UBI: simplify error handling
[deliverable/linux.git] / drivers / mtd / ubi / vtbl.c
CommitLineData
801c135c
AB
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём)
20 */
21
22/*
23 * This file includes volume table manipulation code. The volume table is an
24 * on-flash table containing volume meta-data like name, number of reserved
25 * physical eraseblocks, type, etc. The volume table is stored in the so-called
26 * "layout volume".
27 *
28 * The layout volume is an internal volume which is organized as follows. It
29 * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
30 * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
31 * other. This redundancy guarantees robustness to unclean reboots. The volume
32 * table is basically an array of volume table records. Each record contains
33 * full information about the volume and protected by a CRC checksum.
34 *
35 * The volume table is changed, it is first changed in RAM. Then LEB 0 is
36 * erased, and the updated volume table is written back to LEB 0. Then same for
37 * LEB 1. This scheme guarantees recoverability from unclean reboots.
38 *
39 * In this UBI implementation the on-flash volume table does not contain any
40 * information about how many data static volumes contain. This information may
41 * be found from the scanning data.
42 *
43 * But it would still be beneficial to store this information in the volume
44 * table. For example, suppose we have a static volume X, and all its physical
45 * eraseblocks became bad for some reasons. Suppose we are attaching the
46 * corresponding MTD device, the scanning has found no logical eraseblocks
47 * corresponding to the volume X. According to the volume table volume X does
48 * exist. So we don't know whether it is just empty or all its physical
49 * eraseblocks went bad. So we cannot alarm the user about this corruption.
50 *
51 * The volume table also stores so-called "update marker", which is used for
52 * volume updates. Before updating the volume, the update marker is set, and
53 * after the update operation is finished, the update marker is cleared. So if
54 * the update operation was interrupted (e.g. by an unclean reboot) - the
55 * update marker is still there and we know that the volume's contents is
56 * damaged.
57 */
58
59#include <linux/crc32.h>
60#include <linux/err.h>
61#include <asm/div64.h>
62#include "ubi.h"
63
64#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
65static void paranoid_vtbl_check(const struct ubi_device *ubi);
66#else
67#define paranoid_vtbl_check(ubi)
68#endif
69
70/* Empty volume table record */
71static struct ubi_vtbl_record empty_vtbl_record;
72
73/**
74 * ubi_change_vtbl_record - change volume table record.
75 * @ubi: UBI device description object
76 * @idx: table index to change
77 * @vtbl_rec: new volume table record
78 *
79 * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
80 * volume table record is written. The caller does not have to calculate CRC of
81 * the record as it is done by this function. Returns zero in case of success
82 * and a negative error code in case of failure.
83 */
84int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
85 struct ubi_vtbl_record *vtbl_rec)
86{
87 int i, err;
88 uint32_t crc;
89b96b69 89 struct ubi_volume *layout_vol;
801c135c
AB
90
91 ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);
cae0a771 92 layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOL_ID)];
801c135c
AB
93
94 if (!vtbl_rec)
95 vtbl_rec = &empty_vtbl_record;
96 else {
97 crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
3261ebd7 98 vtbl_rec->crc = cpu_to_be32(crc);
801c135c
AB
99 }
100
801c135c
AB
101 memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
102 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
89b96b69 103 err = ubi_eba_unmap_leb(ubi, layout_vol, i);
cae0a771 104 if (err)
801c135c 105 return err;
cae0a771 106
89b96b69 107 err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0,
801c135c 108 ubi->vtbl_size, UBI_LONGTERM);
cae0a771 109 if (err)
801c135c 110 return err;
801c135c
AB
111 }
112
113 paranoid_vtbl_check(ubi);
801c135c
AB
114 return ubi_wl_flush(ubi);
115}
116
117/**
118 * vol_til_check - check if volume table is not corrupted and contains sensible
119 * data.
