MIPSsim: General cleanup
[deliverable/linux.git] / drivers / net / au1000_eth.c
CommitLineData
1da177e4
LT
1/*
2 *
3 * Alchemy Au1x00 ethernet driver
4 *
89be0501 5 * Copyright 2001-2003, 2006 MontaVista Software Inc.
1da177e4
LT
6 * Copyright 2002 TimeSys Corp.
7 * Added ethtool/mii-tool support,
8 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
6aa20a22
JG
9 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
10 * or riemer@riemer-nt.de: fixed the link beat detection with
1da177e4 11 * ioctls (SIOCGMIIPHY)
0638dec0
HVR
12 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
13 * converted to use linux-2.6.x's PHY framework
14 *
1da177e4
LT
15 * Author: MontaVista Software, Inc.
16 * ppopov@mvista.com or source@mvista.com
17 *
18 * ########################################################################
19 *
20 * This program is free software; you can distribute it and/or modify it
21 * under the terms of the GNU General Public License (Version 2) as
22 * published by the Free Software Foundation.
23 *
24 * This program is distributed in the hope it will be useful, but WITHOUT
25 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
26 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
27 * for more details.
28 *
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
32 *
33 * ########################################################################
34 *
6aa20a22 35 *
1da177e4 36 */
d791c2bd 37#include <linux/dma-mapping.h>
1da177e4
LT
38#include <linux/module.h>
39#include <linux/kernel.h>
1da177e4
LT
40#include <linux/string.h>
41#include <linux/timer.h>
42#include <linux/errno.h>
43#include <linux/in.h>
44#include <linux/ioport.h>
45#include <linux/bitops.h>
46#include <linux/slab.h>
47#include <linux/interrupt.h>
1da177e4
LT
48#include <linux/init.h>
49#include <linux/netdevice.h>
50#include <linux/etherdevice.h>
51#include <linux/ethtool.h>
52#include <linux/mii.h>
53#include <linux/skbuff.h>
54#include <linux/delay.h>
8cd35da0 55#include <linux/crc32.h>
0638dec0 56#include <linux/phy.h>
1da177e4
LT
57#include <asm/mipsregs.h>
58#include <asm/irq.h>
59#include <asm/io.h>
60#include <asm/processor.h>
61
62#include <asm/mach-au1x00/au1000.h>
63#include <asm/cpu.h>
64#include "au1000_eth.h"
65
66#ifdef AU1000_ETH_DEBUG
67static int au1000_debug = 5;
68#else
69static int au1000_debug = 3;
70#endif
71
89be0501 72#define DRV_NAME "au1000_eth"
d5b20697 73#define DRV_VERSION "1.6"
1da177e4
LT
74#define DRV_AUTHOR "Pete Popov <ppopov@embeddedalley.com>"
75#define DRV_DESC "Au1xxx on-chip Ethernet driver"
76
77MODULE_AUTHOR(DRV_AUTHOR);
78MODULE_DESCRIPTION(DRV_DESC);
79MODULE_LICENSE("GPL");
80
81// prototypes
82static void hard_stop(struct net_device *);
83static void enable_rx_tx(struct net_device *dev);
89be0501 84static struct net_device * au1000_probe(int port_num);
1da177e4
LT
85static int au1000_init(struct net_device *);
86static int au1000_open(struct net_device *);
87static int au1000_close(struct net_device *);
88static int au1000_tx(struct sk_buff *, struct net_device *);
89static int au1000_rx(struct net_device *);
7d12e780 90static irqreturn_t au1000_interrupt(int, void *);
1da177e4 91static void au1000_tx_timeout(struct net_device *);
1da177e4 92static void set_rx_mode(struct net_device *);
1da177e4
LT
93static int au1000_ioctl(struct net_device *, struct ifreq *, int);
94static int mdio_read(struct net_device *, int, int);
95static void mdio_write(struct net_device *, int, int, u16);
0638dec0
HVR
96static void au1000_adjust_link(struct net_device *);
97static void enable_mac(struct net_device *, int);
1da177e4
LT
98
99// externs
1da177e4
LT
100extern int get_ethernet_addr(char *ethernet_addr);
101extern void str2eaddr(unsigned char *ea, unsigned char *str);
c21e6d65 102extern char * prom_getcmdline(void);
1da177e4
LT
103
104/*
105 * Theory of operation
106 *
6aa20a22
JG
107 * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
108 * There are four receive and four transmit descriptors. These
109 * descriptors are not in memory; rather, they are just a set of
1da177e4
LT
110 * hardware registers.
111 *
112 * Since the Au1000 has a coherent data cache, the receive and
6aa20a22 113 * transmit buffers are allocated from the KSEG0 segment. The
1da177e4
LT
114 * hardware registers, however, are still mapped at KSEG1 to
115 * make sure there's no out-of-order writes, and that all writes
116 * complete immediately.
117 */
118
119/* These addresses are only used if yamon doesn't tell us what
120 * the mac address is, and the mac address is not passed on the
121 * command line.
122 */
6aa20a22 123static unsigned char au1000_mac_addr[6] __devinitdata = {
1da177e4
LT
124 0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00
125};
126
1da177e4
LT
127struct au1000_private *au_macs[NUM_ETH_INTERFACES];
128
0638dec0
HVR
129/*
130 * board-specific configurations
131 *
132 * PHY detection algorithm
133 *
134 * If AU1XXX_PHY_STATIC_CONFIG is undefined, the PHY setup is
135 * autodetected:
136 *
137 * mii_probe() first searches the current MAC's MII bus for a PHY,
138 * selecting the first (or last, if AU1XXX_PHY_SEARCH_HIGHEST_ADDR is
139 * defined) PHY address not already claimed by another netdev.
140 *
141 * If nothing was found that way when searching for the 2nd ethernet
142 * controller's PHY and AU1XXX_PHY1_SEARCH_ON_MAC0 is defined, then
143 * the first MII bus is searched as well for an unclaimed PHY; this is
144 * needed in case of a dual-PHY accessible only through the MAC0's MII
145 * bus.
146 *
147 * Finally, if no PHY is found, then the corresponding ethernet
148 * controller is not registered to the network subsystem.
1da177e4
LT
149 */
150
0638dec0
HVR
151/* autodetection defaults */
152#undef AU1XXX_PHY_SEARCH_HIGHEST_ADDR
153#define AU1XXX_PHY1_SEARCH_ON_MAC0
1da177e4 154
0638dec0
HVR
155/* static PHY setup
156 *
157 * most boards PHY setup should be detectable properly with the
158 * autodetection algorithm in mii_probe(), but in some cases (e.g. if
159 * you have a switch attached, or want to use the PHY's interrupt
160 * notification capabilities) you can provide a static PHY
161 * configuration here
162 *
163 * IRQs may only be set, if a PHY address was configured
164 * If a PHY address is given, also a bus id is required to be set
165 *
166 * ps: make sure the used irqs are configured properly in the board
167 * specific irq-map
168 */
1da177e4 169
0638dec0
HVR
170#if defined(CONFIG_MIPS_BOSPORUS)
171/*
172 * Micrel/Kendin 5 port switch attached to MAC0,
173 * MAC0 is associated with PHY address 5 (== WAN port)
174 * MAC1 is not associated with any PHY, since it's connected directly
175 * to the switch.
