Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / drivers / mtd / ubi / scan.c
CommitLineData
801c135c
AB
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Artem Bityutskiy (Битюцкий Артём)
19 */
20
21/*
85c6e6e2 22 * UBI scanning sub-system.
801c135c 23 *
85c6e6e2 24 * This sub-system is responsible for scanning the flash media, checking UBI
801c135c
AB
25 * headers and providing complete information about the UBI flash image.
26 *
78d87c95 27 * The scanning information is represented by a &struct ubi_scan_info' object.
801c135c
AB
28 * Information about found volumes is represented by &struct ubi_scan_volume
29 * objects which are kept in volume RB-tree with root at the @volumes field.
30 * The RB-tree is indexed by the volume ID.
31 *
0525dac9 32 * Scanned logical eraseblocks are represented by &struct ubi_scan_leb objects.
801c135c
AB
33 * These objects are kept in per-volume RB-trees with the root at the
34 * corresponding &struct ubi_scan_volume object. To put it differently, we keep
35 * an RB-tree of per-volume objects and each of these objects is the root of
36 * RB-tree of per-eraseblock objects.
37 *
38 * Corrupted physical eraseblocks are put to the @corr list, free physical
39 * eraseblocks are put to the @free list and the physical eraseblock to be
40 * erased are put to the @erase list.
0525dac9
AB
41 *
42 * UBI tries to distinguish between 2 types of corruptions.
43 * 1. Corruptions caused by power cuts. These are harmless and expected
44 * corruptions and UBI tries to handle them gracefully, without printing too
45 * many warnings and error messages. The idea is that we do not lose
46 * important data in these case - we may lose only the data which was being
47 * written to the media just before the power cut happened, and the upper
45aafd32
AB
48 * layers (e.g., UBIFS) are supposed to handle these situations. UBI puts
49 * these PEBs to the head of the @erase list and they are scheduled for
50 * erasure.
0525dac9
AB
51 *
52 * 2. Unexpected corruptions which are not caused by power cuts. During
53 * scanning, such PEBs are put to the @corr list and UBI preserves them.
54 * Obviously, this lessens the amount of available PEBs, and if at some
55 * point UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly
56 * informs about such PEBs every time the MTD device is attached.
45aafd32
AB
57 *
58 * However, it is difficult to reliably distinguish between these types of
59 * corruptions and UBI's strategy is as follows. UBI assumes (2.) if the VID
60 * header is corrupted and the data area does not contain all 0xFFs, and there
61 * were not bit-flips or integrity errors while reading the data area. Otherwise
62 * UBI assumes (1.). The assumptions are:
63 * o if the data area contains only 0xFFs, there is no data, and it is safe
64 * to just erase this PEB.
65 * o if the data area has bit-flips and data integrity errors (ECC errors on
66 * NAND), it is probably a PEB which was being erased when power cut
67 * happened.
801c135c
AB
68 */
69
70#include <linux/err.h>
5a0e3ad6 71#include <linux/slab.h>
801c135c 72#include <linux/crc32.h>
3013ee31 73#include <linux/math64.h>
095751a6 74#include <linux/random.h>
801c135c
AB
75#include "ubi.h"
76
77#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
e88d6e10 78static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si);
801c135c
AB
79#else
80#define paranoid_check_si(ubi, si) 0
81#endif
82
83/* Temporary variables used during scanning */
84static struct ubi_ec_hdr *ech;
85static struct ubi_vid_hdr *vidh;
86
941dfb07 87/**
78d87c95
AB
88 * add_to_list - add physical eraseblock to a list.
89 * @si: scanning information
90 * @pnum: physical eraseblock number to add
91 * @ec: erase counter of the physical eraseblock
0525dac9 92 * @to_head: if not zero, add to the head of the list
78d87c95
AB
93 * @list: the list to add to
94 *
3fb34124 95 * This function adds physical eraseblock @pnum to free, erase, or alien lists.
0525dac9
AB
96 * If @to_head is not zero, PEB will be added to the head of the list, which
97 * basically means it will be processed first later. E.g., we add corrupted
98 * PEBs (corrupted due to power cuts) to the head of the erase list to make
99 * sure we erase them first and get rid of corruptions ASAP. This function
100 * returns zero in case of success and a negative error code in case of
3fb34124 101 * failure.
78d87c95 102 */
0525dac9 103static int add_to_list(struct ubi_scan_info *si, int pnum, int ec, int to_head,
78d87c95 104 struct list_head *list)
801c135c
AB
105{
106 struct ubi_scan_leb *seb;
107
33789fb9 108 if (list == &si->free) {
801c135c 109 dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
33789fb9 110 } else if (list == &si->erase) {
801c135c 111 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
33789fb9 112 } else if (list == &si->alien) {
801c135c 113 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
33789fb9
AB
114 si->alien_peb_count += 1;
115 } else
801c135c
AB
116 BUG();
117
118 seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
119 if (!seb)
120 return -ENOMEM;
121
122 seb->pnum = pnum;
123 seb->ec = ec;
0525dac9
AB
124 if (to_head)
125 list_add(&seb->u.list, list);
126 else
127 list_add_tail(&seb->u.list, list);
801c135c
AB
128 return 0;
129}
130
3fb34124
AB
131/**
132 * add_corrupted - add a corrupted physical eraseblock.
133 * @si: scanning information
134 * @pnum: physical eraseblock number to add
135 * @ec: erase counter of the physical eraseblock
136 *
137 * This function adds corrupted physical eraseblock @pnum to the 'corr' list.
feeba4b8
AB
138 * The corruption was presumably not caused by a power cut. Returns zero in
139 * case of success and a negative error code in case of failure.
3fb34124
AB
140 */
141static int add_corrupted(struct ubi_scan_info *si, int pnum, int ec)
142{
143 struct ubi_scan_leb *seb;
144
145 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
146
147 seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
148 if (!seb)
149 return -ENOMEM;
150
151 si->corr_peb_count += 1;
152 seb->pnum = pnum;
153 seb->ec = ec;
154 list_add(&seb->u.list, &si->corr);
155 return 0;
156}
157
801c135c 158/**
ebaaf1af 159 * validate_vid_hdr - check volume identifier header.
801c135c
AB
160 * @vid_hdr: the volume identifier header to check
161 * @sv: information about the volume this logical eraseblock belongs to
162 * @pnum: physical eraseblock number the VID header came from
163 *
164 * This function checks that data stored in @vid_hdr is consistent. Returns
165 * non-zero if an inconsistency was found and zero if not.
166 *
167 * Note, UBI does sanity check of everything it reads from the flash media.
85c6e6e2 168 * Most of the checks are done in the I/O sub-system. Here we check that the
801c135c
AB
169 * information in the VID header is consistent to the information in other VID
170 * headers of the same volume.
171 */
172static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
173 const struct ubi_scan_volume *sv, int pnum)
174{
175 int vol_type = vid_hdr->vol_type;
3261ebd7
CH
176 int vol_id = be32_to_cpu(vid_hdr->vol_id);
177 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
178 int data_pad = be32_to_cpu(vid_hdr->data_pad);
801c135c
AB
179
180 if (sv->leb_count != 0) {
181 int sv_vol_type;
182
183 /*
184 * This is not the first logical eraseblock belonging to this
185 * volume. Ensure that the data in its VID header is consistent
186 * to the data in previous logical eraseblock headers.