120 *
121 * @ubi: UBI device description object
122 * @vtbl: volume table
123 *
124 * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
125 * and %-EINVAL if it contains inconsistent data.
126 */
127static int vtbl_check(const struct ubi_device *ubi,
128 const struct ubi_vtbl_record *vtbl)
129{
130 int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
131 int upd_marker;
132 uint32_t crc;
133 const char *name;
134
135 for (i = 0; i < ubi->vtbl_slots; i++) {
136 cond_resched();
137
3261ebd7
CH
138 reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
139 alignment = be32_to_cpu(vtbl[i].alignment);
140 data_pad = be32_to_cpu(vtbl[i].data_pad);
801c135c
AB
141 upd_marker = vtbl[i].upd_marker;
142 vol_type = vtbl[i].vol_type;
3261ebd7 143 name_len = be16_to_cpu(vtbl[i].name_len);
801c135c
AB
144 name = &vtbl[i].name[0];
145
146 crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
3261ebd7 147 if (be32_to_cpu(vtbl[i].crc) != crc) {
801c135c 148 ubi_err("bad CRC at record %u: %#08x, not %#08x",
3261ebd7 149 i, crc, be32_to_cpu(vtbl[i].crc));
801c135c
AB
150 ubi_dbg_dump_vtbl_record(&vtbl[i], i);
151 return 1;
152 }
153
154 if (reserved_pebs == 0) {
155 if (memcmp(&vtbl[i], &empty_vtbl_record,
156 UBI_VTBL_RECORD_SIZE)) {
157 dbg_err("bad empty record");
158 goto bad;
159 }
160 continue;
161 }
162
163 if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
164 name_len < 0) {
165 dbg_err("negative values");
166 goto bad;
167 }
168
169 if (alignment > ubi->leb_size || alignment == 0) {
170 dbg_err("bad alignment");
171 goto bad;
172 }
173
174 n = alignment % ubi->min_io_size;
175 if (alignment != 1 && n) {
176 dbg_err("alignment is not multiple of min I/O unit");
177 goto bad;
178 }
179
180 n = ubi->leb_size % alignment;
181 if (data_pad != n) {
182 dbg_err("bad data_pad, has to be %d", n);
183 goto bad;
184 }
185
186 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
187 dbg_err("bad vol_type");
188 goto bad;
189 }
190
191 if (upd_marker != 0 && upd_marker != 1) {
192 dbg_err("bad upd_marker");
193 goto bad;
194 }
195
196 if (reserved_pebs > ubi->good_peb_count) {
197 dbg_err("too large reserved_pebs, good PEBs %d",
198 ubi->good_peb_count);
199 goto bad;
200 }
201
202 if (name_len > UBI_VOL_NAME_MAX) {
203 dbg_err("too long volume name, max %d",
204 UBI_VOL_NAME_MAX);
205 goto bad;
206 }
207
208 if (name[0] == '\0') {
209 dbg_err("NULL volume name");
210 goto bad;
211 }
212
213 if (name_len != strnlen(name, name_len + 1)) {
214 dbg_err("bad name_len");
215 goto bad;
216 }
217 }
218
219 /* Checks that all names are unique */
220 for (i = 0; i < ubi->vtbl_slots - 1; i++) {
221 for (n = i + 1; n < ubi->vtbl_slots; n++) {
3261ebd7
CH
222 int len1 = be16_to_cpu(vtbl[i].name_len);
223 int len2 = be16_to_cpu(vtbl[n].name_len);
801c135c
AB
224
225 if (len1 > 0 && len1 == len2 &&
226 !strncmp(vtbl[i].name, vtbl[n].name, len1)) {
227 ubi_err("volumes %d and %d have the same name"
228 " \"%s\"", i, n, vtbl[i].name);
229 ubi_dbg_dump_vtbl_record(&vtbl[i], i);
230 ubi_dbg_dump_vtbl_record(&vtbl[n], n);
231 return -EINVAL;
232 }
233 }
234 }
235
236 return 0;
237
238bad:
239 ubi_err("volume table check failed, record %d", i);
240 ubi_dbg_dump_vtbl_record(&vtbl[i], i);
241 return -EINVAL;
242}
243
244/**
245 * create_vtbl - create a copy of volume table.
