iwlwifi: don't include iwl-dev.h from iwl-devtrace.h
[deliverable/linux.git] / drivers / mtd / ubi / io.c
CommitLineData
801c135c
AB
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём)
20 */
21
22/*
85c6e6e2 23 * UBI input/output sub-system.
801c135c 24 *
85c6e6e2
AB
25 * This sub-system provides a uniform way to work with all kinds of the
26 * underlying MTD devices. It also implements handy functions for reading and
27 * writing UBI headers.
801c135c
AB
28 *
29 * We are trying to have a paranoid mindset and not to trust to what we read
85c6e6e2
AB
30 * from the flash media in order to be more secure and robust. So this
31 * sub-system validates every single header it reads from the flash media.
801c135c
AB
32 *
33 * Some words about how the eraseblock headers are stored.
34 *
35 * The erase counter header is always stored at offset zero. By default, the
36 * VID header is stored after the EC header at the closest aligned offset
37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38 * header at the closest aligned offset. But this default layout may be
39 * changed. For example, for different reasons (e.g., optimization) UBI may be
40 * asked to put the VID header at further offset, and even at an unaligned
41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42 * proper padding in front of it. Data offset may also be changed but it has to
43 * be aligned.
44 *
45 * About minimal I/O units. In general, UBI assumes flash device model where
46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50 * to do different optimizations.
51 *
52 * This is extremely useful in case of NAND flashes which admit of several
53 * write operations to one NAND page. In this case UBI can fit EC and VID
54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57 * users.
58 *
59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61 * headers.
62 *
63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64 * device, e.g., make @ubi->min_io_size = 512 in the example above?
65 *
66 * A: because when writing a sub-page, MTD still writes a full 2K page but the
67 * bytes which are no relevant to the sub-page are 0xFF. So, basically, writing
68 * 4x512 sub-pages is 4 times slower then writing one 2KiB NAND page. Thus, we
69 * prefer to use sub-pages only for EV and VID headers.
70 *
71 * As it was noted above, the VID header may start at a non-aligned offset.
72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73 * the VID header may reside at offset 1984 which is the last 64 bytes of the
74 * last sub-page (EC header is always at offset zero). This causes some
75 * difficulties when reading and writing VID headers.
76 *
77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78 * the data and want to write this VID header out. As we can only write in
79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80 * to offset 448 of this buffer.
81 *
85c6e6e2
AB
82 * The I/O sub-system does the following trick in order to avoid this extra
83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85 * When the VID header is being written out, it shifts the VID header pointer
86 * back and writes the whole sub-page.
801c135c
AB
87 */
88
89#include <linux/crc32.h>
90#include <linux/err.h>
91#include "ubi.h"
92
93#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
94static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
95static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
96static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
97 const struct ubi_ec_hdr *ec_hdr);
98static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
99static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
100 const struct ubi_vid_hdr *vid_hdr);
801c135c
AB
101#else
102#define paranoid_check_not_bad(ubi, pnum) 0
103#define paranoid_check_peb_ec_hdr(ubi, pnum) 0
104#define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0
105#define paranoid_check_peb_vid_hdr(ubi, pnum) 0
106#define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
801c135c
AB
107#endif
108
109/**
110 * ubi_io_read - read data from a physical eraseblock.
111 * @ubi: UBI device description object
112 * @buf: buffer where to store the read data
113 * @pnum: physical eraseblock number to read from
114 * @offset: offset within the physical eraseblock from where to read
115 * @len: how many bytes to read
116 *
117 * This function reads data from offset @offset of physical eraseblock @pnum
118 * and stores the read data in the @buf buffer. The following return codes are
119 * possible:
120 *
121 * o %0 if all the requested data were successfully read;
122 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
123 * correctable bit-flips were detected; this is harmless but may indicate
124 * that this eraseblock may become bad soon (but do not have to);
63b6c1ed
AB
125 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
126 * example it can be an ECC error in case of NAND; this most probably means
127 * that the data is corrupted;
801c135c
AB
128 * o %-EIO if some I/O error occurred;
129 * o other negative error codes in case of other errors.
130 */
131int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
132 int len)
133{
134 int err, retries = 0;
135 size_t read;
136 loff_t addr;
137
138 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
139
140 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
141 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
142 ubi_assert(len > 0);
143
144 err = paranoid_check_not_bad(ubi, pnum);
145 if (err)
adbf05e3 146 return err;
801c135c
AB
147
148 addr = (loff_t)pnum * ubi->peb_size + offset;
149retry:
150 err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
151 if (err) {
152 if (err == -EUCLEAN) {
153 /*
154 * -EUCLEAN is reported if there was a bit-flip which
155 * was corrected, so this is harmless.
8c1e6ee1
AB
156 *
157 * We do not report about it here unless debugging is
158 * enabled. A corresponding message will be printed
159 * later, when it is has been scrubbed.
801c135c 160 */
8c1e6ee1 161 dbg_msg("fixable bit-flip detected at PEB %d", pnum);
801c135c
AB
162 ubi_assert(len == read);
163 return UBI_IO_BITFLIPS;
164 }
165
166 if (read != len && retries++ < UBI_IO_RETRIES) {
9c9ec147
AB
167 dbg_io("error %d while reading %d bytes from PEB %d:%d,"
168 " read only %zd bytes, retry",
801c135c
AB
169 err, len, pnum, offset, read);
170 yield();
171 goto retry;
172 }
173
174 ubi_err("error %d while reading %d bytes from PEB %d:%d, "
175 "read %zd bytes", err, len, pnum, offset, read);
176 ubi_dbg_dump_stack();
2362a53e
AB
177
178 /*
179 * The driver should never return -EBADMSG if it failed to read
180 * all the requested data. But some buggy drivers might do
181 * this, so we change it to -EIO.