187 */
188
189 if (vol_id != sv->vol_id) {
190 dbg_err("inconsistent vol_id");
191 goto bad;
192 }
193
194 if (sv->vol_type == UBI_STATIC_VOLUME)
195 sv_vol_type = UBI_VID_STATIC;
196 else
197 sv_vol_type = UBI_VID_DYNAMIC;
198
199 if (vol_type != sv_vol_type) {
200 dbg_err("inconsistent vol_type");
201 goto bad;
202 }
203
204 if (used_ebs != sv->used_ebs) {
205 dbg_err("inconsistent used_ebs");
206 goto bad;
207 }
208
209 if (data_pad != sv->data_pad) {
210 dbg_err("inconsistent data_pad");
211 goto bad;
212 }
213 }
214
215 return 0;
216
217bad:
218 ubi_err("inconsistent VID header at PEB %d", pnum);
219 ubi_dbg_dump_vid_hdr(vid_hdr);
220 ubi_dbg_dump_sv(sv);
221 return -EINVAL;
222}
223
224/**
225 * add_volume - add volume to the scanning information.
226 * @si: scanning information
227 * @vol_id: ID of the volume to add
228 * @pnum: physical eraseblock number
229 * @vid_hdr: volume identifier header
230 *
231 * If the volume corresponding to the @vid_hdr logical eraseblock is already
232 * present in the scanning information, this function does nothing. Otherwise
233 * it adds corresponding volume to the scanning information. Returns a pointer
234 * to the scanning volume object in case of success and a negative error code
235 * in case of failure.
236 */
237static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id,
238 int pnum,
239 const struct ubi_vid_hdr *vid_hdr)
240{
241 struct ubi_scan_volume *sv;
242 struct rb_node **p = &si->volumes.rb_node, *parent = NULL;
243
3261ebd7 244 ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
801c135c
AB
245
246 /* Walk the volume RB-tree to look if this volume is already present */
247 while (*p) {
248 parent = *p;
249 sv = rb_entry(parent, struct ubi_scan_volume, rb);
250
251 if (vol_id == sv->vol_id)
252 return sv;
253
254 if (vol_id > sv->vol_id)
255 p = &(*p)->rb_left;
256 else
257 p = &(*p)->rb_right;
258 }
259
260 /* The volume is absent - add it */
261 sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL);
262 if (!sv)
263 return ERR_PTR(-ENOMEM);
264
265 sv->highest_lnum = sv->leb_count = 0;
801c135c
AB
266 sv->vol_id = vol_id;
267 sv->root = RB_ROOT;
3261ebd7
CH
268 sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
269 sv->data_pad = be32_to_cpu(vid_hdr->data_pad);
801c135c
AB
270 sv->compat = vid_hdr->compat;
271 sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
272 : UBI_STATIC_VOLUME;
273 if (vol_id > si->highest_vol_id)
274 si->highest_vol_id = vol_id;
275
276 rb_link_node(&sv->rb, parent, p);
277 rb_insert_color(&sv->rb, &si->volumes);
278 si->vols_found += 1;
279 dbg_bld("added volume %d", vol_id);
280 return sv;
281}
282
283/**
284 * compare_lebs - find out which logical eraseblock is newer.
285 * @ubi: UBI device description object
286 * @seb: first logical eraseblock to compare
287 * @pnum: physical eraseblock number of the second logical eraseblock to
288 * compare
289 * @vid_hdr: volume identifier header of the second logical eraseblock
290 *
291 * This function compares 2 copies of a LEB and informs which one is newer. In
292 * case of success this function returns a positive value, in case of failure, a
293 * negative error code is returned. The success return codes use the following
294 * bits:
3f502622 295 * o bit 0 is cleared: the first PEB (described by @seb) is newer than the
801c135c
AB
296 * second PEB (described by @pnum and @vid_hdr);
297 * o bit 0 is set: the second PEB is newer;
298 * o bit 1 is cleared: no bit-flips were detected in the newer LEB;
299 * o bit 1 is set: bit-flips were detected in the newer LEB;
300 * o bit 2 is cleared: the older LEB is not corrupted;
301 * o bit 2 is set: the older LEB is corrupted.
302 */
e88d6e10
AB
303static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb,
304 int pnum, const struct ubi_vid_hdr *vid_hdr)
801c135c
AB
305{
306 void *buf;
307 int len, err, second_is_newer, bitflips = 0, corrupted = 0;
308 uint32_t data_crc, crc;
8bc22961 309 struct ubi_vid_hdr *vh = NULL;
3261ebd7 310 unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
801c135c 311
9869cd80 312 if (sqnum2 == seb->sqnum) {
801c135c 313 /*
9869cd80
AB
314 * This must be a really ancient UBI image which has been
315 * created before sequence numbers support has been added. At
316 * that times we used 32-bit LEB versions stored in logical
317 * eraseblocks. That was before UBI got into mainline. We do not
0525dac9
AB
318 * support these images anymore. Well, those images still work,
319 * but only if no unclean reboots happened.
801c135c 320 */
9869cd80
AB
321 ubi_err("unsupported on-flash UBI format\n");
322 return -EINVAL;
323 }
64203195 324
9869cd80
AB
325 /* Obviously the LEB with lower sequence counter is older */
326 second_is_newer = !!(sqnum2 > seb->sqnum);
801c135c
AB
327
328 /*
329 * Now we know which copy is newer. If the copy flag of the PEB with
330 * newer version is not set, then we just return, otherwise we have to
331 * check data CRC. For the second PEB we already have the VID header,
332 * for the first one - we'll need to re-read it from flash.
333 *
9869cd80 334 * Note: this may be optimized so that we wouldn't read twice.
801c135c
AB
335 */
336
337 if (second_is_newer) {
338 if (!vid_hdr->copy_flag) {
339 /* It is not a copy, so it is newer */
340 dbg_bld("second PEB %d is newer, copy_flag is unset",
341 pnum);
342 return 1;
343 }
344 } else {
fb22b59b
AB
345 if (!seb->copy_flag) {
346 /* It is not a copy, so it is newer */
347 dbg_bld("first PEB %d is newer, copy_flag is unset",
348 pnum);
349 return bitflips << 1;
350 }
801c135c 351
33818bbb 352 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
8bc22961 353 if (!vh)
801c135c
AB
354 return -ENOMEM;
355
fb22b59b 356 pnum = seb->pnum;
8bc22961 357 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
801c135c
AB
358 if (err) {
359 if (err == UBI_IO_BITFLIPS)
360 bitflips = 1;
361 else {
362 dbg_err("VID of PEB %d header is bad, but it "
0525dac9 363 "was OK earlier, err %d", pnum, err);
801c135c
AB
364 if (err > 0)
365 err = -EIO;
366
367 goto out_free_vidh;
368 }
369 }
370
8bc22961 371 vid_hdr = vh;
801c135c
AB
372 }
373
374 /* Read the data of the copy and check the CRC */
375
3261ebd7 376 len = be32_to_cpu(vid_hdr->data_size);
92ad8f37 377 buf = vmalloc(len);
801c135c
AB
378 if (!buf) {
379 err = -ENOMEM;
380 goto out_free_vidh;
381 }
382
383 err = ubi_io_read_data(ubi, buf, pnum, 0, len);
b77bcb07 384 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
801c135c
AB
385 goto out_free_buf;
386
3261ebd7 387 data_crc = be32_to_cpu(vid_hdr->data_crc);
801c135c
AB
388 crc = crc32(UBI_CRC32_INIT, buf, len);
389 if (crc != data_crc) {
390 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
391 pnum, crc, data_crc);
392 corrupted = 1;
393 bitflips = 0;
394 second_is_newer = !second_is_newer;
395 } else {
396 dbg_bld("PEB %d CRC is OK", pnum);
397 bitflips = !!err;
398 }
399
92ad8f37 400 vfree(buf);
8bc22961 401 ubi_free_vid_hdr(ubi, vh);
801c135c
AB
402
403 if (second_is_newer)
404 dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
405 else
406 dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
407
408 return second_is_newer | (bitflips << 1) | (corrupted << 2);
409
410out_free_buf:
92ad8f37 411 vfree(buf);
801c135c 412out_free_vidh:
8bc22961 413 ubi_free_vid_hdr(ubi, vh);
801c135c
AB
414 return err;
415}
416
417/**
ebaaf1af 418 * ubi_scan_add_used - add physical eraseblock to the scanning information.
