signals: consolidate checks for whether or not to ignore a signal
[deliverable/linux.git] / drivers / net / cassini.c
CommitLineData
1f26dac3
DM
1/* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
2 *
3 * Copyright (C) 2004 Sun Microsystems Inc.
4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
19 * 02111-1307, USA.
20 *
21 * This driver uses the sungem driver (c) David Miller
22 * (davem@redhat.com) as its basis.
23 *
24 * The cassini chip has a number of features that distinguish it from
25 * the gem chip:
26 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
27 * load balancing (non-VLAN mode)
28 * batching of multiple packets
29 * multiple CPU dispatching
30 * page-based RX descriptor engine with separate completion rings
31 * Gigabit support (GMII and PCS interface)
32 * MIF link up/down detection works
33 *
34 * RX is handled by page sized buffers that are attached as fragments to
35 * the skb. here's what's done:
36 * -- driver allocates pages at a time and keeps reference counts
37 * on them.
38 * -- the upper protocol layers assume that the header is in the skb
39 * itself. as a result, cassini will copy a small amount (64 bytes)
40 * to make them happy.
41 * -- driver appends the rest of the data pages as frags to skbuffs
42 * and increments the reference count
43 * -- on page reclamation, the driver swaps the page with a spare page.
44 * if that page is still in use, it frees its reference to that page,
45 * and allocates a new page for use. otherwise, it just recycles the
6aa20a22 46 * the page.
1f26dac3
DM
47 *
48 * NOTE: cassini can parse the header. however, it's not worth it
49 * as long as the network stack requires a header copy.
50 *
51 * TX has 4 queues. currently these queues are used in a round-robin
52 * fashion for load balancing. They can also be used for QoS. for that
53 * to work, however, QoS information needs to be exposed down to the driver
54 * level so that subqueues get targetted to particular transmit rings.
55 * alternatively, the queues can be configured via use of the all-purpose
56 * ioctl.
57 *
58 * RX DATA: the rx completion ring has all the info, but the rx desc
59 * ring has all of the data. RX can conceivably come in under multiple
60 * interrupts, but the INT# assignment needs to be set up properly by
61 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62 * that. also, the two descriptor rings are designed to distinguish between
6aa20a22 63 * encrypted and non-encrypted packets, but we use them for buffering
1f26dac3
DM
64 * instead.
65 *
6aa20a22 66 * by default, the selective clear mask is set up to process rx packets.
1f26dac3
DM
67 */
68
1f26dac3
DM
69
70#include <linux/module.h>
71#include <linux/kernel.h>
72#include <linux/types.h>
73#include <linux/compiler.h>
74#include <linux/slab.h>
75#include <linux/delay.h>
76#include <linux/init.h>
77#include <linux/ioport.h>
78#include <linux/pci.h>
79#include <linux/mm.h>
80#include <linux/highmem.h>
81#include <linux/list.h>
82#include <linux/dma-mapping.h>
83
84#include <linux/netdevice.h>
85#include <linux/etherdevice.h>
86#include <linux/skbuff.h>
87#include <linux/ethtool.h>
88#include <linux/crc32.h>
89#include <linux/random.h>
90#include <linux/mii.h>
91#include <linux/ip.h>
92#include <linux/tcp.h>
758df69e 93#include <linux/mutex.h>
1f26dac3
DM
94
95#include <net/checksum.h>
96
97#include <asm/atomic.h>
98#include <asm/system.h>
99#include <asm/io.h>
100#include <asm/byteorder.h>
101#include <asm/uaccess.h>
102
103#define cas_page_map(x) kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
104#define cas_page_unmap(x) kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
105#define CAS_NCPUS num_online_cpus()
106
107#if defined(CONFIG_CASSINI_NAPI) && defined(HAVE_NETDEV_POLL)
108#define USE_NAPI
109#define cas_skb_release(x) netif_receive_skb(x)
110#else
111#define cas_skb_release(x) netif_rx(x)
112#endif
113
114/* select which firmware to use */
6aa20a22 115#define USE_HP_WORKAROUND
1f26dac3
DM
116#define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
117#define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
118
119#include "cassini.h"
120
121#define USE_TX_COMPWB /* use completion writeback registers */
122#define USE_CSMA_CD_PROTO /* standard CSMA/CD */
123#define USE_RX_BLANK /* hw interrupt mitigation */
124#undef USE_ENTROPY_DEV /* don't test for entropy device */
125
126/* NOTE: these aren't useable unless PCI interrupts can be assigned.
127 * also, we need to make cp->lock finer-grained.
128 */
129#undef USE_PCI_INTB
130#undef USE_PCI_INTC
131#undef USE_PCI_INTD
132#undef USE_QOS
133
134#undef USE_VPD_DEBUG /* debug vpd information if defined */
135
136/* rx processing options */
137#define USE_PAGE_ORDER /* specify to allocate large rx pages */
138#define RX_DONT_BATCH 0 /* if 1, don't batch flows */
139#define RX_COPY_ALWAYS 0 /* if 0, use frags */
140#define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
141#undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
142
143#define DRV_MODULE_NAME "cassini"
144#define PFX DRV_MODULE_NAME ": "
14be85f5
DM
145#define DRV_MODULE_VERSION "1.5"
146#define DRV_MODULE_RELDATE "4 Jan 2008"
1f26dac3
DM
147
148#define CAS_DEF_MSG_ENABLE \
149 (NETIF_MSG_DRV | \
150 NETIF_MSG_PROBE | \
151 NETIF_MSG_LINK | \
152 NETIF_MSG_TIMER | \
153 NETIF_MSG_IFDOWN | \
154 NETIF_MSG_IFUP | \
155 NETIF_MSG_RX_ERR | \
156 NETIF_MSG_TX_ERR)
157
158/* length of time before we decide the hardware is borked,
159 * and dev->tx_timeout() should be called to fix the problem
160 */
161#define CAS_TX_TIMEOUT (HZ)
162#define CAS_LINK_TIMEOUT (22*HZ/10)
163#define CAS_LINK_FAST_TIMEOUT (1)
164
165/* timeout values for state changing. these specify the number
166 * of 10us delays to be used before giving up.
167 */
168#define STOP_TRIES_PHY 1000
169#define STOP_TRIES 5000
170
6aa20a22 171/* specify a minimum frame size to deal with some fifo issues
1f26dac3
DM
172 * max mtu == 2 * page size - ethernet header - 64 - swivel =
173 * 2 * page_size - 0x50
174 */
175#define CAS_MIN_FRAME 97
176#define CAS_1000MB_MIN_FRAME 255
177#define CAS_MIN_MTU 60
178#define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
179
180#if 1
181/*
182 * Eliminate these and use separate atomic counters for each, to
183 * avoid a race condition.
184 */
185#else
186#define CAS_RESET_MTU 1
187#define CAS_RESET_ALL 2
188#define CAS_RESET_SPARE 3
189#endif
190
191static char version[] __devinitdata =
192 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
193
8d3b33f6
RR
194static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
195static int link_mode;
196
1f26dac3
DM
197MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
198MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
199MODULE_LICENSE("GPL");
8d3b33f6 200module_param(cassini_debug, int, 0);
1f26dac3 201MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
8d3b33f6 202module_param(link_mode, int, 0);
1f26dac3
DM
203MODULE_PARM_DESC(link_mode, "default link mode");
204
205/*
206 * Work around for a PCS bug in which the link goes down due to the chip
207 * being confused and never showing a link status of "up."
208 */
209#define DEFAULT_LINKDOWN_TIMEOUT 5
6aa20a22 210/*
1f26dac3
DM
211 * Value in seconds, for user input.
212 */
213static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
8d3b33f6 214module_param(linkdown_timeout, int, 0);
1f26dac3
DM
215MODULE_PARM_DESC(linkdown_timeout,
216"min reset interval in sec. for PCS linkdown issue; disabled if not positive");
217
218/*
219 * value in 'ticks' (units used by jiffies). Set when we init the
220 * module because 'HZ' in actually a function call on some flavors of
221 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
222 */
223static int link_transition_timeout;
224
225
1f26dac3
DM
226
227static u16 link_modes[] __devinitdata = {
228 BMCR_ANENABLE, /* 0 : autoneg */
229 0, /* 1 : 10bt half duplex */
230 BMCR_SPEED100, /* 2 : 100bt half duplex */
231 BMCR_FULLDPLX, /* 3 : 10bt full duplex */
232 BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */
233 CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
234};
235
236static struct pci_device_id cas_pci_tbl[] __devinitdata = {
237 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
238 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
239 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
240 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
241 { 0, }
242};
243
244MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
245
246static void cas_set_link_modes(struct cas *cp);
247
248static inline void cas_lock_tx(struct cas *cp)
249{
250 int i;
251
6aa20a22 252 for (i = 0; i < N_TX_RINGS; i++)
1f26dac3
DM
253 spin_lock(&cp->tx_lock[i]);
254}
255
256static inline void cas_lock_all(struct cas *cp)
257{
258 spin_lock_irq(&cp->lock);
259 cas_lock_tx(cp);
260}
261
262/* WTZ: QA was finding deadlock problems with the previous
263 * versions after long test runs with multiple cards per machine.
264 * See if replacing cas_lock_all with safer versions helps. The
265 * symptoms QA is reporting match those we'd expect if interrupts
266 * aren't being properly restored, and we fixed a previous deadlock
267 * with similar symptoms by using save/restore versions in other
268 * places.
269 */
270#define cas_lock_all_save(cp, flags) \
271do { \
272 struct cas *xxxcp = (cp); \
273 spin_lock_irqsave(&xxxcp->lock, flags); \
274 cas_lock_tx(xxxcp); \
275} while (0)
276
277static inline void cas_unlock_tx(struct cas *cp)
278{
279 int i;
280
6aa20a22
JG
281 for (i = N_TX_RINGS; i > 0; i--)
282 spin_unlock(&cp->tx_lock[i - 1]);
1f26dac3
DM
283}
284
285static inline void cas_unlock_all(struct cas *cp)
286{
287 cas_unlock_tx(cp);
288 spin_unlock_irq(&cp->lock);
289}
290
291#define cas_unlock_all_restore(cp, flags) \
292do { \
293 struct cas *xxxcp = (cp); \
294 cas_unlock_tx(xxxcp); \
295 spin_unlock_irqrestore(&xxxcp->lock, flags); \
296} while (0)
297
298static void cas_disable_irq(struct cas *cp, const int ring)
299{
300 /* Make sure we won't get any more interrupts */
301 if (ring == 0) {
302 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
303 return;
304 }
305
306 /* disable completion interrupts and selectively mask */
307 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
308 switch (ring) {
309#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
310#ifdef USE_PCI_INTB
311 case 1:
312#endif
313#ifdef USE_PCI_INTC
314 case 2:
315#endif
316#ifdef USE_PCI_INTD
317 case 3:
318#endif
6aa20a22 319 writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
1f26dac3
DM
320 cp->regs + REG_PLUS_INTRN_MASK(ring));
321 break;
322#endif
323 default:
324 writel(INTRN_MASK_CLEAR_ALL, cp->regs +
325 REG_PLUS_INTRN_MASK(ring));
326 break;
327 }
328 }
329}
330
331static inline void cas_mask_intr(struct cas *cp)
332{
333 int i;
334
335 for (i = 0; i < N_RX_COMP_RINGS; i++)
336 cas_disable_irq(cp, i);
337}
338
339static void cas_enable_irq(struct cas *cp, const int ring)
340{
341 if (ring == 0) { /* all but TX_DONE */
342 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
343 return;
344 }
345
346 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
347 switch (ring) {
348#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
349#ifdef USE_PCI_INTB
350 case 1:
351#endif
352#ifdef USE_PCI_INTC
353 case 2:
354#endif
355#ifdef USE_PCI_INTD
356 case 3:
357#endif
358 writel(INTRN_MASK_RX_EN, cp->regs +
359 REG_PLUS_INTRN_MASK(ring));
360 break;
361#endif
362 default:
363 break;
364 }
365 }
366}
367
368static inline void cas_unmask_intr(struct cas *cp)
369{
370 int i;
371
372 for (i = 0; i < N_RX_COMP_RINGS; i++)
373 cas_enable_irq(cp, i);
374}
375
376static inline void cas_entropy_gather(struct cas *cp)
377{
378#ifdef USE_ENTROPY_DEV
379 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
380 return;
381
382 batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
383 readl(cp->regs + REG_ENTROPY_IV),
384 sizeof(uint64_t)*8);
385#endif
386}
387
388static inline void cas_entropy_reset(struct cas *cp)
389{
390#ifdef USE_ENTROPY_DEV
391 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
392 return;
393
6aa20a22 394 writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
1f26dac3
DM
395 cp->regs + REG_BIM_LOCAL_DEV_EN);
396 writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
397 writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
398
399 /* if we read back 0x0, we don't have an entropy device */
400 if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
401 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
402#endif
403}
404
6aa20a22 405/* access to the phy. the following assumes that we've initialized the MIF to
1f26dac3
DM
406 * be in frame rather than bit-bang mode
407 */
408static u16 cas_phy_read(struct cas *cp, int reg)
409{
410 u32 cmd;
411 int limit = STOP_TRIES_PHY;
412
413 cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
414 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
415 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
416 cmd |= MIF_FRAME_TURN_AROUND_MSB;
417 writel(cmd, cp->regs + REG_MIF_FRAME);
6aa20a22 418
1f26dac3
DM
419 /* poll for completion */
420 while (limit-- > 0) {
421 udelay(10);
422 cmd = readl(cp->regs + REG_MIF_FRAME);
423 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
424 return (cmd & MIF_FRAME_DATA_MASK);
425 }
426 return 0xFFFF; /* -1 */
427}
428
429static int cas_phy_write(struct cas *cp, int reg, u16 val)
430{
431 int limit = STOP_TRIES_PHY;
432 u32 cmd;
433
434 cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
435 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
436 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
437 cmd |= MIF_FRAME_TURN_AROUND_MSB;
438 cmd |= val & MIF_FRAME_DATA_MASK;
439 writel(cmd, cp->regs + REG_MIF_FRAME);
6aa20a22 440
1f26dac3
DM
441 /* poll for completion */
442 while (limit-- > 0) {
443 udelay(10);
444 cmd = readl(cp->regs + REG_MIF_FRAME);
445 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
446 return 0;
447 }
448 return -1;
449}
450
451static void cas_phy_powerup(struct cas *cp)
452{
6aa20a22 453 u16 ctl = cas_phy_read(cp, MII_BMCR);
1f26dac3
DM
454
455 if ((ctl & BMCR_PDOWN) == 0)
456 return;
457 ctl &= ~BMCR_PDOWN;
458 cas_phy_write(cp, MII_BMCR, ctl);
459}
460
461static void cas_phy_powerdown(struct cas *cp)
462{
6aa20a22 463 u16 ctl = cas_phy_read(cp, MII_BMCR);
1f26dac3
DM
464
465 if (ctl & BMCR_PDOWN)
466 return;
467 ctl |= BMCR_PDOWN;
468 cas_phy_write(cp, MII_BMCR, ctl);
469}
470
471/* cp->lock held. note: the last put_page will free the buffer */
472static int cas_page_free(struct cas *cp, cas_page_t *page)
473{
6aa20a22 474 pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
1f26dac3
DM
475 PCI_DMA_FROMDEVICE);
476 __free_pages(page->buffer, cp->page_order);
477 kfree(page);
478 return 0;
479}
480
481#ifdef RX_COUNT_BUFFERS
482#define RX_USED_ADD(x, y) ((x)->used += (y))
483#define RX_USED_SET(x, y) ((x)->used = (y))
484#else
6aa20a22 485#define RX_USED_ADD(x, y)
1f26dac3
DM
486#define RX_USED_SET(x, y)
487#endif
488
489/* local page allocation routines for the receive buffers. jumbo pages
490 * require at least 8K contiguous and 8K aligned buffers.