246 * @ubi: UBI device description object
247 * @si: scanning information
248 * @copy: number of the volume table copy
249 * @vtbl: contents of the volume table
250 *
251 * This function returns zero in case of success and a negative error code in
252 * case of failure.
253 */
e88d6e10 254static int create_vtbl(struct ubi_device *ubi, struct ubi_scan_info *si,
801c135c
AB
255 int copy, void *vtbl)
256{
257 int err, tries = 0;
258 static struct ubi_vid_hdr *vid_hdr;
259 struct ubi_scan_volume *sv;
260 struct ubi_scan_leb *new_seb, *old_seb = NULL;
261
262 ubi_msg("create volume table (copy #%d)", copy + 1);
263
33818bbb 264 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
801c135c
AB
265 if (!vid_hdr)
266 return -ENOMEM;
267
268 /*
269 * Check if there is a logical eraseblock which would have to contain
270 * this volume table copy was found during scanning. It has to be wiped
271 * out.
272 */
273 sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOL_ID);
274 if (sv)
275 old_seb = ubi_scan_find_seb(sv, copy);
276
277retry:
278 new_seb = ubi_scan_get_free_peb(ubi, si);
279 if (IS_ERR(new_seb)) {
280 err = PTR_ERR(new_seb);
281 goto out_free;
282 }
283
284 vid_hdr->vol_type = UBI_VID_DYNAMIC;
3261ebd7 285 vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOL_ID);
801c135c
AB
286 vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
287 vid_hdr->data_size = vid_hdr->used_ebs =
3261ebd7
CH
288 vid_hdr->data_pad = cpu_to_be32(0);
289 vid_hdr->lnum = cpu_to_be32(copy);
290 vid_hdr->sqnum = cpu_to_be64(++si->max_sqnum);
291 vid_hdr->leb_ver = cpu_to_be32(old_seb ? old_seb->leb_ver + 1: 0);
801c135c
AB
292
293 /* The EC header is already there, write the VID header */
294 err = ubi_io_write_vid_hdr(ubi, new_seb->pnum, vid_hdr);
295 if (err)
296 goto write_error;
297
298 /* Write the layout volume contents */
299 err = ubi_io_write_data(ubi, vtbl, new_seb->pnum, 0, ubi->vtbl_size);
300 if (err)
301 goto write_error;
302
303 /*
304 * And add it to the scanning information. Don't delete the old
305 * @old_seb as it will be deleted and freed in 'ubi_scan_add_used()'.
306 */
307 err = ubi_scan_add_used(ubi, si, new_seb->pnum, new_seb->ec,
308 vid_hdr, 0);
309 kfree(new_seb);
310 ubi_free_vid_hdr(ubi, vid_hdr);
311 return err;
312
313write_error:
78d87c95
AB
314 if (err == -EIO && ++tries <= 5) {
315 /*
316 * Probably this physical eraseblock went bad, try to pick
317 * another one.
318 */
319 list_add_tail(&new_seb->u.list, &si->corr);
c4e90ec0 320 goto retry;
78d87c95
AB
321 }
322 kfree(new_seb);
801c135c
AB
323out_free:
324 ubi_free_vid_hdr(ubi, vid_hdr);
325 return err;
326
327}
328
329/**
330 * process_lvol - process the layout volume.
331 * @ubi: UBI device description object
332 * @si: scanning information
333 * @sv: layout volume scanning information
334 *
335 * This function is responsible for reading the layout volume, ensuring it is
336 * not corrupted, and recovering from corruptions if needed. Returns volume
337 * table in case of success and a negative error code in case of failure.