801c135c
AB
419 * @ubi: UBI device description object
420 * @si: scanning information
421 * @pnum: the physical eraseblock number
422 * @ec: erase counter
423 * @vid_hdr: the volume identifier header
424 * @bitflips: if bit-flips were detected when this physical eraseblock was read
425 *
79b510c0
AB
426 * This function adds information about a used physical eraseblock to the
427 * 'used' tree of the corresponding volume. The function is rather complex
428 * because it has to handle cases when this is not the first physical
429 * eraseblock belonging to the same logical eraseblock, and the newer one has
430 * to be picked, while the older one has to be dropped. This function returns
431 * zero in case of success and a negative error code in case of failure.
801c135c 432 */
e88d6e10 433int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si,
801c135c
AB
434 int pnum, int ec, const struct ubi_vid_hdr *vid_hdr,
435 int bitflips)
436{
437 int err, vol_id, lnum;
801c135c
AB
438 unsigned long long sqnum;
439 struct ubi_scan_volume *sv;
440 struct ubi_scan_leb *seb;
441 struct rb_node **p, *parent = NULL;
442
3261ebd7
CH
443 vol_id = be32_to_cpu(vid_hdr->vol_id);
444 lnum = be32_to_cpu(vid_hdr->lnum);
445 sqnum = be64_to_cpu(vid_hdr->sqnum);
801c135c 446
9869cd80
AB
447 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
448 pnum, vol_id, lnum, ec, sqnum, bitflips);
801c135c
AB
449
450 sv = add_volume(si, vol_id, pnum, vid_hdr);
0e4a008a 451 if (IS_ERR(sv))
801c135c
AB
452 return PTR_ERR(sv);
453
76eafe47
BS
454 if (si->max_sqnum < sqnum)
455 si->max_sqnum = sqnum;
456
801c135c
AB
457 /*
458 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
459 * if this is the first instance of this logical eraseblock or not.
460 */
461 p = &sv->root.rb_node;
462 while (*p) {
463 int cmp_res;
464
465 parent = *p;
466 seb = rb_entry(parent, struct ubi_scan_leb, u.rb);
467 if (lnum != seb->lnum) {
468 if (lnum < seb->lnum)
469 p = &(*p)->rb_left;
470 else
471 p = &(*p)->rb_right;
472 continue;
473 }
474
475 /*
476 * There is already a physical eraseblock describing the same
477 * logical eraseblock present.
478 */
479
480 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, "
9869cd80 481 "EC %d", seb->pnum, seb->sqnum, seb->ec);
801c135c
AB
482
483 /*
484 * Make sure that the logical eraseblocks have different
485 * sequence numbers. Otherwise the image is bad.
486 *
9869cd80
AB
487 * However, if the sequence number is zero, we assume it must
488 * be an ancient UBI image from the era when UBI did not have
489 * sequence numbers. We still can attach these images, unless
490 * there is a need to distinguish between old and new
491 * eraseblocks, in which case we'll refuse the image in
492 * 'compare_lebs()'. In other words, we attach old clean
493 * images, but refuse attaching old images with duplicated
494 * logical eraseblocks because there was an unclean reboot.
801c135c
AB
495 */
496 if (seb->sqnum == sqnum && sqnum != 0) {
497 ubi_err("two LEBs with same sequence number %llu",
498 sqnum);
499 ubi_dbg_dump_seb(seb, 0);
500 ubi_dbg_dump_vid_hdr(vid_hdr);
501 return -EINVAL;
502 }
503
504 /*
505 * Now we have to drop the older one and preserve the newer
506 * one.
507 */
508 cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr);
509 if (cmp_res < 0)
510 return cmp_res;
511
512 if (cmp_res & 1) {
513 /*
3f502622 514 * This logical eraseblock is newer than the one
801c135c
AB
515 * found earlier.
516 */
517 err = validate_vid_hdr(vid_hdr, sv, pnum);
518 if (err)
519 return err;
520
0525dac9
AB
521 err = add_to_list(si, seb->pnum, seb->ec, cmp_res & 4,
522 &si->erase);
801c135c
AB
523 if (err)
524 return err;
525
526 seb->ec = ec;
527 seb->pnum = pnum;
528 seb->scrub = ((cmp_res & 2) || bitflips);
fb22b59b 529 seb->copy_flag = vid_hdr->copy_flag;
801c135c 530 seb->sqnum = sqnum;
801c135c
AB
531
532 if (sv->highest_lnum == lnum)
533 sv->last_data_size =
3261ebd7 534 be32_to_cpu(vid_hdr->data_size);
801c135c
AB
535
536 return 0;
537 } else {
538 /*
025dfdaf 539 * This logical eraseblock is older than the one found
801c135c
AB
540 * previously.
541 */
0525dac9
AB
542 return add_to_list(si, pnum, ec, cmp_res & 4,
543 &si->erase);
801c135c
AB
544 }
545 }
546
547 /*
548 * We've met this logical eraseblock for the first time, add it to the
549 * scanning information.
550 */
551
552 err = validate_vid_hdr(vid_hdr, sv, pnum);
553 if (err)
554 return err;
555
556 seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
557 if (!seb)
558 return -ENOMEM;
559
560 seb->ec = ec;
561 seb->pnum = pnum;
562 seb->lnum = lnum;
801c135c 563 seb->scrub = bitflips;
fb22b59b
AB
564 seb->copy_flag = vid_hdr->copy_flag;
565 seb->sqnum = sqnum;
801c135c
AB
566
567 if (sv->highest_lnum <= lnum) {
568 sv->highest_lnum = lnum;
3261ebd7 569 sv->last_data_size = be32_to_cpu(vid_hdr->data_size);
801c135c
AB
570 }
571
801c135c
AB
572 sv->leb_count += 1;
573 rb_link_node(&seb->u.rb, parent, p);
574 rb_insert_color(&seb->u.rb, &sv->root);
575 return 0;
576}
577
578/**
ebaaf1af 579 * ubi_scan_find_sv - find volume in the scanning information.