491 */
9e24974d 492static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
1f26dac3
DM
493{
494 cas_page_t *page;
495
496 page = kmalloc(sizeof(cas_page_t), flags);
497 if (!page)
498 return NULL;
499
500 INIT_LIST_HEAD(&page->list);
501 RX_USED_SET(page, 0);
502 page->buffer = alloc_pages(flags, cp->page_order);
503 if (!page->buffer)
504 goto page_err;
505 page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
506 cp->page_size, PCI_DMA_FROMDEVICE);
507 return page;
508
509page_err:
510 kfree(page);
511 return NULL;
512}
513
514/* initialize spare pool of rx buffers, but allocate during the open */
515static void cas_spare_init(struct cas *cp)
516{
517 spin_lock(&cp->rx_inuse_lock);
518 INIT_LIST_HEAD(&cp->rx_inuse_list);
519 spin_unlock(&cp->rx_inuse_lock);
520
521 spin_lock(&cp->rx_spare_lock);
522 INIT_LIST_HEAD(&cp->rx_spare_list);
523 cp->rx_spares_needed = RX_SPARE_COUNT;
524 spin_unlock(&cp->rx_spare_lock);
525}
526
527/* used on close. free all the spare buffers. */
528static void cas_spare_free(struct cas *cp)
529{
530 struct list_head list, *elem, *tmp;
531
532 /* free spare buffers */
533 INIT_LIST_HEAD(&list);
534 spin_lock(&cp->rx_spare_lock);
9bd512f6 535 list_splice_init(&cp->rx_spare_list, &list);
1f26dac3
DM
536 spin_unlock(&cp->rx_spare_lock);
537 list_for_each_safe(elem, tmp, &list) {
538 cas_page_free(cp, list_entry(elem, cas_page_t, list));
539 }
540
541 INIT_LIST_HEAD(&list);
542#if 1
543 /*
544 * Looks like Adrian had protected this with a different
545 * lock than used everywhere else to manipulate this list.
546 */
547 spin_lock(&cp->rx_inuse_lock);
9bd512f6 548 list_splice_init(&cp->rx_inuse_list, &list);
1f26dac3
DM
549 spin_unlock(&cp->rx_inuse_lock);
550#else
551 spin_lock(&cp->rx_spare_lock);
9bd512f6 552 list_splice_init(&cp->rx_inuse_list, &list);
1f26dac3
DM
553 spin_unlock(&cp->rx_spare_lock);
554#endif
555 list_for_each_safe(elem, tmp, &list) {
556 cas_page_free(cp, list_entry(elem, cas_page_t, list));
557 }
558}
559
560/* replenish spares if needed */
9e24974d 561static void cas_spare_recover(struct cas *cp, const gfp_t flags)
1f26dac3
DM
562{
563 struct list_head list, *elem, *tmp;
564 int needed, i;
565
566 /* check inuse list. if we don't need any more free buffers,
567 * just free it
568 */
569
570 /* make a local copy of the list */
571 INIT_LIST_HEAD(&list);
572 spin_lock(&cp->rx_inuse_lock);
9bd512f6 573 list_splice_init(&cp->rx_inuse_list, &list);
1f26dac3 574 spin_unlock(&cp->rx_inuse_lock);
6aa20a22 575
1f26dac3
DM
576 list_for_each_safe(elem, tmp, &list) {
577 cas_page_t *page = list_entry(elem, cas_page_t, list);
578
9de4dfb4 579 if (page_count(page->buffer) > 1)
1f26dac3
DM
580 continue;
581
582 list_del(elem);
583 spin_lock(&cp->rx_spare_lock);
584 if (cp->rx_spares_needed > 0) {
585 list_add(elem, &cp->rx_spare_list);
586 cp->rx_spares_needed--;
587 spin_unlock(&cp->rx_spare_lock);
588 } else {
589 spin_unlock(&cp->rx_spare_lock);
590 cas_page_free(cp, page);
591 }
592 }
593
594 /* put any inuse buffers back on the list */
595 if (!list_empty(&list)) {
596 spin_lock(&cp->rx_inuse_lock);
597 list_splice(&list, &cp->rx_inuse_list);
598 spin_unlock(&cp->rx_inuse_lock);
599 }
6aa20a22 600
1f26dac3
DM
601 spin_lock(&cp->rx_spare_lock);
602 needed = cp->rx_spares_needed;
603 spin_unlock(&cp->rx_spare_lock);
604 if (!needed)
605 return;
606
607 /* we still need spares, so try to allocate some */
608 INIT_LIST_HEAD(&list);
609 i = 0;
610 while (i < needed) {
611 cas_page_t *spare = cas_page_alloc(cp, flags);
6aa20a22 612 if (!spare)
1f26dac3
DM
613 break;
614 list_add(&spare->list, &list);
615 i++;
616 }
617
618 spin_lock(&cp->rx_spare_lock);
619 list_splice(&list, &cp->rx_spare_list);
620 cp->rx_spares_needed -= i;
621 spin_unlock(&cp->rx_spare_lock);
622}
623
624/* pull a page from the list. */
625static cas_page_t *cas_page_dequeue(struct cas *cp)
626{
627 struct list_head *entry;
628 int recover;
629
630 spin_lock(&cp->rx_spare_lock);
631 if (list_empty(&cp->rx_spare_list)) {
632 /* try to do a quick recovery */
633 spin_unlock(&cp->rx_spare_lock);
634 cas_spare_recover(cp, GFP_ATOMIC);
635 spin_lock(&cp->rx_spare_lock);
636 if (list_empty(&cp->rx_spare_list)) {
637 if (netif_msg_rx_err(cp))
638 printk(KERN_ERR "%s: no spare buffers "
639 "available.\n", cp->dev->name);
640 spin_unlock(&cp->rx_spare_lock);
641 return NULL;
642 }
643 }
644
645 entry = cp->rx_spare_list.next;
646 list_del(entry);
647 recover = ++cp->rx_spares_needed;
648 spin_unlock(&cp->rx_spare_lock);
649
650 /* trigger the timer to do the recovery */
651 if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
652#if 1
653 atomic_inc(&cp->reset_task_pending);
654 atomic_inc(&cp->reset_task_pending_spare);
655 schedule_work(&cp->reset_task);
656#else
657 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
658 schedule_work(&cp->reset_task);
659#endif
660 }
661 return list_entry(entry, cas_page_t, list);
662}
663
664
665static void cas_mif_poll(struct cas *cp, const int enable)
666{
667 u32 cfg;
6aa20a22
JG
668
669 cfg = readl(cp->regs + REG_MIF_CFG);
1f26dac3
DM
670 cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
671
672 if (cp->phy_type & CAS_PHY_MII_MDIO1)
6aa20a22 673 cfg |= MIF_CFG_PHY_SELECT;
1f26dac3
DM
674
675 /* poll and interrupt on link status change. */
676 if (enable) {
677 cfg |= MIF_CFG_POLL_EN;
678 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
679 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
680 }
6aa20a22
JG
681 writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
682 cp->regs + REG_MIF_MASK);
1f26dac3
DM
683 writel(cfg, cp->regs + REG_MIF_CFG);
684}
685
686/* Must be invoked under cp->lock */
687static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
688{
689 u16 ctl;
690#if 1
691 int lcntl;
692 int changed = 0;
693 int oldstate = cp->lstate;
694 int link_was_not_down = !(oldstate == link_down);
695#endif
696 /* Setup link parameters */
697 if (!ep)
698 goto start_aneg;
699 lcntl = cp->link_cntl;
700 if (ep->autoneg == AUTONEG_ENABLE)
701 cp->link_cntl = BMCR_ANENABLE;
702 else {
703 cp->link_cntl = 0;
704 if (ep->speed == SPEED_100)
705 cp->link_cntl |= BMCR_SPEED100;
706 else if (ep->speed == SPEED_1000)
707 cp->link_cntl |= CAS_BMCR_SPEED1000;
708 if (ep->duplex == DUPLEX_FULL)
709 cp->link_cntl |= BMCR_FULLDPLX;
710 }
711#if 1
712 changed = (lcntl != cp->link_cntl);
713#endif
714start_aneg:
715 if (cp->lstate == link_up) {
716 printk(KERN_INFO "%s: PCS link down.\n",
717 cp->dev->name);
718 } else {
719 if (changed) {
720 printk(KERN_INFO "%s: link configuration changed\n",
721 cp->dev->name);
722 }
723 }
724 cp->lstate = link_down;
725 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
726 if (!cp->hw_running)
727 return;
728#if 1
729 /*
730 * WTZ: If the old state was link_up, we turn off the carrier
731 * to replicate everything we do elsewhere on a link-down
6aa20a22 732 * event when we were already in a link-up state..
1f26dac3
DM
733 */
734 if (oldstate == link_up)
735 netif_carrier_off(cp->dev);
736 if (changed && link_was_not_down) {
737 /*
738 * WTZ: This branch will simply schedule a full reset after
739 * we explicitly changed link modes in an ioctl. See if this
6aa20a22 740 * fixes the link-problems we were having for forced mode.
1f26dac3
DM
741 */
742 atomic_inc(&cp->reset_task_pending);
743 atomic_inc(&cp->reset_task_pending_all);
744 schedule_work(&cp->reset_task);
745 cp->timer_ticks = 0;
746 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
747 return;
748 }
749#endif
750 if (cp->phy_type & CAS_PHY_SERDES) {
751 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
752
753 if (cp->link_cntl & BMCR_ANENABLE) {
754 val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
755 cp->lstate = link_aneg;
756 } else {
757 if (cp->link_cntl & BMCR_FULLDPLX)
758 val |= PCS_MII_CTRL_DUPLEX;
759 val &= ~PCS_MII_AUTONEG_EN;
760 cp->lstate = link_force_ok;
761 }
762 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
763 writel(val, cp->regs + REG_PCS_MII_CTRL);
764
765 } else {
766 cas_mif_poll(cp, 0);
767 ctl = cas_phy_read(cp, MII_BMCR);
6aa20a22 768 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
1f26dac3
DM
769 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
770 ctl |= cp->link_cntl;
771 if (ctl & BMCR_ANENABLE) {
772 ctl |= BMCR_ANRESTART;
773 cp->lstate = link_aneg;
774 } else {
775 cp->lstate = link_force_ok;
776 }
777 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
778 cas_phy_write(cp, MII_BMCR, ctl);
779 cas_mif_poll(cp, 1);
780 }
781
782 cp->timer_ticks = 0;
783 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
784}
785
786/* Must be invoked under cp->lock. */
787static int cas_reset_mii_phy(struct cas *cp)
788{
789 int limit = STOP_TRIES_PHY;
790 u16 val;
6aa20a22 791
1f26dac3
DM
792 cas_phy_write(cp, MII_BMCR, BMCR_RESET);
793 udelay(100);
794 while (limit--) {
795 val = cas_phy_read(cp, MII_BMCR);
796 if ((val & BMCR_RESET) == 0)
797 break;
798 udelay(10);
799 }
800 return (limit <= 0);
801}
802
803static void cas_saturn_firmware_load(struct cas *cp)
804{
805 cas_saturn_patch_t *patch = cas_saturn_patch;
806
807 cas_phy_powerdown(cp);
808
809 /* expanded memory access mode */
810 cas_phy_write(cp, DP83065_MII_MEM, 0x0);
811
812 /* pointer configuration for new firmware */
813 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
814 cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
815 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
816 cas_phy_write(cp, DP83065_MII_REGD, 0x82);
817 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
818 cas_phy_write(cp, DP83065_MII_REGD, 0x0);
819 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
820 cas_phy_write(cp, DP83065_MII_REGD, 0x39);
821
822 /* download new firmware */
823 cas_phy_write(cp, DP83065_MII_MEM, 0x1);
824 cas_phy_write(cp, DP83065_MII_REGE, patch->addr);
825 while (patch->addr) {
826 cas_phy_write(cp, DP83065_MII_REGD, patch->val);
827 patch++;
828 }
829
830 /* enable firmware */
831 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
832 cas_phy_write(cp, DP83065_MII_REGD, 0x1);
833}
834
835
836/* phy initialization */
837static void cas_phy_init(struct cas *cp)
838{
839 u16 val;
840
841 /* if we're in MII/GMII mode, set up phy */
842 if (CAS_PHY_MII(cp->phy_type)) {
843 writel(PCS_DATAPATH_MODE_MII,
844 cp->regs + REG_PCS_DATAPATH_MODE);
845
846 cas_mif_poll(cp, 0);
847 cas_reset_mii_phy(cp); /* take out of isolate mode */
848
849 if (PHY_LUCENT_B0 == cp->phy_id) {
850 /* workaround link up/down issue with lucent */
851 cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
852 cas_phy_write(cp, MII_BMCR, 0x00f1);
853 cas_phy_write(cp, LUCENT_MII_REG, 0x0);
854
855 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
856 /* workarounds for broadcom phy */
857 cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
858 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
859 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
860 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
861 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
862 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
863 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
864 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
865 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
866 cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
867 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
868
869 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
870 val = cas_phy_read(cp, BROADCOM_MII_REG4);
871 val = cas_phy_read(cp, BROADCOM_MII_REG4);
872 if (val & 0x0080) {
873 /* link workaround */
6aa20a22 874 cas_phy_write(cp, BROADCOM_MII_REG4,
1f26dac3
DM
875 val & ~0x0080);
876 }
6aa20a22 877
1f26dac3 878 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
6aa20a22
JG
879 writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
880 SATURN_PCFG_FSI : 0x0,
1f26dac3
DM
881 cp->regs + REG_SATURN_PCFG);
882
883 /* load firmware to address 10Mbps auto-negotiation
6aa20a22 884 * issue. NOTE: this will need to be changed if the
1f26dac3
DM
885 * default firmware gets fixed.