338 */
e88d6e10 339static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi,
801c135c
AB
340 struct ubi_scan_info *si,
341 struct ubi_scan_volume *sv)
342{
343 int err;
344 struct rb_node *rb;
345 struct ubi_scan_leb *seb;
346 struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
347 int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};
348
349 /*
350 * UBI goes through the following steps when it changes the layout
351 * volume:
352 * a. erase LEB 0;
353 * b. write new data to LEB 0;
354 * c. erase LEB 1;
355 * d. write new data to LEB 1.
356 *
357 * Before the change, both LEBs contain the same data.
358 *
359 * Due to unclean reboots, the contents of LEB 0 may be lost, but there
360 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
361 * Similarly, LEB 1 may be lost, but there should be LEB 0. And
362 * finally, unclean reboots may result in a situation when neither LEB
363 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
364 * 0 contains more recent information.
365 *
366 * So the plan is to first check LEB 0. Then
367 * a. if LEB 0 is OK, it must be containing the most resent data; then
368 * we compare it with LEB 1, and if they are different, we copy LEB
369 * 0 to LEB 1;
370 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
371 * to LEB 0.
372 */
373
374 dbg_msg("check layout volume");
375
376 /* Read both LEB 0 and LEB 1 into memory */
377 ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
92ad8f37 378 leb[seb->lnum] = vmalloc(ubi->vtbl_size);
801c135c
AB
379 if (!leb[seb->lnum]) {
380 err = -ENOMEM;
381 goto out_free;
382 }
92ad8f37 383 memset(leb[seb->lnum], 0, ubi->vtbl_size);
801c135c
AB
384
385 err = ubi_io_read_data(ubi, leb[seb->lnum], seb->pnum, 0,
386 ubi->vtbl_size);
387 if (err == UBI_IO_BITFLIPS || err == -EBADMSG)
388 /* Scrub the PEB later */
389 seb->scrub = 1;
390 else if (err)
391 goto out_free;
392 }
393
394 err = -EINVAL;
395 if (leb[0]) {
396 leb_corrupted[0] = vtbl_check(ubi, leb[0]);
397 if (leb_corrupted[0] < 0)
398 goto out_free;
399 }
400
401 if (!leb_corrupted[0]) {
402 /* LEB 0 is OK */
403 if (leb[1])
404 leb_corrupted[1] = memcmp(leb[0], leb[1], ubi->vtbl_size);
405 if (leb_corrupted[1]) {
406 ubi_warn("volume table copy #2 is corrupted");
407 err = create_vtbl(ubi, si, 1, leb[0]);
408 if (err)
409 goto out_free;
410 ubi_msg("volume table was restored");
411 }
412
413 /* Both LEB 1 and LEB 2 are OK and consistent */
92ad8f37 414 vfree(leb[1]);
801c135c
AB
415 return leb[0];
416 } else {
417 /* LEB 0 is corrupted or does not exist */
418 if (leb[1]) {
419 leb_corrupted[1] = vtbl_check(ubi, leb[1]);
420 if (leb_corrupted[1] < 0)
421 goto out_free;
422 }
423 if (leb_corrupted[1]) {
424 /* Both LEB 0 and LEB 1 are corrupted */
425 ubi_err("both volume tables are corrupted");
426 goto out_free;
427 }
428
429 ubi_warn("volume table copy #1 is corrupted");
430 err = create_vtbl(ubi, si, 0, leb[1]);
431 if (err)
432 goto out_free;
433 ubi_msg("volume table was restored");
434
92ad8f37 435 vfree(leb[0]);
801c135c
AB
436 return leb[1];
437 }
438
439out_free:
92ad8f37
AB
440 vfree(leb[0]);
441 vfree(leb[1]);
801c135c
AB
442 return ERR_PTR(err);
443}
444
445/**
446 * create_empty_lvol - create empty layout volume.
447 * @ubi: UBI device description object
448 * @si: scanning information
449 *
450 * This function returns volume table contents in case of success and a
451 * negative error code in case of failure.