176 * no interrupts are used
177 */
178# define AU1XXX_PHY_STATIC_CONFIG
1da177e4 179
0638dec0
HVR
180# define AU1XXX_PHY0_ADDR 5
181# define AU1XXX_PHY0_BUSID 0
182# undef AU1XXX_PHY0_IRQ
1da177e4 183
0638dec0
HVR
184# undef AU1XXX_PHY1_ADDR
185# undef AU1XXX_PHY1_BUSID
186# undef AU1XXX_PHY1_IRQ
1da177e4
LT
187#endif
188
0638dec0
HVR
189#if defined(AU1XXX_PHY0_BUSID) && (AU1XXX_PHY0_BUSID > 0)
190# error MAC0-associated PHY attached 2nd MACs MII bus not supported yet
1da177e4 191#endif
1da177e4 192
0638dec0
HVR
193/*
194 * MII operations
195 */
196static int mdio_read(struct net_device *dev, int phy_addr, int reg)
1da177e4
LT
197{
198 struct au1000_private *aup = (struct au1000_private *) dev->priv;
0638dec0
HVR
199 volatile u32 *const mii_control_reg = &aup->mac->mii_control;
200 volatile u32 *const mii_data_reg = &aup->mac->mii_data;
1da177e4
LT
201 u32 timedout = 20;
202 u32 mii_control;
203
1da177e4
LT
204 while (*mii_control_reg & MAC_MII_BUSY) {
205 mdelay(1);
206 if (--timedout == 0) {
6aa20a22 207 printk(KERN_ERR "%s: read_MII busy timeout!!\n",
1da177e4
LT
208 dev->name);
209 return -1;
210 }
211 }
212
6aa20a22 213 mii_control = MAC_SET_MII_SELECT_REG(reg) |
0638dec0 214 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
1da177e4
LT
215
216 *mii_control_reg = mii_control;
217
218 timedout = 20;
219 while (*mii_control_reg & MAC_MII_BUSY) {
220 mdelay(1);
221 if (--timedout == 0) {
6aa20a22 222 printk(KERN_ERR "%s: mdio_read busy timeout!!\n",
1da177e4
LT
223 dev->name);
224 return -1;
225 }
226 }
227 return (int)*mii_data_reg;
228}
229
0638dec0 230static void mdio_write(struct net_device *dev, int phy_addr, int reg, u16 value)
1da177e4
LT
231{
232 struct au1000_private *aup = (struct au1000_private *) dev->priv;
0638dec0
HVR
233 volatile u32 *const mii_control_reg = &aup->mac->mii_control;
234 volatile u32 *const mii_data_reg = &aup->mac->mii_data;
1da177e4
LT
235 u32 timedout = 20;
236 u32 mii_control;
237
1da177e4
LT
238 while (*mii_control_reg & MAC_MII_BUSY) {
239 mdelay(1);
240 if (--timedout == 0) {
6aa20a22 241 printk(KERN_ERR "%s: mdio_write busy timeout!!\n",
1da177e4
LT
242 dev->name);
243 return;
244 }
245 }
246
6aa20a22 247 mii_control = MAC_SET_MII_SELECT_REG(reg) |
0638dec0 248 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
1da177e4
LT
249
250 *mii_data_reg = value;
251 *mii_control_reg = mii_control;
252}
253
0638dec0
HVR
254static int mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
255{
256 /* WARNING: bus->phy_map[phy_addr].attached_dev == dev does
257 * _NOT_ hold (e.g. when PHY is accessed through other MAC's MII bus) */
258 struct net_device *const dev = bus->priv;
259
260 enable_mac(dev, 0); /* make sure the MAC associated with this
261 * mii_bus is enabled */
262 return mdio_read(dev, phy_addr, regnum);
263}
1da177e4 264
0638dec0
HVR
265static int mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
266 u16 value)
1da177e4 267{
0638dec0 268 struct net_device *const dev = bus->priv;
1da177e4 269
0638dec0
HVR
270 enable_mac(dev, 0); /* make sure the MAC associated with this
271 * mii_bus is enabled */
272 mdio_write(dev, phy_addr, regnum, value);
273 return 0;
1da177e4
LT
274}
275
0638dec0 276static int mdiobus_reset(struct mii_bus *bus)
1da177e4 277{
0638dec0 278 struct net_device *const dev = bus->priv;
1da177e4 279
0638dec0
HVR
280 enable_mac(dev, 0); /* make sure the MAC associated with this
281 * mii_bus is enabled */
282 return 0;
283}
1da177e4 284
0638dec0
HVR
285static int mii_probe (struct net_device *dev)
286{
287 struct au1000_private *const aup = (struct au1000_private *) dev->priv;
288 struct phy_device *phydev = NULL;
289
290#if defined(AU1XXX_PHY_STATIC_CONFIG)
291 BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
292
293 if(aup->mac_id == 0) { /* get PHY0 */
294# if defined(AU1XXX_PHY0_ADDR)
295 phydev = au_macs[AU1XXX_PHY0_BUSID]->mii_bus.phy_map[AU1XXX_PHY0_ADDR];
296# else
297 printk (KERN_INFO DRV_NAME ":%s: using PHY-less setup\n",
298 dev->name);
299 return 0;
300# endif /* defined(AU1XXX_PHY0_ADDR) */
301 } else if (aup->mac_id == 1) { /* get PHY1 */
302# if defined(AU1XXX_PHY1_ADDR)
303 phydev = au_macs[AU1XXX_PHY1_BUSID]->mii_bus.phy_map[AU1XXX_PHY1_ADDR];
304# else
305 printk (KERN_INFO DRV_NAME ":%s: using PHY-less setup\n",
306 dev->name);
307 return 0;
308# endif /* defined(AU1XXX_PHY1_ADDR) */
309 }
310
311#else /* defined(AU1XXX_PHY_STATIC_CONFIG) */
312 int phy_addr;
313
314 /* find the first (lowest address) PHY on the current MAC's MII bus */
315 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
316 if (aup->mii_bus.phy_map[phy_addr]) {
317 phydev = aup->mii_bus.phy_map[phy_addr];
318# if !defined(AU1XXX_PHY_SEARCH_HIGHEST_ADDR)
319 break; /* break out with first one found */
320# endif
1da177e4 321 }
1da177e4 322
0638dec0
HVR
323# if defined(AU1XXX_PHY1_SEARCH_ON_MAC0)
324 /* try harder to find a PHY */
325 if (!phydev && (aup->mac_id == 1)) {
326 /* no PHY found, maybe we have a dual PHY? */
327 printk (KERN_INFO DRV_NAME ": no PHY found on MAC1, "
