c1e6ee1 164 dbg_msg("fixable bit-flip detected at PEB %d", pnum);
801c135c
AB
165 ubi_assert(len == read);
166 return UBI_IO_BITFLIPS;
167 }
168
169 if (read != len && retries++ < UBI_IO_RETRIES) {
1a49af2c 170 dbg_io("error %d%s while reading %d bytes from PEB %d:%d,"
9c9ec147 171 " read only %zd bytes, retry",
1a49af2c 172 err, errstr, len, pnum, offset, read);
801c135c
AB
173 yield();
174 goto retry;
175 }
176
f5d5b1f8 177 ubi_err("error %d%s while reading %d bytes from PEB %d:%d, "
1a49af2c 178 "read %zd bytes", err, errstr, len, pnum, offset, read);
801c135c 179 ubi_dbg_dump_stack();
2362a53e
AB
180
181 /*
182 * The driver should never return -EBADMSG if it failed to read
183 * all the requested data. But some buggy drivers might do
184 * this, so we change it to -EIO.
185 */
186 if (read != len && err == -EBADMSG) {
187 ubi_assert(0);
188 err = -EIO;
189 }
801c135c
AB
190 } else {
191 ubi_assert(len == read);
192
193 if (ubi_dbg_is_bitflip()) {
c8566350 194 dbg_gen("bit-flip (emulated)");
801c135c
AB
195 err = UBI_IO_BITFLIPS;
196 }
197 }
198
199 return err;
200}
201
202/**
203 * ubi_io_write - write data to a physical eraseblock.
204 * @ubi: UBI device description object
205 * @buf: buffer with the data to write
206 * @pnum: physical eraseblock number to write to
207 * @offset: offset within the physical eraseblock where to write
208 * @len: how many bytes to write
209 *
210 * This function writes @len bytes of data from buffer @buf to offset @offset
211 * of physical eraseblock @pnum. If all the data were successfully written,
212 * zero is returned. If an error occurred, this function returns a negative
213 * error code. If %-EIO is returned, the physical eraseblock most probably went
214 * bad.
215 *
216 * Note, in case of an error, it is possible that something was still written
217 * to the flash media, but may be some garbage.
218 */
e88d6e10
AB
219int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
220 int len)
801c135c
AB
221{
222 int err;
223 size_t written;
224 loff_t addr;
225
226 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
227
228 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
229 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
230 ubi_assert(offset % ubi->hdrs_min_io_size == 0);
231 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
232
233 if (ubi->ro_mode) {
234 ubi_err("read-only mode");
235 return -EROFS;
236 }
237
238 /* The below has to be compiled out if paranoid checks are disabled */
239
240 err = paranoid_check_not_bad(ubi, pnum);
241 if (err)
adbf05e3 242 return err;
801c135c
AB
243
244 /* The area we are writing to has to contain all 0xFF bytes */
40a71a87 245 err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
801c135c 246 if (err)
adbf05e3 247 return err;
801c135c
AB
248
249 if (offset >= ubi->leb_start) {
250 /*
251 * We write to the data area of the physical eraseblock. Make
252 * sure it has valid EC and VID headers.
253 */
254 err = paranoid_check_peb_ec_hdr(ubi, pnum);
255 if (err)
adbf05e3 256 return err;
801c135c
AB
257 err = paranoid_check_peb_vid_hdr(ubi, pnum);
258 if (err)
adbf05e3 259 return err;
801c135c
AB
260 }
261
262 if (ubi_dbg_is_write_failure()) {
263 dbg_err("cannot write %d bytes to PEB %d:%d "
264 "(emulated)", len, pnum, offset);
265 ubi_dbg_dump_stack();
266 return -EIO;
267 }
268
269 addr = (loff_t)pnum * ubi->peb_size + offset;
270 err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
271 if (err) {
ebf53f42
AB
272 ubi_err("error %d while writing %d bytes to PEB %d:%d, written "
273 "%zd bytes", err, len, pnum, offset, written);
801c135c 274 ubi_dbg_dump_stack();
867996b1 275 ubi_dbg_dump_flash(ubi, pnum, offset, len);
801c135c
AB
276 } else
277 ubi_assert(written == len);
278
6e9065d7
AB
279 if (!err) {
280 err = ubi_dbg_check_write(ubi, buf, pnum, offset, len);
281 if (err)
282 return err;
283
284 /*
285 * Since we always write sequentially, the rest of the PEB has
286 * to contain only 0xFF bytes.
287 */
288 offset += len;
289 len = ubi->peb_size - offset;
290 if (len)
291 err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
292 }
293
801c135c
AB
294 return err;
295}
296
297/**
298 * erase_callback - MTD erasure call-back.
299 * @ei: MTD erase information object.
300 *
301 * Note, even though MTD erase interface is asynchronous, all the current
302 * implementations are synchronous anyway.
303 */
304static void erase_callback(struct erase_info *ei)
305{
306 wake_up_interruptible((wait_queue_head_t *)ei->priv);
307}
308
309/**
310 * do_sync_erase - synchronously erase a physical eraseblock.
311 * @ubi: UBI device description object
312 * @pnum: the physical eraseblock number to erase
313 *
314 * This function synchronously erases physical eraseblock @pnum and returns
315 * zero in case of success and a negative error code in case of failure. If
316 * %-EIO is returned, the physical eraseblock most probably went bad.