452 */
e88d6e10 453static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi,
801c135c
AB
454 struct ubi_scan_info *si)
455{
456 int i;
457 struct ubi_vtbl_record *vtbl;
458
92ad8f37 459 vtbl = vmalloc(ubi->vtbl_size);
801c135c
AB
460 if (!vtbl)
461 return ERR_PTR(-ENOMEM);
92ad8f37 462 memset(vtbl, 0, ubi->vtbl_size);
801c135c
AB
463
464 for (i = 0; i < ubi->vtbl_slots; i++)
465 memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);
466
467 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
468 int err;
469
470 err = create_vtbl(ubi, si, i, vtbl);
471 if (err) {
92ad8f37 472 vfree(vtbl);
801c135c
AB
473 return ERR_PTR(err);
474 }
475 }
476
477 return vtbl;
478}
479
480/**
481 * init_volumes - initialize volume information for existing volumes.
482 * @ubi: UBI device description object
483 * @si: scanning information
484 * @vtbl: volume table
485 *
486 * This function allocates volume description objects for existing volumes.
487 * Returns zero in case of success and a negative error code in case of
488 * failure.
489 */
490static int init_volumes(struct ubi_device *ubi, const struct ubi_scan_info *si,
491 const struct ubi_vtbl_record *vtbl)
492{
493 int i, reserved_pebs = 0;
494 struct ubi_scan_volume *sv;
495 struct ubi_volume *vol;
496
497 for (i = 0; i < ubi->vtbl_slots; i++) {
498 cond_resched();
499
3261ebd7 500 if (be32_to_cpu(vtbl[i].reserved_pebs) == 0)
801c135c
AB
501 continue; /* Empty record */
502
503 vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
504 if (!vol)
505 return -ENOMEM;
506
3261ebd7
CH
507 vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
508 vol->alignment = be32_to_cpu(vtbl[i].alignment);
509 vol->data_pad = be32_to_cpu(vtbl[i].data_pad);
801c135c
AB
510 vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
511 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
3261ebd7 512 vol->name_len = be16_to_cpu(vtbl[i].name_len);
801c135c
AB
513 vol->usable_leb_size = ubi->leb_size - vol->data_pad;
514 memcpy(vol->name, vtbl[i].name, vol->name_len);
515 vol->name[vol->name_len] = '\0';
516 vol->vol_id = i;
517
518 ubi_assert(!ubi->volumes[i]);
519 ubi->volumes[i] = vol;
520 ubi->vol_count += 1;
521 vol->ubi = ubi;
522 reserved_pebs += vol->reserved_pebs;
523
524 /*
525 * In case of dynamic volume UBI knows nothing about how many
526 * data is stored there. So assume the whole volume is used.
527 */
528 if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
529 vol->used_ebs = vol->reserved_pebs;
530 vol->last_eb_bytes = vol->usable_leb_size;
d08c3b78
VA
531 vol->used_bytes =
532 (long long)vol->used_ebs * vol->usable_leb_size;
801c135c
AB
533 continue;
534 }
535
536 /* Static volumes only */
537 sv = ubi_scan_find_sv(si, i);
538 if (!sv) {
539 /*
540 * No eraseblocks belonging to this volume found. We
541 * don't actually know whether this static volume is
542 * completely corrupted or just contains no data. And
543 * we cannot know this as long as data size is not
544 * stored on flash. So we just assume the volume is
545 * empty. FIXME: this should be handled.
546 */
547 continue;
548 }
549
550 if (sv->leb_count != sv->used_ebs) {
551 /*
552 * We found a static volume which misses several
553 * eraseblocks. Treat it as corrupted.