328 "let's see if it's attached to MAC0...\n");
329
330 BUG_ON(!au_macs[0]);
331
332 /* find the first (lowest address) non-attached PHY on
333 * the MAC0 MII bus */
334 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
335 struct phy_device *const tmp_phydev =
336 au_macs[0]->mii_bus.phy_map[phy_addr];
337
338 if (!tmp_phydev)
339 continue; /* no PHY here... */
340
341 if (tmp_phydev->attached_dev)
342 continue; /* already claimed by MAC0 */
343
344 phydev = tmp_phydev;
345 break; /* found it */
1da177e4
LT
346 }
347 }
0638dec0 348# endif /* defined(AU1XXX_PHY1_SEARCH_OTHER_BUS) */
1da177e4 349
0638dec0
HVR
350#endif /* defined(AU1XXX_PHY_STATIC_CONFIG) */
351 if (!phydev) {
352 printk (KERN_ERR DRV_NAME ":%s: no PHY found\n", dev->name);
1da177e4
LT
353 return -1;
354 }
355
0638dec0
HVR
356 /* now we are supposed to have a proper phydev, to attach to... */
357 BUG_ON(!phydev);
358 BUG_ON(phydev->attached_dev);
359
e8a2b6a4
AF
360 phydev = phy_connect(dev, phydev->dev.bus_id, &au1000_adjust_link, 0,
361 PHY_INTERFACE_MODE_MII);
0638dec0
HVR
362
363 if (IS_ERR(phydev)) {
364 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
365 return PTR_ERR(phydev);
366 }
367
368 /* mask with MAC supported features */
369 phydev->supported &= (SUPPORTED_10baseT_Half
370 | SUPPORTED_10baseT_Full
371 | SUPPORTED_100baseT_Half
372 | SUPPORTED_100baseT_Full
373 | SUPPORTED_Autoneg
374 /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
375 | SUPPORTED_MII
376 | SUPPORTED_TP);
377
378 phydev->advertising = phydev->supported;
379
380 aup->old_link = 0;
381 aup->old_speed = 0;
382 aup->old_duplex = -1;
383 aup->phy_dev = phydev;
384
385 printk(KERN_INFO "%s: attached PHY driver [%s] "
386 "(mii_bus:phy_addr=%s, irq=%d)\n",
387 dev->name, phydev->drv->name, phydev->dev.bus_id, phydev->irq);
1da177e4
LT
388
389 return 0;
390}
391
392
393/*
394 * Buffer allocation/deallocation routines. The buffer descriptor returned
6aa20a22 395 * has the virtual and dma address of a buffer suitable for
1da177e4
LT
396 * both, receive and transmit operations.
397 */
398static db_dest_t *GetFreeDB(struct au1000_private *aup)
399{
400 db_dest_t *pDB;
401 pDB = aup->pDBfree;
402
403 if (pDB) {
404 aup->pDBfree = pDB->pnext;
405 }
406 return pDB;
407}
408
409void ReleaseDB(struct au1000_private *aup, db_dest_t *pDB)
410{
411 db_dest_t *pDBfree = aup->pDBfree;
412 if (pDBfree)
413 pDBfree->pnext = pDB;
414 aup->pDBfree = pDB;
415}
416
417static void enable_rx_tx(struct net_device *dev)
418{
419 struct au1000_private *aup = (struct au1000_private *) dev->priv;
420
421 if (au1000_debug > 4)
422 printk(KERN_INFO "%s: enable_rx_tx\n", dev->name);
423
424 aup->mac->control |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
425 au_sync_delay(10);
426}
427
428static void hard_stop(struct net_device *dev)
429{
430 struct au1000_private *aup = (struct au1000_private *) dev->priv;
431
432 if (au1000_debug > 4)
433 printk(KERN_INFO "%s: hard stop\n", dev->name);
434
435 aup->mac->control &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
436 au_sync_delay(10);
437}
438
0638dec0 439static void enable_mac(struct net_device *dev, int force_reset)
1da177e4 440{
0638dec0 441 unsigned long flags;
1da177e4
LT
442 struct au1000_private *aup = (struct au1000_private *) dev->priv;
443
1da177e4 444 spin_lock_irqsave(&aup->lock, flags);
1da177e4 445
0638dec0 446 if(force_reset || (!aup->mac_enabled)) {
1da177e4
LT
447 *aup->enable = MAC_EN_CLOCK_ENABLE;
448 au_sync_delay(2);
0638dec0
HVR
449 *aup->enable = (MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
450 | MAC_EN_CLOCK_ENABLE);
1da177e4 451 au_sync_delay(2);
0638dec0
HVR
452
453 aup->mac_enabled = 1;
1da177e4 454 }
0638dec0
HVR
455
456 spin_unlock_irqrestore(&aup->lock, flags);
457}
458
459static void reset_mac_unlocked(struct net_device *dev)
460{
461 struct au1000_private *const aup = (struct au1000_private *) dev->priv;
462 int i;
463
464 hard_stop(dev);
465
466 *aup->enable = MAC_EN_CLOCK_ENABLE;
467 au_sync_delay(2);
468 *aup->enable = 0;
469 au_sync_delay(2);
470
1da177e4
LT
471 aup->tx_full = 0;
472 for (i = 0; i < NUM_RX_DMA; i++) {
473 /* reset control bits */
474 aup->rx_dma_ring[i]->buff_stat &= ~0xf;
475 }
476 for (i = 0; i < NUM_TX_DMA; i++) {
477 /* reset control bits */
478 aup->tx_dma_ring[i]->buff_stat &= ~0xf;
479 }
0638dec0
HVR
480
481 aup->mac_enabled = 0;
482
1da177e4
LT
483}
484
0638dec0
HVR
485static void reset_mac(struct net_device *dev)
486{
487 struct au1000_private *const aup = (struct au1000_private *) dev->priv;
488 unsigned long flags;
489
490 if (au1000_debug > 4)
491 printk(KERN_INFO "%s: reset mac, aup %x\n",
492 dev->name, (unsigned)aup);
493
494 spin_lock_irqsave(&aup->lock, flags);
495
496 reset_mac_unlocked (dev);
497
498 spin_unlock_irqrestore(&aup->lock, flags);
499}
1da177e4 500
6aa20a22 501/*
1da177e4
LT
502 * Setup the receive and transmit "rings". These pointers are the addresses
503 * of the rx and tx MAC DMA registers so they are fixed by the hardware --
504 * these are not descriptors sitting in memory.