317 */
e88d6e10 318static int do_sync_erase(struct ubi_device *ubi, int pnum)
801c135c
AB
319{
320 int err, retries = 0;
321 struct erase_info ei;
322 wait_queue_head_t wq;
323
324 dbg_io("erase PEB %d", pnum);
325
326retry:
327 init_waitqueue_head(&wq);
328 memset(&ei, 0, sizeof(struct erase_info));
329
330 ei.mtd = ubi->mtd;
2f176f79 331 ei.addr = (loff_t)pnum * ubi->peb_size;
801c135c
AB
332 ei.len = ubi->peb_size;
333 ei.callback = erase_callback;
334 ei.priv = (unsigned long)&wq;
335
336 err = ubi->mtd->erase(ubi->mtd, &ei);
337 if (err) {
338 if (retries++ < UBI_IO_RETRIES) {
339 dbg_io("error %d while erasing PEB %d, retry",
340 err, pnum);
341 yield();
342 goto retry;
343 }
344 ubi_err("cannot erase PEB %d, error %d", pnum, err);
345 ubi_dbg_dump_stack();
346 return err;
347 }
348
349 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
350 ei.state == MTD_ERASE_FAILED);
351 if (err) {
352 ubi_err("interrupted PEB %d erasure", pnum);
353 return -EINTR;
354 }
355
356 if (ei.state == MTD_ERASE_FAILED) {
357 if (retries++ < UBI_IO_RETRIES) {
358 dbg_io("error while erasing PEB %d, retry", pnum);
359 yield();
360 goto retry;
361 }
362 ubi_err("cannot erase PEB %d", pnum);
363 ubi_dbg_dump_stack();
364 return -EIO;
365 }
366
40a71a87 367 err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size);
801c135c 368 if (err)
adbf05e3 369 return err;
801c135c
AB
370
371 if (ubi_dbg_is_erase_failure() && !err) {
372 dbg_err("cannot erase PEB %d (emulated)", pnum);
373 return -EIO;
374 }
375
376 return 0;
377}
378
379/**
380 * check_pattern - check if buffer contains only a certain byte pattern.
381 * @buf: buffer to check
382 * @patt: the pattern to check
383 * @size: buffer size in bytes
384 *
385 * This function returns %1 in there are only @patt bytes in @buf, and %0 if
386 * something else was also found.
387 */
388static int check_pattern(const void *buf, uint8_t patt, int size)
389{
390 int i;
391
392 for (i = 0; i < size; i++)
393 if (((const uint8_t *)buf)[i] != patt)
394 return 0;
395 return 1;
396}
397
398/* Patterns to write to a physical eraseblock when torturing it */
399static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
400
401/**
402 * torture_peb - test a supposedly bad physical eraseblock.
403 * @ubi: UBI device description object
404 * @pnum: the physical eraseblock number to test
405 *
406 * This function returns %-EIO if the physical eraseblock did not pass the
407 * test, a positive number of erase operations done if the test was
408 * successfully passed, and other negative error codes in case of other errors.
409 */
e88d6e10 410static int torture_peb(struct ubi_device *ubi, int pnum)
801c135c 411{
801c135c
AB
412 int err, i, patt_count;
413
8c1e6ee1 414 ubi_msg("run torture test for PEB %d", pnum);
801c135c
AB
415 patt_count = ARRAY_SIZE(patterns);
416 ubi_assert(patt_count > 0);
417
e88d6e10 418 mutex_lock(&ubi->buf_mutex);
801c135c
AB
419 for (i = 0; i < patt_count; i++) {
420 err = do_sync_erase(ubi, pnum);
421 if (err)
422 goto out;
423
424 /* Make sure the PEB contains only 0xFF bytes */
e88d6e10 425 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
801c135c
AB
426 if (err)
427 goto out;
428
e88d6e10 429 err = check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
801c135c
AB
430 if (err == 0) {
431 ubi_err("erased PEB %d, but a non-0xFF byte found",
432 pnum);
433 err = -EIO;
434 goto out;
435 }
436
437 /* Write a pattern and check it */
e88d6e10
AB
438 memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
439 err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
801c135c
AB
440 if (err)
441 goto out;
442
e88d6e10
AB
443 memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
444 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
801c135c
AB
445 if (err)
446 goto out;
447
e88d6e10 448 err = check_pattern(ubi->peb_buf1, patterns[i], ubi->peb_size);
801c135c
AB
449 if (err == 0) {
450 ubi_err("pattern %x checking failed for PEB %d",
451 patterns[i], pnum);
452 err = -EIO;
453 goto out;
454 }
455 }
456
457 err = patt_count;
8c1e6ee1 458 ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum);
801c135c
AB
459
460out:
e88d6e10 461 mutex_unlock(&ubi->buf_mutex);
8d2d4011 462 if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
801c135c
AB
463 /*
464 * If a bit-flip or data integrity error was detected, the test
465 * has not passed because it happened on a freshly erased
466 * physical eraseblock which means something is wrong with it.
467 */
8d2d4011
AB
468 ubi_err("read problems on freshly erased PEB %d, must be bad",
469 pnum);
801c135c 470 err = -EIO;
8d2d4011 471 }
801c135c
AB
472 return err;
473}
474
ebf53f42
AB
475/**
476 * nor_erase_prepare - prepare a NOR flash PEB for erasure.