182 */
183 if (read != len && err == -EBADMSG) {
184 ubi_assert(0);
185 err = -EIO;
186 }
801c135c
AB
187 } else {
188 ubi_assert(len == read);
189
190 if (ubi_dbg_is_bitflip()) {
c8566350 191 dbg_gen("bit-flip (emulated)");
801c135c
AB
192 err = UBI_IO_BITFLIPS;
193 }
194 }
195
196 return err;
197}
198
199/**
200 * ubi_io_write - write data to a physical eraseblock.
201 * @ubi: UBI device description object
202 * @buf: buffer with the data to write
203 * @pnum: physical eraseblock number to write to
204 * @offset: offset within the physical eraseblock where to write
205 * @len: how many bytes to write
206 *
207 * This function writes @len bytes of data from buffer @buf to offset @offset
208 * of physical eraseblock @pnum. If all the data were successfully written,
209 * zero is returned. If an error occurred, this function returns a negative
210 * error code. If %-EIO is returned, the physical eraseblock most probably went
211 * bad.
212 *
213 * Note, in case of an error, it is possible that something was still written
214 * to the flash media, but may be some garbage.
215 */
e88d6e10
AB
216int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
217 int len)
801c135c
AB
218{
219 int err;
220 size_t written;
221 loff_t addr;
222
223 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
224
225 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
226 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
227 ubi_assert(offset % ubi->hdrs_min_io_size == 0);
228 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
229
230 if (ubi->ro_mode) {
231 ubi_err("read-only mode");
232 return -EROFS;
233 }
234
235 /* The below has to be compiled out if paranoid checks are disabled */
236
237 err = paranoid_check_not_bad(ubi, pnum);
238 if (err)
adbf05e3 239 return err;
801c135c
AB
240
241 /* The area we are writing to has to contain all 0xFF bytes */
40a71a87 242 err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
801c135c 243 if (err)
adbf05e3 244 return err;
801c135c
AB
245
246 if (offset >= ubi->leb_start) {
247 /*
248 * We write to the data area of the physical eraseblock. Make
249 * sure it has valid EC and VID headers.
250 */
251 err = paranoid_check_peb_ec_hdr(ubi, pnum);
252 if (err)
adbf05e3 253 return err;
801c135c
AB
254 err = paranoid_check_peb_vid_hdr(ubi, pnum);
255 if (err)
adbf05e3 256 return err;
801c135c
AB
257 }
258
259 if (ubi_dbg_is_write_failure()) {
260 dbg_err("cannot write %d bytes to PEB %d:%d "
261 "(emulated)", len, pnum, offset);
262 ubi_dbg_dump_stack();
263 return -EIO;
264 }
265
266 addr = (loff_t)pnum * ubi->peb_size + offset;
267 err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
268 if (err) {
ebf53f42
AB
269 ubi_err("error %d while writing %d bytes to PEB %d:%d, written "
270 "%zd bytes", err, len, pnum, offset, written);
801c135c 271 ubi_dbg_dump_stack();
867996b1 272 ubi_dbg_dump_flash(ubi, pnum, offset, len);
801c135c
AB
273 } else
274 ubi_assert(written == len);
275
6e9065d7
AB
276 if (!err) {
277 err = ubi_dbg_check_write(ubi, buf, pnum, offset, len);
278 if (err)
279 return err;
280
281 /*
282 * Since we always write sequentially, the rest of the PEB has
283 * to contain only 0xFF bytes.
284 */
285 offset += len;
286 len = ubi->peb_size - offset;
287 if (len)
288 err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
289 }
290
801c135c
AB
291 return err;
292}
293
294/**
295 * erase_callback - MTD erasure call-back.
296 * @ei: MTD erase information object.
297 *
298 * Note, even though MTD erase interface is asynchronous, all the current
299 * implementations are synchronous anyway.
300 */
301static void erase_callback(struct erase_info *ei)
302{
303 wake_up_interruptible((wait_queue_head_t *)ei->priv);
304}
305
306/**
307 * do_sync_erase - synchronously erase a physical eraseblock.
308 * @ubi: UBI device description object
309 * @pnum: the physical eraseblock number to erase
310 *
311 * This function synchronously erases physical eraseblock @pnum and returns
312 * zero in case of success and a negative error code in case of failure. If
313 * %-EIO is returned, the physical eraseblock most probably went bad.
314 */
e88d6e10 315static int do_sync_erase(struct ubi_device *ubi, int pnum)
801c135c
AB
316{
317 int err, retries = 0;
318 struct erase_info ei;
319 wait_queue_head_t wq;
320
321 dbg_io("erase PEB %d", pnum);
322
323retry:
324 init_waitqueue_head(&wq);
325 memset(&ei, 0, sizeof(struct erase_info));
326
327 ei.mtd = ubi->mtd;
2f176f79 328 ei.addr = (loff_t)pnum * ubi->peb_size;
801c135c
AB
329 ei.len = ubi->peb_size;
330 ei.callback = erase_callback;
331 ei.priv = (unsigned long)&wq;
332
333 err = ubi->mtd->erase(ubi->mtd, &ei);
334 if (err) {
335 if (retries++ < UBI_IO_RETRIES) {
336 dbg_io("error %d while erasing PEB %d, retry",
337 err, pnum);
338 yield();
339 goto retry;
340 }
341 ubi_err("cannot erase PEB %d, error %d", pnum, err);
342 ubi_dbg_dump_stack();
343 return err;
344 }
345
346 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
347 ei.state == MTD_ERASE_FAILED);
348 if (err) {
349 ubi_err("interrupted PEB %d erasure", pnum);
350 return -EINTR;
351 }
352
353 if (ei.state == MTD_ERASE_FAILED) {
354 if (retries++ < UBI_IO_RETRIES) {
355 dbg_io("error while erasing PEB %d, retry", pnum);
356 yield();
357 goto retry;
358 }
359 ubi_err("cannot erase PEB %d", pnum);
360 ubi_dbg_dump_stack();
361 return -EIO;
362 }
363
40a71a87 364 err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size);
801c135c 365 if (err)
adbf05e3 366 return err;
801c135c
AB
367
368 if (ubi_dbg_is_erase_failure() && !err) {
369 dbg_err("cannot erase PEB %d (emulated)", pnum);
370 return -EIO;
371 }
372
373 return 0;
374}
375
376/**
377 * check_pattern - check if buffer contains only a certain byte pattern.