886 */
887 if (PHY_NS_DP83065 == cp->phy_id) {
888 cas_saturn_firmware_load(cp);
889 }
890 cas_phy_powerup(cp);
891 }
892
893 /* advertise capabilities */
894 val = cas_phy_read(cp, MII_BMCR);
895 val &= ~BMCR_ANENABLE;
896 cas_phy_write(cp, MII_BMCR, val);
897 udelay(10);
898
899 cas_phy_write(cp, MII_ADVERTISE,
900 cas_phy_read(cp, MII_ADVERTISE) |
901 (ADVERTISE_10HALF | ADVERTISE_10FULL |
902 ADVERTISE_100HALF | ADVERTISE_100FULL |
6aa20a22 903 CAS_ADVERTISE_PAUSE |
1f26dac3 904 CAS_ADVERTISE_ASYM_PAUSE));
6aa20a22 905
1f26dac3
DM
906 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
907 /* make sure that we don't advertise half
908 * duplex to avoid a chip issue
909 */
910 val = cas_phy_read(cp, CAS_MII_1000_CTRL);
911 val &= ~CAS_ADVERTISE_1000HALF;
912 val |= CAS_ADVERTISE_1000FULL;
913 cas_phy_write(cp, CAS_MII_1000_CTRL, val);
914 }
915
916 } else {
917 /* reset pcs for serdes */
918 u32 val;
919 int limit;
920
921 writel(PCS_DATAPATH_MODE_SERDES,
922 cp->regs + REG_PCS_DATAPATH_MODE);
923
924 /* enable serdes pins on saturn */
925 if (cp->cas_flags & CAS_FLAG_SATURN)
926 writel(0, cp->regs + REG_SATURN_PCFG);
927
928 /* Reset PCS unit. */
929 val = readl(cp->regs + REG_PCS_MII_CTRL);
930 val |= PCS_MII_RESET;
931 writel(val, cp->regs + REG_PCS_MII_CTRL);
932
933 limit = STOP_TRIES;
934 while (limit-- > 0) {
935 udelay(10);
6aa20a22 936 if ((readl(cp->regs + REG_PCS_MII_CTRL) &
1f26dac3
DM
937 PCS_MII_RESET) == 0)
938 break;
939 }
940 if (limit <= 0)
941 printk(KERN_WARNING "%s: PCS reset bit would not "
942 "clear [%08x].\n", cp->dev->name,
943 readl(cp->regs + REG_PCS_STATE_MACHINE));
944
945 /* Make sure PCS is disabled while changing advertisement
946 * configuration.
947 */
948 writel(0x0, cp->regs + REG_PCS_CFG);
949
950 /* Advertise all capabilities except half-duplex. */
951 val = readl(cp->regs + REG_PCS_MII_ADVERT);
952 val &= ~PCS_MII_ADVERT_HD;
6aa20a22 953 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
1f26dac3
DM
954 PCS_MII_ADVERT_ASYM_PAUSE);
955 writel(val, cp->regs + REG_PCS_MII_ADVERT);
956
957 /* enable PCS */
958 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
959
960 /* pcs workaround: enable sync detect */
961 writel(PCS_SERDES_CTRL_SYNCD_EN,
962 cp->regs + REG_PCS_SERDES_CTRL);
963 }
964}
965
966
967static int cas_pcs_link_check(struct cas *cp)
968{
969 u32 stat, state_machine;
970 int retval = 0;
971
972 /* The link status bit latches on zero, so you must
973 * read it twice in such a case to see a transition
974 * to the link being up.
975 */
976 stat = readl(cp->regs + REG_PCS_MII_STATUS);
977 if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
978 stat = readl(cp->regs + REG_PCS_MII_STATUS);
979
980 /* The remote-fault indication is only valid
981 * when autoneg has completed.
982 */
983 if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
984 PCS_MII_STATUS_REMOTE_FAULT)) ==
985 (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) {
986 if (netif_msg_link(cp))
6aa20a22 987 printk(KERN_INFO "%s: PCS RemoteFault\n",
1f26dac3
DM
988 cp->dev->name);
989 }
990
991 /* work around link detection issue by querying the PCS state
992 * machine directly.
993 */
994 state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
995 if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
996 stat &= ~PCS_MII_STATUS_LINK_STATUS;
997 } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
998 stat |= PCS_MII_STATUS_LINK_STATUS;
999 }
1000
1001 if (stat & PCS_MII_STATUS_LINK_STATUS) {
1002 if (cp->lstate != link_up) {
1003 if (cp->opened) {
1004 cp->lstate = link_up;
1005 cp->link_transition = LINK_TRANSITION_LINK_UP;
6aa20a22 1006
1f26dac3
DM
1007 cas_set_link_modes(cp);
1008 netif_carrier_on(cp->dev);
1009 }
1010 }
1011 } else if (cp->lstate == link_up) {
1012 cp->lstate = link_down;
1013 if (link_transition_timeout != 0 &&
1014 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1015 !cp->link_transition_jiffies_valid) {
1016 /*
6aa20a22
JG
1017 * force a reset, as a workaround for the
1018 * link-failure problem. May want to move this to a
1f26dac3
DM
1019 * point a bit earlier in the sequence. If we had
1020 * generated a reset a short time ago, we'll wait for
1021 * the link timer to check the status until a
1022 * timer expires (link_transistion_jiffies_valid is
1023 * true when the timer is running.) Instead of using
1024 * a system timer, we just do a check whenever the
1025 * link timer is running - this clears the flag after
1026 * a suitable delay.
1027 */
1028 retval = 1;
1029 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1030 cp->link_transition_jiffies = jiffies;
1031 cp->link_transition_jiffies_valid = 1;
1032 } else {
1033 cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1034 }
1035 netif_carrier_off(cp->dev);
1036 if (cp->opened && netif_msg_link(cp)) {
1037 printk(KERN_INFO "%s: PCS link down.\n",
1038 cp->dev->name);
1039 }
1040
1041 /* Cassini only: if you force a mode, there can be
1042 * sync problems on link down. to fix that, the following
1043 * things need to be checked:
1044 * 1) read serialink state register
1045 * 2) read pcs status register to verify link down.
1046 * 3) if link down and serial link == 0x03, then you need
1047 * to global reset the chip.
1048 */
1049 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1050 /* should check to see if we're in a forced mode */
1051 stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1052 if (stat == 0x03)
1053 return 1;
1054 }
1055 } else if (cp->lstate == link_down) {
1056 if (link_transition_timeout != 0 &&
1057 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1058 !cp->link_transition_jiffies_valid) {
1059 /* force a reset, as a workaround for the
1060 * link-failure problem. May want to move
1061 * this to a point a bit earlier in the
1062 * sequence.
1063 */
1064 retval = 1;
1065 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1066 cp->link_transition_jiffies = jiffies;
1067 cp->link_transition_jiffies_valid = 1;
1068 } else {
1069 cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1070 }
1071 }
1072
1073 return retval;
1074}
1075
6aa20a22 1076static int cas_pcs_interrupt(struct net_device *dev,
1f26dac3
DM
1077 struct cas *cp, u32 status)
1078{
1079 u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1080
6aa20a22 1081 if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1f26dac3
DM
1082 return 0;
1083 return cas_pcs_link_check(cp);
1084}
1085
6aa20a22 1086static int cas_txmac_interrupt(struct net_device *dev,
1f26dac3
DM
1087 struct cas *cp, u32 status)
1088{
1089 u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1090
1091 if (!txmac_stat)
1092 return 0;
1093
1094 if (netif_msg_intr(cp))
1095 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
1096 cp->dev->name, txmac_stat);
1097
1098 /* Defer timer expiration is quite normal,
1099 * don't even log the event.
1100 */
1101 if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1102 !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1103 return 0;
1104
1105 spin_lock(&cp->stat_lock[0]);
1106 if (txmac_stat & MAC_TX_UNDERRUN) {
1107 printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
1108 dev->name);
1109 cp->net_stats[0].tx_fifo_errors++;
1110 }
1111
1112 if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1113 printk(KERN_ERR "%s: TX MAC max packet size error.\n",
1114 dev->name);
1115 cp->net_stats[0].tx_errors++;
1116 }
1117
1118 /* The rest are all cases of one of the 16-bit TX
1119 * counters expiring.
1120 */
1121 if (txmac_stat & MAC_TX_COLL_NORMAL)
1122 cp->net_stats[0].collisions += 0x10000;
1123
1124 if (txmac_stat & MAC_TX_COLL_EXCESS) {
1125 cp->net_stats[0].tx_aborted_errors += 0x10000;
1126 cp->net_stats[0].collisions += 0x10000;
1127 }
1128
1129 if (txmac_stat & MAC_TX_COLL_LATE) {
1130 cp->net_stats[0].tx_aborted_errors += 0x10000;
1131 cp->net_stats[0].collisions += 0x10000;
1132 }
1133 spin_unlock(&cp->stat_lock[0]);
1134
1135 /* We do not keep track of MAC_TX_COLL_FIRST and
1136 * MAC_TX_PEAK_ATTEMPTS events.
1137 */
1138 return 0;
1139}
1140
6aa20a22 1141static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1f26dac3
DM
1142{
1143 cas_hp_inst_t *inst;
1144 u32 val;
1145 int i;
1146
1147 i = 0;
1148 while ((inst = firmware) && inst->note) {
1149 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1150
1151 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1152 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1153 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1154
1155 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1156 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1157 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1158 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1159 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1160 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1161 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1162 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1163
1164 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1165 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1166 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1167 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1168 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1169 ++firmware;
1170 ++i;
1171 }
1172}
1173
1174static void cas_init_rx_dma(struct cas *cp)
1175{
6aa20a22 1176 u64 desc_dma = cp->block_dvma;
1f26dac3
DM
1177 u32 val;
1178 int i, size;
1179
1180 /* rx free descriptors */
6aa20a22 1181 val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1f26dac3
DM
1182 val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1183 val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1184 if ((N_RX_DESC_RINGS > 1) &&
1185 (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */
1186 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1187 writel(val, cp->regs + REG_RX_CFG);
1188
6aa20a22 1189 val = (unsigned long) cp->init_rxds[0] -
1f26dac3
DM
1190 (unsigned long) cp->init_block;
1191 writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1192 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1193 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1194
1195 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
6aa20a22 1196 /* rx desc 2 is for IPSEC packets. however,
1f26dac3
DM
1197 * we don't it that for that purpose.
1198 */
6aa20a22 1199 val = (unsigned long) cp->init_rxds[1] -
1f26dac3
DM
1200 (unsigned long) cp->init_block;
1201 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
6aa20a22 1202 writel((desc_dma + val) & 0xffffffff, cp->regs +
1f26dac3 1203 REG_PLUS_RX_DB1_LOW);
6aa20a22 1204 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1f26dac3
DM
1205 REG_PLUS_RX_KICK1);
1206 }
6aa20a22 1207
1f26dac3 1208 /* rx completion registers */
6aa20a22 1209 val = (unsigned long) cp->init_rxcs[0] -
1f26dac3
DM
1210 (unsigned long) cp->init_block;
1211 writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1212 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1213
1214 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1215 /* rx comp 2-4 */
1216 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
6aa20a22 1217 val = (unsigned long) cp->init_rxcs[i] -
1f26dac3 1218 (unsigned long) cp->init_block;
6aa20a22 1219 writel((desc_dma + val) >> 32, cp->regs +
1f26dac3 1220 REG_PLUS_RX_CBN_HI(i));
6aa20a22 1221 writel((desc_dma + val) & 0xffffffff, cp->regs +
1f26dac3
DM
1222 REG_PLUS_RX_CBN_LOW(i));
1223 }
1224 }
1225
1226 /* read selective clear regs to prevent spurious interrupts
1227 * on reset because complete == kick.
1228 * selective clear set up to prevent interrupts on resets
1229 */
1230 readl(cp->regs + REG_INTR_STATUS_ALIAS);
1231 writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1232 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1233 for (i = 1; i < N_RX_COMP_RINGS; i++)
1234 readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1235
1236 /* 2 is different from 3 and 4 */
1237 if (N_RX_COMP_RINGS > 1)
6aa20a22 1238 writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1f26dac3
DM
1239 cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1240
6aa20a22
JG
1241 for (i = 2; i < N_RX_COMP_RINGS; i++)
1242 writel(INTR_RX_DONE_ALT,
1f26dac3
DM
1243 cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1244 }
1245
1246 /* set up pause thresholds */
1247 val = CAS_BASE(RX_PAUSE_THRESH_OFF,
1248 cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
6aa20a22 1249 val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1f26dac3
DM
1250 cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1251 writel(val, cp->regs + REG_RX_PAUSE_THRESH);
6aa20a22 1252
1f26dac3
DM
1253 /* zero out dma reassembly buffers */
1254 for (i = 0; i < 64; i++) {
1255 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1256 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1257 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1258 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1259 }
1260
1261 /* make sure address register is 0 for normal operation */
1262 writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1263 writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1264
1265 /* interrupt mitigation */
1266#ifdef USE_RX_BLANK
1267 val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1268 val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1269 writel(val, cp->regs + REG_RX_BLANK);
1270#else
1271 writel(0x0, cp->regs + REG_RX_BLANK);
1272#endif
1273
1274 /* interrupt generation as a function of low water marks for
1275 * free desc and completion entries. these are used to trigger
1276 * housekeeping for rx descs. we don't use the free interrupt
1277 * as it's not very useful
1278 */
1279 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1280 val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1281 writel(val, cp->regs + REG_RX_AE_THRESH);
1282 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1283 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1284 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1285 }
1286
1287 /* Random early detect registers. useful for congestion avoidance.
1288 * this should be tunable.
1289 */
1290 writel(0x0, cp->regs + REG_RX_RED);
6aa20a22 1291
1f26dac3
DM
1292 /* receive page sizes. default == 2K (0x800) */
1293 val = 0;
1294 if (cp->page_size == 0x1000)
1295 val = 0x1;
1296 else if (cp->page_size == 0x2000)
1297 val = 0x2;
1298 else if (cp->page_size == 0x4000)
1299 val = 0x3;
6aa20a22 1300
1f26dac3
DM
1301 /* round mtu + offset. constrain to page size. */
1302 size = cp->dev->mtu + 64;
1303 if (size > cp->page_size)
1304 size = cp->page_size;
1305
1306 if (size <= 0x400)
1307 i = 0x0;
1308 else if (size <= 0x800)
1309 i = 0x1;
1310 else if (size <= 0x1000)
1311 i = 0x2;
1312 else
1313 i = 0x3;
1314
1315 cp->mtu_stride = 1 << (i + 10);
1316 val = CAS_BASE(RX_PAGE_SIZE, val);
6aa20a22 1317 val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1f26dac3
DM
1318 val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1319 val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1320 writel(val, cp->regs + REG_RX_PAGE_SIZE);
6aa20a22 1321
1f26dac3
DM
1322 /* enable the header parser if desired */
1323 if (CAS_HP_FIRMWARE == cas_prog_null)
1324 return;
1325
1326 val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1327 val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1328 val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1329 writel(val, cp->regs + REG_HP_CFG);
1330}
1331
1332static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1333{
1334 memset(rxc, 0, sizeof(*rxc));
6aa20a22 1335 rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1f26dac3
DM
1336}
1337
1338/* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1339 * flipping is protected by the fact that the chip will not
1340 * hand back the same page index while it's being processed.