477 * @ubi: UBI device description object
478 * @pnum: physical eraseblock number to prepare
479 *
480 * NOR flash, or at least some of them, have peculiar embedded PEB erasure
481 * algorithm: the PEB is first filled with zeroes, then it is erased. And
482 * filling with zeroes starts from the end of the PEB. This was observed with
483 * Spansion S29GL512N NOR flash.
484 *
485 * This means that in case of a power cut we may end up with intact data at the
486 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
487 * EC and VID headers are OK, but a large chunk of data at the end of PEB is
488 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
489 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
490 *
491 * This function is called before erasing NOR PEBs and it zeroes out EC and VID
492 * magic numbers in order to invalidate them and prevent the failures. Returns
493 * zero in case of success and a negative error code in case of failure.
494 */
495static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
496{
de75c771 497 int err, err1;
ebf53f42
AB
498 size_t written;
499 loff_t addr;
500 uint32_t data = 0;
de75c771 501 struct ubi_vid_hdr vid_hdr;
ebf53f42 502
5b289b56 503 addr = (loff_t)pnum * ubi->peb_size + ubi->vid_hdr_aloffset;
83c2099f 504 err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data);
de75c771
AB
505 if (!err) {
506 addr -= ubi->vid_hdr_aloffset;
507 err = ubi->mtd->write(ubi->mtd, addr, 4, &written,
508 (void *)&data);
509 if (!err)
510 return 0;
ebf53f42
AB
511 }
512
de75c771
AB
513 /*
514 * We failed to write to the media. This was observed with Spansion
515 * S29GL512N NOR flash. Most probably the eraseblock erasure was
516 * interrupted at a very inappropriate moment, so it became unwritable.
517 * In this case we probably anyway have garbage in this PEB.
518 */
519 err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
756e1df1 520 if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR)
de75c771
AB
521 /*
522 * The VID header is corrupted, so we can safely erase this
523 * PEB and not afraid that it will be treated as a valid PEB in
524 * case of an unclean reboot.
525 */
526 return 0;
527
528 /*
529 * The PEB contains a valid VID header, but we cannot invalidate it.
530 * Supposedly the flash media or the driver is screwed up, so return an
531 * error.
532 */
533 ubi_err("cannot invalidate PEB %d, write returned %d read returned %d",
534 pnum, err, err1);
535 ubi_dbg_dump_flash(ubi, pnum, 0, ubi->peb_size);
536 return -EIO;
ebf53f42
AB
537}
538
801c135c
AB
539/**
540 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
541 * @ubi: UBI device description object
542 * @pnum: physical eraseblock number to erase
543 * @torture: if this physical eraseblock has to be tortured
544 *
545 * This function synchronously erases physical eraseblock @pnum. If @torture
546 * flag is not zero, the physical eraseblock is checked by means of writing
547 * different patterns to it and reading them back. If the torturing is enabled,
025dfdaf 548 * the physical eraseblock is erased more than once.
801c135c
AB
549 *
550 * This function returns the number of erasures made in case of success, %-EIO
551 * if the erasure failed or the torturing test failed, and other negative error
552 * codes in case of other errors. Note, %-EIO means that the physical
553 * eraseblock is bad.
554 */
e88d6e10 555int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
801c135c
AB
556{
557 int err, ret = 0;
558
559 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
560
561 err = paranoid_check_not_bad(ubi, pnum);
562 if (err != 0)
adbf05e3 563 return err;
801c135c
AB
564
565 if (ubi->ro_mode) {
566 ubi_err("read-only mode");
567 return -EROFS;
568 }
569
ebf53f42
AB
570 if (ubi->nor_flash) {
571 err = nor_erase_prepare(ubi, pnum);
572 if (err)
573 return err;
574 }
575
801c135c
AB
576 if (torture) {
577 ret = torture_peb(ubi, pnum);
578 if (ret < 0)
579 return ret;
580 }
581
582 err = do_sync_erase(ubi, pnum);
583 if (err)
584 return err;
585
586 return ret + 1;
587}
588
589/**
590 * ubi_io_is_bad - check if a physical eraseblock is bad.
591 * @ubi: UBI device description object
592 * @pnum: the physical eraseblock number to check
593 *
594 * This function returns a positive number if the physical eraseblock is bad,
595 * zero if not, and a negative error code if an error occurred.
596 */
597int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
598{
599 struct mtd_info *mtd = ubi->mtd;
600
601 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
602
603 if (ubi->bad_allowed) {
604 int ret;
605
606 ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
607 if (ret < 0)
608 ubi_err("error %d while checking if PEB %d is bad",
609 ret, pnum);
610 else if (ret)
611 dbg_io("PEB %d is bad", pnum);
612 return ret;
613 }
614
615 return 0;
616}
617
618/**
619 * ubi_io_mark_bad - mark a physical eraseblock as bad.
620 * @ubi: UBI device description object
621 * @pnum: the physical eraseblock number to mark
622 *
623 * This function returns zero in case of success and a negative error code in
624 * case of failure.