378 * @buf: buffer to check
379 * @patt: the pattern to check
380 * @size: buffer size in bytes
381 *
382 * This function returns %1 in there are only @patt bytes in @buf, and %0 if
383 * something else was also found.
384 */
385static int check_pattern(const void *buf, uint8_t patt, int size)
386{
387 int i;
388
389 for (i = 0; i < size; i++)
390 if (((const uint8_t *)buf)[i] != patt)
391 return 0;
392 return 1;
393}
394
395/* Patterns to write to a physical eraseblock when torturing it */
396static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
397
398/**
399 * torture_peb - test a supposedly bad physical eraseblock.
400 * @ubi: UBI device description object
401 * @pnum: the physical eraseblock number to test
402 *
403 * This function returns %-EIO if the physical eraseblock did not pass the
404 * test, a positive number of erase operations done if the test was
405 * successfully passed, and other negative error codes in case of other errors.
406 */
e88d6e10 407static int torture_peb(struct ubi_device *ubi, int pnum)
801c135c 408{
801c135c
AB
409 int err, i, patt_count;
410
8c1e6ee1 411 ubi_msg("run torture test for PEB %d", pnum);
801c135c
AB
412 patt_count = ARRAY_SIZE(patterns);
413 ubi_assert(patt_count > 0);
414
e88d6e10 415 mutex_lock(&ubi->buf_mutex);
801c135c
AB
416 for (i = 0; i < patt_count; i++) {
417 err = do_sync_erase(ubi, pnum);
418 if (err)
419 goto out;
420
421 /* Make sure the PEB contains only 0xFF bytes */
e88d6e10 422 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
801c135c
AB
423 if (err)
424 goto out;
425
e88d6e10 426 err = check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
801c135c
AB
427 if (err == 0) {
428 ubi_err("erased PEB %d, but a non-0xFF byte found",
429 pnum);
430 err = -EIO;
431 goto out;
432 }
433
434 /* Write a pattern and check it */
e88d6e10
AB
435 memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
436 err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
801c135c
AB
437 if (err)
438 goto out;
439
e88d6e10
AB
440 memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
441 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
801c135c
AB
442 if (err)
443 goto out;
444
e88d6e10 445 err = check_pattern(ubi->peb_buf1, patterns[i], ubi->peb_size);
801c135c
AB
446 if (err == 0) {
447 ubi_err("pattern %x checking failed for PEB %d",
448 patterns[i], pnum);
449 err = -EIO;
450 goto out;
451 }
452 }
453
454 err = patt_count;
8c1e6ee1 455 ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum);
801c135c
AB
456
457out:
e88d6e10 458 mutex_unlock(&ubi->buf_mutex);
8d2d4011 459 if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
801c135c
AB
460 /*
461 * If a bit-flip or data integrity error was detected, the test
462 * has not passed because it happened on a freshly erased
463 * physical eraseblock which means something is wrong with it.
464 */
8d2d4011
AB
465 ubi_err("read problems on freshly erased PEB %d, must be bad",
466 pnum);
801c135c 467 err = -EIO;
8d2d4011 468 }
801c135c
AB
469 return err;
470}
471
ebf53f42
AB
472/**
473 * nor_erase_prepare - prepare a NOR flash PEB for erasure.
474 * @ubi: UBI device description object
475 * @pnum: physical eraseblock number to prepare
476 *
477 * NOR flash, or at least some of them, have peculiar embedded PEB erasure
478 * algorithm: the PEB is first filled with zeroes, then it is erased. And
479 * filling with zeroes starts from the end of the PEB. This was observed with
480 * Spansion S29GL512N NOR flash.
481 *
482 * This means that in case of a power cut we may end up with intact data at the
483 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
484 * EC and VID headers are OK, but a large chunk of data at the end of PEB is
485 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
486 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
487 *
488 * This function is called before erasing NOR PEBs and it zeroes out EC and VID
489 * magic numbers in order to invalidate them and prevent the failures. Returns
490 * zero in case of success and a negative error code in case of failure.
491 */
492static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
493{
de75c771 494 int err, err1;
ebf53f42
AB
495 size_t written;
496 loff_t addr;
497 uint32_t data = 0;
de75c771 498 struct ubi_vid_hdr vid_hdr;
ebf53f42 499
5b289b56 500 addr = (loff_t)pnum * ubi->peb_size + ubi->vid_hdr_aloffset;
83c2099f 501 err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data);
de75c771
AB
502 if (!err) {
503 addr -= ubi->vid_hdr_aloffset;
504 err = ubi->mtd->write(ubi->mtd, addr, 4, &written,
505 (void *)&data);
506 if (!err)
507 return 0;
ebf53f42
AB
508 }
509
de75c771
AB
510 /*
511 * We failed to write to the media. This was observed with Spansion
512 * S29GL512N NOR flash. Most probably the eraseblock erasure was
513 * interrupted at a very inappropriate moment, so it became unwritable.
514 * In this case we probably anyway have garbage in this PEB.
515 */
516 err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
517 if (err1 == UBI_IO_BAD_VID_HDR)
518 /*
519 * The VID header is corrupted, so we can safely erase this
520 * PEB and not afraid that it will be treated as a valid PEB in
521 * case of an unclean reboot.
522 */
523 return 0;
524
525 /*
526 * The PEB contains a valid VID header, but we cannot invalidate it.
527 * Supposedly the flash media or the driver is screwed up, so return an
528 * error.