554 */
555 ubi_warn("static volume %d misses %d LEBs - corrupted",
556 sv->vol_id, sv->used_ebs - sv->leb_count);
557 vol->corrupted = 1;
558 continue;
559 }
560
561 vol->used_ebs = sv->used_ebs;
d08c3b78
VA
562 vol->used_bytes =
563 (long long)(vol->used_ebs - 1) * vol->usable_leb_size;
801c135c
AB
564 vol->used_bytes += sv->last_data_size;
565 vol->last_eb_bytes = sv->last_data_size;
566 }
567
568 vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
569 if (!vol)
570 return -ENOMEM;
571
572 vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
573 vol->alignment = 1;
574 vol->vol_type = UBI_DYNAMIC_VOLUME;
575 vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
576 memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
577 vol->usable_leb_size = ubi->leb_size;
578 vol->used_ebs = vol->reserved_pebs;
579 vol->last_eb_bytes = vol->reserved_pebs;
d08c3b78
VA
580 vol->used_bytes =
581 (long long)vol->used_ebs * (ubi->leb_size - vol->data_pad);
801c135c
AB
582 vol->vol_id = UBI_LAYOUT_VOL_ID;
583
584 ubi_assert(!ubi->volumes[i]);
585 ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
586 reserved_pebs += vol->reserved_pebs;
587 ubi->vol_count += 1;
588 vol->ubi = ubi;
589
590 if (reserved_pebs > ubi->avail_pebs)
591 ubi_err("not enough PEBs, required %d, available %d",
592 reserved_pebs, ubi->avail_pebs);
593 ubi->rsvd_pebs += reserved_pebs;
594 ubi->avail_pebs -= reserved_pebs;
595
596 return 0;
597}
598
599/**
600 * check_sv - check volume scanning information.
601 * @vol: UBI volume description object
602 * @sv: volume scanning information
603 *
604 * This function returns zero if the volume scanning information is consistent
605 * to the data read from the volume tabla, and %-EINVAL if not.
606 */
607static int check_sv(const struct ubi_volume *vol,
608 const struct ubi_scan_volume *sv)
609{
610 if (sv->highest_lnum >= vol->reserved_pebs) {
611 dbg_err("bad highest_lnum");
612 goto bad;
613 }
614 if (sv->leb_count > vol->reserved_pebs) {
615 dbg_err("bad leb_count");
616 goto bad;
617 }
618 if (sv->vol_type != vol->vol_type) {
619 dbg_err("bad vol_type");
620 goto bad;
621 }
622 if (sv->used_ebs > vol->reserved_pebs) {
623 dbg_err("bad used_ebs");
624 goto bad;
625 }
626 if (sv->data_pad != vol->data_pad) {
627 dbg_err("bad data_pad");
628 goto bad;
629 }
630 return 0;
631
632bad:
633 ubi_err("bad scanning information");
634 ubi_dbg_dump_sv(sv);
635 ubi_dbg_dump_vol_info(vol);
636 return -EINVAL;
637}
638
639/**
640 * check_scanning_info - check that scanning information.
641 * @ubi: UBI device description object
642 * @si: scanning information
643 *
644 * Even though we protect on-flash data by CRC checksums, we still don't trust
645 * the media. This function ensures that scanning information is consistent to
646 * the information read from the volume table. Returns zero if the scanning
647 * information is OK and %-EINVAL if it is not.
648 */
649static int check_scanning_info(const struct ubi_device *ubi,
650 struct ubi_scan_info *si)
651{
652 int err, i;
653 struct ubi_scan_volume *sv;
654 struct ubi_volume *vol;
655
656 if (si->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
657 ubi_err("scanning found %d volumes, maximum is %d + %d",
658 si->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
659 return -EINVAL;
660 }
661
662 if (si->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT&&
663 si->highest_vol_id < UBI_INTERNAL_VOL_START) {
664 ubi_err("too large volume ID %d found by scanning",
665 si->highest_vol_id);
666 return -EINVAL;
667 }
668
669
670 for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
671 cond_resched();
672
673 sv = ubi_scan_find_sv(si, i);
674 vol = ubi->volumes[i];
675 if (!vol) {
676 if (sv)
677 ubi_scan_rm_volume(si, sv);
678 continue;
679 }
680
681 if (vol->reserved_pebs == 0) {
682 ubi_assert(i < ubi->vtbl_slots);
683
684 if (!sv)
685 continue;
686
687 /*
688 * During scanning we found a volume which does not
689 * exist according to the information in the volume
690 * table. This must have happened due to an unclean
691 * reboot while the volume was being removed. Discard
692 * these eraseblocks.