625 */
626int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
627{
628 int err;
629 struct mtd_info *mtd = ubi->mtd;
630
631 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
632
633 if (ubi->ro_mode) {
634 ubi_err("read-only mode");
635 return -EROFS;
636 }
637
638 if (!ubi->bad_allowed)
639 return 0;
640
641 err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
642 if (err)
643 ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
644 return err;
645}
646
647/**
648 * validate_ec_hdr - validate an erase counter header.
649 * @ubi: UBI device description object
650 * @ec_hdr: the erase counter header to check
651 *
652 * This function returns zero if the erase counter header is OK, and %1 if
653 * not.
654 */
fe96efc1 655static int validate_ec_hdr(const struct ubi_device *ubi,
801c135c
AB
656 const struct ubi_ec_hdr *ec_hdr)
657{
658 long long ec;
fe96efc1 659 int vid_hdr_offset, leb_start;
801c135c 660
3261ebd7
CH
661 ec = be64_to_cpu(ec_hdr->ec);
662 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
663 leb_start = be32_to_cpu(ec_hdr->data_offset);
801c135c
AB
664
665 if (ec_hdr->version != UBI_VERSION) {
666 ubi_err("node with incompatible UBI version found: "
667 "this UBI version is %d, image version is %d",
668 UBI_VERSION, (int)ec_hdr->version);
669 goto bad;
670 }
671
672 if (vid_hdr_offset != ubi->vid_hdr_offset) {
673 ubi_err("bad VID header offset %d, expected %d",
674 vid_hdr_offset, ubi->vid_hdr_offset);
675 goto bad;
676 }
677
678 if (leb_start != ubi->leb_start) {
679 ubi_err("bad data offset %d, expected %d",
680 leb_start, ubi->leb_start);
681 goto bad;
682 }
683
684 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
685 ubi_err("bad erase counter %lld", ec);
686 goto bad;
687 }
688
689 return 0;
690
691bad:
692 ubi_err("bad EC header");
693 ubi_dbg_dump_ec_hdr(ec_hdr);
694 ubi_dbg_dump_stack();
695 return 1;
696}
697
698/**
699 * ubi_io_read_ec_hdr - read and check an erase counter header.
700 * @ubi: UBI device description object
701 * @pnum: physical eraseblock to read from
702 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
703 * header
704 * @verbose: be verbose if the header is corrupted or was not found
705 *
706 * This function reads erase counter header from physical eraseblock @pnum and
707 * stores it in @ec_hdr. This function also checks CRC checksum of the read
708 * erase counter header. The following codes may be returned:
709 *
710 * o %0 if the CRC checksum is correct and the header was successfully read;
711 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
712 * and corrected by the flash driver; this is harmless but may indicate that
713 * this eraseblock may become bad soon (but may be not);
786d7831 714 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
756e1df1
AB
715 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
716 * a data integrity error (uncorrectable ECC error in case of NAND);
74d82d26 717 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
801c135c
AB
718 * o a negative error code in case of failure.
719 */
e88d6e10 720int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
801c135c
AB
721 struct ubi_ec_hdr *ec_hdr, int verbose)
722{
723 int err, read_err = 0;
724 uint32_t crc, magic, hdr_crc;
725
726 dbg_io("read EC header from PEB %d", pnum);
727 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
728
729 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
730 if (err) {
731 if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
732 return err;
733
734 /*
735 * We read all the data, but either a correctable bit-flip
756e1df1
AB
736 * occurred, or MTD reported a data integrity error
737 * (uncorrectable ECC error in case of NAND). The former is
738 * harmless, the later may mean that the read data is
739 * corrupted. But we have a CRC check-sum and we will detect
740 * this. If the EC header is still OK, we just report this as
741 * there was a bit-flip, to force scrubbing.
801c135c 742 */
eb89580e 743 if (err == -EBADMSG)
756e1df1 744 read_err = UBI_IO_BAD_HDR_EBADMSG;
801c135c
AB
745 }
746
3261ebd7 747 magic = be32_to_cpu(ec_hdr->magic);
801c135c 748 if (magic != UBI_EC_HDR_MAGIC) {
eb89580e
AB
749 if (read_err)
750 return read_err;
751
801c135c
AB
752 /*
753 * The magic field is wrong. Let's check if we have read all
754 * 0xFF. If yes, this physical eraseblock is assumed to be
755 * empty.
801c135c 756 */
eb89580e 757 if (check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
801c135c 758 /* The physical eraseblock is supposedly empty */
801c135c
AB
759 if (verbose)
760 ubi_warn("no EC header found at PEB %d, "
761 "only 0xFF bytes", pnum);
ed45819f
AB
762 else if (UBI_IO_DEBUG)
763 dbg_msg("no EC header found at PEB %d, "
764 "only 0xFF bytes", pnum);
74d82d26 765 return UBI_IO_FF;
801c135c
AB
766 }
767
768 /*
769 * This is not a valid erase counter header, and these are not
770 * 0xFF bytes. Report that the header is corrupted.