505 */
6aa20a22 506static void
1da177e4
LT
507setup_hw_rings(struct au1000_private *aup, u32 rx_base, u32 tx_base)
508{
509 int i;
510
511 for (i = 0; i < NUM_RX_DMA; i++) {
6aa20a22 512 aup->rx_dma_ring[i] =
1da177e4
LT
513 (volatile rx_dma_t *) (rx_base + sizeof(rx_dma_t)*i);
514 }
515 for (i = 0; i < NUM_TX_DMA; i++) {
6aa20a22 516 aup->tx_dma_ring[i] =
1da177e4
LT
517 (volatile tx_dma_t *) (tx_base + sizeof(tx_dma_t)*i);
518 }
519}
520
521static struct {
1da177e4
LT
522 u32 base_addr;
523 u32 macen_addr;
524 int irq;
525 struct net_device *dev;
89be0501
SS
526} iflist[2] = {
527#ifdef CONFIG_SOC_AU1000
528 {AU1000_ETH0_BASE, AU1000_MAC0_ENABLE, AU1000_MAC0_DMA_INT},
529 {AU1000_ETH1_BASE, AU1000_MAC1_ENABLE, AU1000_MAC1_DMA_INT}
530#endif
531#ifdef CONFIG_SOC_AU1100
532 {AU1100_ETH0_BASE, AU1100_MAC0_ENABLE, AU1100_MAC0_DMA_INT}
533#endif
534#ifdef CONFIG_SOC_AU1500
535 {AU1500_ETH0_BASE, AU1500_MAC0_ENABLE, AU1500_MAC0_DMA_INT},
536 {AU1500_ETH1_BASE, AU1500_MAC1_ENABLE, AU1500_MAC1_DMA_INT}
537#endif
538#ifdef CONFIG_SOC_AU1550
539 {AU1550_ETH0_BASE, AU1550_MAC0_ENABLE, AU1550_MAC0_DMA_INT},
540 {AU1550_ETH1_BASE, AU1550_MAC1_ENABLE, AU1550_MAC1_DMA_INT}
541#endif
542};
1da177e4
LT
543
544static int num_ifs;
545
546/*
547 * Setup the base address and interupt of the Au1xxx ethernet macs
548 * based on cpu type and whether the interface is enabled in sys_pinfunc
549 * register. The last interface is enabled if SYS_PF_NI2 (bit 4) is 0.
550 */
551static int __init au1000_init_module(void)
552{
1da177e4
LT
553 int ni = (int)((au_readl(SYS_PINFUNC) & (u32)(SYS_PF_NI2)) >> 4);
554 struct net_device *dev;
555 int i, found_one = 0;
556
89be0501
SS
557 num_ifs = NUM_ETH_INTERFACES - ni;
558
1da177e4 559 for(i = 0; i < num_ifs; i++) {
89be0501 560 dev = au1000_probe(i);
1da177e4
LT
561 iflist[i].dev = dev;
562 if (dev)
563 found_one++;
564 }
565 if (!found_one)
566 return -ENODEV;
567 return 0;
568}
569
0638dec0
HVR
570/*
571 * ethtool operations
572 */
1da177e4 573
0638dec0 574static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1da177e4
LT
575{
576 struct au1000_private *aup = (struct au1000_private *)dev->priv;
1da177e4 577
0638dec0
HVR
578 if (aup->phy_dev)
579 return phy_ethtool_gset(aup->phy_dev, cmd);
1da177e4 580
0638dec0 581 return -EINVAL;
1da177e4
LT
582}
583
0638dec0 584static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1da177e4
LT
585{
586 struct au1000_private *aup = (struct au1000_private *)dev->priv;
1da177e4 587
0638dec0
HVR
588 if (!capable(CAP_NET_ADMIN))
589 return -EPERM;
1da177e4 590
0638dec0
HVR
591 if (aup->phy_dev)
592 return phy_ethtool_sset(aup->phy_dev, cmd);
1da177e4 593
0638dec0 594 return -EINVAL;
1da177e4
LT
595}
596
597static void
598au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
599{
600 struct au1000_private *aup = (struct au1000_private *)dev->priv;
601
602 strcpy(info->driver, DRV_NAME);
603 strcpy(info->version, DRV_VERSION);
604 info->fw_version[0] = '\0';
605 sprintf(info->bus_info, "%s %d", DRV_NAME, aup->mac_id);
606 info->regdump_len = 0;
607}
608
7282d491 609static const struct ethtool_ops au1000_ethtool_ops = {
1da177e4
LT
610 .get_settings = au1000_get_settings,
611 .set_settings = au1000_set_settings,
612 .get_drvinfo = au1000_get_drvinfo,
0638dec0 613 .get_link = ethtool_op_get_link,
1da177e4
LT
614};
615
89be0501 616static struct net_device * au1000_probe(int port_num)
1da177e4
LT
617{
618 static unsigned version_printed = 0;
619 struct au1000_private *aup = NULL;
620 struct net_device *dev = NULL;
621 db_dest_t *pDB, *pDBfree;
622 char *pmac, *argptr;
623 char ethaddr[6];
89be0501
SS
624 int irq, i, err;
625 u32 base, macen;
626
627 if (port_num >= NUM_ETH_INTERFACES)
628 return NULL;
1da177e4 629
89be0501
SS
630 base = CPHYSADDR(iflist[port_num].base_addr );
631 macen = CPHYSADDR(iflist[port_num].macen_addr);
632 irq = iflist[port_num].irq;
633
634 if (!request_mem_region( base, MAC_IOSIZE, "Au1x00 ENET") ||
635 !request_mem_region(macen, 4, "Au1x00 ENET"))
1da177e4
LT
636 return NULL;
637
89be0501 638 if (version_printed++ == 0)
1da177e4
LT
639 printk("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR);
640
641 dev = alloc_etherdev(sizeof(struct au1000_private));
642 if (!dev) {
89be0501 643 printk(KERN_ERR "%s: alloc_etherdev failed\n", DRV_NAME);
1da177e4
LT
644 return NULL;
645 }
646
89be0501
SS
647 if ((err = register_netdev(dev)) != 0) {
648 printk(KERN_ERR "%s: Cannot register net device, error %d\n",
649 DRV_NAME, err);
1da177e4
LT
650 free_netdev(dev);
651 return NULL;
652 }
653
89be0501
SS
654 printk("%s: Au1xx0 Ethernet found at 0x%x, irq %d\n",
655 dev->name, base, irq);
1da177e4
LT
656
657 aup = dev->priv;
658
659 /* Allocate the data buffers */
660 /* Snooping works fine with eth on all au1xxx */
89be0501
SS
661 aup->vaddr = (u32)dma_alloc_noncoherent(NULL, MAX_BUF_SIZE *