529 */
530 ubi_err("cannot invalidate PEB %d, write returned %d read returned %d",
531 pnum, err, err1);
532 ubi_dbg_dump_flash(ubi, pnum, 0, ubi->peb_size);
533 return -EIO;
ebf53f42
AB
534}
535
801c135c
AB
536/**
537 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
538 * @ubi: UBI device description object
539 * @pnum: physical eraseblock number to erase
540 * @torture: if this physical eraseblock has to be tortured
541 *
542 * This function synchronously erases physical eraseblock @pnum. If @torture
543 * flag is not zero, the physical eraseblock is checked by means of writing
544 * different patterns to it and reading them back. If the torturing is enabled,
025dfdaf 545 * the physical eraseblock is erased more than once.
801c135c
AB
546 *
547 * This function returns the number of erasures made in case of success, %-EIO
548 * if the erasure failed or the torturing test failed, and other negative error
549 * codes in case of other errors. Note, %-EIO means that the physical
550 * eraseblock is bad.
551 */
e88d6e10 552int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
801c135c
AB
553{
554 int err, ret = 0;
555
556 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
557
558 err = paranoid_check_not_bad(ubi, pnum);
559 if (err != 0)
adbf05e3 560 return err;
801c135c
AB
561
562 if (ubi->ro_mode) {
563 ubi_err("read-only mode");
564 return -EROFS;
565 }
566
ebf53f42
AB
567 if (ubi->nor_flash) {
568 err = nor_erase_prepare(ubi, pnum);
569 if (err)
570 return err;
571 }
572
801c135c
AB
573 if (torture) {
574 ret = torture_peb(ubi, pnum);
575 if (ret < 0)
576 return ret;
577 }
578
579 err = do_sync_erase(ubi, pnum);
580 if (err)
581 return err;
582
583 return ret + 1;
584}
585
586/**
587 * ubi_io_is_bad - check if a physical eraseblock is bad.
588 * @ubi: UBI device description object
589 * @pnum: the physical eraseblock number to check
590 *
591 * This function returns a positive number if the physical eraseblock is bad,
592 * zero if not, and a negative error code if an error occurred.
593 */
594int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
595{
596 struct mtd_info *mtd = ubi->mtd;
597
598 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
599
600 if (ubi->bad_allowed) {
601 int ret;
602
603 ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
604 if (ret < 0)
605 ubi_err("error %d while checking if PEB %d is bad",
606 ret, pnum);
607 else if (ret)
608 dbg_io("PEB %d is bad", pnum);
609 return ret;
610 }
611
612 return 0;
613}
614
615/**
616 * ubi_io_mark_bad - mark a physical eraseblock as bad.
617 * @ubi: UBI device description object
618 * @pnum: the physical eraseblock number to mark
619 *
620 * This function returns zero in case of success and a negative error code in
621 * case of failure.
622 */
623int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
624{
625 int err;
626 struct mtd_info *mtd = ubi->mtd;
627
628 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
629
630 if (ubi->ro_mode) {
631 ubi_err("read-only mode");
632 return -EROFS;
633 }
634
635 if (!ubi->bad_allowed)
636 return 0;
637
638 err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
639 if (err)
640 ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
641 return err;
642}
643
644/**
645 * validate_ec_hdr - validate an erase counter header.
646 * @ubi: UBI device description object
647 * @ec_hdr: the erase counter header to check
648 *
649 * This function returns zero if the erase counter header is OK, and %1 if
650 * not.
651 */
fe96efc1 652static int validate_ec_hdr(const struct ubi_device *ubi,
801c135c
AB
653 const struct ubi_ec_hdr *ec_hdr)
654{
655 long long ec;
fe96efc1 656 int vid_hdr_offset, leb_start;
801c135c 657
3261ebd7
CH
658 ec = be64_to_cpu(ec_hdr->ec);
659 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
660 leb_start = be32_to_cpu(ec_hdr->data_offset);
801c135c
AB
661
662 if (ec_hdr->version != UBI_VERSION) {
663 ubi_err("node with incompatible UBI version found: "
664 "this UBI version is %d, image version is %d",
665 UBI_VERSION, (int)ec_hdr->version);
666 goto bad;
667 }
668
669 if (vid_hdr_offset != ubi->vid_hdr_offset) {
670 ubi_err("bad VID header offset %d, expected %d",
671 vid_hdr_offset, ubi->vid_hdr_offset);
672 goto bad;
673 }
674
675 if (leb_start != ubi->leb_start) {
676 ubi_err("bad data offset %d, expected %d",
677 leb_start, ubi->leb_start);
678 goto bad;
679 }
680
681 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
682 ubi_err("bad erase counter %lld", ec);
683 goto bad;
684 }
685
686 return 0;
687
688bad:
689 ubi_err("bad EC header");
690 ubi_dbg_dump_ec_hdr(ec_hdr);
691 ubi_dbg_dump_stack();
692 return 1;
693}
694
695/**
696 * ubi_io_read_ec_hdr - read and check an erase counter header.
697 * @ubi: UBI device description object
698 * @pnum: physical eraseblock to read from
699 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
700 * header
701 * @verbose: be verbose if the header is corrupted or was not found
702 *
703 * This function reads erase counter header from physical eraseblock @pnum and
704 * stores it in @ec_hdr. This function also checks CRC checksum of the read
705 * erase counter header. The following codes may be returned:
706 *
707 * o %0 if the CRC checksum is correct and the header was successfully read;
708 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
709 * and corrected by the flash driver; this is harmless but may indicate that
710 * this eraseblock may become bad soon (but may be not);
711 * o %UBI_IO_BAD_EC_HDR if the erase counter header is corrupted (a CRC error);
712 * o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty;
713 * o a negative error code in case of failure.
714 */
e88d6e10 715int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
801c135c
AB
716 struct ubi_ec_hdr *ec_hdr, int verbose)
717{
718 int err, read_err = 0;
719 uint32_t crc, magic, hdr_crc;
720
721 dbg_io("read EC header from PEB %d", pnum);
722 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
723
724 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
725 if (err) {
726 if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
727 return err;
728
729 /*
730 * We read all the data, but either a correctable bit-flip
731 * occurred, or MTD reported about some data integrity error,
732 * like an ECC error in case of NAND. The former is harmless,
733 * the later may mean that the read data is corrupted. But we
734 * have a CRC check-sum and we will detect this. If the EC
735 * header is still OK, we just report this as there was a
736 * bit-flip.