801c135c
AB
580 * @si: scanning information
581 * @vol_id: the requested volume ID
582 *
583 * This function returns a pointer to the volume description or %NULL if there
584 * are no data about this volume in the scanning information.
585 */
586struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si,
587 int vol_id)
588{
589 struct ubi_scan_volume *sv;
590 struct rb_node *p = si->volumes.rb_node;
591
592 while (p) {
593 sv = rb_entry(p, struct ubi_scan_volume, rb);
594
595 if (vol_id == sv->vol_id)
596 return sv;
597
598 if (vol_id > sv->vol_id)
599 p = p->rb_left;
600 else
601 p = p->rb_right;
602 }
603
604 return NULL;
605}
606
607/**
ebaaf1af 608 * ubi_scan_find_seb - find LEB in the volume scanning information.
801c135c
AB
609 * @sv: a pointer to the volume scanning information
610 * @lnum: the requested logical eraseblock
611 *
612 * This function returns a pointer to the scanning logical eraseblock or %NULL
613 * if there are no data about it in the scanning volume information.
614 */
615struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv,
616 int lnum)
617{
618 struct ubi_scan_leb *seb;
619 struct rb_node *p = sv->root.rb_node;
620
621 while (p) {
622 seb = rb_entry(p, struct ubi_scan_leb, u.rb);
623
624 if (lnum == seb->lnum)
625 return seb;
626
627 if (lnum > seb->lnum)
628 p = p->rb_left;
629 else
630 p = p->rb_right;
631 }
632
633 return NULL;
634}
635
636/**
637 * ubi_scan_rm_volume - delete scanning information about a volume.
638 * @si: scanning information
639 * @sv: the volume scanning information to delete
640 */
641void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv)
642{
643 struct rb_node *rb;
644 struct ubi_scan_leb *seb;
645
646 dbg_bld("remove scanning information about volume %d", sv->vol_id);
647
648 while ((rb = rb_first(&sv->root))) {
649 seb = rb_entry(rb, struct ubi_scan_leb, u.rb);
650 rb_erase(&seb->u.rb, &sv->root);
651 list_add_tail(&seb->u.list, &si->erase);
652 }
653
654 rb_erase(&sv->rb, &si->volumes);
655 kfree(sv);
656 si->vols_found -= 1;
657}
658
659/**
660 * ubi_scan_erase_peb - erase a physical eraseblock.
661 * @ubi: UBI device description object
662 * @si: scanning information
663 * @pnum: physical eraseblock number to erase;
664 * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown)
665 *
666 * This function erases physical eraseblock 'pnum', and writes the erase
667 * counter header to it. This function should only be used on UBI device
85c6e6e2
AB
668 * initialization stages, when the EBA sub-system had not been yet initialized.
669 * This function returns zero in case of success and a negative error code in
670 * case of failure.
801c135c 671 */
e88d6e10
AB
672int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si,
673 int pnum, int ec)
801c135c
AB
674{
675 int err;
676 struct ubi_ec_hdr *ec_hdr;
677
801c135c
AB
678 if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
679 /*
680 * Erase counter overflow. Upgrade UBI and use 64-bit
681 * erase counters internally.
682 */
683 ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
684 return -EINVAL;
685 }
686
dcec4c3b
FM
687 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
688 if (!ec_hdr)
689 return -ENOMEM;
690
3261ebd7 691 ec_hdr->ec = cpu_to_be64(ec);
801c135c
AB
692
693 err = ubi_io_sync_erase(ubi, pnum, 0);
694 if (err < 0)
695 goto out_free;
696
697 err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
698
699out_free:
700 kfree(ec_hdr);
701 return err;
702}
703
704/**
705 * ubi_scan_get_free_peb - get a free physical eraseblock.
706 * @ubi: UBI device description object
707 * @si: scanning information
708 *
709 * This function returns a free physical eraseblock. It is supposed to be
85c6e6e2
AB
710 * called on the UBI initialization stages when the wear-leveling sub-system is
711 * not initialized yet. This function picks a physical eraseblocks from one of
712 * the lists, writes the EC header if it is needed, and removes it from the
713 * list.
801c135c
AB
714 *
715 * This function returns scanning physical eraseblock information in case of
716 * success and an error code in case of failure.
717 */
e88d6e10 718struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi,
801c135c
AB
719 struct ubi_scan_info *si)
720{
5fc01ab6
AB
721 int err = 0;
722 struct ubi_scan_leb *seb, *tmp_seb;
801c135c
AB
723
724 if (!list_empty(&si->free)) {
725 seb = list_entry(si->free.next, struct ubi_scan_leb, u.list);
726 list_del(&seb->u.list);
727 dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec);
728 return seb;
729 }
730
5fc01ab6
AB
731 /*
732 * We try to erase the first physical eraseblock from the erase list
733 * and pick it if we succeed, or try to erase the next one if not. And
734 * so forth. We don't want to take care about bad eraseblocks here -
735 * they'll be handled later.
736 */
737 list_for_each_entry_safe(seb, tmp_seb, &si->erase, u.list) {
738 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
739 seb->ec = si->mean_ec;
801c135c 740
5fc01ab6
AB
741 err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1);
742 if (err)
743 continue;
801c135c 744
5fc01ab6
AB
745 seb->ec += 1;
746 list_del(&seb->u.list);
747 dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec);
748 return seb;
801c135c
AB
749 }
750
5fc01ab6 751 ubi_err("no free eraseblocks");
801c135c
AB
752 return ERR_PTR(-ENOSPC);
753}
754
feeba4b8 755/**
45aafd32 756 * check_corruption - check the data area of PEB.
feeba4b8
AB
757 * @ubi: UBI device description object
758 * @vid_hrd: the (corrupted) VID header of this PEB
759 * @pnum: the physical eraseblock number to check
760 *
761 * This is a helper function which is used to distinguish between VID header
762 * corruptions caused by power cuts and other reasons. If the PEB contains only
45aafd32 763 * 0xFF bytes in the data area, the VID header is most probably corrupted
feeba4b8 764 * because of a power cut (%0 is returned in this case). Otherwise, it was
45aafd32
AB
765 * probably corrupted for some other reasons (%1 is returned in this case). A
766 * negative error code is returned if a read error occurred.
feeba4b8
AB
767 *
768 * If the corruption reason was a power cut, UBI can safely erase this PEB.
769 * Otherwise, it should preserve it to avoid possibly destroying important
770 * information.
771 */
45aafd32
AB
772static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
773 int pnum)
feeba4b8
AB
774{
775 int err;
776
777 mutex_lock(&ubi->buf_mutex);
778 memset(ubi->peb_buf1, 0x00, ubi->leb_size);
779
780 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, ubi->leb_start,
781 ubi->leb_size);
45aafd32
AB
782 if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
783 /*
784 * Bit-flips or integrity errors while reading the data area.
785 * It is difficult to say for sure what type of corruption is
786 * this, but presumably a power cut happened while this PEB was
787 * erased, so it became unstable and corrupted, and should be
788 * erased.