1341 */
1342static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1343{
1344 cas_page_t *page = cp->rx_pages[1][index];
1345 cas_page_t *new;
1346
9de4dfb4 1347 if (page_count(page->buffer) == 1)
1f26dac3
DM
1348 return page;
1349
1350 new = cas_page_dequeue(cp);
1351 if (new) {
1352 spin_lock(&cp->rx_inuse_lock);
1353 list_add(&page->list, &cp->rx_inuse_list);
1354 spin_unlock(&cp->rx_inuse_lock);
1355 }
1356 return new;
1357}
6aa20a22 1358
1f26dac3 1359/* this needs to be changed if we actually use the ENC RX DESC ring */
6aa20a22 1360static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1f26dac3
DM
1361 const int index)
1362{
1363 cas_page_t **page0 = cp->rx_pages[0];
1364 cas_page_t **page1 = cp->rx_pages[1];
1365
1366 /* swap if buffer is in use */
9de4dfb4 1367 if (page_count(page0[index]->buffer) > 1) {
1f26dac3
DM
1368 cas_page_t *new = cas_page_spare(cp, index);
1369 if (new) {
1370 page1[index] = page0[index];
1371 page0[index] = new;
1372 }
6aa20a22 1373 }
1f26dac3
DM
1374 RX_USED_SET(page0[index], 0);
1375 return page0[index];
1376}
1377
1378static void cas_clean_rxds(struct cas *cp)
1379{
1380 /* only clean ring 0 as ring 1 is used for spare buffers */
1381 struct cas_rx_desc *rxd = cp->init_rxds[0];
1382 int i, size;
1383
1384 /* release all rx flows */
1385 for (i = 0; i < N_RX_FLOWS; i++) {
1386 struct sk_buff *skb;
1387 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1388 cas_skb_release(skb);
1389 }
1390 }
1391
1392 /* initialize descriptors */
1393 size = RX_DESC_RINGN_SIZE(0);
1394 for (i = 0; i < size; i++) {
1395 cas_page_t *page = cas_page_swap(cp, 0, i);
1396 rxd[i].buffer = cpu_to_le64(page->dma_addr);
6aa20a22 1397 rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1f26dac3
DM
1398 CAS_BASE(RX_INDEX_RING, 0));
1399 }
1400
6aa20a22 1401 cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4;
1f26dac3
DM
1402 cp->rx_last[0] = 0;
1403 cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1404}
1405
1406static void cas_clean_rxcs(struct cas *cp)
1407{
1408 int i, j;
1409
1410 /* take ownership of rx comp descriptors */
1411 memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1412 memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1413 for (i = 0; i < N_RX_COMP_RINGS; i++) {
1414 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1415 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1416 cas_rxc_init(rxc + j);
1417 }
1418 }
1419}
1420
1421#if 0
1422/* When we get a RX fifo overflow, the RX unit is probably hung
1423 * so we do the following.
1424 *
1425 * If any part of the reset goes wrong, we return 1 and that causes the
1426 * whole chip to be reset.
1427 */
1428static int cas_rxmac_reset(struct cas *cp)
1429{
1430 struct net_device *dev = cp->dev;
1431 int limit;
1432 u32 val;
1433
1434 /* First, reset MAC RX. */
1435 writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1436 for (limit = 0; limit < STOP_TRIES; limit++) {
1437 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1438 break;
1439 udelay(10);
1440 }
1441 if (limit == STOP_TRIES) {
1442 printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
1443 "chip.\n", dev->name);
1444 return 1;
1445 }
1446
1447 /* Second, disable RX DMA. */
1448 writel(0, cp->regs + REG_RX_CFG);
1449 for (limit = 0; limit < STOP_TRIES; limit++) {
1450 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1451 break;
1452 udelay(10);
1453 }
1454 if (limit == STOP_TRIES) {
1455 printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
1456 "chip.\n", dev->name);
1457 return 1;
1458 }
1459
1460 mdelay(5);
1461
1462 /* Execute RX reset command. */
1463 writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1464 for (limit = 0; limit < STOP_TRIES; limit++) {
1465 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1466 break;
1467 udelay(10);
1468 }
1469 if (limit == STOP_TRIES) {
1470 printk(KERN_ERR "%s: RX reset command will not execute, "
1471 "resetting whole chip.\n", dev->name);
1472 return 1;
1473 }
1474
1475 /* reset driver rx state */
1476 cas_clean_rxds(cp);
1477 cas_clean_rxcs(cp);
1478
1479 /* Now, reprogram the rest of RX unit. */
1480 cas_init_rx_dma(cp);
1481
1482 /* re-enable */
1483 val = readl(cp->regs + REG_RX_CFG);
1484 writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1485 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1486 val = readl(cp->regs + REG_MAC_RX_CFG);
1487 writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1488 return 0;
1489}
1490#endif
1491
1492static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1493 u32 status)
1494{
1495 u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1496
1497 if (!stat)
1498 return 0;
1499
1500 if (netif_msg_intr(cp))
1501 printk(KERN_DEBUG "%s: rxmac interrupt, stat: 0x%x\n",
1502 cp->dev->name, stat);
1503
1504 /* these are all rollovers */
1505 spin_lock(&cp->stat_lock[0]);
6aa20a22 1506 if (stat & MAC_RX_ALIGN_ERR)
1f26dac3
DM
1507 cp->net_stats[0].rx_frame_errors += 0x10000;
1508
1509 if (stat & MAC_RX_CRC_ERR)
1510 cp->net_stats[0].rx_crc_errors += 0x10000;
1511
1512 if (stat & MAC_RX_LEN_ERR)
1513 cp->net_stats[0].rx_length_errors += 0x10000;
1514
1515 if (stat & MAC_RX_OVERFLOW) {
1516 cp->net_stats[0].rx_over_errors++;
1517 cp->net_stats[0].rx_fifo_errors++;
1518 }
1519
1520 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1521 * events.
1522 */
1523 spin_unlock(&cp->stat_lock[0]);
1524 return 0;
1525}
1526
1527static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1528 u32 status)
1529{
1530 u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1531
1532 if (!stat)
1533 return 0;
1534
1535 if (netif_msg_intr(cp))
1536 printk(KERN_DEBUG "%s: mac interrupt, stat: 0x%x\n",
1537 cp->dev->name, stat);
1538
1539 /* This interrupt is just for pause frame and pause
1540 * tracking. It is useful for diagnostics and debug
1541 * but probably by default we will mask these events.
1542 */
1543 if (stat & MAC_CTRL_PAUSE_STATE)
1544 cp->pause_entered++;
1545
1546 if (stat & MAC_CTRL_PAUSE_RECEIVED)
1547 cp->pause_last_time_recvd = (stat >> 16);
1548
1549 return 0;
1550}
1551
6aa20a22 1552
1f26dac3
DM
1553/* Must be invoked under cp->lock. */
1554static inline int cas_mdio_link_not_up(struct cas *cp)
1555{
1556 u16 val;
6aa20a22 1557
1f26dac3
DM
1558 switch (cp->lstate) {
1559 case link_force_ret:
1560 if (netif_msg_link(cp))
1561 printk(KERN_INFO "%s: Autoneg failed again, keeping"
1562 " forced mode\n", cp->dev->name);
1563 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1564 cp->timer_ticks = 5;
1565 cp->lstate = link_force_ok;
1566 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1567 break;
6aa20a22 1568
1f26dac3
DM
1569 case link_aneg:
1570 val = cas_phy_read(cp, MII_BMCR);
1571
1572 /* Try forced modes. we try things in the following order:
1573 * 1000 full -> 100 full/half -> 10 half
1574 */
1575 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1576 val |= BMCR_FULLDPLX;
6aa20a22 1577 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1f26dac3
DM
1578 CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1579 cas_phy_write(cp, MII_BMCR, val);
1580 cp->timer_ticks = 5;
1581 cp->lstate = link_force_try;
1582 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1583 break;
1584
1585 case link_force_try:
1586 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1587 val = cas_phy_read(cp, MII_BMCR);
1588 cp->timer_ticks = 5;
1589 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1590 val &= ~CAS_BMCR_SPEED1000;
1591 val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1592 cas_phy_write(cp, MII_BMCR, val);
1593 break;
1594 }
1595
1596 if (val & BMCR_SPEED100) {
1597 if (val & BMCR_FULLDPLX) /* fd failed */
1598 val &= ~BMCR_FULLDPLX;
1599 else { /* 100Mbps failed */
1600 val &= ~BMCR_SPEED100;
1601 }
1602 cas_phy_write(cp, MII_BMCR, val);
1603 break;
1604 }
1605 default:
1606 break;
1607 }
1608 return 0;
1609}
1610
1611
1612/* must be invoked with cp->lock held */
1613static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1614{
1615 int restart;
1616
1617 if (bmsr & BMSR_LSTATUS) {
1618 /* Ok, here we got a link. If we had it due to a forced
6aa20a22 1619 * fallback, and we were configured for autoneg, we
1f26dac3
DM
1620 * retry a short autoneg pass. If you know your hub is
1621 * broken, use ethtool ;)
1622 */
6aa20a22 1623 if ((cp->lstate == link_force_try) &&
1f26dac3
DM
1624 (cp->link_cntl & BMCR_ANENABLE)) {
1625 cp->lstate = link_force_ret;
1626 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1627 cas_mif_poll(cp, 0);
1628 cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1629 cp->timer_ticks = 5;
1630 if (cp->opened && netif_msg_link(cp))
1631 printk(KERN_INFO "%s: Got link after fallback, retrying"
1632 " autoneg once...\n", cp->dev->name);
1633 cas_phy_write(cp, MII_BMCR,
1634 cp->link_fcntl | BMCR_ANENABLE |
1635 BMCR_ANRESTART);
1636 cas_mif_poll(cp, 1);
1637
1638 } else if (cp->lstate != link_up) {
1639 cp->lstate = link_up;
1640 cp->link_transition = LINK_TRANSITION_LINK_UP;
1641
1642 if (cp->opened) {
1643 cas_set_link_modes(cp);
1644 netif_carrier_on(cp->dev);
1645 }
1646 }
1647 return 0;
1648 }
1649
1650 /* link not up. if the link was previously up, we restart the
1651 * whole process
1652 */
1653 restart = 0;
1654 if (cp->lstate == link_up) {
1655 cp->lstate = link_down;
1656 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1657
1658 netif_carrier_off(cp->dev);
1659 if (cp->opened && netif_msg_link(cp))
1660 printk(KERN_INFO "%s: Link down\n",
1661 cp->dev->name);
1662 restart = 1;
6aa20a22 1663
1f26dac3
DM
1664 } else if (++cp->timer_ticks > 10)
1665 cas_mdio_link_not_up(cp);
6aa20a22 1666
1f26dac3
DM
1667 return restart;
1668}
1669
1670static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1671 u32 status)
1672{
1673 u32 stat = readl(cp->regs + REG_MIF_STATUS);
1674 u16 bmsr;
1675
1676 /* check for a link change */
1677 if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1678 return 0;
1679
1680 bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1681 return cas_mii_link_check(cp, bmsr);
1682}
1683
1684static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1685 u32 status)
1686{
1687 u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1688
1689 if (!stat)
1690 return 0;
1691
1692 printk(KERN_ERR "%s: PCI error [%04x:%04x] ", dev->name, stat,
1693 readl(cp->regs + REG_BIM_DIAG));
1694
1695 /* cassini+ has this reserved */
1696 if ((stat & PCI_ERR_BADACK) &&
1697 ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1698 printk("<No ACK64# during ABS64 cycle> ");
1699
1700 if (stat & PCI_ERR_DTRTO)
1701 printk("<Delayed transaction timeout> ");
1702 if (stat & PCI_ERR_OTHER)
1703 printk("<other> ");
1704 if (stat & PCI_ERR_BIM_DMA_WRITE)
1705 printk("<BIM DMA 0 write req> ");
1706 if (stat & PCI_ERR_BIM_DMA_READ)
1707 printk("<BIM DMA 0 read req> ");
1708 printk("\n");
1709
1710 if (stat & PCI_ERR_OTHER) {
1711 u16 cfg;
1712
1713 /* Interrogate PCI config space for the
1714 * true cause.
1715 */
1716 pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1717 printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
1718 dev->name, cfg);
1719 if (cfg & PCI_STATUS_PARITY)
1720 printk(KERN_ERR "%s: PCI parity error detected.\n",
1721 dev->name);
1722 if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1723 printk(KERN_ERR "%s: PCI target abort.\n",
1724 dev->name);
1725 if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1726 printk(KERN_ERR "%s: PCI master acks target abort.\n",
1727 dev->name);
1728 if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1729 printk(KERN_ERR "%s: PCI master abort.\n", dev->name);
1730 if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1731 printk(KERN_ERR "%s: PCI system error SERR#.\n",
1732 dev->name);
1733 if (cfg & PCI_STATUS_DETECTED_PARITY)
1734 printk(KERN_ERR "%s: PCI parity error.\n",
1735 dev->name);
1736
1737 /* Write the error bits back to clear them. */
1738 cfg &= (PCI_STATUS_PARITY |
1739 PCI_STATUS_SIG_TARGET_ABORT |
1740 PCI_STATUS_REC_TARGET_ABORT |
1741 PCI_STATUS_REC_MASTER_ABORT |
1742 PCI_STATUS_SIG_SYSTEM_ERROR |
1743 PCI_STATUS_DETECTED_PARITY);
1744 pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1745 }
1746
1747 /* For all PCI errors, we should reset the chip. */
1748 return 1;
1749}
1750
1751/* All non-normal interrupt conditions get serviced here.
1752 * Returns non-zero if we should just exit the interrupt
1753 * handler right now (ie. if we reset the card which invalidates
1754 * all of the other original irq status bits).