737 */
738 read_err = err;
739 }
740
3261ebd7 741 magic = be32_to_cpu(ec_hdr->magic);
801c135c
AB
742 if (magic != UBI_EC_HDR_MAGIC) {
743 /*
744 * The magic field is wrong. Let's check if we have read all
745 * 0xFF. If yes, this physical eraseblock is assumed to be
746 * empty.
747 *
748 * But if there was a read error, we do not test it for all
749 * 0xFFs. Even if it does contain all 0xFFs, this error
750 * indicates that something is still wrong with this physical
751 * eraseblock and we anyway cannot treat it as empty.
752 */
753 if (read_err != -EBADMSG &&
754 check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
755 /* The physical eraseblock is supposedly empty */
801c135c
AB
756 if (verbose)
757 ubi_warn("no EC header found at PEB %d, "
758 "only 0xFF bytes", pnum);
ed45819f
AB
759 else if (UBI_IO_DEBUG)
760 dbg_msg("no EC header found at PEB %d, "
761 "only 0xFF bytes", pnum);
801c135c
AB
762 return UBI_IO_PEB_EMPTY;
763 }
764
765 /*
766 * This is not a valid erase counter header, and these are not
767 * 0xFF bytes. Report that the header is corrupted.
768 */
769 if (verbose) {
770 ubi_warn("bad magic number at PEB %d: %08x instead of "
771 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
772 ubi_dbg_dump_ec_hdr(ec_hdr);
ed45819f
AB
773 } else if (UBI_IO_DEBUG)
774 dbg_msg("bad magic number at PEB %d: %08x instead of "
775 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
801c135c
AB
776 return UBI_IO_BAD_EC_HDR;
777 }
778
779 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
3261ebd7 780 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
801c135c
AB
781
782 if (hdr_crc != crc) {
783 if (verbose) {
9c9ec147
AB
784 ubi_warn("bad EC header CRC at PEB %d, calculated "
785 "%#08x, read %#08x", pnum, crc, hdr_crc);
801c135c 786 ubi_dbg_dump_ec_hdr(ec_hdr);
ed45819f
AB
787 } else if (UBI_IO_DEBUG)
788 dbg_msg("bad EC header CRC at PEB %d, calculated "
789 "%#08x, read %#08x", pnum, crc, hdr_crc);
801c135c
AB
790 return UBI_IO_BAD_EC_HDR;
791 }
792
793 /* And of course validate what has just been read from the media */
794 err = validate_ec_hdr(ubi, ec_hdr);
795 if (err) {
796 ubi_err("validation failed for PEB %d", pnum);
797 return -EINVAL;
798 }
799
800 return read_err ? UBI_IO_BITFLIPS : 0;
801}
802
803/**
804 * ubi_io_write_ec_hdr - write an erase counter header.
805 * @ubi: UBI device description object
806 * @pnum: physical eraseblock to write to
807 * @ec_hdr: the erase counter header to write
808 *
809 * This function writes erase counter header described by @ec_hdr to physical
810 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
811 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
812 * field.
813 *
814 * This function returns zero in case of success and a negative error code in
815 * case of failure. If %-EIO is returned, the physical eraseblock most probably
816 * went bad.
817 */
e88d6e10 818int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
801c135c
AB
819 struct ubi_ec_hdr *ec_hdr)
820{
821 int err;
822 uint32_t crc;
823
824 dbg_io("write EC header to PEB %d", pnum);
825 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
826
3261ebd7 827 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
801c135c 828 ec_hdr->version = UBI_VERSION;
3261ebd7
CH
829 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
830 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
0c6c7fa1 831 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
801c135c 832 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
3261ebd7 833 ec_hdr->hdr_crc = cpu_to_be32(crc);
801c135c
AB
834
835 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
836 if (err)
adbf05e3 837 return err;
801c135c
AB
838
839 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
840 return err;
841}
842
843/**
844 * validate_vid_hdr - validate a volume identifier header.
845 * @ubi: UBI device description object
846 * @vid_hdr: the volume identifier header to check
847 *
848 * This function checks that data stored in the volume identifier header
849 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
850 */
851static int validate_vid_hdr(const struct ubi_device *ubi,
852 const struct ubi_vid_hdr *vid_hdr)
853{
854 int vol_type = vid_hdr->vol_type;
855 int copy_flag = vid_hdr->copy_flag;
3261ebd7
CH
856 int vol_id = be32_to_cpu(vid_hdr->vol_id);
857 int lnum = be32_to_cpu(vid_hdr->lnum);
801c135c 858 int compat = vid_hdr->compat;
3261ebd7
CH
859 int data_size = be32_to_cpu(vid_hdr->data_size);
860 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
861 int data_pad = be32_to_cpu(vid_hdr->data_pad);
862 int data_crc = be32_to_cpu(vid_hdr->data_crc);
801c135c
AB
863 int usable_leb_size = ubi->leb_size - data_pad;
864
865 if (copy_flag != 0 && copy_flag != 1) {
866 dbg_err("bad copy_flag");
867 goto bad;
868 }
869
870 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
871 data_pad < 0) {
872 dbg_err("negative values");
873 goto bad;
874 }
875
876 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
877 dbg_err("bad vol_id");
878 goto bad;
879 }
880
881 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
882 dbg_err("bad compat");
883 goto bad;
884 }
885
886 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
887 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
888 compat != UBI_COMPAT_REJECT) {
889 dbg_err("bad compat");
890 goto bad;
891 }
892
893 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
894 dbg_err("bad vol_type");
895 goto bad;
896 }
897
898 if (data_pad >= ubi->leb_size / 2) {
899 dbg_err("bad data_pad");
900 goto bad;
901 }
902
903 if (vol_type == UBI_VID_STATIC) {
904 /*
905 * Although from high-level point of view static volumes may
906 * contain zero bytes of data, but no VID headers can contain
907 * zero at these fields, because they empty volumes do not have
908 * mapped logical eraseblocks.
