UBI: rename seb to aeb
[deliverable/linux.git] / drivers / mtd / ubi / scan.c
CommitLineData
801c135c
AB
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Artem Bityutskiy (Битюцкий Артём)
19 */
20
21/*
85c6e6e2 22 * UBI scanning sub-system.
801c135c 23 *
85c6e6e2 24 * This sub-system is responsible for scanning the flash media, checking UBI
801c135c
AB
25 * headers and providing complete information about the UBI flash image.
26 *
afc15a81 27 * The scanning information is represented by a &struct ubi_attach_info' object.
cb28a932 28 * Information about found volumes is represented by &struct ubi_ainf_volume
801c135c
AB
29 * objects which are kept in volume RB-tree with root at the @volumes field.
30 * The RB-tree is indexed by the volume ID.
31 *
227423d2 32 * Scanned logical eraseblocks are represented by &struct ubi_ainf_peb objects.
801c135c 33 * These objects are kept in per-volume RB-trees with the root at the
cb28a932 34 * corresponding &struct ubi_ainf_volume object. To put it differently, we keep
801c135c
AB
35 * an RB-tree of per-volume objects and each of these objects is the root of
36 * RB-tree of per-eraseblock objects.
37 *
38 * Corrupted physical eraseblocks are put to the @corr list, free physical
39 * eraseblocks are put to the @free list and the physical eraseblock to be
40 * erased are put to the @erase list.
0525dac9 41 *
fef2deb3
AB
42 * About corruptions
43 * ~~~~~~~~~~~~~~~~~
44 *
45 * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
46 * whether the headers are corrupted or not. Sometimes UBI also protects the
47 * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
48 * when it moves the contents of a PEB for wear-leveling purposes.
49 *
0525dac9 50 * UBI tries to distinguish between 2 types of corruptions.
fef2deb3
AB
51 *
52 * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
53 * tries to handle them gracefully, without printing too many warnings and
54 * error messages. The idea is that we do not lose important data in these case
55 * - we may lose only the data which was being written to the media just before
56 * the power cut happened, and the upper layers (e.g., UBIFS) are supposed to
57 * handle such data losses (e.g., by using the FS journal).
58 *
59 * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
60 * the reason is a power cut, UBI puts this PEB to the @erase list, and all
61 * PEBs in the @erase list are scheduled for erasure later.
0525dac9
AB
62 *
63 * 2. Unexpected corruptions which are not caused by power cuts. During
fef2deb3
AB
64 * scanning, such PEBs are put to the @corr list and UBI preserves them.
65 * Obviously, this lessens the amount of available PEBs, and if at some point
66 * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
67 * about such PEBs every time the MTD device is attached.
45aafd32
AB
68 *
69 * However, it is difficult to reliably distinguish between these types of
fef2deb3
AB
70 * corruptions and UBI's strategy is as follows. UBI assumes corruption type 2
71 * if the VID header is corrupted and the data area does not contain all 0xFFs,
72 * and there were no bit-flips or integrity errors while reading the data area.
73 * Otherwise UBI assumes corruption type 1. So the decision criteria are as
74 * follows.
75 * o If the data area contains only 0xFFs, there is no data, and it is safe
76 * to just erase this PEB - this is corruption type 1.
77 * o If the data area has bit-flips or data integrity errors (ECC errors on
45aafd32 78 * NAND), it is probably a PEB which was being erased when power cut
fef2deb3
AB
79 * happened, so this is corruption type 1. However, this is just a guess,
80 * which might be wrong.
81 * o Otherwise this it corruption type 2.
801c135c
AB
82 */
83
84#include <linux/err.h>
5a0e3ad6 85#include <linux/slab.h>
801c135c 86#include <linux/crc32.h>
3013ee31 87#include <linux/math64.h>
095751a6 88#include <linux/random.h>
801c135c
AB
89#include "ubi.h"
90
afc15a81 91static int self_check_si(struct ubi_device *ubi, struct ubi_attach_info *si);
801c135c
AB
92
93/* Temporary variables used during scanning */
94static struct ubi_ec_hdr *ech;
95static struct ubi_vid_hdr *vidh;
96
941dfb07 97/**
78d87c95
AB
98 * add_to_list - add physical eraseblock to a list.
99 * @si: scanning information
100 * @pnum: physical eraseblock number to add
101 * @ec: erase counter of the physical eraseblock
0525dac9 102 * @to_head: if not zero, add to the head of the list
78d87c95
AB
103 * @list: the list to add to
104 *
3fb34124 105 * This function adds physical eraseblock @pnum to free, erase, or alien lists.
0525dac9
AB
106 * If @to_head is not zero, PEB will be added to the head of the list, which
107 * basically means it will be processed first later. E.g., we add corrupted
108 * PEBs (corrupted due to power cuts) to the head of the erase list to make
109 * sure we erase them first and get rid of corruptions ASAP. This function
110 * returns zero in case of success and a negative error code in case of
3fb34124 111 * failure.
78d87c95 112 */
afc15a81
AB
113static int add_to_list(struct ubi_attach_info *si, int pnum, int ec,
114 int to_head, struct list_head *list)
801c135c 115{
2c5ec5ce 116 struct ubi_ainf_peb *aeb;
801c135c 117
33789fb9 118 if (list == &si->free) {
801c135c 119 dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
33789fb9 120 } else if (list == &si->erase) {
801c135c 121 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
33789fb9 122 } else if (list == &si->alien) {
801c135c 123 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
33789fb9
AB
124 si->alien_peb_count += 1;
125 } else
801c135c
AB
126 BUG();
127
2c5ec5ce
AB
128 aeb = kmem_cache_alloc(si->scan_leb_slab, GFP_KERNEL);
129 if (!aeb)
801c135c
AB
130 return -ENOMEM;
131
2c5ec5ce
AB
132 aeb->pnum = pnum;
133 aeb->ec = ec;
0525dac9 134 if (to_head)
2c5ec5ce 135 list_add(&aeb->u.list, list);
0525dac9 136 else
2c5ec5ce 137 list_add_tail(&aeb->u.list, list);
801c135c
AB
138 return 0;
139}
140
3fb34124
AB
141/**
142 * add_corrupted - add a corrupted physical eraseblock.
143 * @si: scanning information
144 * @pnum: physical eraseblock number to add
145 * @ec: erase counter of the physical eraseblock
146 *
147 * This function adds corrupted physical eraseblock @pnum to the 'corr' list.
feeba4b8
AB
148 * The corruption was presumably not caused by a power cut. Returns zero in
149 * case of success and a negative error code in case of failure.
3fb34124 150 */
afc15a81 151static int add_corrupted(struct ubi_attach_info *si, int pnum, int ec)
3fb34124 152{
2c5ec5ce 153 struct ubi_ainf_peb *aeb;
3fb34124
AB
154
155 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
156
2c5ec5ce
AB
157 aeb = kmem_cache_alloc(si->scan_leb_slab, GFP_KERNEL);
158 if (!aeb)
3fb34124
AB
159 return -ENOMEM;
160
161 si->corr_peb_count += 1;
2c5ec5ce
AB
162 aeb->pnum = pnum;
163 aeb->ec = ec;
164 list_add(&aeb->u.list, &si->corr);
3fb34124
AB
165 return 0;
166}
167
801c135c 168/**
ebaaf1af 169 * validate_vid_hdr - check volume identifier header.
801c135c
AB
170 * @vid_hdr: the volume identifier header to check
171 * @sv: information about the volume this logical eraseblock belongs to
172 * @pnum: physical eraseblock number the VID header came from
173 *
174 * This function checks that data stored in @vid_hdr is consistent. Returns
175 * non-zero if an inconsistency was found and zero if not.
176 *
177 * Note, UBI does sanity check of everything it reads from the flash media.
85c6e6e2 178 * Most of the checks are done in the I/O sub-system. Here we check that the
801c135c
AB
179 * information in the VID header is consistent to the information in other VID
180 * headers of the same volume.