789 */
1b1d76e2
DC
790 err = 0;
791 goto out_unlock;
45aafd32
AB
792 }
793
794 if (err)
1b1d76e2 795 goto out_unlock;
feeba4b8 796
1b1d76e2
DC
797 if (ubi_check_pattern(ubi->peb_buf1, 0xFF, ubi->leb_size))
798 goto out_unlock;
feeba4b8
AB
799
800 ubi_err("PEB %d contains corrupted VID header, and the data does not "
801 "contain all 0xFF, this may be a non-UBI PEB or a severe VID "
802 "header corruption which requires manual inspection", pnum);
803 ubi_dbg_dump_vid_hdr(vid_hdr);
804 dbg_msg("hexdump of PEB %d offset %d, length %d",
805 pnum, ubi->leb_start, ubi->leb_size);
806 ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
807 ubi->peb_buf1, ubi->leb_size, 1);
1b1d76e2
DC
808 err = 1;
809
810out_unlock:
feeba4b8 811 mutex_unlock(&ubi->buf_mutex);
1b1d76e2 812 return err;
feeba4b8
AB
813}
814
801c135c 815/**
ebaaf1af 816 * process_eb - read, check UBI headers, and add them to scanning information.
801c135c
AB
817 * @ubi: UBI device description object
818 * @si: scanning information
819 * @pnum: the physical eraseblock number
820 *
78d87c95 821 * This function returns a zero if the physical eraseblock was successfully
801c135c
AB
822 * handled and a negative error code in case of failure.
823 */
9c9ec147
AB
824static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si,
825 int pnum)
801c135c 826{
c18a8418 827 long long uninitialized_var(ec);
e0e718c2 828 int err, bitflips = 0, vol_id, ec_err = 0;
801c135c
AB
829
830 dbg_bld("scan PEB %d", pnum);
831
832 /* Skip bad physical eraseblocks */
833 err = ubi_io_is_bad(ubi, pnum);
834 if (err < 0)
835 return err;
836 else if (err) {
837 /*
85c6e6e2
AB
838 * FIXME: this is actually duty of the I/O sub-system to
839 * initialize this, but MTD does not provide enough
840 * information.
801c135c
AB
841 */
842 si->bad_peb_count += 1;
843 return 0;
844 }
845
846 err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
847 if (err < 0)
848 return err;
b3321508
AB
849 switch (err) {
850 case 0:
851 break;
852 case UBI_IO_BITFLIPS:
801c135c 853 bitflips = 1;
b3321508
AB
854 break;
855 case UBI_IO_FF:
0525dac9
AB
856 si->empty_peb_count += 1;
857 return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, 0,
858 &si->erase);
b3321508 859 case UBI_IO_FF_BITFLIPS:
0525dac9
AB
860 si->empty_peb_count += 1;
861 return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, 1,
862 &si->erase);
b3321508 863 case UBI_IO_BAD_HDR_EBADMSG:
b3321508 864 case UBI_IO_BAD_HDR:
801c135c
AB
865 /*
866 * We have to also look at the VID header, possibly it is not
867 * corrupted. Set %bitflips flag in order to make this PEB be
868 * moved and EC be re-created.
869 */
e0e718c2 870 ec_err = err;
801c135c
AB
871 ec = UBI_SCAN_UNKNOWN_EC;
872 bitflips = 1;
b3321508
AB
873 break;
874 default:
875 ubi_err("'ubi_io_read_ec_hdr()' returned unknown code %d", err);
876 return -EINVAL;
801c135c
AB
877 }
878
e0e718c2 879 if (!ec_err) {
fe96efc1
AB
880 int image_seq;
881
801c135c
AB
882 /* Make sure UBI version is OK */
883 if (ech->version != UBI_VERSION) {
884 ubi_err("this UBI version is %d, image version is %d",
885 UBI_VERSION, (int)ech->version);
886 return -EINVAL;
887 }
888
3261ebd7 889 ec = be64_to_cpu(ech->ec);
801c135c
AB
890 if (ec > UBI_MAX_ERASECOUNTER) {
891 /*
892 * Erase counter overflow. The EC headers have 64 bits
893 * reserved, but we anyway make use of only 31 bit
894 * values, as this seems to be enough for any existing
895 * flash. Upgrade UBI and use 64-bit erase counters
896 * internally.
897 */
898 ubi_err("erase counter overflow, max is %d",
899 UBI_MAX_ERASECOUNTER);
900 ubi_dbg_dump_ec_hdr(ech);
901 return -EINVAL;
902 }
fe96efc1 903
32bc4820
AH
904 /*
905 * Make sure that all PEBs have the same image sequence number.
906 * This allows us to detect situations when users flash UBI
907 * images incorrectly, so that the flash has the new UBI image
908 * and leftovers from the old one. This feature was added
909 * relatively recently, and the sequence number was always
910 * zero, because old UBI implementations always set it to zero.
911 * For this reasons, we do not panic if some PEBs have zero
912 * sequence number, while other PEBs have non-zero sequence
913 * number.
914 */
3dc948da 915 image_seq = be32_to_cpu(ech->image_seq);
2eadaad6 916 if (!ubi->image_seq && image_seq)
fe96efc1 917 ubi->image_seq = image_seq;
2eadaad6
AB
918 if (ubi->image_seq && image_seq &&
919 ubi->image_seq != image_seq) {
fe96efc1
AB
920 ubi_err("bad image sequence number %d in PEB %d, "
921 "expected %d", image_seq, pnum, ubi->image_seq);
922 ubi_dbg_dump_ec_hdr(ech);
923 return -EINVAL;
924 }
801c135c
AB
925 }
926
927 /* OK, we've done with the EC header, let's look at the VID header */
928
929 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
930 if (err < 0)
931 return err;
b3321508
AB
932 switch (err) {
933 case 0:
934 break;
935 case UBI_IO_BITFLIPS:
801c135c 936 bitflips = 1;
b3321508
AB
937 break;
938 case UBI_IO_BAD_HDR_EBADMSG:
0525dac9
AB
939 if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
940 /*
941 * Both EC and VID headers are corrupted and were read
942 * with data integrity error, probably this is a bad
943 * PEB, bit it is not marked as bad yet. This may also
944 * be a result of power cut during erasure.
945 */
946 si->maybe_bad_peb_count += 1;
b3321508 947 case UBI_IO_BAD_HDR:
feeba4b8
AB
948 if (ec_err)
949 /*
950 * Both headers are corrupted. There is a possibility
951 * that this a valid UBI PEB which has corresponding
952 * LEB, but the headers are corrupted. However, it is
953 * impossible to distinguish it from a PEB which just
45aafd32 954 * contains garbage because of a power cut during erase
feeba4b8 955 * operation. So we just schedule this PEB for erasure.
7ac760c2
AB
956 *
957 * Besides, in case of NOR flash, we deliberatly
958 * corrupt both headers because NOR flash erasure is
959 * slow and can start from the end.
feeba4b8
AB
960 */
961 err = 0;
962 else
963 /*
964 * The EC was OK, but the VID header is corrupted. We
965 * have to check what is in the data area.