1755 */
1756static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1757 u32 status)
1758{
1759 if (status & INTR_RX_TAG_ERROR) {
1760 /* corrupt RX tag framing */
1761 if (netif_msg_rx_err(cp))
1762 printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
1763 cp->dev->name);
1764 spin_lock(&cp->stat_lock[0]);
1765 cp->net_stats[0].rx_errors++;
1766 spin_unlock(&cp->stat_lock[0]);
1767 goto do_reset;
1768 }
1769
1770 if (status & INTR_RX_LEN_MISMATCH) {
1771 /* length mismatch. */
1772 if (netif_msg_rx_err(cp))
1773 printk(KERN_DEBUG "%s: length mismatch for rx frame\n",
1774 cp->dev->name);
1775 spin_lock(&cp->stat_lock[0]);
1776 cp->net_stats[0].rx_errors++;
1777 spin_unlock(&cp->stat_lock[0]);
1778 goto do_reset;
1779 }
1780
1781 if (status & INTR_PCS_STATUS) {
1782 if (cas_pcs_interrupt(dev, cp, status))
1783 goto do_reset;
1784 }
1785
1786 if (status & INTR_TX_MAC_STATUS) {
1787 if (cas_txmac_interrupt(dev, cp, status))
1788 goto do_reset;
1789 }
1790
1791 if (status & INTR_RX_MAC_STATUS) {
1792 if (cas_rxmac_interrupt(dev, cp, status))
1793 goto do_reset;
1794 }
1795
1796 if (status & INTR_MAC_CTRL_STATUS) {
1797 if (cas_mac_interrupt(dev, cp, status))
1798 goto do_reset;
1799 }
1800
1801 if (status & INTR_MIF_STATUS) {
1802 if (cas_mif_interrupt(dev, cp, status))
1803 goto do_reset;
1804 }
1805
1806 if (status & INTR_PCI_ERROR_STATUS) {
1807 if (cas_pci_interrupt(dev, cp, status))
1808 goto do_reset;
1809 }
1810 return 0;
1811
1812do_reset:
1813#if 1
1814 atomic_inc(&cp->reset_task_pending);
1815 atomic_inc(&cp->reset_task_pending_all);
1816 printk(KERN_ERR "%s:reset called in cas_abnormal_irq [0x%x]\n",
1817 dev->name, status);
1818 schedule_work(&cp->reset_task);
1819#else
1820 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1821 printk(KERN_ERR "reset called in cas_abnormal_irq\n");
1822 schedule_work(&cp->reset_task);
1823#endif
1824 return 1;
1825}
1826
1827/* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1828 * determining whether to do a netif_stop/wakeup
1829 */
1830#define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1831#define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1832static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1833 const int len)
1834{
1835 unsigned long off = addr + len;
1836
1837 if (CAS_TABORT(cp) == 1)
1838 return 0;
1839 if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1840 return 0;
1841 return TX_TARGET_ABORT_LEN;
1842}
1843
1844static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1845{
1846 struct cas_tx_desc *txds;
1847 struct sk_buff **skbs;
1848 struct net_device *dev = cp->dev;
1849 int entry, count;
1850
1851 spin_lock(&cp->tx_lock[ring]);
1852 txds = cp->init_txds[ring];
1853 skbs = cp->tx_skbs[ring];
1854 entry = cp->tx_old[ring];
1855
1856 count = TX_BUFF_COUNT(ring, entry, limit);
1857 while (entry != limit) {
1858 struct sk_buff *skb = skbs[entry];
1859 dma_addr_t daddr;
1860 u32 dlen;
1861 int frag;
1862
1863 if (!skb) {
1864 /* this should never occur */
1865 entry = TX_DESC_NEXT(ring, entry);
1866 continue;
1867 }
1868
1869 /* however, we might get only a partial skb release. */
1870 count -= skb_shinfo(skb)->nr_frags +
1871 + cp->tx_tiny_use[ring][entry].nbufs + 1;
1872 if (count < 0)
1873 break;
1874
1875 if (netif_msg_tx_done(cp))
1876 printk(KERN_DEBUG "%s: tx[%d] done, slot %d\n",
1877 cp->dev->name, ring, entry);
1878
1879 skbs[entry] = NULL;
1880 cp->tx_tiny_use[ring][entry].nbufs = 0;
6aa20a22 1881
1f26dac3
DM
1882 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1883 struct cas_tx_desc *txd = txds + entry;
1884
1885 daddr = le64_to_cpu(txd->buffer);
1886 dlen = CAS_VAL(TX_DESC_BUFLEN,
1887 le64_to_cpu(txd->control));
1888 pci_unmap_page(cp->pdev, daddr, dlen,
1889 PCI_DMA_TODEVICE);
1890 entry = TX_DESC_NEXT(ring, entry);
1891
1892 /* tiny buffer may follow */
1893 if (cp->tx_tiny_use[ring][entry].used) {
1894 cp->tx_tiny_use[ring][entry].used = 0;
1895 entry = TX_DESC_NEXT(ring, entry);
6aa20a22 1896 }
1f26dac3
DM
1897 }
1898
1899 spin_lock(&cp->stat_lock[ring]);
1900 cp->net_stats[ring].tx_packets++;
1901 cp->net_stats[ring].tx_bytes += skb->len;
1902 spin_unlock(&cp->stat_lock[ring]);
1903 dev_kfree_skb_irq(skb);
1904 }
1905 cp->tx_old[ring] = entry;
1906
1907 /* this is wrong for multiple tx rings. the net device needs
1908 * multiple queues for this to do the right thing. we wait
1909 * for 2*packets to be available when using tiny buffers
1910 */
1911 if (netif_queue_stopped(dev) &&
1912 (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1913 netif_wake_queue(dev);
1914 spin_unlock(&cp->tx_lock[ring]);
1915}
1916
1917static void cas_tx(struct net_device *dev, struct cas *cp,
1918 u32 status)
1919{
1920 int limit, ring;
1921#ifdef USE_TX_COMPWB
1922 u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1923#endif
1924 if (netif_msg_intr(cp))
64af4c13
AM
1925 printk(KERN_DEBUG "%s: tx interrupt, status: 0x%x, %llx\n",
1926 cp->dev->name, status, (unsigned long long)compwb);
1f26dac3
DM
1927 /* process all the rings */
1928 for (ring = 0; ring < N_TX_RINGS; ring++) {
1929#ifdef USE_TX_COMPWB
1930 /* use the completion writeback registers */
1931 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1932 CAS_VAL(TX_COMPWB_LSB, compwb);
1933 compwb = TX_COMPWB_NEXT(compwb);
1934#else
1935 limit = readl(cp->regs + REG_TX_COMPN(ring));
1936#endif
6aa20a22 1937 if (cp->tx_old[ring] != limit)
1f26dac3
DM
1938 cas_tx_ringN(cp, ring, limit);
1939 }
1940}
1941
1942
6aa20a22
JG
1943static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1944 int entry, const u64 *words,
1f26dac3
DM
1945 struct sk_buff **skbref)
1946{
1947 int dlen, hlen, len, i, alloclen;
1948 int off, swivel = RX_SWIVEL_OFF_VAL;
1949 struct cas_page *page;
1950 struct sk_buff *skb;
1951 void *addr, *crcaddr;
e5e02540 1952 __sum16 csum;
6aa20a22 1953 char *p;
1f26dac3
DM
1954
1955 hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1956 dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1957 len = hlen + dlen;
1958
6aa20a22 1959 if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1f26dac3 1960 alloclen = len;
6aa20a22 1961 else
1f26dac3
DM
1962 alloclen = max(hlen, RX_COPY_MIN);
1963
1964 skb = dev_alloc_skb(alloclen + swivel + cp->crc_size);
6aa20a22 1965 if (skb == NULL)
1f26dac3
DM
1966 return -1;
1967
1968 *skbref = skb;
1f26dac3
DM
1969 skb_reserve(skb, swivel);
1970
1971 p = skb->data;
1972 addr = crcaddr = NULL;
1973 if (hlen) { /* always copy header pages */
1974 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1975 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
6aa20a22 1976 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1f26dac3
DM
1977 swivel;
1978
1979 i = hlen;
1980 if (!dlen) /* attach FCS */
1981 i += cp->crc_size;
1982 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
1983 PCI_DMA_FROMDEVICE);
1984 addr = cas_page_map(page->buffer);
1985 memcpy(p, addr + off, i);
1986 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
1987 PCI_DMA_FROMDEVICE);
1988 cas_page_unmap(addr);
1989 RX_USED_ADD(page, 0x100);
1990 p += hlen;
1991 swivel = 0;
6aa20a22 1992 }
1f26dac3
DM
1993
1994
1995 if (alloclen < (hlen + dlen)) {
1996 skb_frag_t *frag = skb_shinfo(skb)->frags;
1997
1998 /* normal or jumbo packets. we use frags */
1999 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2000 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2001 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2002
2003 hlen = min(cp->page_size - off, dlen);
2004 if (hlen < 0) {
2005 if (netif_msg_rx_err(cp)) {
2006 printk(KERN_DEBUG "%s: rx page overflow: "
2007 "%d\n", cp->dev->name, hlen);
2008 }
2009 dev_kfree_skb_irq(skb);
2010 return -1;
2011 }
2012 i = hlen;
2013 if (i == dlen) /* attach FCS */
2014 i += cp->crc_size;
2015 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2016 PCI_DMA_FROMDEVICE);
2017
2018 /* make sure we always copy a header */
2019 swivel = 0;
2020 if (p == (char *) skb->data) { /* not split */
2021 addr = cas_page_map(page->buffer);
2022 memcpy(p, addr + off, RX_COPY_MIN);
2023 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2024 PCI_DMA_FROMDEVICE);
2025 cas_page_unmap(addr);
2026 off += RX_COPY_MIN;
2027 swivel = RX_COPY_MIN;
2028 RX_USED_ADD(page, cp->mtu_stride);
2029 } else {
2030 RX_USED_ADD(page, hlen);
2031 }
2032 skb_put(skb, alloclen);
2033
2034 skb_shinfo(skb)->nr_frags++;
2035 skb->data_len += hlen - swivel;
d011a231 2036 skb->truesize += hlen - swivel;
1f26dac3
DM
2037 skb->len += hlen - swivel;
2038
2039 get_page(page->buffer);
2040 frag->page = page->buffer;
2041 frag->page_offset = off;
2042 frag->size = hlen - swivel;
6aa20a22 2043
1f26dac3
DM
2044 /* any more data? */
2045 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2046 hlen = dlen;
2047 off = 0;
2048
2049 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2050 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
6aa20a22
JG
2051 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2052 hlen + cp->crc_size,
1f26dac3
DM
2053 PCI_DMA_FROMDEVICE);
2054 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2055 hlen + cp->crc_size,
2056 PCI_DMA_FROMDEVICE);
2057
2058 skb_shinfo(skb)->nr_frags++;
2059 skb->data_len += hlen;
6aa20a22 2060 skb->len += hlen;
1f26dac3
DM
2061 frag++;
2062
2063 get_page(page->buffer);
2064 frag->page = page->buffer;
2065 frag->page_offset = 0;
2066 frag->size = hlen;
2067 RX_USED_ADD(page, hlen + cp->crc_size);
2068 }
2069
2070 if (cp->crc_size) {
2071 addr = cas_page_map(page->buffer);
2072 crcaddr = addr + off + hlen;
2073 }
2074
2075 } else {
2076 /* copying packet */
2077 if (!dlen)
2078 goto end_copy_pkt;
2079
2080 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2081 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2082 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2083 hlen = min(cp->page_size - off, dlen);
2084 if (hlen < 0) {
2085 if (netif_msg_rx_err(cp)) {
2086 printk(KERN_DEBUG "%s: rx page overflow: "
2087 "%d\n", cp->dev->name, hlen);
2088 }
2089 dev_kfree_skb_irq(skb);
2090 return -1;
2091 }
2092 i = hlen;
2093 if (i == dlen) /* attach FCS */
2094 i += cp->crc_size;
2095 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2096 PCI_DMA_FROMDEVICE);
2097 addr = cas_page_map(page->buffer);
2098 memcpy(p, addr + off, i);
2099 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2100 PCI_DMA_FROMDEVICE);
2101 cas_page_unmap(addr);
2102 if (p == (char *) skb->data) /* not split */
2103 RX_USED_ADD(page, cp->mtu_stride);
2104 else
2105 RX_USED_ADD(page, i);
6aa20a22 2106
1f26dac3
DM
2107 /* any more data? */
2108 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2109 p += hlen;
2110 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2111 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
6aa20a22
JG
2112 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2113 dlen + cp->crc_size,
1f26dac3
DM
2114 PCI_DMA_FROMDEVICE);
2115 addr = cas_page_map(page->buffer);
2116 memcpy(p, addr, dlen + cp->crc_size);
2117 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2118 dlen + cp->crc_size,
2119 PCI_DMA_FROMDEVICE);
2120 cas_page_unmap(addr);
6aa20a22 2121 RX_USED_ADD(page, dlen + cp->crc_size);
1f26dac3
DM
2122 }
2123end_copy_pkt:
2124 if (cp->crc_size) {
2125 addr = NULL;
2126 crcaddr = skb->data + alloclen;
2127 }
2128 skb_put(skb, alloclen);
2129 }
2130
e5e02540 2131 csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
1f26dac3
DM
2132 if (cp->crc_size) {
2133 /* checksum includes FCS. strip it out. */
e5e02540
AV
2134 csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2135 csum_unfold(csum)));
1f26dac3
DM
2136 if (addr)
2137 cas_page_unmap(addr);
2138 }
e5e02540 2139 skb->csum = csum_unfold(~csum);
84fa7933 2140 skb->ip_summed = CHECKSUM_COMPLETE;
1f26dac3
DM
2141 skb->protocol = eth_type_trans(skb, cp->dev);
2142 return len;
2143}
2144
2145
2146/* we can handle up to 64 rx flows at a time. we do the same thing
6aa20a22 2147 * as nonreassm except that we batch up the buffers.
1f26dac3
DM
2148 * NOTE: we currently just treat each flow as a bunch of packets that
2149 * we pass up. a better way would be to coalesce the packets
2150 * into a jumbo packet. to do that, we need to do the following:
2151 * 1) the first packet will have a clean split between header and
2152 * data. save both.
2153 * 2) each time the next flow packet comes in, extend the
2154 * data length and merge the checksums.
2155 * 3) on flow release, fix up the header.
2156 * 4) make sure the higher layer doesn't care.
6aa20a22 2157 * because packets get coalesced, we shouldn't run into fragment count
1f26dac3
DM
2158 * issues.
2159 */
2160static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2161 struct sk_buff *skb)
2162{
2163 int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2164 struct sk_buff_head *flow = &cp->rx_flows[flowid];
6aa20a22
JG
2165
2166 /* this is protected at a higher layer, so no need to
1f26dac3
DM
2167 * do any additional locking here. stick the buffer
2168 * at the end.
2169 */
2170 __skb_insert(skb, flow->prev, (struct sk_buff *) flow, flow);
2171 if (words[0] & RX_COMP1_RELEASE_FLOW) {
2172 while ((skb = __skb_dequeue(flow))) {
2173 cas_skb_release(skb);
2174 }
2175 }
2176}
2177
2178/* put rx descriptor back on ring. if a buffer is in use by a higher
2179 * layer, this will need to put in a replacement.