181 */
182static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
cb28a932 183 const struct ubi_ainf_volume *sv, int pnum)
801c135c
AB
184{
185 int vol_type = vid_hdr->vol_type;
3261ebd7
CH
186 int vol_id = be32_to_cpu(vid_hdr->vol_id);
187 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
188 int data_pad = be32_to_cpu(vid_hdr->data_pad);
801c135c
AB
189
190 if (sv->leb_count != 0) {
191 int sv_vol_type;
192
193 /*
194 * This is not the first logical eraseblock belonging to this
195 * volume. Ensure that the data in its VID header is consistent
196 * to the data in previous logical eraseblock headers.
197 */
198
199 if (vol_id != sv->vol_id) {
e2986827 200 ubi_err("inconsistent vol_id");
801c135c
AB
201 goto bad;
202 }
203
204 if (sv->vol_type == UBI_STATIC_VOLUME)
205 sv_vol_type = UBI_VID_STATIC;
206 else
207 sv_vol_type = UBI_VID_DYNAMIC;
208
209 if (vol_type != sv_vol_type) {
e2986827 210 ubi_err("inconsistent vol_type");
801c135c
AB
211 goto bad;
212 }
213
214 if (used_ebs != sv->used_ebs) {
e2986827 215 ubi_err("inconsistent used_ebs");
801c135c
AB
216 goto bad;
217 }
218
219 if (data_pad != sv->data_pad) {
e2986827 220 ubi_err("inconsistent data_pad");
801c135c
AB
221 goto bad;
222 }
223 }
224
225 return 0;
226
227bad:
228 ubi_err("inconsistent VID header at PEB %d", pnum);
a904e3f1 229 ubi_dump_vid_hdr(vid_hdr);
614c74a7 230 ubi_dump_sv(sv);
801c135c
AB
231 return -EINVAL;
232}
233
234/**
235 * add_volume - add volume to the scanning information.
236 * @si: scanning information
237 * @vol_id: ID of the volume to add
238 * @pnum: physical eraseblock number
239 * @vid_hdr: volume identifier header
240 *
241 * If the volume corresponding to the @vid_hdr logical eraseblock is already
242 * present in the scanning information, this function does nothing. Otherwise
243 * it adds corresponding volume to the scanning information. Returns a pointer
244 * to the scanning volume object in case of success and a negative error code
245 * in case of failure.
246 */
afc15a81
AB
247static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *si,
248 int vol_id, int pnum,
801c135c
AB
249 const struct ubi_vid_hdr *vid_hdr)
250{
cb28a932 251 struct ubi_ainf_volume *sv;
801c135c
AB
252 struct rb_node **p = &si->volumes.rb_node, *parent = NULL;
253
3261ebd7 254 ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
801c135c
AB
255
256 /* Walk the volume RB-tree to look if this volume is already present */
257 while (*p) {
258 parent = *p;
cb28a932 259 sv = rb_entry(parent, struct ubi_ainf_volume, rb);
801c135c
AB
260
261 if (vol_id == sv->vol_id)
262 return sv;
263
264 if (vol_id > sv->vol_id)
265 p = &(*p)->rb_left;
266 else
267 p = &(*p)->rb_right;
268 }
269
270 /* The volume is absent - add it */
cb28a932 271 sv = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
801c135c
AB
272 if (!sv)
273 return ERR_PTR(-ENOMEM);
274
275 sv->highest_lnum = sv->leb_count = 0;
801c135c
AB
276 sv->vol_id = vol_id;
277 sv->root = RB_ROOT;
3261ebd7
CH
278 sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
279 sv->data_pad = be32_to_cpu(vid_hdr->data_pad);
801c135c
AB
280 sv->compat = vid_hdr->compat;
281 sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
282 : UBI_STATIC_VOLUME;
283 if (vol_id > si->highest_vol_id)
284 si->highest_vol_id = vol_id;
285
286 rb_link_node(&sv->rb, parent, p);
287 rb_insert_color(&sv->rb, &si->volumes);
288 si->vols_found += 1;
289 dbg_bld("added volume %d", vol_id);
290 return sv;
291}
292
293/**
294 * compare_lebs - find out which logical eraseblock is newer.
295 * @ubi: UBI device description object
2c5ec5ce 296 * @aeb: first logical eraseblock to compare
801c135c
AB
297 * @pnum: physical eraseblock number of the second logical eraseblock to
298 * compare
299 * @vid_hdr: volume identifier header of the second logical eraseblock
300 *
301 * This function compares 2 copies of a LEB and informs which one is newer. In
302 * case of success this function returns a positive value, in case of failure, a
303 * negative error code is returned. The success return codes use the following
304 * bits:
2c5ec5ce 305 * o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
801c135c
AB
306 * second PEB (described by @pnum and @vid_hdr);
307 * o bit 0 is set: the second PEB is newer;
308 * o bit 1 is cleared: no bit-flips were detected in the newer LEB;
309 * o bit 1 is set: bit-flips were detected in the newer LEB;
310 * o bit 2 is cleared: the older LEB is not corrupted;
311 * o bit 2 is set: the older LEB is corrupted.
312 */
2c5ec5ce 313static int compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
e88d6e10 314 int pnum, const struct ubi_vid_hdr *vid_hdr)
801c135c
AB
315{
316 void *buf;
317 int len, err, second_is_newer, bitflips = 0, corrupted = 0;
318 uint32_t data_crc, crc;
8bc22961 319 struct ubi_vid_hdr *vh = NULL;
3261ebd7 320 unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
801c135c 321
2c5ec5ce 322 if (sqnum2 == aeb->sqnum) {
801c135c 323 /*
9869cd80
AB
324 * This must be a really ancient UBI image which has been
325 * created before sequence numbers support has been added. At
326 * that times we used 32-bit LEB versions stored in logical
327 * eraseblocks. That was before UBI got into mainline. We do not
0525dac9
AB
328 * support these images anymore. Well, those images still work,
329 * but only if no unclean reboots happened.
801c135c 330 */
9869cd80
AB
331 ubi_err("unsupported on-flash UBI format\n");
332 return -EINVAL;
333 }
64203195 334
9869cd80 335 /* Obviously the LEB with lower sequence counter is older */
2c5ec5ce 336 second_is_newer = (sqnum2 > aeb->sqnum);
801c135c
AB
337
338 /*
339 * Now we know which copy is newer. If the copy flag of the PEB with
340 * newer version is not set, then we just return, otherwise we have to
341 * check data CRC. For the second PEB we already have the VID header,
342 * for the first one - we'll need to re-read it from flash.
343 *
9869cd80 344 * Note: this may be optimized so that we wouldn't read twice.
801c135c
AB
345 */
346
347 if (second_is_newer) {
348 if (!vid_hdr->copy_flag) {
349 /* It is not a copy, so it is newer */
350 dbg_bld("second PEB %d is newer, copy_flag is unset",
351 pnum);
352 return 1;
353 }
354 } else {
2c5ec5ce 355 if (!aeb->copy_flag) {
fb22b59b
AB
356 /* It is not a copy, so it is newer */
357 dbg_bld("first PEB %d is newer, copy_flag is unset",
358 pnum);
359 return bitflips << 1;
360 }
801c135c 361
33818bbb 362 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
8bc22961 363 if (!vh)
801c135c
AB
364 return -ENOMEM;
365
2c5ec5ce 366 pnum = aeb->pnum;
8bc22961 367 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
801c135c
AB
368 if (err) {
369 if (err == UBI_IO_BITFLIPS)
370 bitflips = 1;
371 else {
e2986827 372 ubi_err("VID of PEB %d header is bad, but it "
0525dac9 373 "was OK earlier, err %d", pnum, err);
801c135c
AB
374 if (err > 0)
375 err = -EIO;
376
377 goto out_free_vidh;
378 }
379 }
380
8bc22961 381 vid_hdr = vh;
801c135c
AB
382 }
383
384 /* Read the data of the copy and check the CRC */
385
3261ebd7 386 len = be32_to_cpu(vid_hdr->data_size);
92ad8f37 387 buf = vmalloc(len);
801c135c
AB
388 if (!buf) {
389 err = -ENOMEM;
390 goto out_free_vidh;
391 }
392
393 err = ubi_io_read_data(ubi, buf, pnum, 0, len);
d57f4054 394 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
801c135c
AB
395 goto out_free_buf;
396
3261ebd7 397 data_crc = be32_to_cpu(vid_hdr->data_crc);
801c135c
AB
398 crc = crc32(UBI_CRC32_INIT, buf, len);
399 if (crc != data_crc) {
400 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
401 pnum, crc, data_crc);
402 corrupted = 1;
403 bitflips = 0;
404 second_is_newer = !second_is_newer;
405 } else {
406 dbg_bld("PEB %d CRC is OK", pnum);
407 bitflips = !!err;
408 }
409
92ad8f37 410 vfree(buf);
8bc22961 411 ubi_free_vid_hdr(ubi, vh);
801c135c
AB
412
413 if (second_is_newer)
414 dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
415 else
416 dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
417
418 return second_is_newer | (bitflips << 1) | (corrupted << 2);
419
420out_free_buf:
92ad8f37 421 vfree(buf);
801c135c 422out_free_vidh:
8bc22961 423 ubi_free_vid_hdr(ubi, vh);
801c135c
AB
424 return err;
425}
426
427/**
ebaaf1af 428 * ubi_scan_add_used - add physical eraseblock to the scanning information.