771 */
772 if (verbose) {
773 ubi_warn("bad magic number at PEB %d: %08x instead of "
774 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
775 ubi_dbg_dump_ec_hdr(ec_hdr);
ed45819f
AB
776 } else if (UBI_IO_DEBUG)
777 dbg_msg("bad magic number at PEB %d: %08x instead of "
778 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
786d7831 779 return UBI_IO_BAD_HDR;
801c135c
AB
780 }
781
782 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
3261ebd7 783 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
801c135c
AB
784
785 if (hdr_crc != crc) {
786 if (verbose) {
9c9ec147
AB
787 ubi_warn("bad EC header CRC at PEB %d, calculated "
788 "%#08x, read %#08x", pnum, crc, hdr_crc);
801c135c 789 ubi_dbg_dump_ec_hdr(ec_hdr);
ed45819f
AB
790 } else if (UBI_IO_DEBUG)
791 dbg_msg("bad EC header CRC at PEB %d, calculated "
792 "%#08x, read %#08x", pnum, crc, hdr_crc);
eb89580e 793 return read_err ?: UBI_IO_BAD_HDR;
801c135c
AB
794 }
795
796 /* And of course validate what has just been read from the media */
797 err = validate_ec_hdr(ubi, ec_hdr);
798 if (err) {
799 ubi_err("validation failed for PEB %d", pnum);
800 return -EINVAL;
801 }
802
eb89580e
AB
803 /*
804 * If there was %-EBADMSG, but the header CRC is still OK, report about
805 * a bit-flip to force scrubbing on this PEB.
806 */
801c135c
AB
807 return read_err ? UBI_IO_BITFLIPS : 0;
808}
809
810/**
811 * ubi_io_write_ec_hdr - write an erase counter header.
812 * @ubi: UBI device description object
813 * @pnum: physical eraseblock to write to
814 * @ec_hdr: the erase counter header to write
815 *
816 * This function writes erase counter header described by @ec_hdr to physical
817 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
818 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
819 * field.
820 *
821 * This function returns zero in case of success and a negative error code in
822 * case of failure. If %-EIO is returned, the physical eraseblock most probably
823 * went bad.
824 */
e88d6e10 825int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
801c135c
AB
826 struct ubi_ec_hdr *ec_hdr)
827{
828 int err;
829 uint32_t crc;
830
831 dbg_io("write EC header to PEB %d", pnum);
832 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
833
3261ebd7 834 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
801c135c 835 ec_hdr->version = UBI_VERSION;
3261ebd7
CH
836 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
837 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
0c6c7fa1 838 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
801c135c 839 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
3261ebd7 840 ec_hdr->hdr_crc = cpu_to_be32(crc);
801c135c
AB
841
842 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
843 if (err)
adbf05e3 844 return err;
801c135c
AB
845
846 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
847 return err;
848}
849
850/**
851 * validate_vid_hdr - validate a volume identifier header.
852 * @ubi: UBI device description object
853 * @vid_hdr: the volume identifier header to check
854 *
855 * This function checks that data stored in the volume identifier header
856 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
857 */
858static int validate_vid_hdr(const struct ubi_device *ubi,
859 const struct ubi_vid_hdr *vid_hdr)
860{
861 int vol_type = vid_hdr->vol_type;
862 int copy_flag = vid_hdr->copy_flag;
3261ebd7
CH
863 int vol_id = be32_to_cpu(vid_hdr->vol_id);
864 int lnum = be32_to_cpu(vid_hdr->lnum);
801c135c 865 int compat = vid_hdr->compat;
3261ebd7
CH
866 int data_size = be32_to_cpu(vid_hdr->data_size);
867 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
868 int data_pad = be32_to_cpu(vid_hdr->data_pad);
869 int data_crc = be32_to_cpu(vid_hdr->data_crc);
801c135c
AB
870 int usable_leb_size = ubi->leb_size - data_pad;
871
872 if (copy_flag != 0 && copy_flag != 1) {
873 dbg_err("bad copy_flag");
874 goto bad;
875 }
876
877 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
878 data_pad < 0) {
879 dbg_err("negative values");
880 goto bad;
881 }
882
883 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
884 dbg_err("bad vol_id");
885 goto bad;
886 }
887
888 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
889 dbg_err("bad compat");
890 goto bad;
891 }
892
893 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
894 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
895 compat != UBI_COMPAT_REJECT) {
896 dbg_err("bad compat");
897 goto bad;
898 }
899
900 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
901 dbg_err("bad vol_type");
902 goto bad;
903 }
904
905 if (data_pad >= ubi->leb_size / 2) {
906 dbg_err("bad data_pad");
907 goto bad;
908 }
909
910 if (vol_type == UBI_VID_STATIC) {
911 /*
912 * Although from high-level point of view static volumes may
913 * contain zero bytes of data, but no VID headers can contain
914 * zero at these fields, because they empty volumes do not have
915 * mapped logical eraseblocks.
916 */
917 if (used_ebs == 0) {
918 dbg_err("zero used_ebs");
919 goto bad;
920 }
921 if (data_size == 0) {
922 dbg_err("zero data_size");
923 goto bad;
924 }
925 if (lnum < used_ebs - 1) {
926 if (data_size != usable_leb_size) {
927 dbg_err("bad data_size");
928 goto bad;
929 }
930 } else if (lnum == used_ebs - 1) {
931 if (data_size == 0) {
932 dbg_err("bad data_size at last LEB");
933 goto bad;
934 }
935 } else {
936 dbg_err("too high lnum");
937 goto bad;
938 }
939 } else {
940 if (copy_flag == 0) {
941 if (data_crc != 0) {
942 dbg_err("non-zero data CRC");
943 goto bad;
944 }
945 if (data_size != 0) {
946 dbg_err("non-zero data_size");
947 goto bad;
948 }
949 } else {
950 if (data_size == 0) {
951 dbg_err("zero data_size of copy");
952 goto bad;
953 }
954 }
955 if (used_ebs != 0) {
956 dbg_err("bad used_ebs");
957 goto bad;
958 }
959 }
960
961 return 0;
962
963bad:
964 ubi_err("bad VID header");
965 ubi_dbg_dump_vid_hdr(vid_hdr);
966 ubi_dbg_dump_stack();
967 return 1;
968}
969
970/**
971 * ubi_io_read_vid_hdr - read and check a volume identifier header.