909 */
910 if (used_ebs == 0) {
911 dbg_err("zero used_ebs");
912 goto bad;
913 }
914 if (data_size == 0) {
915 dbg_err("zero data_size");
916 goto bad;
917 }
918 if (lnum < used_ebs - 1) {
919 if (data_size != usable_leb_size) {
920 dbg_err("bad data_size");
921 goto bad;
922 }
923 } else if (lnum == used_ebs - 1) {
924 if (data_size == 0) {
925 dbg_err("bad data_size at last LEB");
926 goto bad;
927 }
928 } else {
929 dbg_err("too high lnum");
930 goto bad;
931 }
932 } else {
933 if (copy_flag == 0) {
934 if (data_crc != 0) {
935 dbg_err("non-zero data CRC");
936 goto bad;
937 }
938 if (data_size != 0) {
939 dbg_err("non-zero data_size");
940 goto bad;
941 }
942 } else {
943 if (data_size == 0) {
944 dbg_err("zero data_size of copy");
945 goto bad;
946 }
947 }
948 if (used_ebs != 0) {
949 dbg_err("bad used_ebs");
950 goto bad;
951 }
952 }
953
954 return 0;
955
956bad:
957 ubi_err("bad VID header");
958 ubi_dbg_dump_vid_hdr(vid_hdr);
959 ubi_dbg_dump_stack();
960 return 1;
961}
962
963/**
964 * ubi_io_read_vid_hdr - read and check a volume identifier header.
965 * @ubi: UBI device description object
966 * @pnum: physical eraseblock number to read from
967 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
968 * identifier header
969 * @verbose: be verbose if the header is corrupted or wasn't found
970 *
971 * This function reads the volume identifier header from physical eraseblock
972 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
973 * volume identifier header. The following codes may be returned:
974 *
975 * o %0 if the CRC checksum is correct and the header was successfully read;
976 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
977 * and corrected by the flash driver; this is harmless but may indicate that
978 * this eraseblock may become bad soon;
815bc5f8 979 * o %UBI_IO_BAD_VID_HDR if the volume identifier header is corrupted (a CRC
801c135c
AB
980 * error detected);
981 * o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID
982 * header there);
983 * o a negative error code in case of failure.
984 */
e88d6e10 985int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
801c135c
AB
986 struct ubi_vid_hdr *vid_hdr, int verbose)
987{
988 int err, read_err = 0;
989 uint32_t crc, magic, hdr_crc;
990 void *p;
991
992 dbg_io("read VID header from PEB %d", pnum);
993 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
994
995 p = (char *)vid_hdr - ubi->vid_hdr_shift;
996 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
997 ubi->vid_hdr_alsize);
998 if (err) {
999 if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
1000 return err;
1001
1002 /*
1003 * We read all the data, but either a correctable bit-flip
1004 * occurred, or MTD reported about some data integrity error,
1005 * like an ECC error in case of NAND. The former is harmless,
1006 * the later may mean the read data is corrupted. But we have a
1007 * CRC check-sum and we will identify this. If the VID header is
1008 * still OK, we just report this as there was a bit-flip.
1009 */
1010 read_err = err;
1011 }
1012
3261ebd7 1013 magic = be32_to_cpu(vid_hdr->magic);
801c135c
AB
1014 if (magic != UBI_VID_HDR_MAGIC) {
1015 /*
1016 * If we have read all 0xFF bytes, the VID header probably does
1017 * not exist and the physical eraseblock is assumed to be free.
1018 *
1019 * But if there was a read error, we do not test the data for
1020 * 0xFFs. Even if it does contain all 0xFFs, this error
1021 * indicates that something is still wrong with this physical
1022 * eraseblock and it cannot be regarded as free.
1023 */
1024 if (read_err != -EBADMSG &&
1025 check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
1026 /* The physical eraseblock is supposedly free */
801c135c
AB
1027 if (verbose)
1028 ubi_warn("no VID header found at PEB %d, "
1029 "only 0xFF bytes", pnum);
ed45819f
AB
1030 else if (UBI_IO_DEBUG)
1031 dbg_msg("no VID header found at PEB %d, "
1032 "only 0xFF bytes", pnum);
801c135c
AB
1033 return UBI_IO_PEB_FREE;
1034 }
1035
1036 /*
1037 * This is not a valid VID header, and these are not 0xFF
1038 * bytes. Report that the header is corrupted.
1039 */
1040 if (verbose) {
1041 ubi_warn("bad magic number at PEB %d: %08x instead of "
1042 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1043 ubi_dbg_dump_vid_hdr(vid_hdr);
ed45819f
AB
1044 } else if (UBI_IO_DEBUG)
1045 dbg_msg("bad magic number at PEB %d: %08x instead of "
1046 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
801c135c
AB
1047 return UBI_IO_BAD_VID_HDR;
1048 }
1049
1050 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
3261ebd7 1051 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
801c135c
AB
1052
1053 if (hdr_crc != crc) {
1054 if (verbose) {
1055 ubi_warn("bad CRC at PEB %d, calculated %#08x, "
1056 "read %#08x", pnum, crc, hdr_crc);
1057 ubi_dbg_dump_vid_hdr(vid_hdr);
ed45819f
AB
1058 } else if (UBI_IO_DEBUG)
1059 dbg_msg("bad CRC at PEB %d, calculated %#08x, "
1060 "read %#08x", pnum, crc, hdr_crc);
801c135c
AB
1061 return UBI_IO_BAD_VID_HDR;
1062 }
1063
1064 /* Validate the VID header that we have just read */
1065 err = validate_vid_hdr(ubi, vid_hdr);
1066 if (err) {
1067 ubi_err("validation failed for PEB %d", pnum);
1068 return -EINVAL;
1069 }
1070
1071 return read_err ? UBI_IO_BITFLIPS : 0;
1072}
1073
1074/**
1075 * ubi_io_write_vid_hdr - write a volume identifier header.