801c135c
AB
429 * @ubi: UBI device description object
430 * @si: scanning information
431 * @pnum: the physical eraseblock number
432 * @ec: erase counter
433 * @vid_hdr: the volume identifier header
434 * @bitflips: if bit-flips were detected when this physical eraseblock was read
435 *
79b510c0
AB
436 * This function adds information about a used physical eraseblock to the
437 * 'used' tree of the corresponding volume. The function is rather complex
438 * because it has to handle cases when this is not the first physical
439 * eraseblock belonging to the same logical eraseblock, and the newer one has
440 * to be picked, while the older one has to be dropped. This function returns
441 * zero in case of success and a negative error code in case of failure.
801c135c 442 */
afc15a81 443int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_attach_info *si,
801c135c
AB
444 int pnum, int ec, const struct ubi_vid_hdr *vid_hdr,
445 int bitflips)
446{
447 int err, vol_id, lnum;
801c135c 448 unsigned long long sqnum;
cb28a932 449 struct ubi_ainf_volume *sv;
2c5ec5ce 450 struct ubi_ainf_peb *aeb;
801c135c
AB
451 struct rb_node **p, *parent = NULL;
452
3261ebd7
CH
453 vol_id = be32_to_cpu(vid_hdr->vol_id);
454 lnum = be32_to_cpu(vid_hdr->lnum);
455 sqnum = be64_to_cpu(vid_hdr->sqnum);
801c135c 456
9869cd80
AB
457 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
458 pnum, vol_id, lnum, ec, sqnum, bitflips);
801c135c
AB
459
460 sv = add_volume(si, vol_id, pnum, vid_hdr);
0e4a008a 461 if (IS_ERR(sv))
801c135c
AB
462 return PTR_ERR(sv);
463
76eafe47
BS
464 if (si->max_sqnum < sqnum)
465 si->max_sqnum = sqnum;
466
801c135c
AB
467 /*
468 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
469 * if this is the first instance of this logical eraseblock or not.
470 */
471 p = &sv->root.rb_node;
472 while (*p) {
473 int cmp_res;
474
475 parent = *p;
2c5ec5ce
AB
476 aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
477 if (lnum != aeb->lnum) {
478 if (lnum < aeb->lnum)
801c135c
AB
479 p = &(*p)->rb_left;
480 else
481 p = &(*p)->rb_right;
482 continue;
483 }
484
485 /*
486 * There is already a physical eraseblock describing the same
487 * logical eraseblock present.
488 */
489
2c5ec5ce
AB
490 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
491 aeb->pnum, aeb->sqnum, aeb->ec);
801c135c
AB
492
493 /*
494 * Make sure that the logical eraseblocks have different
495 * sequence numbers. Otherwise the image is bad.
496 *
9869cd80
AB
497 * However, if the sequence number is zero, we assume it must
498 * be an ancient UBI image from the era when UBI did not have
499 * sequence numbers. We still can attach these images, unless
500 * there is a need to distinguish between old and new
501 * eraseblocks, in which case we'll refuse the image in
502 * 'compare_lebs()'. In other words, we attach old clean
503 * images, but refuse attaching old images with duplicated
504 * logical eraseblocks because there was an unclean reboot.
801c135c 505 */
2c5ec5ce 506 if (aeb->sqnum == sqnum && sqnum != 0) {
801c135c
AB
507 ubi_err("two LEBs with same sequence number %llu",
508 sqnum);
2c5ec5ce 509 ubi_dump_aeb(aeb, 0);
a904e3f1 510 ubi_dump_vid_hdr(vid_hdr);
801c135c
AB
511 return -EINVAL;
512 }
513
514 /*
515 * Now we have to drop the older one and preserve the newer
516 * one.
517 */
2c5ec5ce 518 cmp_res = compare_lebs(ubi, aeb, pnum, vid_hdr);
801c135c
AB
519 if (cmp_res < 0)
520 return cmp_res;
521
522 if (cmp_res & 1) {
523 /*
3f502622 524 * This logical eraseblock is newer than the one
801c135c
AB
525 * found earlier.
526 */
527 err = validate_vid_hdr(vid_hdr, sv, pnum);
528 if (err)
529 return err;
530
2c5ec5ce 531 err = add_to_list(si, aeb->pnum, aeb->ec, cmp_res & 4,
0525dac9 532 &si->erase);
801c135c
AB
533 if (err)
534 return err;
535
2c5ec5ce
AB
536 aeb->ec = ec;
537 aeb->pnum = pnum;
538 aeb->scrub = ((cmp_res & 2) || bitflips);
539 aeb->copy_flag = vid_hdr->copy_flag;
540 aeb->sqnum = sqnum;
801c135c
AB
541
542 if (sv->highest_lnum == lnum)
543 sv->last_data_size =
3261ebd7 544 be32_to_cpu(vid_hdr->data_size);
801c135c
AB
545
546 return 0;
547 } else {
548 /*
025dfdaf 549 * This logical eraseblock is older than the one found
801c135c
AB
550 * previously.
551 */
0525dac9
AB
552 return add_to_list(si, pnum, ec, cmp_res & 4,
553 &si->erase);
801c135c
AB
554 }
555 }
556
557 /*
558 * We've met this logical eraseblock for the first time, add it to the
559 * scanning information.
560 */
561
562 err = validate_vid_hdr(vid_hdr, sv, pnum);
563 if (err)
564 return err;
565
2c5ec5ce
AB
566 aeb = kmem_cache_alloc(si->scan_leb_slab, GFP_KERNEL);
567 if (!aeb)
801c135c
AB
568 return -ENOMEM;
569
2c5ec5ce
AB
570 aeb->ec = ec;
571 aeb->pnum = pnum;
572 aeb->lnum = lnum;
573 aeb->scrub = bitflips;
574 aeb->copy_flag = vid_hdr->copy_flag;
575 aeb->sqnum = sqnum;
801c135c
AB
576
577 if (sv->highest_lnum <= lnum) {
578 sv->highest_lnum = lnum;
3261ebd7 579 sv->last_data_size = be32_to_cpu(vid_hdr->data_size);
801c135c
AB
580 }
581
801c135c 582 sv->leb_count += 1;
2c5ec5ce
AB
583 rb_link_node(&aeb->u.rb, parent, p);
584 rb_insert_color(&aeb->u.rb, &sv->root);
801c135c
AB
585 return 0;
586}
587
588/**
ebaaf1af 589 * ubi_scan_find_sv - find volume in the scanning information.
801c135c
AB
590 * @si: scanning information
591 * @vol_id: the requested volume ID
592 *
593 * This function returns a pointer to the volume description or %NULL if there
594 * are no data about this volume in the scanning information.