966 */
45aafd32 967 err = check_corruption(ubi, vidh, pnum);
df3fca4c
AB
968
969 if (err < 0)
970 return err;
971 else if (!err)
feeba4b8
AB
972 /* This corruption is caused by a power cut */
973 err = add_to_list(si, pnum, ec, 1, &si->erase);
974 else
975 /* This is an unexpected corruption */
976 err = add_corrupted(si, pnum, ec);
977 if (err)
978 return err;
979 goto adjust_mean_ec;
b3321508 980 case UBI_IO_FF_BITFLIPS:
0525dac9 981 err = add_to_list(si, pnum, ec, 1, &si->erase);
801c135c
AB
982 if (err)
983 return err;
984 goto adjust_mean_ec;
b3321508
AB
985 case UBI_IO_FF:
986 if (ec_err)
0525dac9 987 err = add_to_list(si, pnum, ec, 1, &si->erase);
b3321508 988 else
0525dac9 989 err = add_to_list(si, pnum, ec, 0, &si->free);
801c135c
AB
990 if (err)
991 return err;
992 goto adjust_mean_ec;
b3321508
AB
993 default:
994 ubi_err("'ubi_io_read_vid_hdr()' returned unknown code %d",
995 err);
996 return -EINVAL;
801c135c
AB
997 }
998
3261ebd7 999 vol_id = be32_to_cpu(vidh->vol_id);
91f2d53c 1000 if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
3261ebd7 1001 int lnum = be32_to_cpu(vidh->lnum);
801c135c
AB
1002
1003 /* Unsupported internal volume */
1004 switch (vidh->compat) {
1005 case UBI_COMPAT_DELETE:
1006 ubi_msg("\"delete\" compatible internal volume %d:%d"
158132c9 1007 " found, will remove it", vol_id, lnum);
0525dac9 1008 err = add_to_list(si, pnum, ec, 1, &si->erase);
801c135c
AB
1009 if (err)
1010 return err;
158132c9 1011 return 0;
801c135c
AB
1012
1013 case UBI_COMPAT_RO:
1014 ubi_msg("read-only compatible internal volume %d:%d"
1015 " found, switch to read-only mode",
1016 vol_id, lnum);
1017 ubi->ro_mode = 1;
1018 break;
1019
1020 case UBI_COMPAT_PRESERVE:
1021 ubi_msg("\"preserve\" compatible internal volume %d:%d"
1022 " found", vol_id, lnum);
0525dac9 1023 err = add_to_list(si, pnum, ec, 0, &si->alien);
801c135c
AB
1024 if (err)
1025 return err;
801c135c
AB
1026 return 0;
1027
1028 case UBI_COMPAT_REJECT:
1029 ubi_err("incompatible internal volume %d:%d found",
1030 vol_id, lnum);
1031 return -EINVAL;
1032 }
1033 }
1034
e0e718c2 1035 if (ec_err)
29a88c99
AB
1036 ubi_warn("valid VID header but corrupted EC header at PEB %d",
1037 pnum);
801c135c
AB
1038 err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips);
1039 if (err)
1040 return err;
1041
1042adjust_mean_ec:
e0e718c2 1043 if (!ec_err) {
4bc1dca4
AB
1044 si->ec_sum += ec;
1045 si->ec_count += 1;
801c135c
AB
1046 if (ec > si->max_ec)
1047 si->max_ec = ec;
1048 if (ec < si->min_ec)
1049 si->min_ec = ec;
1050 }
1051
1052 return 0;
1053}
1054
0798cea8
AB
1055/**
1056 * check_what_we_have - check what PEB were found by scanning.
1057 * @ubi: UBI device description object
1058 * @si: scanning information
1059 *
1060 * This is a helper function which takes a look what PEBs were found by
1061 * scanning, and decides whether the flash is empty and should be formatted and
1062 * whether there are too many corrupted PEBs and we should not attach this
1063 * MTD device. Returns zero if we should proceed with attaching the MTD device,
1064 * and %-EINVAL if we should not.
1065 */
f5d5b1f8 1066static int check_what_we_have(struct ubi_device *ubi, struct ubi_scan_info *si)
0798cea8
AB
1067{
1068 struct ubi_scan_leb *seb;
0525dac9 1069 int max_corr, peb_count;
0798cea8 1070
0525dac9
AB
1071 peb_count = ubi->peb_count - si->bad_peb_count - si->alien_peb_count;
1072 max_corr = peb_count / 20 ?: 8;
0798cea8
AB
1073
1074 /*
0525dac9 1075 * Few corrupted PEBs is not a problem and may be just a result of
0798cea8
AB
1076 * unclean reboots. However, many of them may indicate some problems
1077 * with the flash HW or driver.
1078 */
0525dac9
AB
1079 if (si->corr_peb_count) {
1080 ubi_err("%d PEBs are corrupted and preserved",
1081 si->corr_peb_count);
1082 printk(KERN_ERR "Corrupted PEBs are:");
0798cea8
AB
1083 list_for_each_entry(seb, &si->corr, u.list)
1084 printk(KERN_CONT " %d", seb->pnum);
1085 printk(KERN_CONT "\n");
1086
1087 /*
1088 * If too many PEBs are corrupted, we refuse attaching,
1089 * otherwise, only print a warning.
1090 */
1091 if (si->corr_peb_count >= max_corr) {
1092 ubi_err("too many corrupted PEBs, refusing this device");
1093 return -EINVAL;
1094 }
1095 }
1096
0525dac9
AB
1097 if (si->empty_peb_count + si->maybe_bad_peb_count == peb_count) {
1098 /*
1099 * All PEBs are empty, or almost all - a couple PEBs look like
1100 * they may be bad PEBs which were not marked as bad yet.
1101 *
1102 * This piece of code basically tries to distinguish between
1103 * the following situations:
1104 *
1105 * 1. Flash is empty, but there are few bad PEBs, which are not
1106 * marked as bad so far, and which were read with error. We
1107 * want to go ahead and format this flash. While formatting,
1108 * the faulty PEBs will probably be marked as bad.
1109 *
1110 * 2. Flash contains non-UBI data and we do not want to format
1111 * it and destroy possibly important information.
1112 */
1113 if (si->maybe_bad_peb_count <= 2) {
0798cea8
AB
1114 si->is_empty = 1;
1115 ubi_msg("empty MTD device detected");
0525dac9
AB
1116 get_random_bytes(&ubi->image_seq,
1117 sizeof(ubi->image_seq));
0798cea8 1118 } else {
0525dac9
AB
1119 ubi_err("MTD device is not UBI-formatted and possibly "
1120 "contains non-UBI data - refusing it");
0798cea8
AB
1121 return -EINVAL;
1122 }
0525dac9 1123
0798cea8
AB
1124 }
1125
0798cea8
AB
1126 return 0;
1127}
1128
801c135c
AB
1129/**
1130 * ubi_scan - scan an MTD device.
1131 * @ubi: UBI device description object
1132 *
1133 * This function does full scanning of an MTD device and returns complete
1134 * information about it. In case of failure, an error code is returned.