1076 * @ubi: UBI device description object
1077 * @pnum: the physical eraseblock number to write to
1078 * @vid_hdr: the volume identifier header to write
1079 *
1080 * This function writes the volume identifier header described by @vid_hdr to
1081 * physical eraseblock @pnum. This function automatically fills the
1082 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1083 * header CRC checksum and stores it at vid_hdr->hdr_crc.
1084 *
1085 * This function returns zero in case of success and a negative error code in
1086 * case of failure. If %-EIO is returned, the physical eraseblock probably went
1087 * bad.
1088 */
e88d6e10 1089int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
801c135c
AB
1090 struct ubi_vid_hdr *vid_hdr)
1091{
1092 int err;
1093 uint32_t crc;
1094 void *p;
1095
1096 dbg_io("write VID header to PEB %d", pnum);
1097 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1098
1099 err = paranoid_check_peb_ec_hdr(ubi, pnum);
1100 if (err)
adbf05e3 1101 return err;
801c135c 1102
3261ebd7 1103 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
801c135c
AB
1104 vid_hdr->version = UBI_VERSION;
1105 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
3261ebd7 1106 vid_hdr->hdr_crc = cpu_to_be32(crc);
801c135c
AB
1107
1108 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1109 if (err)
adbf05e3 1110 return err;
801c135c
AB
1111
1112 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1113 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1114 ubi->vid_hdr_alsize);
1115 return err;
1116}
1117
1118#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1119
1120/**
1121 * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
1122 * @ubi: UBI device description object
1123 * @pnum: physical eraseblock number to check
1124 *
adbf05e3
AB
1125 * This function returns zero if the physical eraseblock is good, %-EINVAL if
1126 * it is bad and a negative error code if an error occurred.
801c135c
AB
1127 */
1128static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
1129{
1130 int err;
1131
1132 err = ubi_io_is_bad(ubi, pnum);
1133 if (!err)
1134 return err;
1135
1136 ubi_err("paranoid check failed for PEB %d", pnum);
1137 ubi_dbg_dump_stack();
adbf05e3 1138 return err > 0 ? -EINVAL : err;
801c135c
AB
1139}
1140
1141/**
1142 * paranoid_check_ec_hdr - check if an erase counter header is all right.
1143 * @ubi: UBI device description object
1144 * @pnum: physical eraseblock number the erase counter header belongs to
1145 * @ec_hdr: the erase counter header to check
1146 *
1147 * This function returns zero if the erase counter header contains valid
adbf05e3 1148 * values, and %-EINVAL if not.
801c135c
AB
1149 */
1150static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1151 const struct ubi_ec_hdr *ec_hdr)
1152{
1153 int err;
1154 uint32_t magic;
1155
3261ebd7 1156 magic = be32_to_cpu(ec_hdr->magic);
801c135c
AB
1157 if (magic != UBI_EC_HDR_MAGIC) {
1158 ubi_err("bad magic %#08x, must be %#08x",
1159 magic, UBI_EC_HDR_MAGIC);
1160 goto fail;
1161 }
1162
1163 err = validate_ec_hdr(ubi, ec_hdr);
1164 if (err) {
1165 ubi_err("paranoid check failed for PEB %d", pnum);
1166 goto fail;
1167 }
1168
1169 return 0;
1170
1171fail:
1172 ubi_dbg_dump_ec_hdr(ec_hdr);
1173 ubi_dbg_dump_stack();
adbf05e3 1174 return -EINVAL;
801c135c
AB
1175}
1176
1177/**
ebaaf1af 1178 * paranoid_check_peb_ec_hdr - check erase counter header.
801c135c
AB
1179 * @ubi: UBI device description object
1180 * @pnum: the physical eraseblock number to check
1181 *
adbf05e3
AB
1182 * This function returns zero if the erase counter header is all right and and
1183 * a negative error code if not or if an error occurred.
801c135c
AB
1184 */
1185static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1186{
1187 int err;
1188 uint32_t crc, hdr_crc;
1189 struct ubi_ec_hdr *ec_hdr;
1190
33818bbb 1191 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
801c135c
AB
1192 if (!ec_hdr)
1193 return -ENOMEM;
1194
1195 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1196 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1197 goto exit;
1198
1199 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
3261ebd7 1200 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
801c135c
AB
1201 if (hdr_crc != crc) {
1202 ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1203 ubi_err("paranoid check failed for PEB %d", pnum);
1204 ubi_dbg_dump_ec_hdr(ec_hdr);
1205 ubi_dbg_dump_stack();
adbf05e3 1206 err = -EINVAL;
801c135c
AB
1207 goto exit;
1208 }
1209
1210 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
1211
1212exit:
1213 kfree(ec_hdr);
1214 return err;
1215}
1216
1217/**
1218 * paranoid_check_vid_hdr - check that a volume identifier header is all right.
1219 * @ubi: UBI device description object
1220 * @pnum: physical eraseblock number the volume identifier header belongs to
1221 * @vid_hdr: the volume identifier header to check
1222 *
1223 * This function returns zero if the volume identifier header is all right, and
adbf05e3 1224 * %-EINVAL if not.
801c135c
AB
1225 */
1226static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1227 const struct ubi_vid_hdr *vid_hdr)
1228{
1229 int err;
1230 uint32_t magic;
1231
3261ebd7 1232 magic = be32_to_cpu(vid_hdr->magic);
801c135c
AB
1233 if (magic != UBI_VID_HDR_MAGIC) {
1234 ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1235 magic, pnum, UBI_VID_HDR_MAGIC);
1236 goto fail;
1237 }
1238
1239 err = validate_vid_hdr(ubi, vid_hdr);
1240 if (err) {
1241 ubi_err("paranoid check failed for PEB %d", pnum);
1242 goto fail;
1243 }
1244
1245 return err;
1246
1247fail:
1248 ubi_err("paranoid check failed for PEB %d", pnum);
1249 ubi_dbg_dump_vid_hdr(vid_hdr);
1250 ubi_dbg_dump_stack();
adbf05e3 1251 return -EINVAL;
801c135c
AB
1252
1253}
1254
1255/**
ebaaf1af 1256 * paranoid_check_peb_vid_hdr - check volume identifier header.