595 */
afc15a81 596struct ubi_ainf_volume *ubi_scan_find_sv(const struct ubi_attach_info *si,
801c135c
AB
597 int vol_id)
598{
cb28a932 599 struct ubi_ainf_volume *sv;
801c135c
AB
600 struct rb_node *p = si->volumes.rb_node;
601
602 while (p) {
cb28a932 603 sv = rb_entry(p, struct ubi_ainf_volume, rb);
801c135c
AB
604
605 if (vol_id == sv->vol_id)
606 return sv;
607
608 if (vol_id > sv->vol_id)
609 p = p->rb_left;
610 else
611 p = p->rb_right;
612 }
613
614 return NULL;
615}
616
617/**
2c5ec5ce 618 * ubi_scan_find_aeb - find LEB in the volume scanning information.
801c135c
AB
619 * @sv: a pointer to the volume scanning information
620 * @lnum: the requested logical eraseblock
621 *
622 * This function returns a pointer to the scanning logical eraseblock or %NULL
623 * if there are no data about it in the scanning volume information.
624 */
2c5ec5ce 625struct ubi_ainf_peb *ubi_scan_find_aeb(const struct ubi_ainf_volume *sv,
801c135c
AB
626 int lnum)
627{
2c5ec5ce 628 struct ubi_ainf_peb *aeb;
801c135c
AB
629 struct rb_node *p = sv->root.rb_node;
630
631 while (p) {
2c5ec5ce 632 aeb = rb_entry(p, struct ubi_ainf_peb, u.rb);
801c135c 633
2c5ec5ce
AB
634 if (lnum == aeb->lnum)
635 return aeb;
801c135c 636
2c5ec5ce 637 if (lnum > aeb->lnum)
801c135c
AB
638 p = p->rb_left;
639 else
640 p = p->rb_right;
641 }
642
643 return NULL;
644}
645
646/**
647 * ubi_scan_rm_volume - delete scanning information about a volume.
648 * @si: scanning information
649 * @sv: the volume scanning information to delete
650 */
afc15a81 651void ubi_scan_rm_volume(struct ubi_attach_info *si, struct ubi_ainf_volume *sv)
801c135c
AB
652{
653 struct rb_node *rb;
2c5ec5ce 654 struct ubi_ainf_peb *aeb;
801c135c
AB
655
656 dbg_bld("remove scanning information about volume %d", sv->vol_id);
657
658 while ((rb = rb_first(&sv->root))) {
2c5ec5ce
AB
659 aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb);
660 rb_erase(&aeb->u.rb, &sv->root);
661 list_add_tail(&aeb->u.list, &si->erase);
801c135c
AB
662 }
663
664 rb_erase(&sv->rb, &si->volumes);
665 kfree(sv);
666 si->vols_found -= 1;
667}
668
669/**
670 * ubi_scan_erase_peb - erase a physical eraseblock.
671 * @ubi: UBI device description object
672 * @si: scanning information
673 * @pnum: physical eraseblock number to erase;
674 * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown)
675 *
676 * This function erases physical eraseblock 'pnum', and writes the erase
677 * counter header to it. This function should only be used on UBI device
85c6e6e2
AB
678 * initialization stages, when the EBA sub-system had not been yet initialized.
679 * This function returns zero in case of success and a negative error code in
680 * case of failure.
801c135c 681 */
afc15a81 682int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_attach_info *si,
e88d6e10 683 int pnum, int ec)
801c135c
AB
684{
685 int err;
686 struct ubi_ec_hdr *ec_hdr;
687
801c135c
AB
688 if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
689 /*
690 * Erase counter overflow. Upgrade UBI and use 64-bit
691 * erase counters internally.
692 */
693 ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
694 return -EINVAL;
695 }
696
dcec4c3b
FM
697 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
698 if (!ec_hdr)
699 return -ENOMEM;
700
3261ebd7 701 ec_hdr->ec = cpu_to_be64(ec);
801c135c
AB
702
703 err = ubi_io_sync_erase(ubi, pnum, 0);
704 if (err < 0)
705 goto out_free;
706
707 err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
708
709out_free:
710 kfree(ec_hdr);
711 return err;
712}
713
714/**
715 * ubi_scan_get_free_peb - get a free physical eraseblock.
716 * @ubi: UBI device description object
717 * @si: scanning information
718 *
719 * This function returns a free physical eraseblock. It is supposed to be
85c6e6e2
AB
720 * called on the UBI initialization stages when the wear-leveling sub-system is
721 * not initialized yet. This function picks a physical eraseblocks from one of
722 * the lists, writes the EC header if it is needed, and removes it from the
723 * list.
801c135c
AB
724 *
725 * This function returns scanning physical eraseblock information in case of
726 * success and an error code in case of failure.
727 */
227423d2 728struct ubi_ainf_peb *ubi_scan_get_free_peb(struct ubi_device *ubi,
afc15a81 729 struct ubi_attach_info *si)
801c135c 730{
5fc01ab6 731 int err = 0;
2c5ec5ce 732 struct ubi_ainf_peb *aeb, *tmp_aeb;
801c135c
AB
733
734 if (!list_empty(&si->free)) {
2c5ec5ce
AB
735 aeb = list_entry(si->free.next, struct ubi_ainf_peb, u.list);
736 list_del(&aeb->u.list);
737 dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
738 return aeb;
801c135c
AB
739 }
740
5fc01ab6
AB
741 /*
742 * We try to erase the first physical eraseblock from the erase list
743 * and pick it if we succeed, or try to erase the next one if not. And
744 * so forth. We don't want to take care about bad eraseblocks here -
745 * they'll be handled later.
746 */
2c5ec5ce
AB
747 list_for_each_entry_safe(aeb, tmp_aeb, &si->erase, u.list) {
748 if (aeb->ec == UBI_SCAN_UNKNOWN_EC)
749 aeb->ec = si->mean_ec;
801c135c 750
2c5ec5ce 751 err = ubi_scan_erase_peb(ubi, si, aeb->pnum, aeb->ec+1);
5fc01ab6
AB
752 if (err)
753 continue;
801c135c 754
2c5ec5ce
AB
755 aeb->ec += 1;
756 list_del(&aeb->u.list);
757 dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
758 return aeb;
801c135c
AB
759 }
760
5fc01ab6 761 ubi_err("no free eraseblocks");
801c135c
AB
762 return ERR_PTR(-ENOSPC);
763}
764
feeba4b8 765/**
45aafd32 766 * check_corruption - check the data area of PEB.
feeba4b8
AB
767 * @ubi: UBI device description object
768 * @vid_hrd: the (corrupted) VID header of this PEB
769 * @pnum: the physical eraseblock number to check
770 *
771 * This is a helper function which is used to distinguish between VID header
772 * corruptions caused by power cuts and other reasons. If the PEB contains only
45aafd32 773 * 0xFF bytes in the data area, the VID header is most probably corrupted
feeba4b8 774 * because of a power cut (%0 is returned in this case). Otherwise, it was
45aafd32
AB
775 * probably corrupted for some other reasons (%1 is returned in this case). A
776 * negative error code is returned if a read error occurred.
feeba4b8
AB
777 *
778 * If the corruption reason was a power cut, UBI can safely erase this PEB.
779 * Otherwise, it should preserve it to avoid possibly destroying important
780 * information.
781 */
45aafd32
AB
782static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
783 int pnum)
feeba4b8
AB
784{
785 int err;
786
787 mutex_lock(&ubi->buf_mutex);
0ca39d74 788 memset(ubi->peb_buf, 0x00, ubi->leb_size);
feeba4b8 789
0ca39d74 790 err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
feeba4b8 791 ubi->leb_size);
d57f4054 792 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
45aafd32
AB
793 /*
794 * Bit-flips or integrity errors while reading the data area.
795 * It is difficult to say for sure what type of corruption is
796 * this, but presumably a power cut happened while this PEB was
797 * erased, so it became unstable and corrupted, and should be
798 * erased.