2180 */
2181static void cas_post_page(struct cas *cp, const int ring, const int index)
2182{
2183 cas_page_t *new;
2184 int entry;
2185
2186 entry = cp->rx_old[ring];
2187
2188 new = cas_page_swap(cp, ring, index);
2189 cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2190 cp->init_rxds[ring][entry].index =
6aa20a22 2191 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
1f26dac3
DM
2192 CAS_BASE(RX_INDEX_RING, ring));
2193
2194 entry = RX_DESC_ENTRY(ring, entry + 1);
2195 cp->rx_old[ring] = entry;
6aa20a22 2196
1f26dac3
DM
2197 if (entry % 4)
2198 return;
2199
2200 if (ring == 0)
2201 writel(entry, cp->regs + REG_RX_KICK);
2202 else if ((N_RX_DESC_RINGS > 1) &&
6aa20a22 2203 (cp->cas_flags & CAS_FLAG_REG_PLUS))
1f26dac3
DM
2204 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2205}
2206
2207
2208/* only when things are bad */
2209static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2210{
2211 unsigned int entry, last, count, released;
2212 int cluster;
2213 cas_page_t **page = cp->rx_pages[ring];
2214
2215 entry = cp->rx_old[ring];
2216
2217 if (netif_msg_intr(cp))
2218 printk(KERN_DEBUG "%s: rxd[%d] interrupt, done: %d\n",
2219 cp->dev->name, ring, entry);
2220
2221 cluster = -1;
6aa20a22 2222 count = entry & 0x3;
1f26dac3
DM
2223 last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2224 released = 0;
2225 while (entry != last) {
2226 /* make a new buffer if it's still in use */
9de4dfb4 2227 if (page_count(page[entry]->buffer) > 1) {
1f26dac3
DM
2228 cas_page_t *new = cas_page_dequeue(cp);
2229 if (!new) {
6aa20a22 2230 /* let the timer know that we need to
1f26dac3
DM
2231 * do this again
2232 */
2233 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2234 if (!timer_pending(&cp->link_timer))
6aa20a22 2235 mod_timer(&cp->link_timer, jiffies +
1f26dac3
DM
2236 CAS_LINK_FAST_TIMEOUT);
2237 cp->rx_old[ring] = entry;
2238 cp->rx_last[ring] = num ? num - released : 0;
2239 return -ENOMEM;
2240 }
2241 spin_lock(&cp->rx_inuse_lock);
2242 list_add(&page[entry]->list, &cp->rx_inuse_list);
2243 spin_unlock(&cp->rx_inuse_lock);
6aa20a22 2244 cp->init_rxds[ring][entry].buffer =
1f26dac3
DM
2245 cpu_to_le64(new->dma_addr);
2246 page[entry] = new;
6aa20a22 2247
1f26dac3
DM
2248 }
2249
2250 if (++count == 4) {
2251 cluster = entry;
2252 count = 0;
2253 }
2254 released++;
2255 entry = RX_DESC_ENTRY(ring, entry + 1);
2256 }
2257 cp->rx_old[ring] = entry;
2258
6aa20a22 2259 if (cluster < 0)
1f26dac3
DM
2260 return 0;
2261
2262 if (ring == 0)
2263 writel(cluster, cp->regs + REG_RX_KICK);
2264 else if ((N_RX_DESC_RINGS > 1) &&
6aa20a22 2265 (cp->cas_flags & CAS_FLAG_REG_PLUS))
1f26dac3
DM
2266 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2267 return 0;
2268}
2269
2270
2271/* process a completion ring. packets are set up in three basic ways:
2272 * small packets: should be copied header + data in single buffer.
2273 * large packets: header and data in a single buffer.
6aa20a22 2274 * split packets: header in a separate buffer from data.
1f26dac3 2275 * data may be in multiple pages. data may be > 256
6aa20a22 2276 * bytes but in a single page.
1f26dac3
DM
2277 *
2278 * NOTE: RX page posting is done in this routine as well. while there's
2279 * the capability of using multiple RX completion rings, it isn't
2280 * really worthwhile due to the fact that the page posting will
6aa20a22 2281 * force serialization on the single descriptor ring.
1f26dac3
DM
2282 */
2283static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2284{
2285 struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2286 int entry, drops;
2287 int npackets = 0;
2288
2289 if (netif_msg_intr(cp))
2290 printk(KERN_DEBUG "%s: rx[%d] interrupt, done: %d/%d\n",
2291 cp->dev->name, ring,
6aa20a22 2292 readl(cp->regs + REG_RX_COMP_HEAD),
1f26dac3
DM
2293 cp->rx_new[ring]);
2294
2295 entry = cp->rx_new[ring];
2296 drops = 0;
2297 while (1) {
2298 struct cas_rx_comp *rxc = rxcs + entry;
2299 struct sk_buff *skb;
2300 int type, len;
2301 u64 words[4];
2302 int i, dring;
2303
2304 words[0] = le64_to_cpu(rxc->word1);
2305 words[1] = le64_to_cpu(rxc->word2);
2306 words[2] = le64_to_cpu(rxc->word3);
2307 words[3] = le64_to_cpu(rxc->word4);
2308
2309 /* don't touch if still owned by hw */
2310 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2311 if (type == 0)
2312 break;
2313
2314 /* hw hasn't cleared the zero bit yet */
2315 if (words[3] & RX_COMP4_ZERO) {
2316 break;
2317 }
2318
2319 /* get info on the packet */
2320 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2321 spin_lock(&cp->stat_lock[ring]);
2322 cp->net_stats[ring].rx_errors++;
2323 if (words[3] & RX_COMP4_LEN_MISMATCH)
2324 cp->net_stats[ring].rx_length_errors++;
2325 if (words[3] & RX_COMP4_BAD)
2326 cp->net_stats[ring].rx_crc_errors++;
2327 spin_unlock(&cp->stat_lock[ring]);
2328
2329 /* We'll just return it to Cassini. */
2330 drop_it:
2331 spin_lock(&cp->stat_lock[ring]);
2332 ++cp->net_stats[ring].rx_dropped;
2333 spin_unlock(&cp->stat_lock[ring]);
2334 goto next;
2335 }
2336
2337 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2338 if (len < 0) {
2339 ++drops;
2340 goto drop_it;
2341 }
2342
2343 /* see if it's a flow re-assembly or not. the driver
2344 * itself handles release back up.
2345 */
2346 if (RX_DONT_BATCH || (type == 0x2)) {
2347 /* non-reassm: these always get released */
6aa20a22 2348 cas_skb_release(skb);
1f26dac3
DM
2349 } else {
2350 cas_rx_flow_pkt(cp, words, skb);
2351 }
2352
2353 spin_lock(&cp->stat_lock[ring]);
2354 cp->net_stats[ring].rx_packets++;
2355 cp->net_stats[ring].rx_bytes += len;
2356 spin_unlock(&cp->stat_lock[ring]);
2357 cp->dev->last_rx = jiffies;
2358
2359 next:
2360 npackets++;
2361
2362 /* should it be released? */
2363 if (words[0] & RX_COMP1_RELEASE_HDR) {
2364 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2365 dring = CAS_VAL(RX_INDEX_RING, i);
2366 i = CAS_VAL(RX_INDEX_NUM, i);
2367 cas_post_page(cp, dring, i);
2368 }
6aa20a22 2369
1f26dac3
DM
2370 if (words[0] & RX_COMP1_RELEASE_DATA) {
2371 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2372 dring = CAS_VAL(RX_INDEX_RING, i);
2373 i = CAS_VAL(RX_INDEX_NUM, i);
2374 cas_post_page(cp, dring, i);
2375 }
2376
2377 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2378 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2379 dring = CAS_VAL(RX_INDEX_RING, i);
2380 i = CAS_VAL(RX_INDEX_NUM, i);
2381 cas_post_page(cp, dring, i);
2382 }
2383
2384 /* skip to the next entry */
6aa20a22 2385 entry = RX_COMP_ENTRY(ring, entry + 1 +
1f26dac3
DM
2386 CAS_VAL(RX_COMP1_SKIP, words[0]));
2387#ifdef USE_NAPI
2388 if (budget && (npackets >= budget))
2389 break;
2390#endif
2391 }
2392 cp->rx_new[ring] = entry;
2393
2394 if (drops)
2395 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
2396 cp->dev->name);
2397 return npackets;
2398}
2399
2400
2401/* put completion entries back on the ring */
2402static void cas_post_rxcs_ringN(struct net_device *dev,
2403 struct cas *cp, int ring)
2404{
2405 struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2406 int last, entry;
2407
2408 last = cp->rx_cur[ring];
6aa20a22 2409 entry = cp->rx_new[ring];
1f26dac3
DM
2410 if (netif_msg_intr(cp))
2411 printk(KERN_DEBUG "%s: rxc[%d] interrupt, done: %d/%d\n",
2412 dev->name, ring, readl(cp->regs + REG_RX_COMP_HEAD),
2413 entry);
6aa20a22 2414
1f26dac3
DM
2415 /* zero and re-mark descriptors */
2416 while (last != entry) {
2417 cas_rxc_init(rxc + last);
2418 last = RX_COMP_ENTRY(ring, last + 1);
2419 }
2420 cp->rx_cur[ring] = last;
2421
2422 if (ring == 0)
2423 writel(last, cp->regs + REG_RX_COMP_TAIL);
6aa20a22 2424 else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
1f26dac3
DM
2425 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2426}
2427
2428
2429
6aa20a22 2430/* cassini can use all four PCI interrupts for the completion ring.
1f26dac3
DM
2431 * rings 3 and 4 are identical
2432 */
2433#if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
6aa20a22 2434static inline void cas_handle_irqN(struct net_device *dev,
1f26dac3
DM
2435 struct cas *cp, const u32 status,
2436 const int ring)
2437{
6aa20a22 2438 if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
1f26dac3
DM
2439 cas_post_rxcs_ringN(dev, cp, ring);
2440}
2441
7d12e780 2442static irqreturn_t cas_interruptN(int irq, void *dev_id)
1f26dac3
DM
2443{
2444 struct net_device *dev = dev_id;
2445 struct cas *cp = netdev_priv(dev);
2446 unsigned long flags;
2447 int ring;
2448 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2449
2450 /* check for shared irq */
2451 if (status == 0)
2452 return IRQ_NONE;
2453
2454 ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2455 spin_lock_irqsave(&cp->lock, flags);
2456 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2457#ifdef USE_NAPI
2458 cas_mask_intr(cp);
bea3348e 2459 netif_rx_schedule(dev, &cp->napi);
1f26dac3
DM
2460#else
2461 cas_rx_ringN(cp, ring, 0);
2462#endif
2463 status &= ~INTR_RX_DONE_ALT;
2464 }
2465
2466 if (status)
2467 cas_handle_irqN(dev, cp, status, ring);
2468 spin_unlock_irqrestore(&cp->lock, flags);
2469 return IRQ_HANDLED;
2470}
2471#endif
2472
2473#ifdef USE_PCI_INTB
2474/* everything but rx packets */
2475static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2476{
2477 if (status & INTR_RX_BUF_UNAVAIL_1) {
6aa20a22 2478 /* Frame arrived, no free RX buffers available.
1f26dac3
DM
2479 * NOTE: we can get this on a link transition. */
2480 cas_post_rxds_ringN(cp, 1, 0);
2481 spin_lock(&cp->stat_lock[1]);
2482 cp->net_stats[1].rx_dropped++;
2483 spin_unlock(&cp->stat_lock[1]);
2484 }
2485
6aa20a22
JG
2486 if (status & INTR_RX_BUF_AE_1)
2487 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
1f26dac3
DM
2488 RX_AE_FREEN_VAL(1));
2489
2490 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2491 cas_post_rxcs_ringN(cp, 1);
2492}
2493
2494/* ring 2 handles a few more events than 3 and 4 */
7d12e780 2495static irqreturn_t cas_interrupt1(int irq, void *dev_id)
1f26dac3
DM
2496{
2497 struct net_device *dev = dev_id;
2498 struct cas *cp = netdev_priv(dev);
2499 unsigned long flags;
2500 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2501
2502 /* check for shared interrupt */
2503 if (status == 0)
2504 return IRQ_NONE;
2505
2506 spin_lock_irqsave(&cp->lock, flags);
2507 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2508#ifdef USE_NAPI
2509 cas_mask_intr(cp);
bea3348e 2510 netif_rx_schedule(dev, &cp->napi);
1f26dac3
DM
2511#else
2512 cas_rx_ringN(cp, 1, 0);
2513#endif
2514 status &= ~INTR_RX_DONE_ALT;
2515 }
2516 if (status)
2517 cas_handle_irq1(cp, status);
2518 spin_unlock_irqrestore(&cp->lock, flags);
2519 return IRQ_HANDLED;
2520}
2521#endif
2522
2523static inline void cas_handle_irq(struct net_device *dev,
2524 struct cas *cp, const u32 status)
2525{
2526 /* housekeeping interrupts */
2527 if (status & INTR_ERROR_MASK)
2528 cas_abnormal_irq(dev, cp, status);
2529
2530 if (status & INTR_RX_BUF_UNAVAIL) {
6aa20a22 2531 /* Frame arrived, no free RX buffers available.
1f26dac3
DM
2532 * NOTE: we can get this on a link transition.