662 (NUM_TX_BUFFS + NUM_RX_BUFFS),
663 &aup->dma_addr, 0);
1da177e4
LT
664 if (!aup->vaddr) {
665 free_netdev(dev);
89be0501
SS
666 release_mem_region( base, MAC_IOSIZE);
667 release_mem_region(macen, 4);
1da177e4
LT
668 return NULL;
669 }
670
671 /* aup->mac is the base address of the MAC's registers */
89be0501
SS
672 aup->mac = (volatile mac_reg_t *)iflist[port_num].base_addr;
673
1da177e4 674 /* Setup some variables for quick register address access */
89be0501
SS
675 aup->enable = (volatile u32 *)iflist[port_num].macen_addr;
676 aup->mac_id = port_num;
677 au_macs[port_num] = aup;
678
679 if (port_num == 0) {
680 /* Check the environment variables first */
681 if (get_ethernet_addr(ethaddr) == 0)
1da177e4 682 memcpy(au1000_mac_addr, ethaddr, sizeof(au1000_mac_addr));
89be0501 683 else {
1da177e4
LT
684 /* Check command line */
685 argptr = prom_getcmdline();
89be0501
SS
686 if ((pmac = strstr(argptr, "ethaddr=")) == NULL)
687 printk(KERN_INFO "%s: No MAC address found\n",
688 dev->name);
689 /* Use the hard coded MAC addresses */
690 else {
1da177e4 691 str2eaddr(ethaddr, pmac + strlen("ethaddr="));
6aa20a22 692 memcpy(au1000_mac_addr, ethaddr,
89be0501 693 sizeof(au1000_mac_addr));
1da177e4
LT
694 }
695 }
89be0501 696
1da177e4 697 setup_hw_rings(aup, MAC0_RX_DMA_ADDR, MAC0_TX_DMA_ADDR);
89be0501 698 } else if (port_num == 1)
1da177e4 699 setup_hw_rings(aup, MAC1_RX_DMA_ADDR, MAC1_TX_DMA_ADDR);
1da177e4 700
89be0501
SS
701 /*
702 * Assign to the Ethernet ports two consecutive MAC addresses
703 * to match those that are printed on their stickers
704 */
705 memcpy(dev->dev_addr, au1000_mac_addr, sizeof(au1000_mac_addr));
706 dev->dev_addr[5] += port_num;
707
0638dec0
HVR
708 *aup->enable = 0;
709 aup->mac_enabled = 0;
710
711 aup->mii_bus.priv = dev;
712 aup->mii_bus.read = mdiobus_read;
713 aup->mii_bus.write = mdiobus_write;
714 aup->mii_bus.reset = mdiobus_reset;
715 aup->mii_bus.name = "au1000_eth_mii";
716 aup->mii_bus.id = aup->mac_id;
717 aup->mii_bus.irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
718 for(i = 0; i < PHY_MAX_ADDR; ++i)
719 aup->mii_bus.irq[i] = PHY_POLL;
720
721 /* if known, set corresponding PHY IRQs */
722#if defined(AU1XXX_PHY_STATIC_CONFIG)
723# if defined(AU1XXX_PHY0_IRQ)
724 if (AU1XXX_PHY0_BUSID == aup->mii_bus.id)
725 aup->mii_bus.irq[AU1XXX_PHY0_ADDR] = AU1XXX_PHY0_IRQ;
726# endif
727# if defined(AU1XXX_PHY1_IRQ)
728 if (AU1XXX_PHY1_BUSID == aup->mii_bus.id)
729 aup->mii_bus.irq[AU1XXX_PHY1_ADDR] = AU1XXX_PHY1_IRQ;
730# endif
731#endif
732 mdiobus_register(&aup->mii_bus);
1da177e4
LT
733
734 if (mii_probe(dev) != 0) {
735 goto err_out;
736 }
737
738 pDBfree = NULL;
739 /* setup the data buffer descriptors and attach a buffer to each one */
740 pDB = aup->db;
741 for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
742 pDB->pnext = pDBfree;
743 pDBfree = pDB;
744 pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
745 pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
746 pDB++;
747 }
748 aup->pDBfree = pDBfree;
749
750 for (i = 0; i < NUM_RX_DMA; i++) {
751 pDB = GetFreeDB(aup);
752 if (!pDB) {
753 goto err_out;
754 }
755 aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
756 aup->rx_db_inuse[i] = pDB;
757 }
758 for (i = 0; i < NUM_TX_DMA; i++) {
759 pDB = GetFreeDB(aup);
760 if (!pDB) {
761 goto err_out;
762 }
763 aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
764 aup->tx_dma_ring[i]->len = 0;
765 aup->tx_db_inuse[i] = pDB;
766 }
767
768 spin_lock_init(&aup->lock);
89be0501 769 dev->base_addr = base;
1da177e4
LT
770 dev->irq = irq;
771 dev->open = au1000_open;
772 dev->hard_start_xmit = au1000_tx;
773 dev->stop = au1000_close;
1da177e4
LT
774 dev->set_multicast_list = &set_rx_mode;
775 dev->do_ioctl = &au1000_ioctl;
776 SET_ETHTOOL_OPS(dev, &au1000_ethtool_ops);
1da177e4
LT
777 dev->tx_timeout = au1000_tx_timeout;
778 dev->watchdog_timeo = ETH_TX_TIMEOUT;
779
6aa20a22
JG
780 /*
781 * The boot code uses the ethernet controller, so reset it to start
1da177e4
LT
782 * fresh. au1000_init() expects that the device is in reset state.
783 */
784 reset_mac(dev);
785
786 return dev;
787
788err_out:
789 /* here we should have a valid dev plus aup-> register addresses
790 * so we can reset the mac properly.*/
791 reset_mac(dev);
0638dec0 792
1da177e4
LT
793 for (i = 0; i < NUM_RX_DMA; i++) {
794 if (aup->rx_db_inuse[i])
795 ReleaseDB(aup, aup->rx_db_inuse[i]);
796 }
797 for (i = 0; i < NUM_TX_DMA; i++) {
798 if (aup->tx_db_inuse[i])
799 ReleaseDB(aup, aup->tx_db_inuse[i]);
800 }
89be0501
SS
801 dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
802 (void *)aup->vaddr, aup->dma_addr);
1da177e4
LT
803 unregister_netdev(dev);
804 free_netdev(dev);
89be0501
SS
805 release_mem_region( base, MAC_IOSIZE);
806 release_mem_region(macen, 4);
1da177e4
LT
807 return NULL;
808}
809
6aa20a22 810/*
1da177e4
LT
811 * Initialize the interface.