799 */
1b1d76e2
DC
800 err = 0;
801 goto out_unlock;
45aafd32
AB
802 }
803
804 if (err)
1b1d76e2 805 goto out_unlock;
feeba4b8 806
0ca39d74 807 if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
1b1d76e2 808 goto out_unlock;
feeba4b8
AB
809
810 ubi_err("PEB %d contains corrupted VID header, and the data does not "
811 "contain all 0xFF, this may be a non-UBI PEB or a severe VID "
812 "header corruption which requires manual inspection", pnum);
a904e3f1 813 ubi_dump_vid_hdr(vid_hdr);
feeba4b8
AB
814 dbg_msg("hexdump of PEB %d offset %d, length %d",
815 pnum, ubi->leb_start, ubi->leb_size);
816 ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
0ca39d74 817 ubi->peb_buf, ubi->leb_size, 1);
1b1d76e2
DC
818 err = 1;
819
820out_unlock:
feeba4b8 821 mutex_unlock(&ubi->buf_mutex);
1b1d76e2 822 return err;
feeba4b8
AB
823}
824
801c135c 825/**
ebaaf1af 826 * process_eb - read, check UBI headers, and add them to scanning information.
801c135c
AB
827 * @ubi: UBI device description object
828 * @si: scanning information
829 * @pnum: the physical eraseblock number
830 *
78d87c95 831 * This function returns a zero if the physical eraseblock was successfully
801c135c
AB
832 * handled and a negative error code in case of failure.
833 */
afc15a81 834static int process_eb(struct ubi_device *ubi, struct ubi_attach_info *si,
9c9ec147 835 int pnum)
801c135c 836{
c18a8418 837 long long uninitialized_var(ec);
e0e718c2 838 int err, bitflips = 0, vol_id, ec_err = 0;
801c135c
AB
839
840 dbg_bld("scan PEB %d", pnum);
841
842 /* Skip bad physical eraseblocks */
843 err = ubi_io_is_bad(ubi, pnum);
844 if (err < 0)
845 return err;
846 else if (err) {
847 /*
85c6e6e2
AB
848 * FIXME: this is actually duty of the I/O sub-system to
849 * initialize this, but MTD does not provide enough
850 * information.
801c135c
AB
851 */
852 si->bad_peb_count += 1;
853 return 0;
854 }
855
856 err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
857 if (err < 0)
858 return err;
b3321508
AB
859 switch (err) {
860 case 0:
861 break;
862 case UBI_IO_BITFLIPS:
801c135c 863 bitflips = 1;
b3321508
AB
864 break;
865 case UBI_IO_FF:
0525dac9
AB
866 si->empty_peb_count += 1;
867 return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, 0,
868 &si->erase);
b3321508 869 case UBI_IO_FF_BITFLIPS:
0525dac9
AB
870 si->empty_peb_count += 1;
871 return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, 1,
872 &si->erase);
b3321508 873 case UBI_IO_BAD_HDR_EBADMSG:
b3321508 874 case UBI_IO_BAD_HDR:
801c135c
AB
875 /*
876 * We have to also look at the VID header, possibly it is not
877 * corrupted. Set %bitflips flag in order to make this PEB be
878 * moved and EC be re-created.
879 */
e0e718c2 880 ec_err = err;
801c135c
AB
881 ec = UBI_SCAN_UNKNOWN_EC;
882 bitflips = 1;
b3321508
AB
883 break;
884 default:
885 ubi_err("'ubi_io_read_ec_hdr()' returned unknown code %d", err);
886 return -EINVAL;
801c135c
AB
887 }
888
e0e718c2 889 if (!ec_err) {
fe96efc1
AB
890 int image_seq;
891
801c135c
AB
892 /* Make sure UBI version is OK */
893 if (ech->version != UBI_VERSION) {
894 ubi_err("this UBI version is %d, image version is %d",
895 UBI_VERSION, (int)ech->version);
896 return -EINVAL;
897 }
898
3261ebd7 899 ec = be64_to_cpu(ech->ec);
801c135c
AB
900 if (ec > UBI_MAX_ERASECOUNTER) {
901 /*
902 * Erase counter overflow. The EC headers have 64 bits
903 * reserved, but we anyway make use of only 31 bit
904 * values, as this seems to be enough for any existing
905 * flash. Upgrade UBI and use 64-bit erase counters
906 * internally.
907 */
908 ubi_err("erase counter overflow, max is %d",
909 UBI_MAX_ERASECOUNTER);
a904e3f1 910 ubi_dump_ec_hdr(ech);
801c135c
AB
911 return -EINVAL;
912 }
fe96efc1 913
32bc4820
AH
914 /*
915 * Make sure that all PEBs have the same image sequence number.
916 * This allows us to detect situations when users flash UBI
917 * images incorrectly, so that the flash has the new UBI image
918 * and leftovers from the old one. This feature was added
919 * relatively recently, and the sequence number was always
920 * zero, because old UBI implementations always set it to zero.
921 * For this reasons, we do not panic if some PEBs have zero
922 * sequence number, while other PEBs have non-zero sequence
923 * number.
924 */
3dc948da 925 image_seq = be32_to_cpu(ech->image_seq);
2eadaad6 926 if (!ubi->image_seq && image_seq)
fe96efc1 927 ubi->image_seq = image_seq;
2eadaad6
AB
928 if (ubi->image_seq && image_seq &&
929 ubi->image_seq != image_seq) {
fe96efc1
AB
930 ubi_err("bad image sequence number %d in PEB %d, "
931 "expected %d", image_seq, pnum, ubi->image_seq);
a904e3f1 932 ubi_dump_ec_hdr(ech);
fe96efc1
AB
933 return -EINVAL;
934 }
801c135c
AB
935 }
936
937 /* OK, we've done with the EC header, let's look at the VID header */
938
939 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
940 if (err < 0)
941 return err;
b3321508
AB
942 switch (err) {
943 case 0:
944 break;
945 case UBI_IO_BITFLIPS:
801c135c 946 bitflips = 1;
b3321508
AB
947 break;
948 case UBI_IO_BAD_HDR_EBADMSG:
0525dac9
AB
949 if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
950 /*
951 * Both EC and VID headers are corrupted and were read
952 * with data integrity error, probably this is a bad
953 * PEB, bit it is not marked as bad yet. This may also
954 * be a result of power cut during erasure.
955 */
956 si->maybe_bad_peb_count += 1;
b3321508 957 case UBI_IO_BAD_HDR:
feeba4b8
AB
958 if (ec_err)
959 /*
960 * Both headers are corrupted. There is a possibility
961 * that this a valid UBI PEB which has corresponding
962 * LEB, but the headers are corrupted. However, it is
963 * impossible to distinguish it from a PEB which just
45aafd32 964 * contains garbage because of a power cut during erase
feeba4b8 965 * operation. So we just schedule this PEB for erasure.
7ac760c2 966 *
25985edc 967 * Besides, in case of NOR flash, we deliberately
7ac760c2
AB
968 * corrupt both headers because NOR flash erasure is
969 * slow and can start from the end.
feeba4b8
AB
970 */
971 err = 0;
972 else
973 /*
974 * The EC was OK, but the VID header is corrupted. We
975 * have to check what is in the data area.