2533 */
2534 cas_post_rxds_ringN(cp, 0, 0);
2535 spin_lock(&cp->stat_lock[0]);
2536 cp->net_stats[0].rx_dropped++;
2537 spin_unlock(&cp->stat_lock[0]);
2538 } else if (status & INTR_RX_BUF_AE) {
2539 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2540 RX_AE_FREEN_VAL(0));
2541 }
2542
2543 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2544 cas_post_rxcs_ringN(dev, cp, 0);
2545}
2546
7d12e780 2547static irqreturn_t cas_interrupt(int irq, void *dev_id)
1f26dac3
DM
2548{
2549 struct net_device *dev = dev_id;
2550 struct cas *cp = netdev_priv(dev);
2551 unsigned long flags;
2552 u32 status = readl(cp->regs + REG_INTR_STATUS);
2553
2554 if (status == 0)
2555 return IRQ_NONE;
2556
2557 spin_lock_irqsave(&cp->lock, flags);
2558 if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2559 cas_tx(dev, cp, status);
2560 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2561 }
2562
2563 if (status & INTR_RX_DONE) {
2564#ifdef USE_NAPI
2565 cas_mask_intr(cp);
bea3348e 2566 netif_rx_schedule(dev, &cp->napi);
1f26dac3
DM
2567#else
2568 cas_rx_ringN(cp, 0, 0);
2569#endif
2570 status &= ~INTR_RX_DONE;
2571 }
2572
2573 if (status)
2574 cas_handle_irq(dev, cp, status);
2575 spin_unlock_irqrestore(&cp->lock, flags);
2576 return IRQ_HANDLED;
2577}
2578
2579
2580#ifdef USE_NAPI
bea3348e 2581static int cas_poll(struct napi_struct *napi, int budget)
1f26dac3 2582{
bea3348e
SH
2583 struct cas *cp = container_of(napi, struct cas, napi);
2584 struct net_device *dev = cp->dev;
86216268 2585 int i, enable_intr, credits;
1f26dac3
DM
2586 u32 status = readl(cp->regs + REG_INTR_STATUS);
2587 unsigned long flags;
2588
2589 spin_lock_irqsave(&cp->lock, flags);
2590 cas_tx(dev, cp, status);
2591 spin_unlock_irqrestore(&cp->lock, flags);
2592
2593 /* NAPI rx packets. we spread the credits across all of the
2594 * rxc rings
bea3348e
SH
2595 *
2596 * to make sure we're fair with the work we loop through each
6aa20a22 2597 * ring N_RX_COMP_RING times with a request of
bea3348e 2598 * budget / N_RX_COMP_RINGS
1f26dac3
DM
2599 */
2600 enable_intr = 1;
2601 credits = 0;
2602 for (i = 0; i < N_RX_COMP_RINGS; i++) {
2603 int j;
2604 for (j = 0; j < N_RX_COMP_RINGS; j++) {
bea3348e
SH
2605 credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2606 if (credits >= budget) {
1f26dac3
DM
2607 enable_intr = 0;
2608 goto rx_comp;
2609 }
2610 }
2611 }
2612
2613rx_comp:
1f26dac3
DM
2614 /* final rx completion */
2615 spin_lock_irqsave(&cp->lock, flags);
2616 if (status)
2617 cas_handle_irq(dev, cp, status);
2618
2619#ifdef USE_PCI_INTB
2620 if (N_RX_COMP_RINGS > 1) {
2621 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2622 if (status)
2623 cas_handle_irq1(dev, cp, status);
2624 }
2625#endif
2626
2627#ifdef USE_PCI_INTC
2628 if (N_RX_COMP_RINGS > 2) {
2629 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2630 if (status)
2631 cas_handle_irqN(dev, cp, status, 2);
2632 }
2633#endif
2634
2635#ifdef USE_PCI_INTD
2636 if (N_RX_COMP_RINGS > 3) {
2637 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2638 if (status)
2639 cas_handle_irqN(dev, cp, status, 3);
2640 }
2641#endif
2642 spin_unlock_irqrestore(&cp->lock, flags);
2643 if (enable_intr) {
bea3348e 2644 netif_rx_complete(dev, napi);
1f26dac3 2645 cas_unmask_intr(cp);
1f26dac3 2646 }
bea3348e 2647 return credits;
1f26dac3
DM
2648}
2649#endif
2650
2651#ifdef CONFIG_NET_POLL_CONTROLLER
2652static void cas_netpoll(struct net_device *dev)
2653{
2654 struct cas *cp = netdev_priv(dev);
2655
2656 cas_disable_irq(cp, 0);
7d12e780 2657 cas_interrupt(cp->pdev->irq, dev);
1f26dac3
DM
2658 cas_enable_irq(cp, 0);
2659
2660#ifdef USE_PCI_INTB
2661 if (N_RX_COMP_RINGS > 1) {
2662 /* cas_interrupt1(); */
2663 }
2664#endif
2665#ifdef USE_PCI_INTC
2666 if (N_RX_COMP_RINGS > 2) {
2667 /* cas_interruptN(); */
2668 }
2669#endif
2670#ifdef USE_PCI_INTD
2671 if (N_RX_COMP_RINGS > 3) {
2672 /* cas_interruptN(); */
2673 }
2674#endif
2675}
2676#endif
2677
2678static void cas_tx_timeout(struct net_device *dev)
2679{
2680 struct cas *cp = netdev_priv(dev);
2681
2682 printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2683 if (!cp->hw_running) {
2684 printk("%s: hrm.. hw not running!\n", dev->name);
2685 return;
2686 }
2687
2688 printk(KERN_ERR "%s: MIF_STATE[%08x]\n",
2689 dev->name, readl(cp->regs + REG_MIF_STATE_MACHINE));
2690
2691 printk(KERN_ERR "%s: MAC_STATE[%08x]\n",
2692 dev->name, readl(cp->regs + REG_MAC_STATE_MACHINE));
2693
2694 printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x] "
2695 "FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2696 dev->name,
2697 readl(cp->regs + REG_TX_CFG),
2698 readl(cp->regs + REG_MAC_TX_STATUS),
2699 readl(cp->regs + REG_MAC_TX_CFG),
2700 readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2701 readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2702 readl(cp->regs + REG_TX_FIFO_READ_PTR),
2703 readl(cp->regs + REG_TX_SM_1),
2704 readl(cp->regs + REG_TX_SM_2));
2705
2706 printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
2707 dev->name,
2708 readl(cp->regs + REG_RX_CFG),
2709 readl(cp->regs + REG_MAC_RX_STATUS),
2710 readl(cp->regs + REG_MAC_RX_CFG));
2711
2712 printk(KERN_ERR "%s: HP_STATE[%08x:%08x:%08x:%08x]\n",
2713 dev->name,
2714 readl(cp->regs + REG_HP_STATE_MACHINE),
2715 readl(cp->regs + REG_HP_STATUS0),
2716 readl(cp->regs + REG_HP_STATUS1),
2717 readl(cp->regs + REG_HP_STATUS2));
2718
2719#if 1
2720 atomic_inc(&cp->reset_task_pending);
2721 atomic_inc(&cp->reset_task_pending_all);
2722 schedule_work(&cp->reset_task);
2723#else
2724 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2725 schedule_work(&cp->reset_task);
2726#endif
2727}
2728
2729static inline int cas_intme(int ring, int entry)
2730{
2731 /* Algorithm: IRQ every 1/2 of descriptors. */
2732 if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2733 return 1;
2734 return 0;
2735}
2736
2737
2738static void cas_write_txd(struct cas *cp, int ring, int entry,
2739 dma_addr_t mapping, int len, u64 ctrl, int last)
2740{
2741 struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2742
2743 ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2744 if (cas_intme(ring, entry))
2745 ctrl |= TX_DESC_INTME;
2746 if (last)
2747 ctrl |= TX_DESC_EOF;
2748 txd->control = cpu_to_le64(ctrl);
2749 txd->buffer = cpu_to_le64(mapping);
2750}
2751
6aa20a22 2752static inline void *tx_tiny_buf(struct cas *cp, const int ring,
1f26dac3
DM
2753 const int entry)
2754{
2755 return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2756}
2757
6aa20a22 2758static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
1f26dac3
DM
2759 const int entry, const int tentry)
2760{
2761 cp->tx_tiny_use[ring][tentry].nbufs++;
2762 cp->tx_tiny_use[ring][entry].used = 1;
2763 return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2764}
2765
6aa20a22 2766static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
1f26dac3
DM
2767 struct sk_buff *skb)
2768{
2769 struct net_device *dev = cp->dev;
2770 int entry, nr_frags, frag, tabort, tentry;
2771 dma_addr_t mapping;
2772 unsigned long flags;
2773 u64 ctrl;
2774 u32 len;
2775
2776 spin_lock_irqsave(&cp->tx_lock[ring], flags);
2777
2778 /* This is a hard error, log it. */
6aa20a22 2779 if (TX_BUFFS_AVAIL(cp, ring) <=
1f26dac3
DM
2780 CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2781 netif_stop_queue(dev);
2782 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2783 printk(KERN_ERR PFX "%s: BUG! Tx Ring full when "
2784 "queue awake!\n", dev->name);
2785 return 1;
2786 }
2787
2788 ctrl = 0;
84fa7933 2789 if (skb->ip_summed == CHECKSUM_PARTIAL) {
ea2ae17d
ACM
2790 const u64 csum_start_off = skb_transport_offset(skb);
2791 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1f26dac3 2792
6aa20a22 2793 ctrl = TX_DESC_CSUM_EN |
1f26dac3
DM
2794 CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2795 CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2796 }
2797
2798 entry = cp->tx_new[ring];
2799 cp->tx_skbs[ring][entry] = skb;
2800
2801 nr_frags = skb_shinfo(skb)->nr_frags;
2802 len = skb_headlen(skb);
2803 mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2804 offset_in_page(skb->data), len,
2805 PCI_DMA_TODEVICE);
2806
2807 tentry = entry;
2808 tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2809 if (unlikely(tabort)) {
2810 /* NOTE: len is always > tabort */
6aa20a22 2811 cas_write_txd(cp, ring, entry, mapping, len - tabort,
1f26dac3
DM
2812 ctrl | TX_DESC_SOF, 0);
2813 entry = TX_DESC_NEXT(ring, entry);
2814
d626f62b
ACM
2815 skb_copy_from_linear_data_offset(skb, len - tabort,
2816 tx_tiny_buf(cp, ring, entry), tabort);
1f26dac3
DM
2817 mapping = tx_tiny_map(cp, ring, entry, tentry);
2818 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2819 (nr_frags == 0));
2820 } else {
6aa20a22 2821 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
1f26dac3
DM
2822 TX_DESC_SOF, (nr_frags == 0));
2823 }
2824 entry = TX_DESC_NEXT(ring, entry);
2825
2826 for (frag = 0; frag < nr_frags; frag++) {
2827 skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2828
2829 len = fragp->size;
2830 mapping = pci_map_page(cp->pdev, fragp->page,
2831 fragp->page_offset, len,
2832 PCI_DMA_TODEVICE);
2833
2834 tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2835 if (unlikely(tabort)) {
2836 void *addr;
2837
2838 /* NOTE: len is always > tabort */
2839 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2840 ctrl, 0);
2841 entry = TX_DESC_NEXT(ring, entry);
6aa20a22 2842
1f26dac3
DM
2843 addr = cas_page_map(fragp->page);
2844 memcpy(tx_tiny_buf(cp, ring, entry),
6aa20a22 2845 addr + fragp->page_offset + len - tabort,
1f26dac3
DM
2846 tabort);
2847 cas_page_unmap(addr);
2848 mapping = tx_tiny_map(cp, ring, entry, tentry);
2849 len = tabort;
2850 }
2851
2852 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2853 (frag + 1 == nr_frags));
2854 entry = TX_DESC_NEXT(ring, entry);
2855 }
2856
2857 cp->tx_new[ring] = entry;
2858 if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2859 netif_stop_queue(dev);
2860
2861 if (netif_msg_tx_queued(cp))
2862 printk(KERN_DEBUG "%s: tx[%d] queued, slot %d, skblen %d, "
2863 "avail %d\n",
6aa20a22 2864 dev->name, ring, entry, skb->len,
1f26dac3
DM
2865 TX_BUFFS_AVAIL(cp, ring));
2866 writel(entry, cp->regs + REG_TX_KICKN(ring));
2867 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2868 return 0;
6aa20a22 2869}
1f26dac3
DM
2870
2871static int cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2872{
2873 struct cas *cp = netdev_priv(dev);
2874
2875 /* this is only used as a load-balancing hint, so it doesn't
2876 * need to be SMP safe
2877 */
6aa20a22 2878 static int ring;
1f26dac3 2879
5b057c6b 2880 if (skb_padto(skb, cp->min_frame_size))
1f26dac3
DM
2881 return 0;
2882
2883 /* XXX: we need some higher-level QoS hooks to steer packets to
2884 * individual queues.
2885 */
2886 if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2887 return 1;
2888 dev->trans_start = jiffies;
2889 return 0;
2890}
2891
2892static void cas_init_tx_dma(struct cas *cp)
2893{
2894 u64 desc_dma = cp->block_dvma;
2895 unsigned long off;
2896 u32 val;
2897 int i;
2898
2899 /* set up tx completion writeback registers. must be 8-byte aligned */
2900#ifdef USE_TX_COMPWB
2901 off = offsetof(struct cas_init_block, tx_compwb);
2902 writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2903 writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2904#endif
2905
2906 /* enable completion writebacks, enable paced mode,
2907 * disable read pipe, and disable pre-interrupt compwbs
2908 */
6aa20a22 2909 val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
1f26dac3 2910 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
6aa20a22 2911 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
1f26dac3
DM
2912 TX_CFG_INTR_COMPWB_DIS;
2913
2914 /* write out tx ring info and tx desc bases */
2915 for (i = 0; i < MAX_TX_RINGS; i++) {
6aa20a22 2916 off = (unsigned long) cp->init_txds[i] -
1f26dac3
DM
2917 (unsigned long) cp->init_block;
2918
2919 val |= CAS_TX_RINGN_BASE(i);
2920 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2921 writel((desc_dma + off) & 0xffffffff, cp->regs +
2922 REG_TX_DBN_LOW(i));
2923 /* don't zero out the kick register here as the system
2924 * will wedge
2925 */
2926 }
2927 writel(val, cp->regs + REG_TX_CFG);
2928
2929 /* program max burst sizes. these numbers should be different
2930 * if doing QoS.
2931 */
2932#ifdef USE_QOS
2933 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2934 writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2935 writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2936 writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2937#else
2938 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2939 writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2940 writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2941 writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2942#endif
2943}
2944
2945/* Must be invoked under cp->lock. */
2946static inline void cas_init_dma(struct cas *cp)
2947{
2948 cas_init_tx_dma(cp);
2949 cas_init_rx_dma(cp);
2950}
2951
2952/* Must be invoked under cp->lock. */
2953static u32 cas_setup_multicast(struct cas *cp)
2954{
2955 u32 rxcfg = 0;
2956 int i;
6aa20a22 2957
1f26dac3
DM
2958 if (cp->dev->flags & IFF_PROMISC) {
2959 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2960
2961 } else if (cp->dev->flags & IFF_ALLMULTI) {
2962 for (i=0; i < 16; i++)
2963 writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2964 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2965
2966 } else {
2967 u16 hash_table[16];
2968 u32 crc;
2969 struct dev_mc_list *dmi = cp->dev->mc_list;
2970 int i;
2971
2972 /* use the alternate mac address registers for the
2973 * first 15 multicast addresses
2974 */
2975 for (i = 1; i <= CAS_MC_EXACT_MATCH_SIZE; i++) {
2976 if (!dmi) {
2977 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 0));
2978 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 1));
2979 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 2));
2980 continue;
2981 }
6aa20a22 2982 writel((dmi->dmi_addr[4] << 8) | dmi->dmi_addr[5],
1f26dac3 2983 cp->regs + REG_MAC_ADDRN(i*3 + 0));
6aa20a22 2984 writel((dmi->dmi_addr[2] << 8) | dmi->dmi_addr[3],
1f26dac3 2985 cp->regs + REG_MAC_ADDRN(i*3 + 1));
6aa20a22 2986 writel((dmi->dmi_addr[0] << 8) | dmi->dmi_addr[1],
1f26dac3
DM
2987 cp->regs + REG_MAC_ADDRN(i*3 + 2));
2988 dmi = dmi->next;
2989 }
2990
6aa20a22 2991 /* use hw hash table for the next series of
1f26dac3
DM
2992 * multicast addresses
2993 */
2994 memset(hash_table, 0, sizeof(hash_table));
2995 while (dmi) {
2996 crc = ether_crc_le(ETH_ALEN, dmi->dmi_addr);
2997 crc >>= 24;
2998 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2999 dmi = dmi->next;
3000 }
3001 for (i=0; i < 16; i++)
6aa20a22 3002 writel(hash_table[i], cp->regs +
1f26dac3
DM
3003 REG_MAC_HASH_TABLEN(i));
3004 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3005 }
3006
3007 return rxcfg;
3008}
3009
3010/* must be invoked under cp->stat_lock[N_TX_RINGS] */
3011static void cas_clear_mac_err(struct cas *cp)
3012{
3013 writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3014 writel(0, cp->regs + REG_MAC_COLL_FIRST);
3015 writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3016 writel(0, cp->regs + REG_MAC_COLL_LATE);
3017 writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3018 writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3019 writel(0, cp->regs + REG_MAC_RECV_FRAME);
3020 writel(0, cp->regs + REG_MAC_LEN_ERR);
3021 writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3022 writel(0, cp->regs + REG_MAC_FCS_ERR);
3023 writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3024}
3025
3026
3027static void cas_mac_reset(struct cas *cp)
3028{
3029 int i;
3030
3031 /* do both TX and RX reset */
3032 writel(0x1, cp->regs + REG_MAC_TX_RESET);
3033 writel(0x1, cp->regs + REG_MAC_RX_RESET);
3034
3035 /* wait for TX */
3036 i = STOP_TRIES;
3037 while (i-- > 0) {
3038 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3039 break;
3040 udelay(10);
3041 }
3042
3043 /* wait for RX */
3044 i = STOP_TRIES;
3045 while (i-- > 0) {
3046 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3047 break;
3048 udelay(10);
3049 }
3050
3051 if (readl(cp->regs + REG_MAC_TX_RESET) |
3052 readl(cp->regs + REG_MAC_RX_RESET))
3053 printk(KERN_ERR "%s: mac tx[%d]/rx[%d] reset failed [%08x]\n",
3054 cp->dev->name, readl(cp->regs + REG_MAC_TX_RESET),
3055 readl(cp->regs + REG_MAC_RX_RESET),
3056 readl(cp->regs + REG_MAC_STATE_MACHINE));
3057}
3058
3059
3060/* Must be invoked under cp->lock. */
3061static void cas_init_mac(struct cas *cp)
3062{
3063 unsigned char *e = &cp->dev->dev_addr[0];
3064 int i;
3065#ifdef CONFIG_CASSINI_MULTICAST_REG_WRITE
3066 u32 rxcfg;
3067#endif
3068 cas_mac_reset(cp);
3069
3070 /* setup core arbitration weight register */
3071 writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3072
3073 /* XXX Use pci_dma_burst_advice() */
3074#if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3075 /* set the infinite burst register for chips that don't have
3076 * pci issues.