812 *
813 * When the device powers up, the clocks are disabled and the
814 * mac is in reset state. When the interface is closed, we
815 * do the same -- reset the device and disable the clocks to
816 * conserve power. Thus, whenever au1000_init() is called,
817 * the device should already be in reset state.
818 */
819static int au1000_init(struct net_device *dev)
820{
821 struct au1000_private *aup = (struct au1000_private *) dev->priv;
822 u32 flags;
823 int i;
824 u32 control;
1da177e4 825
6aa20a22 826 if (au1000_debug > 4)
1da177e4
LT
827 printk("%s: au1000_init\n", dev->name);
828
1da177e4 829 /* bring the device out of reset */
0638dec0
HVR
830 enable_mac(dev, 1);
831
832 spin_lock_irqsave(&aup->lock, flags);
1da177e4
LT
833
834 aup->mac->control = 0;
835 aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
836 aup->tx_tail = aup->tx_head;
837 aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
838
839 aup->mac->mac_addr_high = dev->dev_addr[5]<<8 | dev->dev_addr[4];
840 aup->mac->mac_addr_low = dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
841 dev->dev_addr[1]<<8 | dev->dev_addr[0];
842
843 for (i = 0; i < NUM_RX_DMA; i++) {
844 aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
845 }
846 au_sync();
847
0638dec0 848 control = MAC_RX_ENABLE | MAC_TX_ENABLE;
1da177e4
LT
849#ifndef CONFIG_CPU_LITTLE_ENDIAN
850 control |= MAC_BIG_ENDIAN;
851#endif
0638dec0
HVR
852 if (aup->phy_dev) {
853 if (aup->phy_dev->link && (DUPLEX_FULL == aup->phy_dev->duplex))
854 control |= MAC_FULL_DUPLEX;
855 else
856 control |= MAC_DISABLE_RX_OWN;
857 } else { /* PHY-less op, assume full-duplex */
1da177e4
LT
858 control |= MAC_FULL_DUPLEX;
859 }
860
1da177e4
LT
861 aup->mac->control = control;
862 aup->mac->vlan1_tag = 0x8100; /* activate vlan support */
863 au_sync();
864
865 spin_unlock_irqrestore(&aup->lock, flags);
866 return 0;
867}
868
0638dec0
HVR
869static void
870au1000_adjust_link(struct net_device *dev)
1da177e4 871{
1da177e4 872 struct au1000_private *aup = (struct au1000_private *) dev->priv;
0638dec0
HVR
873 struct phy_device *phydev = aup->phy_dev;
874 unsigned long flags;
1da177e4 875
0638dec0 876 int status_change = 0;
1da177e4 877
0638dec0
HVR
878 BUG_ON(!aup->phy_dev);
879
880 spin_lock_irqsave(&aup->lock, flags);
881
882 if (phydev->link && (aup->old_speed != phydev->speed)) {
883 // speed changed
884
885 switch(phydev->speed) {
886 case SPEED_10:
887 case SPEED_100:
888 break;
889 default:
890 printk(KERN_WARNING
891 "%s: Speed (%d) is not 10/100 ???\n",
892 dev->name, phydev->speed);
893 break;
1da177e4 894 }
0638dec0
HVR
895
896 aup->old_speed = phydev->speed;
897
898 status_change = 1;
1da177e4
LT
899 }
900
0638dec0
HVR
901 if (phydev->link && (aup->old_duplex != phydev->duplex)) {
902 // duplex mode changed
903
904 /* switching duplex mode requires to disable rx and tx! */
1da177e4 905 hard_stop(dev);
0638dec0
HVR
906
907 if (DUPLEX_FULL == phydev->duplex)
908 aup->mac->control = ((aup->mac->control
909 | MAC_FULL_DUPLEX)
910 & ~MAC_DISABLE_RX_OWN);
911 else
912 aup->mac->control = ((aup->mac->control
913 & ~MAC_FULL_DUPLEX)
914 | MAC_DISABLE_RX_OWN);
915 au_sync_delay(1);
916
1da177e4 917 enable_rx_tx(dev);
0638dec0
HVR
918 aup->old_duplex = phydev->duplex;
919
920 status_change = 1;
921 }
922
923 if(phydev->link != aup->old_link) {
924 // link state changed
925
926 if (phydev->link) // link went up
927 netif_schedule(dev);
928 else { // link went down
929 aup->old_speed = 0;
930 aup->old_duplex = -1;
931 }
932
933 aup->old_link = phydev->link;
934 status_change = 1;
1da177e4
LT
935 }
936
0638dec0 937 spin_unlock_irqrestore(&aup->lock, flags);
1da177e4 938
0638dec0
HVR
939 if (status_change) {
940 if (phydev->link)
941 printk(KERN_INFO "%s: link up (%d/%s)\n",
942 dev->name, phydev->speed,
943 DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
944 else
945 printk(KERN_INFO "%s: link down\n", dev->name);
946 }
1da177e4
LT
947}
948
949static int au1000_open(struct net_device *dev)
950{
951 int retval;
952 struct au1000_private *aup = (struct au1000_private *) dev->priv;
953
954 if (au1000_debug > 4)
955 printk("%s: open: dev=%p\n", dev->name, dev);
956
0638dec0
HVR
957 if ((retval = request_irq(dev->irq, &au1000_interrupt, 0,
958 dev->name, dev))) {
959 printk(KERN_ERR "%s: unable to get IRQ %d\n",
960 dev->name, dev->irq);
961 return retval;
962 }
963
1da177e4
LT
964 if ((retval = au1000_init(dev))) {
965 printk(KERN_ERR "%s: error in au1000_init\n", dev->name);
966 free_irq(dev->irq, dev);
967 return retval;
968 }
1da177e4 969
0638dec0
HVR
970 if (aup->phy_dev) {
971 /* cause the PHY state machine to schedule a link state check */
972 aup->phy_dev->state = PHY_CHANGELINK;
973 phy_start(aup->phy_dev);
1da177e4
LT
974 }
975
0638dec0 976 netif_start_queue(dev);
1da177e4
LT
977
978 if (au1000_debug > 4)
979 printk("%s: open: Initialization done.\n", dev->name);
980
981 return 0;
982}
983
984static int au1000_close(struct net_device *dev)
985{
0638dec0
HVR
986 unsigned long flags;
987 struct au1000_private *const aup = (struct au1000_private *) dev->priv;
1da177e4
LT
988
989 if (au1000_debug > 4)
990 printk("%s: close: dev=%p\n", dev->name, dev);
991
0638dec0
HVR