1135 */
1136struct ubi_scan_info *ubi_scan(struct ubi_device *ubi)
1137{
1138 int err, pnum;
1139 struct rb_node *rb1, *rb2;
1140 struct ubi_scan_volume *sv;
1141 struct ubi_scan_leb *seb;
1142 struct ubi_scan_info *si;
1143
1144 si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL);
1145 if (!si)
1146 return ERR_PTR(-ENOMEM);
1147
1148 INIT_LIST_HEAD(&si->corr);
1149 INIT_LIST_HEAD(&si->free);
1150 INIT_LIST_HEAD(&si->erase);
1151 INIT_LIST_HEAD(&si->alien);
1152 si->volumes = RB_ROOT;
801c135c
AB
1153
1154 err = -ENOMEM;
1155 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1156 if (!ech)
1157 goto out_si;
1158
33818bbb 1159 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
801c135c
AB
1160 if (!vidh)
1161 goto out_ech;
1162
1163 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1164 cond_resched();
1165
c8566350 1166 dbg_gen("process PEB %d", pnum);
801c135c
AB
1167 err = process_eb(ubi, si, pnum);
1168 if (err < 0)
1169 goto out_vidh;
1170 }
1171
1172 dbg_msg("scanning is finished");
1173
4bc1dca4 1174 /* Calculate mean erase counter */
3013ee31
AB
1175 if (si->ec_count)
1176 si->mean_ec = div_u64(si->ec_sum, si->ec_count);
801c135c 1177
0798cea8
AB
1178 err = check_what_we_have(ubi, si);
1179 if (err)
1180 goto out_vidh;
4a406856 1181
801c135c
AB
1182 /*
1183 * In case of unknown erase counter we use the mean erase counter
1184 * value.
1185 */
1186 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1187 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
1188 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
1189 seb->ec = si->mean_ec;
1190 }
1191
1192 list_for_each_entry(seb, &si->free, u.list) {
1193 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
1194 seb->ec = si->mean_ec;
1195 }
1196
1197 list_for_each_entry(seb, &si->corr, u.list)
1198 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
1199 seb->ec = si->mean_ec;
1200
1201 list_for_each_entry(seb, &si->erase, u.list)
1202 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
1203 seb->ec = si->mean_ec;
1204
1205 err = paranoid_check_si(ubi, si);
adbf05e3 1206 if (err)
801c135c 1207 goto out_vidh;
801c135c
AB
1208
1209 ubi_free_vid_hdr(ubi, vidh);
1210 kfree(ech);
1211
1212 return si;
1213
1214out_vidh:
1215 ubi_free_vid_hdr(ubi, vidh);
1216out_ech:
1217 kfree(ech);
1218out_si:
1219 ubi_scan_destroy_si(si);
1220 return ERR_PTR(err);
1221}
1222
1223/**
1224 * destroy_sv - free the scanning volume information
1225 * @sv: scanning volume information
1226 *
1227 * This function destroys the volume RB-tree (@sv->root) and the scanning
1228 * volume information.
1229 */
1230static void destroy_sv(struct ubi_scan_volume *sv)
1231{
1232 struct ubi_scan_leb *seb;
1233 struct rb_node *this = sv->root.rb_node;
1234
1235 while (this) {
1236 if (this->rb_left)
1237 this = this->rb_left;
1238 else if (this->rb_right)
1239 this = this->rb_right;
1240 else {
1241 seb = rb_entry(this, struct ubi_scan_leb, u.rb);
1242 this = rb_parent(this);
1243 if (this) {
1244 if (this->rb_left == &seb->u.rb)
1245 this->rb_left = NULL;
1246 else
1247 this->rb_right = NULL;
1248 }
1249
1250 kfree(seb);
1251 }
1252 }
1253 kfree(sv);
1254}
1255
1256/**
1257 * ubi_scan_destroy_si - destroy scanning information.
1258 * @si: scanning information
1259 */
1260void ubi_scan_destroy_si(struct ubi_scan_info *si)
1261{
1262 struct ubi_scan_leb *seb, *seb_tmp;
1263 struct ubi_scan_volume *sv;
1264 struct rb_node *rb;
1265
1266 list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) {
1267 list_del(&seb->u.list);
1268 kfree(seb);
1269 }
1270 list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) {
1271 list_del(&seb->u.list);
1272 kfree(seb);
1273 }
1274 list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) {
1275 list_del(&seb->u.list);
1276 kfree(seb);
1277 }
1278 list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) {
1279 list_del(&seb->u.list);
1280 kfree(seb);
1281 }
1282
1283 /* Destroy the volume RB-tree */
1284 rb = si->volumes.rb_node;
1285 while (rb) {
1286 if (rb->rb_left)
1287 rb = rb->rb_left;
1288 else if (rb->rb_right)
1289 rb = rb->rb_right;
1290 else {
1291 sv = rb_entry(rb, struct ubi_scan_volume, rb);
1292
1293 rb = rb_parent(rb);
1294 if (rb) {
1295 if (rb->rb_left == &sv->rb)
1296 rb->rb_left = NULL;
1297 else
1298 rb->rb_right = NULL;
1299 }
1300
1301 destroy_sv(sv);
1302 }
1303 }
1304
1305 kfree(si);
1306}
1307
1308#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1309
1310/**
ebaaf1af 1311 * paranoid_check_si - check the scanning information.
801c135c
AB
1312 * @ubi: UBI device description object
1313 * @si: scanning information
1314 *
adbf05e3
AB
1315 * This function returns zero if the scanning information is all right, and a
1316 * negative error code if not or if an error occurred.
801c135c 1317 */
e88d6e10 1318static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si)
801c135c
AB
1319{
1320 int pnum, err, vols_found = 0;
1321 struct rb_node *rb1, *rb2;
1322 struct ubi_scan_volume *sv;
1323 struct ubi_scan_leb *seb, *last_seb;
1324 uint8_t *buf;
1325
1326 /*
78d87c95 1327 * At first, check that scanning information is OK.