801c135c
AB
1257 * @ubi: UBI device description object
1258 * @pnum: the physical eraseblock number to check
1259 *
1260 * This function returns zero if the volume identifier header is all right,
adbf05e3 1261 * and a negative error code if not or if an error occurred.
801c135c
AB
1262 */
1263static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1264{
1265 int err;
1266 uint32_t crc, hdr_crc;
1267 struct ubi_vid_hdr *vid_hdr;
1268 void *p;
1269
33818bbb 1270 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
801c135c
AB
1271 if (!vid_hdr)
1272 return -ENOMEM;
1273
1274 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1275 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1276 ubi->vid_hdr_alsize);
1277 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1278 goto exit;
1279
1280 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
3261ebd7 1281 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
801c135c
AB
1282 if (hdr_crc != crc) {
1283 ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1284 "read %#08x", pnum, crc, hdr_crc);
1285 ubi_err("paranoid check failed for PEB %d", pnum);
1286 ubi_dbg_dump_vid_hdr(vid_hdr);
1287 ubi_dbg_dump_stack();
adbf05e3 1288 err = -EINVAL;
801c135c
AB
1289 goto exit;
1290 }
1291
1292 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1293
1294exit:
1295 ubi_free_vid_hdr(ubi, vid_hdr);
1296 return err;
1297}
1298
6e9065d7
AB
1299/**
1300 * ubi_dbg_check_write - make sure write succeeded.
1301 * @ubi: UBI device description object
1302 * @buf: buffer with data which were written
1303 * @pnum: physical eraseblock number the data were written to
1304 * @offset: offset within the physical eraseblock the data were written to
1305 * @len: how many bytes were written
1306 *
1307 * This functions reads data which were recently written and compares it with
1308 * the original data buffer - the data have to match. Returns zero if the data
1309 * match and a negative error code if not or in case of failure.
1310 */
1311int ubi_dbg_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1312 int offset, int len)
1313{
1314 int err, i;
1315
1316 mutex_lock(&ubi->dbg_buf_mutex);
1317 err = ubi_io_read(ubi, ubi->dbg_peb_buf, pnum, offset, len);
1318 if (err)
1319 goto out_unlock;
1320
1321 for (i = 0; i < len; i++) {
1322 uint8_t c = ((uint8_t *)buf)[i];
1323 uint8_t c1 = ((uint8_t *)ubi->dbg_peb_buf)[i];
1324 int dump_len;
1325
1326 if (c == c1)
1327 continue;
1328
1329 ubi_err("paranoid check failed for PEB %d:%d, len %d",
1330 pnum, offset, len);
1331 ubi_msg("data differ at position %d", i);
1332 dump_len = max_t(int, 128, len - i);
1333 ubi_msg("hex dump of the original buffer from %d to %d",
1334 i, i + dump_len);
1335 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1336 buf + i, dump_len, 1);
1337 ubi_msg("hex dump of the read buffer from %d to %d",
1338 i, i + dump_len);
1339 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1340 ubi->dbg_peb_buf + i, dump_len, 1);
1341 ubi_dbg_dump_stack();
1342 err = -EINVAL;
1343 goto out_unlock;
1344 }
1345 mutex_unlock(&ubi->dbg_buf_mutex);
1346
1347 return 0;
1348
1349out_unlock:
1350 mutex_unlock(&ubi->dbg_buf_mutex);
1351 return err;
1352}
1353
801c135c 1354/**
40a71a87 1355 * ubi_dbg_check_all_ff - check that a region of flash is empty.
801c135c
AB
1356 * @ubi: UBI device description object
1357 * @pnum: the physical eraseblock number to check
1358 * @offset: the starting offset within the physical eraseblock to check
1359 * @len: the length of the region to check
1360 *
1361 * This function returns zero if only 0xFF bytes are present at offset
adbf05e3
AB
1362 * @offset of the physical eraseblock @pnum, and a negative error code if not
1363 * or if an error occurred.
801c135c 1364 */
40a71a87 1365int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
801c135c
AB
1366{
1367 size_t read;
1368 int err;
801c135c
AB
1369 loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1370
e88d6e10
AB
1371 mutex_lock(&ubi->dbg_buf_mutex);
1372 err = ubi->mtd->read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf);
801c135c
AB
1373 if (err && err != -EUCLEAN) {
1374 ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1375 "read %zd bytes", err, len, pnum, offset, read);
1376 goto error;
1377 }
1378
e88d6e10 1379 err = check_pattern(ubi->dbg_peb_buf, 0xFF, len);
801c135c
AB
1380 if (err == 0) {
1381 ubi_err("flash region at PEB %d:%d, length %d does not "
1382 "contain all 0xFF bytes", pnum, offset, len);
1383 goto fail;
1384 }
e88d6e10 1385 mutex_unlock(&ubi->dbg_buf_mutex);
801c135c 1386
801c135c
AB
1387 return 0;
1388
1389fail:
1390 ubi_err("paranoid check failed for PEB %d", pnum);
c8566350 1391 ubi_msg("hex dump of the %d-%d region", offset, offset + len);
6986646b 1392 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
e88d6e10 1393 ubi->dbg_peb_buf, len, 1);
adbf05e3 1394 err = -EINVAL;
801c135c
AB
1395error:
1396 ubi_dbg_dump_stack();
e88d6e10 1397 mutex_unlock(&ubi->dbg_buf_mutex);
801c135c
AB
1398 return err;
1399}
1400
1401#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
This page took 0.378909 seconds and 5 git commands to generate.