992 if (aup->phy_dev)
993 phy_stop(aup->phy_dev);
1da177e4
LT
994
995 spin_lock_irqsave(&aup->lock, flags);
0638dec0
HVR
996
997 reset_mac_unlocked (dev);
998
1da177e4
LT
999 /* stop the device */
1000 netif_stop_queue(dev);
1001
1002 /* disable the interrupt */
1003 free_irq(dev->irq, dev);
1004 spin_unlock_irqrestore(&aup->lock, flags);
1005
1006 return 0;
1007}
1008
1009static void __exit au1000_cleanup_module(void)
1010{
1011 int i, j;
1012 struct net_device *dev;
1013 struct au1000_private *aup;
1014
1015 for (i = 0; i < num_ifs; i++) {
1016 dev = iflist[i].dev;
1017 if (dev) {
1018 aup = (struct au1000_private *) dev->priv;
1019 unregister_netdev(dev);
89be0501 1020 for (j = 0; j < NUM_RX_DMA; j++)
1da177e4
LT
1021 if (aup->rx_db_inuse[j])
1022 ReleaseDB(aup, aup->rx_db_inuse[j]);
89be0501 1023 for (j = 0; j < NUM_TX_DMA; j++)
1da177e4
LT
1024 if (aup->tx_db_inuse[j])
1025 ReleaseDB(aup, aup->tx_db_inuse[j]);
89be0501
SS
1026 dma_free_noncoherent(NULL, MAX_BUF_SIZE *
1027 (NUM_TX_BUFFS + NUM_RX_BUFFS),
1028 (void *)aup->vaddr, aup->dma_addr);
1029 release_mem_region(dev->base_addr, MAC_IOSIZE);
1030 release_mem_region(CPHYSADDR(iflist[i].macen_addr), 4);
1da177e4 1031 free_netdev(dev);
1da177e4
LT
1032 }
1033 }
1034}
1035
c2d3d4b9 1036static void update_tx_stats(struct net_device *dev, u32 status)
1da177e4
LT
1037{
1038 struct au1000_private *aup = (struct au1000_private *) dev->priv;
09f75cd7 1039 struct net_device_stats *ps = &dev->stats;
1da177e4 1040
1da177e4 1041 if (status & TX_FRAME_ABORTED) {
0638dec0 1042 if (!aup->phy_dev || (DUPLEX_FULL == aup->phy_dev->duplex)) {
1da177e4
LT
1043 if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
1044 /* any other tx errors are only valid
1045 * in half duplex mode */
1046 ps->tx_errors++;
1047 ps->tx_aborted_errors++;
1048 }
1049 }
1050 else {
1051 ps->tx_errors++;
1052 ps->tx_aborted_errors++;
1053 if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
1054 ps->tx_carrier_errors++;
1055 }
1056 }
1057}
1058
1059
1060/*
1061 * Called from the interrupt service routine to acknowledge
1062 * the TX DONE bits. This is a must if the irq is setup as
1063 * edge triggered.
1064 */
1065static void au1000_tx_ack(struct net_device *dev)
1066{
1067 struct au1000_private *aup = (struct au1000_private *) dev->priv;
1068 volatile tx_dma_t *ptxd;
1069
1070 ptxd = aup->tx_dma_ring[aup->tx_tail];
1071
1072 while (ptxd->buff_stat & TX_T_DONE) {
c2d3d4b9 1073 update_tx_stats(dev, ptxd->status);
1da177e4
LT
1074 ptxd->buff_stat &= ~TX_T_DONE;
1075 ptxd->len = 0;
1076 au_sync();
1077
1078 aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
1079 ptxd = aup->tx_dma_ring[aup->tx_tail];
1080
1081 if (aup->tx_full) {
1082 aup->tx_full = 0;
1083 netif_wake_queue(dev);
1084 }
1085 }
1086}
1087
1088
1089/*
1090 * Au1000 transmit routine.
1091 */
1092static int au1000_tx(struct sk_buff *skb, struct net_device *dev)
1093{
1094 struct au1000_private *aup = (struct au1000_private *) dev->priv;
09f75cd7 1095 struct net_device_stats *ps = &dev->stats;
1da177e4
LT
1096 volatile tx_dma_t *ptxd;
1097 u32 buff_stat;
1098 db_dest_t *pDB;
1099 int i;
1100
1101 if (au1000_debug > 5)
6aa20a22
JG
1102 printk("%s: tx: aup %x len=%d, data=%p, head %d\n",
1103 dev->name, (unsigned)aup, skb->len,
1da177e4
LT
1104 skb->data, aup->tx_head);
1105
1106 ptxd = aup->tx_dma_ring[aup->tx_head];
1107 buff_stat = ptxd->buff_stat;
1108 if (buff_stat & TX_DMA_ENABLE) {
1109 /* We've wrapped around and the transmitter is still busy */
1110 netif_stop_queue(dev);
1111 aup->tx_full = 1;
1112 return 1;
1113 }
1114 else if (buff_stat & TX_T_DONE) {
c2d3d4b9 1115 update_tx_stats(dev, ptxd->status);
1da177e4
LT
1116 ptxd->len = 0;
1117 }
1118
1119 if (aup->tx_full) {
1120 aup->tx_full = 0;
1121 netif_wake_queue(dev);
1122 }
1123
1124 pDB = aup->tx_db_inuse[aup->tx_head];
d626f62b 1125 skb_copy_from_linear_data(skb, pDB->vaddr, skb->len);
1da177e4 1126 if (skb->len < ETH_ZLEN) {
6aa20a22 1127 for (i=skb->len; i<ETH_ZLEN; i++) {
1da177e4
LT
1128 ((char *)pDB->vaddr)[i] = 0;
1129 }
1130 ptxd->len = ETH_ZLEN;
1131 }
1132 else
1133 ptxd->len = skb->len;
1134
c2d3d4b9
SS
1135 ps->tx_packets++;
1136 ps->tx_bytes += ptxd->len;
1137
1da177e4
LT
1138 ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
1139 au_sync();
1140 dev_kfree_skb(skb);
1141 aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
1142 dev->trans_start = jiffies;
1143 return 0;
1144}
1145
1da177e4
LT
1146static inline void update_rx_stats(struct net_device *dev, u32 status)
1147{
1148 struct au1000_private *aup = (struct au1000_private *) dev->priv;
09f75cd7 1149 struct net_device_stats *ps = &dev->stats;
1da177e4
LT
1150
1151 ps->rx_packets++;
1152 if (status & RX_MCAST_FRAME)
1153 ps->multicast++;
1154
1155 if (status & RX_ERROR) {
1156 ps->rx_errors++;
1157 if (status & RX_MISSED_FRAME)
1158 ps->rx_missed_errors++;
1159 if (status & (RX_OVERLEN | RX_OVERLEN | RX_LEN_ERROR))
1160 ps->rx_length_errors++;
1161 if (status & RX_CRC_ERROR)
1162 ps->rx_crc_errors++;
1163 if (status & RX_COLL)
1164 ps->collisions++;
1165 }
6aa20a22 1166 else
1da177e4
LT
1167 ps->rx_bytes += status & RX_FRAME_LEN_MASK;
1168
1169}
1170
1171/*
1172 * Au1000 receive routine.