972 * @ubi: UBI device description object
973 * @pnum: physical eraseblock number to read from
974 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
975 * identifier header
976 * @verbose: be verbose if the header is corrupted or wasn't found
977 *
978 * This function reads the volume identifier header from physical eraseblock
979 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
74d82d26
AB
980 * volume identifier header. The error codes are the same as in
981 * 'ubi_io_read_ec_hdr()'.
801c135c 982 *
74d82d26
AB
983 * Note, the implementation of this function is also very similar to
984 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
801c135c 985 */
e88d6e10 986int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
801c135c
AB
987 struct ubi_vid_hdr *vid_hdr, int verbose)
988{
989 int err, read_err = 0;
990 uint32_t crc, magic, hdr_crc;
991 void *p;
992
993 dbg_io("read VID header from PEB %d", pnum);
994 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
995
996 p = (char *)vid_hdr - ubi->vid_hdr_shift;
997 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
998 ubi->vid_hdr_alsize);
999 if (err) {
1000 if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
1001 return err;
1002
eb89580e 1003 if (err == -EBADMSG)
756e1df1 1004 read_err = UBI_IO_BAD_HDR_EBADMSG;
801c135c
AB
1005 }
1006
3261ebd7 1007 magic = be32_to_cpu(vid_hdr->magic);
801c135c 1008 if (magic != UBI_VID_HDR_MAGIC) {
eb89580e
AB
1009 if (read_err)
1010 return read_err;
1011
eb89580e 1012 if (check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
801c135c
AB
1013 if (verbose)
1014 ubi_warn("no VID header found at PEB %d, "
1015 "only 0xFF bytes", pnum);
ed45819f
AB
1016 else if (UBI_IO_DEBUG)
1017 dbg_msg("no VID header found at PEB %d, "
1018 "only 0xFF bytes", pnum);
74d82d26 1019 return UBI_IO_FF;
801c135c
AB
1020 }
1021
801c135c
AB
1022 if (verbose) {
1023 ubi_warn("bad magic number at PEB %d: %08x instead of "
1024 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1025 ubi_dbg_dump_vid_hdr(vid_hdr);
ed45819f
AB
1026 } else if (UBI_IO_DEBUG)
1027 dbg_msg("bad magic number at PEB %d: %08x instead of "
1028 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
786d7831 1029 return UBI_IO_BAD_HDR;
801c135c
AB
1030 }
1031
1032 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
3261ebd7 1033 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
801c135c
AB
1034
1035 if (hdr_crc != crc) {
1036 if (verbose) {
1037 ubi_warn("bad CRC at PEB %d, calculated %#08x, "
1038 "read %#08x", pnum, crc, hdr_crc);
1039 ubi_dbg_dump_vid_hdr(vid_hdr);
ed45819f
AB
1040 } else if (UBI_IO_DEBUG)
1041 dbg_msg("bad CRC at PEB %d, calculated %#08x, "
1042 "read %#08x", pnum, crc, hdr_crc);
eb89580e 1043 return read_err ?: UBI_IO_BAD_HDR;
801c135c
AB
1044 }
1045
801c135c
AB
1046 err = validate_vid_hdr(ubi, vid_hdr);
1047 if (err) {
1048 ubi_err("validation failed for PEB %d", pnum);
1049 return -EINVAL;
1050 }
1051
1052 return read_err ? UBI_IO_BITFLIPS : 0;
1053}
1054
1055/**
1056 * ubi_io_write_vid_hdr - write a volume identifier header.
1057 * @ubi: UBI device description object
1058 * @pnum: the physical eraseblock number to write to
1059 * @vid_hdr: the volume identifier header to write
1060 *
1061 * This function writes the volume identifier header described by @vid_hdr to
1062 * physical eraseblock @pnum. This function automatically fills the
1063 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1064 * header CRC checksum and stores it at vid_hdr->hdr_crc.
1065 *
1066 * This function returns zero in case of success and a negative error code in
1067 * case of failure. If %-EIO is returned, the physical eraseblock probably went
1068 * bad.
1069 */
e88d6e10 1070int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
801c135c
AB
1071 struct ubi_vid_hdr *vid_hdr)
1072{
1073 int err;
1074 uint32_t crc;
1075 void *p;
1076
1077 dbg_io("write VID header to PEB %d", pnum);
1078 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1079
1080 err = paranoid_check_peb_ec_hdr(ubi, pnum);
1081 if (err)
adbf05e3 1082 return err;
801c135c 1083
3261ebd7 1084 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
801c135c
AB
1085 vid_hdr->version = UBI_VERSION;
1086 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
3261ebd7 1087 vid_hdr->hdr_crc = cpu_to_be32(crc);
801c135c
AB
1088
1089 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1090 if (err)
adbf05e3 1091 return err;
801c135c
AB
1092
1093 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1094 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1095 ubi->vid_hdr_alsize);
1096 return err;
1097}
1098
1099#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1100
1101/**
1102 * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
1103 * @ubi: UBI device description object
1104 * @pnum: physical eraseblock number to check
1105 *
adbf05e3
AB
1106 * This function returns zero if the physical eraseblock is good, %-EINVAL if
1107 * it is bad and a negative error code if an error occurred.