976 */
45aafd32 977 err = check_corruption(ubi, vidh, pnum);
df3fca4c
AB
978
979 if (err < 0)
980 return err;
981 else if (!err)
feeba4b8
AB
982 /* This corruption is caused by a power cut */
983 err = add_to_list(si, pnum, ec, 1, &si->erase);
984 else
985 /* This is an unexpected corruption */
986 err = add_corrupted(si, pnum, ec);
987 if (err)
988 return err;
989 goto adjust_mean_ec;
b3321508 990 case UBI_IO_FF_BITFLIPS:
0525dac9 991 err = add_to_list(si, pnum, ec, 1, &si->erase);
801c135c
AB
992 if (err)
993 return err;
994 goto adjust_mean_ec;
b3321508
AB
995 case UBI_IO_FF:
996 if (ec_err)
0525dac9 997 err = add_to_list(si, pnum, ec, 1, &si->erase);
b3321508 998 else
0525dac9 999 err = add_to_list(si, pnum, ec, 0, &si->free);
801c135c
AB
1000 if (err)
1001 return err;
1002 goto adjust_mean_ec;
b3321508
AB
1003 default:
1004 ubi_err("'ubi_io_read_vid_hdr()' returned unknown code %d",
1005 err);
1006 return -EINVAL;
801c135c
AB
1007 }
1008
3261ebd7 1009 vol_id = be32_to_cpu(vidh->vol_id);
91f2d53c 1010 if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
3261ebd7 1011 int lnum = be32_to_cpu(vidh->lnum);
801c135c
AB
1012
1013 /* Unsupported internal volume */
1014 switch (vidh->compat) {
1015 case UBI_COMPAT_DELETE:
1016 ubi_msg("\"delete\" compatible internal volume %d:%d"
158132c9 1017 " found, will remove it", vol_id, lnum);
0525dac9 1018 err = add_to_list(si, pnum, ec, 1, &si->erase);
801c135c
AB
1019 if (err)
1020 return err;
158132c9 1021 return 0;
801c135c
AB
1022
1023 case UBI_COMPAT_RO:
1024 ubi_msg("read-only compatible internal volume %d:%d"
1025 " found, switch to read-only mode",
1026 vol_id, lnum);
1027 ubi->ro_mode = 1;
1028 break;
1029
1030 case UBI_COMPAT_PRESERVE:
1031 ubi_msg("\"preserve\" compatible internal volume %d:%d"
1032 " found", vol_id, lnum);
0525dac9 1033 err = add_to_list(si, pnum, ec, 0, &si->alien);
801c135c
AB
1034 if (err)
1035 return err;
801c135c
AB
1036 return 0;
1037
1038 case UBI_COMPAT_REJECT:
1039 ubi_err("incompatible internal volume %d:%d found",
1040 vol_id, lnum);
1041 return -EINVAL;
1042 }
1043 }
1044
e0e718c2 1045 if (ec_err)
29a88c99
AB
1046 ubi_warn("valid VID header but corrupted EC header at PEB %d",
1047 pnum);
801c135c
AB
1048 err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips);
1049 if (err)
1050 return err;
1051
1052adjust_mean_ec:
e0e718c2 1053 if (!ec_err) {
4bc1dca4
AB
1054 si->ec_sum += ec;
1055 si->ec_count += 1;
801c135c
AB
1056 if (ec > si->max_ec)
1057 si->max_ec = ec;
1058 if (ec < si->min_ec)
1059 si->min_ec = ec;
1060 }
1061
1062 return 0;
1063}
1064
0798cea8
AB
1065/**
1066 * check_what_we_have - check what PEB were found by scanning.
1067 * @ubi: UBI device description object
1068 * @si: scanning information
1069 *
1070 * This is a helper function which takes a look what PEBs were found by
1071 * scanning, and decides whether the flash is empty and should be formatted and
1072 * whether there are too many corrupted PEBs and we should not attach this
1073 * MTD device. Returns zero if we should proceed with attaching the MTD device,
1074 * and %-EINVAL if we should not.
1075 */
afc15a81
AB
1076static int check_what_we_have(struct ubi_device *ubi,
1077 struct ubi_attach_info *si)
0798cea8 1078{
2c5ec5ce 1079 struct ubi_ainf_peb *aeb;
0525dac9 1080 int max_corr, peb_count;
0798cea8 1081
0525dac9
AB
1082 peb_count = ubi->peb_count - si->bad_peb_count - si->alien_peb_count;
1083 max_corr = peb_count / 20 ?: 8;
0798cea8
AB
1084
1085 /*
0525dac9 1086 * Few corrupted PEBs is not a problem and may be just a result of
0798cea8
AB
1087 * unclean reboots. However, many of them may indicate some problems
1088 * with the flash HW or driver.
1089 */
0525dac9
AB
1090 if (si->corr_peb_count) {
1091 ubi_err("%d PEBs are corrupted and preserved",
1092 si->corr_peb_count);
1093 printk(KERN_ERR "Corrupted PEBs are:");
2c5ec5ce
AB
1094 list_for_each_entry(aeb, &si->corr, u.list)
1095 printk(KERN_CONT " %d", aeb->pnum);
0798cea8
AB
1096 printk(KERN_CONT "\n");
1097
1098 /*
1099 * If too many PEBs are corrupted, we refuse attaching,
1100 * otherwise, only print a warning.
1101 */
1102 if (si->corr_peb_count >= max_corr) {
feddbb34 1103 ubi_err("too many corrupted PEBs, refusing");
0798cea8
AB
1104 return -EINVAL;
1105 }
1106 }
1107
0525dac9
AB
1108 if (si->empty_peb_count + si->maybe_bad_peb_count == peb_count) {
1109 /*
1110 * All PEBs are empty, or almost all - a couple PEBs look like
1111 * they may be bad PEBs which were not marked as bad yet.
1112 *
1113 * This piece of code basically tries to distinguish between
1114 * the following situations:
1115 *
1116 * 1. Flash is empty, but there are few bad PEBs, which are not
1117 * marked as bad so far, and which were read with error. We
1118 * want to go ahead and format this flash. While formatting,
1119 * the faulty PEBs will probably be marked as bad.
1120 *
1121 * 2. Flash contains non-UBI data and we do not want to format
1122 * it and destroy possibly important information.
1123 */
1124 if (si->maybe_bad_peb_count <= 2) {
0798cea8
AB
1125 si->is_empty = 1;
1126 ubi_msg("empty MTD device detected");
0525dac9
AB
1127 get_random_bytes(&ubi->image_seq,
1128 sizeof(ubi->image_seq));
0798cea8 1129 } else {
0525dac9
AB
1130 ubi_err("MTD device is not UBI-formatted and possibly "
1131 "contains non-UBI data - refusing it");
0798cea8
AB
1132 return -EINVAL;
1133 }
0525dac9 1134
0798cea8
AB
1135 }
1136
0798cea8
AB
1137 return 0;
1138}
1139
801c135c
AB
1140/**
1141 * ubi_scan - scan an MTD device.
1142 * @ubi: UBI device description object
1143 *
1144 * This function does full scanning of an MTD device and returns complete
1145 * information about it. In case of failure, an error code is returned.
1146 */
afc15a81 1147struct ubi_attach_info *ubi_scan(struct ubi_device *ubi)
801c135c
AB
1148{
1149 int err, pnum;
1150 struct rb_node *rb1, *rb2;
cb28a932 1151 struct ubi_ainf_volume *sv;
2c5ec5ce 1152 struct ubi_ainf_peb *aeb;
afc15a81 1153 struct ubi_attach_info *si;
801c135c 1154
afc15a81 1155 si = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
801c135c
AB
1156 if (!si)
1157 return ERR_PTR(-ENOMEM);
1158
1159 INIT_LIST_HEAD(&si->corr);
1160 INIT_LIST_HEAD(&si->free);
1161 INIT_LIST_HEAD(&si->erase);
1162 INIT_LIST_HEAD(&si->alien);
1163 si->volumes = RB_ROOT;
801c135c
AB
1164
1165 err = -ENOMEM;
6c1e875c 1166 si->scan_leb_slab = kmem_cache_create("ubi_scan_leb_slab",
227423d2 1167 sizeof(struct ubi_ainf_peb),
6c1e875c
AB
1168 0, 0, NULL);
1169 if (!si->scan_leb_slab)
1170 goto out_si;
1171
801c135c
AB
1172 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1173 if (!ech)
a29852be 1174 goto out_si;
801c135c 1175
33818bbb 1176 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
801c135c
AB
1177 if (!vidh)
1178 goto out_ech;
1179
1180 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1181 cond_resched();
1182
c8566350 1183 dbg_gen("process PEB %d", pnum);
801c135c
AB
1184 err = process_eb(ubi, si, pnum);
1185 if (err < 0)
1186 goto out_vidh;
1187 }
1188
1189 dbg_msg("scanning is finished");
1190
4bc1dca4 1191 /* Calculate mean erase counter */
3013ee31
AB
1192 if (si->ec_count)
1193 si->mean_ec = div_u64(si->ec_sum, si->ec_count);
801c135c 1194
0798cea8
AB
1195 err = check_what_we_have(ubi, si);
1196 if (err)
1197 goto out_vidh;
4a406856 1198
801c135c
AB
1199 /*
1200 * In case of unknown erase counter we use the mean erase counter
1201 * value.