801c135c
AB
1328 */
1329 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1330 int leb_count = 0;
1331
1332 cond_resched();
1333
1334 vols_found += 1;
1335
1336 if (si->is_empty) {
1337 ubi_err("bad is_empty flag");
1338 goto bad_sv;
1339 }
1340
1341 if (sv->vol_id < 0 || sv->highest_lnum < 0 ||
1342 sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 ||
1343 sv->data_pad < 0 || sv->last_data_size < 0) {
1344 ubi_err("negative values");
1345 goto bad_sv;
1346 }
1347
1348 if (sv->vol_id >= UBI_MAX_VOLUMES &&
1349 sv->vol_id < UBI_INTERNAL_VOL_START) {
1350 ubi_err("bad vol_id");
1351 goto bad_sv;
1352 }
1353
1354 if (sv->vol_id > si->highest_vol_id) {
1355 ubi_err("highest_vol_id is %d, but vol_id %d is there",
1356 si->highest_vol_id, sv->vol_id);
1357 goto out;
1358 }
1359
1360 if (sv->vol_type != UBI_DYNAMIC_VOLUME &&
1361 sv->vol_type != UBI_STATIC_VOLUME) {
1362 ubi_err("bad vol_type");
1363 goto bad_sv;
1364 }
1365
1366 if (sv->data_pad > ubi->leb_size / 2) {
1367 ubi_err("bad data_pad");
1368 goto bad_sv;
1369 }
1370
1371 last_seb = NULL;
1372 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1373 cond_resched();
1374
1375 last_seb = seb;
1376 leb_count += 1;
1377
1378 if (seb->pnum < 0 || seb->ec < 0) {
1379 ubi_err("negative values");
1380 goto bad_seb;
1381 }
1382
1383 if (seb->ec < si->min_ec) {
1384 ubi_err("bad si->min_ec (%d), %d found",
1385 si->min_ec, seb->ec);
1386 goto bad_seb;
1387 }
1388
1389 if (seb->ec > si->max_ec) {
1390 ubi_err("bad si->max_ec (%d), %d found",
1391 si->max_ec, seb->ec);
1392 goto bad_seb;
1393 }
1394
1395 if (seb->pnum >= ubi->peb_count) {
1396 ubi_err("too high PEB number %d, total PEBs %d",
1397 seb->pnum, ubi->peb_count);
1398 goto bad_seb;
1399 }
1400
1401 if (sv->vol_type == UBI_STATIC_VOLUME) {
1402 if (seb->lnum >= sv->used_ebs) {
1403 ubi_err("bad lnum or used_ebs");
1404 goto bad_seb;
1405 }
1406 } else {
1407 if (sv->used_ebs != 0) {
1408 ubi_err("non-zero used_ebs");
1409 goto bad_seb;
1410 }
1411 }
1412
1413 if (seb->lnum > sv->highest_lnum) {
1414 ubi_err("incorrect highest_lnum or lnum");
1415 goto bad_seb;
1416 }
1417 }
1418
1419 if (sv->leb_count != leb_count) {
1420 ubi_err("bad leb_count, %d objects in the tree",
1421 leb_count);
1422 goto bad_sv;
1423 }
1424
1425 if (!last_seb)
1426 continue;
1427
1428 seb = last_seb;
1429
1430 if (seb->lnum != sv->highest_lnum) {
1431 ubi_err("bad highest_lnum");
1432 goto bad_seb;
1433 }
1434 }
1435
1436 if (vols_found != si->vols_found) {
1437 ubi_err("bad si->vols_found %d, should be %d",
1438 si->vols_found, vols_found);
1439 goto out;
1440 }
1441
1442 /* Check that scanning information is correct */
1443 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1444 last_seb = NULL;
1445 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1446 int vol_type;
1447
1448 cond_resched();
1449
1450 last_seb = seb;
1451
1452 err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1);
1453 if (err && err != UBI_IO_BITFLIPS) {
1454 ubi_err("VID header is not OK (%d)", err);
1455 if (err > 0)
1456 err = -EIO;
1457 return err;
1458 }
1459
1460 vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1461 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1462 if (sv->vol_type != vol_type) {
1463 ubi_err("bad vol_type");
1464 goto bad_vid_hdr;
1465 }
1466
3261ebd7 1467 if (seb->sqnum != be64_to_cpu(vidh->sqnum)) {
801c135c
AB
1468 ubi_err("bad sqnum %llu", seb->sqnum);
1469 goto bad_vid_hdr;
1470 }
1471
3261ebd7 1472 if (sv->vol_id != be32_to_cpu(vidh->vol_id)) {
801c135c
AB
1473 ubi_err("bad vol_id %d", sv->vol_id);
1474 goto bad_vid_hdr;
1475 }
1476
1477 if (sv->compat != vidh->compat) {
1478 ubi_err("bad compat %d", vidh->compat);
1479 goto bad_vid_hdr;
1480 }
1481
3261ebd7 1482 if (seb->lnum != be32_to_cpu(vidh->lnum)) {
801c135c
AB
1483 ubi_err("bad lnum %d", seb->lnum);
1484 goto bad_vid_hdr;
1485 }
1486
3261ebd7 1487 if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) {
801c135c
AB
1488 ubi_err("bad used_ebs %d", sv->used_ebs);
1489 goto bad_vid_hdr;
1490 }
1491
3261ebd7 1492 if (sv->data_pad != be32_to_cpu(vidh->data_pad)) {
801c135c
AB
1493 ubi_err("bad data_pad %d", sv->data_pad);
1494 goto bad_vid_hdr;
1495 }
801c135c
AB
1496 }
1497
1498 if (!last_seb)
1499 continue;
1500
3261ebd7 1501 if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) {
801c135c
AB
1502 ubi_err("bad highest_lnum %d", sv->highest_lnum);
1503 goto bad_vid_hdr;
1504 }
1505
3261ebd7 1506 if (sv->last_data_size != be32_to_cpu(vidh->data_size)) {
801c135c
AB
1507 ubi_err("bad last_data_size %d", sv->last_data_size);
1508 goto bad_vid_hdr;
1509 }
1510 }
1511
1512 /*
1513 * Make sure that all the physical eraseblocks are in one of the lists
1514 * or trees.
1515 */
d9b0744d 1516 buf = kzalloc(ubi->peb_count, GFP_KERNEL);
801c135c
AB
1517 if (!buf)
1518 return -ENOMEM;
1519
801c135c
AB
1520 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1521 err = ubi_io_is_bad(ubi, pnum);
341e1a0c
AB
1522 if (err < 0) {
1523 kfree(buf);
801c135c 1524 return err;
9c9ec147 1525 } else if (err)
d9b0744d 1526 buf[pnum] = 1;
801c135c
AB
1527 }
1528
1529 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb)
1530 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
d9b0744d 1531 buf[seb->pnum] = 1;
801c135c
AB
1532
1533 list_for_each_entry(seb, &si->free, u.list)
d9b0744d 1534 buf[seb->pnum] = 1;
801c135c
AB
1535
1536 list_for_each_entry(seb, &si->corr, u.list)
d9b0744d 1537 buf[seb->pnum] = 1;
801c135c
AB
1538
1539 list_for_each_entry(seb, &si->erase, u.list)
d9b0744d 1540 buf[seb->pnum] = 1;
801c135c
AB
1541
1542 list_for_each_entry(seb, &si->alien, u.list)
d9b0744d 1543 buf[seb->pnum] = 1;
801c135c
AB
1544
1545 err = 0;
1546 for (pnum = 0; pnum < ubi->peb_count; pnum++)
d9b0744d 1547 if (!buf[pnum]) {
801c135c
AB
1548 ubi_err("PEB %d is not referred", pnum);
1549 err = 1;
1550 }
1551
1552 kfree(buf);
1553 if (err)
1554 goto out;
1555 return 0;
1556
1557bad_seb:
1558 ubi_err("bad scanning information about LEB %d", seb->lnum);
1559 ubi_dbg_dump_seb(seb, 0);
1560 ubi_dbg_dump_sv(sv);
1561 goto out;
1562
1563bad_sv:
1564 ubi_err("bad scanning information about volume %d", sv->vol_id);
1565 ubi_dbg_dump_sv(sv);
1566 goto out;
1567
1568bad_vid_hdr:
1569 ubi_err("bad scanning information about volume %d", sv->vol_id);
1570 ubi_dbg_dump_sv(sv);
1571 ubi_dbg_dump_vid_hdr(vidh);
1572
1573out:
1574 ubi_dbg_dump_stack();
adbf05e3 1575 return -EINVAL;
801c135c
AB
1576}
1577
1578#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
This page took 0.430286 seconds and 5 git commands to generate.