801c135c
AB
1108 */
1109static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
1110{
1111 int err;
1112
1113 err = ubi_io_is_bad(ubi, pnum);
1114 if (!err)
1115 return err;
1116
1117 ubi_err("paranoid check failed for PEB %d", pnum);
1118 ubi_dbg_dump_stack();
adbf05e3 1119 return err > 0 ? -EINVAL : err;
801c135c
AB
1120}
1121
1122/**
1123 * paranoid_check_ec_hdr - check if an erase counter header is all right.
1124 * @ubi: UBI device description object
1125 * @pnum: physical eraseblock number the erase counter header belongs to
1126 * @ec_hdr: the erase counter header to check
1127 *
1128 * This function returns zero if the erase counter header contains valid
adbf05e3 1129 * values, and %-EINVAL if not.
801c135c
AB
1130 */
1131static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1132 const struct ubi_ec_hdr *ec_hdr)
1133{
1134 int err;
1135 uint32_t magic;
1136
3261ebd7 1137 magic = be32_to_cpu(ec_hdr->magic);
801c135c
AB
1138 if (magic != UBI_EC_HDR_MAGIC) {
1139 ubi_err("bad magic %#08x, must be %#08x",
1140 magic, UBI_EC_HDR_MAGIC);
1141 goto fail;
1142 }
1143
1144 err = validate_ec_hdr(ubi, ec_hdr);
1145 if (err) {
1146 ubi_err("paranoid check failed for PEB %d", pnum);
1147 goto fail;
1148 }
1149
1150 return 0;
1151
1152fail:
1153 ubi_dbg_dump_ec_hdr(ec_hdr);
1154 ubi_dbg_dump_stack();
adbf05e3 1155 return -EINVAL;
801c135c
AB
1156}
1157
1158/**
ebaaf1af 1159 * paranoid_check_peb_ec_hdr - check erase counter header.
801c135c
AB
1160 * @ubi: UBI device description object
1161 * @pnum: the physical eraseblock number to check
1162 *
adbf05e3
AB
1163 * This function returns zero if the erase counter header is all right and and
1164 * a negative error code if not or if an error occurred.
801c135c
AB
1165 */
1166static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1167{
1168 int err;
1169 uint32_t crc, hdr_crc;
1170 struct ubi_ec_hdr *ec_hdr;
1171
33818bbb 1172 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
801c135c
AB
1173 if (!ec_hdr)
1174 return -ENOMEM;
1175
1176 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1177 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1178 goto exit;
1179
1180 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
3261ebd7 1181 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
801c135c
AB
1182 if (hdr_crc != crc) {
1183 ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1184 ubi_err("paranoid check failed for PEB %d", pnum);
1185 ubi_dbg_dump_ec_hdr(ec_hdr);
1186 ubi_dbg_dump_stack();
adbf05e3 1187 err = -EINVAL;
801c135c
AB
1188 goto exit;
1189 }
1190
1191 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
1192
1193exit:
1194 kfree(ec_hdr);
1195 return err;
1196}
1197
1198/**
1199 * paranoid_check_vid_hdr - check that a volume identifier header is all right.
1200 * @ubi: UBI device description object
1201 * @pnum: physical eraseblock number the volume identifier header belongs to
1202 * @vid_hdr: the volume identifier header to check
1203 *
1204 * This function returns zero if the volume identifier header is all right, and
adbf05e3 1205 * %-EINVAL if not.
801c135c
AB
1206 */
1207static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1208 const struct ubi_vid_hdr *vid_hdr)
1209{
1210 int err;
1211 uint32_t magic;
1212
3261ebd7 1213 magic = be32_to_cpu(vid_hdr->magic);
801c135c
AB
1214 if (magic != UBI_VID_HDR_MAGIC) {
1215 ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1216 magic, pnum, UBI_VID_HDR_MAGIC);
1217 goto fail;
1218 }
1219
1220 err = validate_vid_hdr(ubi, vid_hdr);
1221 if (err) {
1222 ubi_err("paranoid check failed for PEB %d", pnum);
1223 goto fail;
1224 }
1225
1226 return err;
1227
1228fail:
1229 ubi_err("paranoid check failed for PEB %d", pnum);
1230 ubi_dbg_dump_vid_hdr(vid_hdr);
1231 ubi_dbg_dump_stack();
adbf05e3 1232 return -EINVAL;
801c135c
AB
1233
1234}
1235
1236/**
ebaaf1af 1237 * paranoid_check_peb_vid_hdr - check volume identifier header.
801c135c
AB
1238 * @ubi: UBI device description object
1239 * @pnum: the physical eraseblock number to check
1240 *
1241 * This function returns zero if the volume identifier header is all right,
adbf05e3 1242 * and a negative error code if not or if an error occurred.