693 */
694 ubi_msg("finish volume %d removal", sv->vol_id);
695 ubi_scan_rm_volume(si, sv);
696 } else if (sv) {
697 err = check_sv(vol, sv);
698 if (err)
699 return err;
700 }
701 }
702
703 return 0;
704}
705
706/**
707 * ubi_read_volume_table - read volume table.
708 * information.
709 * @ubi: UBI device description object
710 * @si: scanning information
711 *
712 * This function reads volume table, checks it, recover from errors if needed,
713 * or creates it if needed. Returns zero in case of success and a negative
714 * error code in case of failure.
715 */
716int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_scan_info *si)
717{
718 int i, err;
719 struct ubi_scan_volume *sv;
720
3261ebd7 721 empty_vtbl_record.crc = cpu_to_be32(0xf116c36b);
801c135c
AB
722
723 /*
724 * The number of supported volumes is limited by the eraseblock size
725 * and by the UBI_MAX_VOLUMES constant.
726 */
727 ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
728 if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
729 ubi->vtbl_slots = UBI_MAX_VOLUMES;
730
731 ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
732 ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);
733
734 sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOL_ID);
735 if (!sv) {
736 /*
737 * No logical eraseblocks belonging to the layout volume were
738 * found. This could mean that the flash is just empty. In
739 * this case we create empty layout volume.
740 *
741 * But if flash is not empty this must be a corruption or the
742 * MTD device just contains garbage.
743 */
744 if (si->is_empty) {
745 ubi->vtbl = create_empty_lvol(ubi, si);
746 if (IS_ERR(ubi->vtbl))
747 return PTR_ERR(ubi->vtbl);
748 } else {
749 ubi_err("the layout volume was not found");
750 return -EINVAL;
751 }
752 } else {
753 if (sv->leb_count > UBI_LAYOUT_VOLUME_EBS) {
754 /* This must not happen with proper UBI images */
755 dbg_err("too many LEBs (%d) in layout volume",
756 sv->leb_count);
757 return -EINVAL;
758 }
759
760 ubi->vtbl = process_lvol(ubi, si, sv);
761 if (IS_ERR(ubi->vtbl))
762 return PTR_ERR(ubi->vtbl);
763 }
764
765 ubi->avail_pebs = ubi->good_peb_count;
766
767 /*
768 * The layout volume is OK, initialize the corresponding in-RAM data
769 * structures.
770 */
771 err = init_volumes(ubi, si, ubi->vtbl);
772 if (err)
773 goto out_free;
774
775 /*
776 * Get sure that the scanning information is consistent to the
777 * information stored in the volume table.
778 */
779 err = check_scanning_info(ubi, si);
780 if (err)
781 goto out_free;
782
783 return 0;
784
785out_free:
92ad8f37 786 vfree(ubi->vtbl);
801c135c
AB
787 for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++)
788 if (ubi->volumes[i]) {
789 kfree(ubi->volumes[i]);
790 ubi->volumes[i] = NULL;
791 }
792 return err;
793}
794
795#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
796
797/**
798 * paranoid_vtbl_check - check volume table.
799 * @ubi: UBI device description object
800 */
801static void paranoid_vtbl_check(const struct ubi_device *ubi)
802{
803 if (vtbl_check(ubi, ubi->vtbl)) {
804 ubi_err("paranoid check failed");
805 BUG();
806 }
807}
808
809#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
This page took 0.17694 seconds and 5 git commands to generate.