1173 */
1174static int au1000_rx(struct net_device *dev)
1175{
1176 struct au1000_private *aup = (struct au1000_private *) dev->priv;
1177 struct sk_buff *skb;
1178 volatile rx_dma_t *prxd;
1179 u32 buff_stat, status;
1180 db_dest_t *pDB;
1181 u32 frmlen;
1182
1183 if (au1000_debug > 5)
1184 printk("%s: au1000_rx head %d\n", dev->name, aup->rx_head);
1185
1186 prxd = aup->rx_dma_ring[aup->rx_head];
1187 buff_stat = prxd->buff_stat;
1188 while (buff_stat & RX_T_DONE) {
1189 status = prxd->status;
1190 pDB = aup->rx_db_inuse[aup->rx_head];
1191 update_rx_stats(dev, status);
1192 if (!(status & RX_ERROR)) {
1193
1194 /* good frame */
1195 frmlen = (status & RX_FRAME_LEN_MASK);
1196 frmlen -= 4; /* Remove FCS */
1197 skb = dev_alloc_skb(frmlen + 2);
1198 if (skb == NULL) {
1199 printk(KERN_ERR
1200 "%s: Memory squeeze, dropping packet.\n",
1201 dev->name);
09f75cd7 1202 dev->stats.rx_dropped++;
1da177e4
LT
1203 continue;
1204 }
1da177e4 1205 skb_reserve(skb, 2); /* 16 byte IP header align */
8c7b7faa
DM
1206 skb_copy_to_linear_data(skb,
1207 (unsigned char *)pDB->vaddr, frmlen);
1da177e4
LT
1208 skb_put(skb, frmlen);
1209 skb->protocol = eth_type_trans(skb, dev);
1210 netif_rx(skb); /* pass the packet to upper layers */
1211 }
1212 else {
1213 if (au1000_debug > 4) {
6aa20a22 1214 if (status & RX_MISSED_FRAME)
1da177e4 1215 printk("rx miss\n");
6aa20a22 1216 if (status & RX_WDOG_TIMER)
1da177e4 1217 printk("rx wdog\n");
6aa20a22 1218 if (status & RX_RUNT)
1da177e4 1219 printk("rx runt\n");
6aa20a22 1220 if (status & RX_OVERLEN)
1da177e4
LT
1221 printk("rx overlen\n");
1222 if (status & RX_COLL)
1223 printk("rx coll\n");
1224 if (status & RX_MII_ERROR)
1225 printk("rx mii error\n");
1226 if (status & RX_CRC_ERROR)
1227 printk("rx crc error\n");
1228 if (status & RX_LEN_ERROR)
1229 printk("rx len error\n");
1230 if (status & RX_U_CNTRL_FRAME)
1231 printk("rx u control frame\n");
1232 if (status & RX_MISSED_FRAME)
1233 printk("rx miss\n");
1234 }
1235 }
1236 prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
1237 aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
1238 au_sync();
1239
1240 /* next descriptor */
1241 prxd = aup->rx_dma_ring[aup->rx_head];
1242 buff_stat = prxd->buff_stat;
1243 dev->last_rx = jiffies;
1244 }
1245 return 0;
1246}
1247
1248
1249/*
1250 * Au1000 interrupt service routine.
1251 */
7d12e780 1252static irqreturn_t au1000_interrupt(int irq, void *dev_id)
1da177e4
LT
1253{
1254 struct net_device *dev = (struct net_device *) dev_id;
1255
1256 if (dev == NULL) {
1257 printk(KERN_ERR "%s: isr: null dev ptr\n", dev->name);
1258 return IRQ_RETVAL(1);
1259 }
1260
1261 /* Handle RX interrupts first to minimize chance of overrun */
1262
1263 au1000_rx(dev);
1264 au1000_tx_ack(dev);
1265 return IRQ_RETVAL(1);
1266}
1267
1268
1269/*
1270 * The Tx ring has been full longer than the watchdog timeout
1271 * value. The transmitter must be hung?
1272 */
1273static void au1000_tx_timeout(struct net_device *dev)
1274{
1275 printk(KERN_ERR "%s: au1000_tx_timeout: dev=%p\n", dev->name, dev);
1276 reset_mac(dev);
1277 au1000_init(dev);
1278 dev->trans_start = jiffies;
1279 netif_wake_queue(dev);
1280}
1281
1da177e4
LT
1282static void set_rx_mode(struct net_device *dev)
1283{
1284 struct au1000_private *aup = (struct au1000_private *) dev->priv;
1285
6aa20a22 1286 if (au1000_debug > 4)
1da177e4
LT
1287 printk("%s: set_rx_mode: flags=%x\n", dev->name, dev->flags);
1288
1289 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1290 aup->mac->control |= MAC_PROMISCUOUS;
1da177e4
LT
1291 } else if ((dev->flags & IFF_ALLMULTI) ||
1292 dev->mc_count > MULTICAST_FILTER_LIMIT) {
1293 aup->mac->control |= MAC_PASS_ALL_MULTI;
1294 aup->mac->control &= ~MAC_PROMISCUOUS;
1295 printk(KERN_INFO "%s: Pass all multicast\n", dev->name);
1296 } else {
1297 int i;
1298 struct dev_mc_list *mclist;
1299 u32 mc_filter[2]; /* Multicast hash filter */
1300
1301 mc_filter[1] = mc_filter[0] = 0;
1302 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1303 i++, mclist = mclist->next) {
6aa20a22 1304 set_bit(ether_crc(ETH_ALEN, mclist->dmi_addr)>>26,
1da177e4
LT
1305 (long *)mc_filter);
1306 }
1307 aup->mac->multi_hash_high = mc_filter[1];
1308 aup->mac->multi_hash_low = mc_filter[0];
1309 aup->mac->control &= ~MAC_PROMISCUOUS;
1310 aup->mac->control |= MAC_HASH_MODE;
1311 }
1312}
1313
1da177e4
LT
1314static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1315{
1316 struct au1000_private *aup = (struct au1000_private *)dev->priv;
1da177e4 1317
0638dec0 1318 if (!netif_running(dev)) return -EINVAL;
1da177e4 1319
0638dec0 1320 if (!aup->phy_dev) return -EINVAL; // PHY not controllable
1da177e4 1321
0638dec0 1322 return phy_mii_ioctl(aup->phy_dev, if_mii(rq), cmd);
1da177e4
LT
1323}
1324
1da177e4
LT
1325module_init(au1000_init_module);
1326module_exit(au1000_cleanup_module);
This page took 0.362864 seconds and 5 git commands to generate.