801c135c
AB
1243 */
1244static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1245{
1246 int err;
1247 uint32_t crc, hdr_crc;
1248 struct ubi_vid_hdr *vid_hdr;
1249 void *p;
1250
33818bbb 1251 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
801c135c
AB
1252 if (!vid_hdr)
1253 return -ENOMEM;
1254
1255 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1256 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1257 ubi->vid_hdr_alsize);
1258 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1259 goto exit;
1260
1261 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
3261ebd7 1262 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
801c135c
AB
1263 if (hdr_crc != crc) {
1264 ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1265 "read %#08x", pnum, crc, hdr_crc);
1266 ubi_err("paranoid check failed for PEB %d", pnum);
1267 ubi_dbg_dump_vid_hdr(vid_hdr);
1268 ubi_dbg_dump_stack();
adbf05e3 1269 err = -EINVAL;
801c135c
AB
1270 goto exit;
1271 }
1272
1273 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1274
1275exit:
1276 ubi_free_vid_hdr(ubi, vid_hdr);
1277 return err;
1278}
1279
6e9065d7
AB
1280/**
1281 * ubi_dbg_check_write - make sure write succeeded.
1282 * @ubi: UBI device description object
1283 * @buf: buffer with data which were written
1284 * @pnum: physical eraseblock number the data were written to
1285 * @offset: offset within the physical eraseblock the data were written to
1286 * @len: how many bytes were written
1287 *
1288 * This functions reads data which were recently written and compares it with
1289 * the original data buffer - the data have to match. Returns zero if the data
1290 * match and a negative error code if not or in case of failure.
1291 */
1292int ubi_dbg_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1293 int offset, int len)
1294{
1295 int err, i;
1296
1297 mutex_lock(&ubi->dbg_buf_mutex);
1298 err = ubi_io_read(ubi, ubi->dbg_peb_buf, pnum, offset, len);
1299 if (err)
1300 goto out_unlock;
1301
1302 for (i = 0; i < len; i++) {
1303 uint8_t c = ((uint8_t *)buf)[i];
1304 uint8_t c1 = ((uint8_t *)ubi->dbg_peb_buf)[i];
1305 int dump_len;
1306
1307 if (c == c1)
1308 continue;
1309
1310 ubi_err("paranoid check failed for PEB %d:%d, len %d",
1311 pnum, offset, len);
1312 ubi_msg("data differ at position %d", i);
1313 dump_len = max_t(int, 128, len - i);
1314 ubi_msg("hex dump of the original buffer from %d to %d",
1315 i, i + dump_len);
1316 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1317 buf + i, dump_len, 1);
1318 ubi_msg("hex dump of the read buffer from %d to %d",
1319 i, i + dump_len);
1320 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1321 ubi->dbg_peb_buf + i, dump_len, 1);
1322 ubi_dbg_dump_stack();
1323 err = -EINVAL;
1324 goto out_unlock;
1325 }
1326 mutex_unlock(&ubi->dbg_buf_mutex);
1327
1328 return 0;
1329
1330out_unlock:
1331 mutex_unlock(&ubi->dbg_buf_mutex);
1332 return err;
1333}
1334
801c135c 1335/**
40a71a87 1336 * ubi_dbg_check_all_ff - check that a region of flash is empty.
801c135c
AB
1337 * @ubi: UBI device description object
1338 * @pnum: the physical eraseblock number to check
1339 * @offset: the starting offset within the physical eraseblock to check
1340 * @len: the length of the region to check
1341 *
1342 * This function returns zero if only 0xFF bytes are present at offset
adbf05e3
AB
1343 * @offset of the physical eraseblock @pnum, and a negative error code if not
1344 * or if an error occurred.
801c135c 1345 */
40a71a87 1346int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
801c135c
AB
1347{
1348 size_t read;
1349 int err;
801c135c
AB
1350 loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1351
e88d6e10
AB
1352 mutex_lock(&ubi->dbg_buf_mutex);
1353 err = ubi->mtd->read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf);
801c135c
AB
1354 if (err && err != -EUCLEAN) {
1355 ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1356 "read %zd bytes", err, len, pnum, offset, read);
1357 goto error;
1358 }
1359
e88d6e10 1360 err = check_pattern(ubi->dbg_peb_buf, 0xFF, len);
801c135c
AB
1361 if (err == 0) {
1362 ubi_err("flash region at PEB %d:%d, length %d does not "
1363 "contain all 0xFF bytes", pnum, offset, len);
1364 goto fail;
1365 }
e88d6e10 1366 mutex_unlock(&ubi->dbg_buf_mutex);
801c135c 1367
801c135c
AB
1368 return 0;
1369
1370fail:
1371 ubi_err("paranoid check failed for PEB %d", pnum);
c8566350 1372 ubi_msg("hex dump of the %d-%d region", offset, offset + len);
6986646b 1373 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
e88d6e10 1374 ubi->dbg_peb_buf, len, 1);
adbf05e3 1375 err = -EINVAL;
801c135c
AB
1376error:
1377 ubi_dbg_dump_stack();
e88d6e10 1378 mutex_unlock(&ubi->dbg_buf_mutex);
801c135c
AB
1379 return err;
1380}
1381
1382#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
This page took 0.347014 seconds and 5 git commands to generate.