1202 */
1203 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
2c5ec5ce
AB
1204 ubi_rb_for_each_entry(rb2, aeb, &sv->root, u.rb)
1205 if (aeb->ec == UBI_SCAN_UNKNOWN_EC)
1206 aeb->ec = si->mean_ec;
801c135c
AB
1207 }
1208
2c5ec5ce
AB
1209 list_for_each_entry(aeb, &si->free, u.list) {
1210 if (aeb->ec == UBI_SCAN_UNKNOWN_EC)
1211 aeb->ec = si->mean_ec;
801c135c
AB
1212 }
1213
2c5ec5ce
AB
1214 list_for_each_entry(aeb, &si->corr, u.list)
1215 if (aeb->ec == UBI_SCAN_UNKNOWN_EC)
1216 aeb->ec = si->mean_ec;
801c135c 1217
2c5ec5ce
AB
1218 list_for_each_entry(aeb, &si->erase, u.list)
1219 if (aeb->ec == UBI_SCAN_UNKNOWN_EC)
1220 aeb->ec = si->mean_ec;
801c135c 1221
7bf523ae 1222 err = self_check_si(ubi, si);
adbf05e3 1223 if (err)
801c135c 1224 goto out_vidh;
801c135c
AB
1225
1226 ubi_free_vid_hdr(ubi, vidh);
1227 kfree(ech);
1228
1229 return si;
1230
1231out_vidh:
1232 ubi_free_vid_hdr(ubi, vidh);
1233out_ech:
1234 kfree(ech);
1235out_si:
1236 ubi_scan_destroy_si(si);
1237 return ERR_PTR(err);
1238}
1239
1240/**
1241 * destroy_sv - free the scanning volume information
1242 * @sv: scanning volume information
6c1e875c 1243 * @si: scanning information
801c135c
AB
1244 *
1245 * This function destroys the volume RB-tree (@sv->root) and the scanning
1246 * volume information.
1247 */
afc15a81 1248static void destroy_sv(struct ubi_attach_info *si, struct ubi_ainf_volume *sv)
801c135c 1249{
2c5ec5ce 1250 struct ubi_ainf_peb *aeb;
801c135c
AB
1251 struct rb_node *this = sv->root.rb_node;
1252
1253 while (this) {
1254 if (this->rb_left)
1255 this = this->rb_left;
1256 else if (this->rb_right)
1257 this = this->rb_right;
1258 else {
2c5ec5ce 1259 aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
801c135c
AB
1260 this = rb_parent(this);
1261 if (this) {
2c5ec5ce 1262 if (this->rb_left == &aeb->u.rb)
801c135c
AB
1263 this->rb_left = NULL;
1264 else
1265 this->rb_right = NULL;
1266 }
1267
2c5ec5ce 1268 kmem_cache_free(si->scan_leb_slab, aeb);
801c135c
AB
1269 }
1270 }
1271 kfree(sv);
1272}
1273
1274/**
1275 * ubi_scan_destroy_si - destroy scanning information.
1276 * @si: scanning information
1277 */
afc15a81 1278void ubi_scan_destroy_si(struct ubi_attach_info *si)
801c135c 1279{
2c5ec5ce 1280 struct ubi_ainf_peb *aeb, *aeb_tmp;
cb28a932 1281 struct ubi_ainf_volume *sv;
801c135c
AB
1282 struct rb_node *rb;
1283
2c5ec5ce
AB
1284 list_for_each_entry_safe(aeb, aeb_tmp, &si->alien, u.list) {
1285 list_del(&aeb->u.list);
1286 kmem_cache_free(si->scan_leb_slab, aeb);
801c135c 1287 }
2c5ec5ce
AB
1288 list_for_each_entry_safe(aeb, aeb_tmp, &si->erase, u.list) {
1289 list_del(&aeb->u.list);
1290 kmem_cache_free(si->scan_leb_slab, aeb);
801c135c 1291 }
2c5ec5ce
AB
1292 list_for_each_entry_safe(aeb, aeb_tmp, &si->corr, u.list) {
1293 list_del(&aeb->u.list);
1294 kmem_cache_free(si->scan_leb_slab, aeb);
801c135c 1295 }
2c5ec5ce
AB
1296 list_for_each_entry_safe(aeb, aeb_tmp, &si->free, u.list) {
1297 list_del(&aeb->u.list);
1298 kmem_cache_free(si->scan_leb_slab, aeb);
801c135c
AB
1299 }
1300
1301 /* Destroy the volume RB-tree */
1302 rb = si->volumes.rb_node;
1303 while (rb) {
1304 if (rb->rb_left)
1305 rb = rb->rb_left;
1306 else if (rb->rb_right)
1307 rb = rb->rb_right;
1308 else {
cb28a932 1309 sv = rb_entry(rb, struct ubi_ainf_volume, rb);
801c135c
AB
1310
1311 rb = rb_parent(rb);
1312 if (rb) {
1313 if (rb->rb_left == &sv->rb)
1314 rb->rb_left = NULL;
1315 else
1316 rb->rb_right = NULL;
1317 }
1318
6c1e875c 1319 destroy_sv(si, sv);
801c135c
AB
1320 }
1321 }
1322
a29852be
RW
1323 if (si->scan_leb_slab)
1324 kmem_cache_destroy(si->scan_leb_slab);
1325
801c135c
AB
1326 kfree(si);
1327}
1328
801c135c 1329/**
7bf523ae 1330 * self_check_si - check the scanning information.
801c135c
AB
1331 * @ubi: UBI device description object
1332 * @si: scanning information
1333 *
adbf05e3
AB
1334 * This function returns zero if the scanning information is all right, and a
1335 * negative error code if not or if an error occurred.
801c135c 1336 */
afc15a81 1337static int self_check_si(struct ubi_device *ubi, struct ubi_attach_info *si)
801c135c
AB
1338{
1339 int pnum, err, vols_found = 0;
1340 struct rb_node *rb1, *rb2;
cb28a932 1341 struct ubi_ainf_volume *sv;
2c5ec5ce 1342 struct ubi_ainf_peb *aeb, *last_aeb;
801c135c
AB
1343 uint8_t *buf;
1344
2a734bb8 1345 if (!ubi->dbg->chk_gen)
92d124f5
AB
1346 return 0;
1347
801c135c 1348 /*
78d87c95 1349 * At first, check that scanning information is OK.
801c135c
AB
1350 */
1351 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1352 int leb_count = 0;
1353
1354 cond_resched();
1355
1356 vols_found += 1;
1357
1358 if (si->is_empty) {
1359 ubi_err("bad is_empty flag");
1360 goto bad_sv;
1361 }
1362
1363 if (sv->vol_id < 0 || sv->highest_lnum < 0 ||
1364 sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 ||
1365 sv->data_pad < 0 || sv->last_data_size < 0) {
1366 ubi_err("negative values");
1367 goto bad_sv;
1368 }
1369
1370 if (sv->vol_id >= UBI_MAX_VOLUMES &&
1371 sv->vol_id < UBI_INTERNAL_VOL_START) {
1372 ubi_err("bad vol_id");
1373 goto bad_sv;
1374 }
1375
1376 if (sv->vol_id > si->highest_vol_id) {
1377 ubi_err("highest_vol_id is %d, but vol_id %d is there",
1378 si->highest_vol_id, sv->vol_id);
1379 goto out;
1380 }
1381
1382 if (sv->vol_type != UBI_DYNAMIC_VOLUME &&
1383 sv->vol_type != UBI_STATIC_VOLUME) {
1384 ubi_err("bad vol_type");
1385 goto bad_sv;
1386 }
1387
1388 if (sv->data_pad > ubi->leb_size / 2) {
1389 ubi_err("bad data_pad");
1390 goto bad_sv;
1391 }
1392
2c5ec5ce
AB
1393 last_aeb = NULL;
1394 ubi_rb_for_each_entry(rb2, aeb, &sv->root, u.rb) {
801c135c
AB
1395 cond_resched();
1396
2c5ec5ce 1397 last_aeb = aeb;
801c135c
AB
1398 leb_count += 1;
1399
2c5ec5ce 1400 if (aeb->pnum < 0 || aeb->ec < 0) {
801c135c 1401 ubi_err("negative values");
2c5ec5ce 1402 goto bad_aeb;
801c135c
AB
1403 }
1404
2c5ec5ce 1405 if (aeb->ec < si->min_ec) {
801c135c 1406 ubi_err("bad si->min_ec (%d), %d found",
2c5ec5ce
AB
1407 si->min_ec, aeb->ec);
1408 goto bad_aeb;
801c135c
AB
1409 }
1410
2c5ec5ce 1411 if (aeb->ec > si->max_ec) {
801c135c 1412 ubi_err("bad si->max_ec (%d), %d found",
2c5ec5ce
AB
1413 si->max_ec, aeb->ec);
1414 goto bad_aeb;
801c135c
AB
1415 }
1416
2c5ec5ce 1417 if (aeb->pnum >= ubi->peb_count) {
801c135c 1418 ubi_err("too high PEB number %d, total PEBs %d",
2c5ec5ce
AB
1419 aeb->pnum, ubi->peb_count);
1420 goto bad_aeb;
801c135c
AB
1421 }
1422
1423 if (sv->vol_type == UBI_STATIC_VOLUME) {
2c5ec5ce 1424 if (aeb->lnum >= sv->used_ebs) {
801c135c 1425 ubi_err("bad lnum or used_ebs");
2c5ec5ce 1426 goto bad_aeb;
801c135c
AB
1427 }
1428 } else {
1429 if (sv->used_ebs != 0) {
1430 ubi_err("non-zero used_ebs");
2c5ec5ce 1431 goto bad_aeb;
801c135c
AB
1432 }
1433 }
1434
2c5ec5ce 1435 if (aeb->lnum > sv->highest_lnum) {
801c135c 1436 ubi_err("incorrect highest_lnum or lnum");
2c5ec5ce 1437 goto bad_aeb;
801c135c
AB
1438 }
1439 }
1440
1441 if (sv->leb_count != leb_count) {
1442 ubi_err("bad leb_count, %d objects in the tree",
1443 leb_count);
1444 goto bad_sv;
1445 }
1446
2c5ec5ce 1447 if (!last_aeb)
801c135c
AB
1448 continue;
1449
2c5ec5ce 1450 aeb = last_aeb;
801c135c 1451
2c5ec5ce 1452 if (aeb->lnum != sv->highest_lnum) {
801c135c 1453 ubi_err("bad highest_lnum");
2c5ec5ce 1454 goto bad_aeb;
801c135c
AB
1455 }
1456 }
1457
1458 if (vols_found != si->vols_found) {
1459 ubi_err("bad si->vols_found %d, should be %d",
1460 si->vols_found, vols_found);
1461 goto out;
1462 }
1463
1464 /* Check that scanning information is correct */
1465 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
2c5ec5ce
AB
1466 last_aeb = NULL;
1467 ubi_rb_for_each_entry(rb2, aeb, &sv->root, u.rb) {
801c135c
AB
1468 int vol_type;
1469
1470 cond_resched();
1471
2c5ec5ce 1472 last_aeb = aeb;
801c135c 1473
2c5ec5ce 1474 err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1);
801c135c
AB
1475 if (err && err != UBI_IO_BITFLIPS) {
1476 ubi_err("VID header is not OK (%d)", err);
1477 if (err > 0)
1478 err = -EIO;
1479 return err;
1480 }
1481
1482 vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1483 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1484 if (sv->vol_type != vol_type) {
1485 ubi_err("bad vol_type");
1486 goto bad_vid_hdr;
1487 }
1488
2c5ec5ce
AB
1489 if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1490 ubi_err("bad sqnum %llu", aeb->sqnum);
801c135c
AB
1491 goto bad_vid_hdr;
1492 }
1493
3261ebd7 1494 if (sv->vol_id != be32_to_cpu(vidh->vol_id)) {
801c135c
AB
1495 ubi_err("bad vol_id %d", sv->vol_id);
1496 goto bad_vid_hdr;
1497 }
1498
1499 if (sv->compat != vidh->compat) {
1500 ubi_err("bad compat %d", vidh->compat);
1501 goto bad_vid_hdr;
1502 }
1503
2c5ec5ce
AB
1504 if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1505 ubi_err("bad lnum %d", aeb->lnum);
801c135c
AB
1506 goto bad_vid_hdr;
1507 }
1508
3261ebd7 1509 if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) {
801c135c
AB
1510 ubi_err("bad used_ebs %d", sv->used_ebs);
1511 goto bad_vid_hdr;
1512 }
1513
3261ebd7 1514 if (sv->data_pad != be32_to_cpu(vidh->data_pad)) {
801c135c
AB
1515 ubi_err("bad data_pad %d", sv->data_pad);
1516 goto bad_vid_hdr;
1517 }
801c135c
AB
1518 }
1519
2c5ec5ce 1520 if (!last_aeb)
801c135c
AB
1521 continue;
1522
3261ebd7 1523 if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) {
801c135c
AB
1524 ubi_err("bad highest_lnum %d", sv->highest_lnum);
1525 goto bad_vid_hdr;
1526 }
1527
3261ebd7 1528 if (sv->last_data_size != be32_to_cpu(vidh->data_size)) {
801c135c
AB
1529 ubi_err("bad last_data_size %d", sv->last_data_size);
1530 goto bad_vid_hdr;
1531 }
1532 }
1533
1534 /*
1535 * Make sure that all the physical eraseblocks are in one of the lists
1536 * or trees.
1537 */
d9b0744d 1538 buf = kzalloc(ubi->peb_count, GFP_KERNEL);
801c135c
AB
1539 if (!buf)
1540 return -ENOMEM;
1541
801c135c
AB
1542 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1543 err = ubi_io_is_bad(ubi, pnum);
341e1a0c
AB
1544 if (err < 0) {
1545 kfree(buf);
801c135c 1546 return err;
9c9ec147 1547 } else if (err)
d9b0744d 1548 buf[pnum] = 1;
801c135c
AB
1549 }
1550
1551 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb)
2c5ec5ce
AB
1552 ubi_rb_for_each_entry(rb2, aeb, &sv->root, u.rb)
1553 buf[aeb->pnum] = 1;
801c135c 1554
2c5ec5ce
AB
1555 list_for_each_entry(aeb, &si->free, u.list)
1556 buf[aeb->pnum] = 1;
801c135c 1557
2c5ec5ce
AB
1558 list_for_each_entry(aeb, &si->corr, u.list)
1559 buf[aeb->pnum] = 1;
801c135c 1560
2c5ec5ce
AB
1561 list_for_each_entry(aeb, &si->erase, u.list)
1562 buf[aeb->pnum] = 1;
801c135c 1563
2c5ec5ce
AB
1564 list_for_each_entry(aeb, &si->alien, u.list)
1565 buf[aeb->pnum] = 1;
801c135c
AB
1566
1567 err = 0;
1568 for (pnum = 0; pnum < ubi->peb_count; pnum++)
d9b0744d 1569 if (!buf[pnum]) {
801c135c
AB
1570 ubi_err("PEB %d is not referred", pnum);
1571 err = 1;
1572 }
1573
1574 kfree(buf);
1575 if (err)
1576 goto out;
1577 return 0;
1578
2c5ec5ce
AB
1579bad_aeb:
1580 ubi_err("bad scanning information about LEB %d", aeb->lnum);
1581 ubi_dump_aeb(aeb, 0);
614c74a7 1582 ubi_dump_sv(sv);
801c135c
AB
1583 goto out;
1584
1585bad_sv:
1586 ubi_err("bad scanning information about volume %d", sv->vol_id);
614c74a7 1587 ubi_dump_sv(sv);
801c135c
AB
1588 goto out;
1589
1590bad_vid_hdr:
1591 ubi_err("bad scanning information about volume %d", sv->vol_id);
614c74a7 1592 ubi_dump_sv(sv);
a904e3f1 1593 ubi_dump_vid_hdr(vidh);
801c135c
AB
1594
1595out:
25886a36 1596 dump_stack();
adbf05e3 1597 return -EINVAL;
801c135c 1598}
This page took 0.482329 seconds and 5 git commands to generate.