3077 */
3078 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3079 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3080#endif
3081
3082 writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3083
3084 writel(0x00, cp->regs + REG_MAC_IPG0);
3085 writel(0x08, cp->regs + REG_MAC_IPG1);
3086 writel(0x04, cp->regs + REG_MAC_IPG2);
6aa20a22 3087
1f26dac3 3088 /* change later for 802.3z */
6aa20a22 3089 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
1f26dac3
DM
3090
3091 /* min frame + FCS */
3092 writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3093
3094 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
6aa20a22 3095 * specify the maximum frame size to prevent RX tag errors on
1f26dac3
DM
3096 * oversized frames.
3097 */
3098 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
6aa20a22
JG
3099 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3100 (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
1f26dac3
DM
3101 cp->regs + REG_MAC_FRAMESIZE_MAX);
3102
6aa20a22 3103 /* NOTE: crc_size is used as a surrogate for half-duplex.
1f26dac3
DM
3104 * workaround saturn half-duplex issue by increasing preamble
3105 * size to 65 bytes.
3106 */
3107 if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3108 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3109 else
3110 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3111 writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3112 writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3113 writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3114
3115 writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3116
3117 writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3118 writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3119 writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3120 writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3121 writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3122
3123 /* setup mac address in perfect filter array */
3124 for (i = 0; i < 45; i++)
3125 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3126
3127 writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3128 writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3129 writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3130
3131 writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3132 writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3133 writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3134
3135#ifndef CONFIG_CASSINI_MULTICAST_REG_WRITE
3136 cp->mac_rx_cfg = cas_setup_multicast(cp);
3137#else
3138 /* WTZ: Do what Adrian did in cas_set_multicast. Doing
3139 * a writel does not seem to be necessary because Cassini
3140 * seems to preserve the configuration when we do the reset.
3141 * If the chip is in trouble, though, it is not clear if we
3142 * can really count on this behavior. cas_set_multicast uses
3143 * spin_lock_irqsave, but we are called only in cas_init_hw and
3144 * cas_init_hw is protected by cas_lock_all, which calls
3145 * spin_lock_irq (so it doesn't need to save the flags, and
6aa20a22 3146 * we should be OK for the writel, as that is the only
1f26dac3
DM
3147 * difference).
3148 */
3149 cp->mac_rx_cfg = rxcfg = cas_setup_multicast(cp);
3150 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
3151#endif
3152 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3153 cas_clear_mac_err(cp);
3154 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3155
3156 /* Setup MAC interrupts. We want to get all of the interesting
3157 * counter expiration events, but we do not want to hear about
3158 * normal rx/tx as the DMA engine tells us that.
3159 */
3160 writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3161 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3162
3163 /* Don't enable even the PAUSE interrupts for now, we
3164 * make no use of those events other than to record them.
3165 */
3166 writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3167}
3168
3169/* Must be invoked under cp->lock. */
3170static void cas_init_pause_thresholds(struct cas *cp)
3171{
3172 /* Calculate pause thresholds. Setting the OFF threshold to the
3173 * full RX fifo size effectively disables PAUSE generation
3174 */
3175 if (cp->rx_fifo_size <= (2 * 1024)) {
3176 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3177 } else {
3178 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3179 if (max_frame * 3 > cp->rx_fifo_size) {
3180 cp->rx_pause_off = 7104;
3181 cp->rx_pause_on = 960;
3182 } else {
3183 int off = (cp->rx_fifo_size - (max_frame * 2));
3184 int on = off - max_frame;
3185 cp->rx_pause_off = off;
3186 cp->rx_pause_on = on;
3187 }
3188 }
3189}
3190
3191static int cas_vpd_match(const void __iomem *p, const char *str)
3192{
3193 int len = strlen(str) + 1;
3194 int i;
6aa20a22 3195
1f26dac3
DM
3196 for (i = 0; i < len; i++) {
3197 if (readb(p + i) != str[i])
3198 return 0;
3199 }
3200 return 1;
3201}
3202
3203
3204/* get the mac address by reading the vpd information in the rom.
3205 * also get the phy type and determine if there's an entropy generator.
3206 * NOTE: this is a bit convoluted for the following reasons:
3207 * 1) vpd info has order-dependent mac addresses for multinic cards
3208 * 2) the only way to determine the nic order is to use the slot
3209 * number.
3210 * 3) fiber cards don't have bridges, so their slot numbers don't
3211 * mean anything.
6aa20a22 3212 * 4) we don't actually know we have a fiber card until after
1f26dac3
DM
3213 * the mac addresses are parsed.
3214 */
3215static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3216 const int offset)
3217{
3218 void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3219 void __iomem *base, *kstart;
3220 int i, len;
3221 int found = 0;
3222#define VPD_FOUND_MAC 0x01
3223#define VPD_FOUND_PHY 0x02
3224
3225 int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3226 int mac_off = 0;
3227
3228 /* give us access to the PROM */
3229 writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3230 cp->regs + REG_BIM_LOCAL_DEV_EN);
3231
3232 /* check for an expansion rom */
3233 if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3234 goto use_random_mac_addr;
3235
3236 /* search for beginning of vpd */
46d7031e 3237 base = NULL;
1f26dac3
DM
3238 for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3239 /* check for PCIR */
3240 if ((readb(p + i + 0) == 0x50) &&
3241 (readb(p + i + 1) == 0x43) &&
3242 (readb(p + i + 2) == 0x49) &&
3243 (readb(p + i + 3) == 0x52)) {
6aa20a22 3244 base = p + (readb(p + i + 8) |
1f26dac3
DM
3245 (readb(p + i + 9) << 8));
3246 break;
6aa20a22 3247 }
1f26dac3
DM
3248 }
3249
3250 if (!base || (readb(base) != 0x82))
3251 goto use_random_mac_addr;
6aa20a22 3252
1f26dac3
DM
3253 i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3254 while (i < EXPANSION_ROM_SIZE) {
3255 if (readb(base + i) != 0x90) /* no vpd found */
3256 goto use_random_mac_addr;
3257
3258 /* found a vpd field */
3259 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3260
3261 /* extract keywords */
3262 kstart = base + i + 3;
3263 p = kstart;
3264 while ((p - kstart) < len) {
3265 int klen = readb(p + 2);
3266 int j;
3267 char type;
3268
3269 p += 3;
6aa20a22 3270
1f26dac3
DM
3271 /* look for the following things:
3272 * -- correct length == 29
6aa20a22
JG
3273 * 3 (type) + 2 (size) +
3274 * 18 (strlen("local-mac-address") + 1) +
3275 * 6 (mac addr)
1f26dac3
DM
3276 * -- VPD Instance 'I'
3277 * -- VPD Type Bytes 'B'
3278 * -- VPD data length == 6
3279 * -- property string == local-mac-address
6aa20a22 3280 *
1f26dac3 3281 * -- correct length == 24
6aa20a22
JG
3282 * 3 (type) + 2 (size) +
3283 * 12 (strlen("entropy-dev") + 1) +
1f26dac3
DM
3284 * 7 (strlen("vms110") + 1)
3285 * -- VPD Instance 'I'
3286 * -- VPD Type String 'B'
3287 * -- VPD data length == 7
3288 * -- property string == entropy-dev
3289 *
3290 * -- correct length == 18
6aa20a22
JG
3291 * 3 (type) + 2 (size) +
3292 * 9 (strlen("phy-type") + 1) +
1f26dac3
DM
3293 * 4 (strlen("pcs") + 1)
3294 * -- VPD Instance 'I'
3295 * -- VPD Type String 'S'
3296 * -- VPD data length == 4
3297 * -- property string == phy-type
6aa20a22 3298 *
1f26dac3 3299 * -- correct length == 23
6aa20a22
JG
3300 * 3 (type) + 2 (size) +
3301 * 14 (strlen("phy-interface") + 1) +
1f26dac3
DM
3302 * 4 (strlen("pcs") + 1)
3303 * -- VPD Instance 'I'
3304 * -- VPD Type String 'S'
3305 * -- VPD data length == 4
3306 * -- property string == phy-interface
3307 */
3308 if (readb(p) != 'I')
3309 goto next;
3310
3311 /* finally, check string and length */
3312 type = readb(p + 3);
3313 if (type == 'B') {
3314 if ((klen == 29) && readb(p + 4) == 6 &&
6aa20a22 3315 cas_vpd_match(p + 5,
1f26dac3 3316 "local-mac-address")) {
6aa20a22 3317 if (mac_off++ > offset)
1f26dac3
DM
3318 goto next;
3319
3320 /* set mac address */
6aa20a22
JG
3321 for (j = 0; j < 6; j++)
3322 dev_addr[j] =
1f26dac3
DM
3323 readb(p + 23 + j);
3324 goto found_mac;
3325 }
3326 }
3327
3328 if (type != 'S')
3329 goto next;
3330
3331#ifdef USE_ENTROPY_DEV
6aa20a22 3332 if ((klen == 24) &&
1f26dac3
DM
3333 cas_vpd_match(p + 5, "entropy-dev") &&
3334 cas_vpd_match(p + 17, "vms110")) {
3335 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3336 goto next;
3337 }
3338#endif
3339
3340 if (found & VPD_FOUND_PHY)
3341 goto next;
3342
3343 if ((klen == 18) && readb(p + 4) == 4 &&
3344 cas_vpd_match(p + 5, "phy-type")) {
3345 if (cas_vpd_match(p + 14, "pcs")) {
3346 phy_type = CAS_PHY_SERDES;
3347 goto found_phy;
3348 }
3349 }
6aa20a22 3350
1f26dac3
DM
3351 if ((klen == 23) && readb(p + 4) == 4 &&
3352 cas_vpd_match(p + 5, "phy-interface")) {
3353 if (cas_vpd_match(p + 19, "pcs")) {
3354 phy_type = CAS_PHY_SERDES;
3355 goto found_phy;
3356 }
3357 }
3358found_mac:
3359 found |= VPD_FOUND_MAC;
3360 goto next;
3361
3362found_phy:
3363 found |= VPD_FOUND_PHY;
3364
3365next:
3366 p += klen;
3367 }
3368 i += len + 3;
3369 }
3370
3371use_random_mac_addr:
3372 if (found & VPD_FOUND_MAC)
3373 goto done;
3374
3375 /* Sun MAC prefix then 3 random bytes. */
3376 printk(PFX "MAC address not found in ROM VPD\n");
3377 dev_addr[0] = 0x08;
3378 dev_addr[1] = 0x00;
3379 dev_addr[2] = 0x20;
3380 get_random_bytes(dev_addr + 3, 3);
3381
3382done:
3383 writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3384 return phy_type;
3385}
3386
3387/* check pci invariants */
3388static void cas_check_pci_invariants(struct cas *cp)
3389{
3390 struct pci_dev *pdev = cp->pdev;
1f26dac3
DM
3391
3392 cp->cas_flags = 0;
1f26dac3
DM
3393 if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3394 (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
44c10138 3395 if (pdev->revision >= CAS_ID_REVPLUS)
1f26dac3 3396 cp->cas_flags |= CAS_FLAG_REG_PLUS;
44c10138 3397 if (pdev->revision < CAS_ID_REVPLUS02u)
1f26dac3
DM
3398 cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3399
3400 /* Original Cassini supports HW CSUM, but it's not
3401 * enabled by default as it can trigger TX hangs.
3402 */
44c10138 3403 if (pdev->revision < CAS_ID_REV2)
1f26dac3
DM
3404 cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3405 } else {
3406 /* Only sun has original cassini chips. */
3407 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3408
3409 /* We use a flag because the same phy might be externally
3410 * connected.
3411 */
3412 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3413 (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3414 cp->cas_flags |= CAS_FLAG_SATURN;
3415 }
3416}
3417
3418
3419static int cas_check_invariants(struct cas *cp)
3420{
3421 struct pci_dev *pdev = cp->pdev;
3422 u32 cfg;
3423 int i;
3424
3425 /* get page size for rx buffers. */
6aa20a22 3426 cp->page_order = 0;
1f26dac3
DM
3427#ifdef USE_PAGE_ORDER
3428 if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3429 /* see if we can allocate larger pages */
6aa20a22
JG
3430 struct page *page = alloc_pages(GFP_ATOMIC,
3431 CAS_JUMBO_PAGE_SHIFT -
1f26dac3
DM
3432 PAGE_SHIFT);
3433 if (page) {
3434 __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3435 cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3436 } else {
3437 printk(PFX "MTU limited to %d bytes\n", CAS_MAX_MTU);
3438 }
3439 }
3440#endif
3441 cp->page_size = (PAGE_SIZE << cp->page_order);
3442
3443 /* Fetch the FIFO configurations. */
3444 cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3445 cp->rx_fifo_size = RX_FIFO_SIZE;
3446
6aa20a22 3447 /* finish phy determination. MDIO1 takes precedence over MDIO0 if
1f26dac3
DM
3448 * they're both connected.
3449 */
6aa20a22 3450 cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
1f26dac3
DM
3451 PCI_SLOT(pdev->devfn));
3452 if (cp->phy_type & CAS_PHY_SERDES) {
3453 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3454 return 0; /* no more checking needed */
6aa20a22 3455 }
1f26dac3
DM
3456
3457 /* MII */
3458 cfg = readl(cp->regs + REG_MIF_CFG);
3459 if (cfg & MIF_CFG_MDIO_1) {
3460 cp->phy_type = CAS_PHY_MII_MDIO1;
3461 } else if (cfg & MIF_CFG_MDIO_0) {
3462 cp->phy_type = CAS_PHY_MII_MDIO0;
3463 }
3464
3465 cas_mif_poll(cp, 0);
3466 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3467
3468 for (i = 0; i < 32; i++) {
3469 u32 phy_id;
3470 int j;
3471
3472 for (j = 0; j < 3; j++) {
3473 cp->phy_addr = i;
3474 phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3475 phy_id |= cas_phy_read(cp, MII_PHYSID2);
3476 if (phy_id && (phy_id != 0xFFFFFFFF)) {
3477 cp->phy_id = phy_id;
3478 goto done;
3479 }
3480 }
3481 }
3482 printk(KERN_ERR PFX "MII phy did not respond [%08x]\n",
3483 readl(cp->regs + REG_MIF_STATE_MACHINE));
3484 return -1;
3485
3486done:
3487 /* see if we can do gigabit */
3488 cfg = cas_phy_read(cp, MII_BMSR);
6aa20a22 3489 if ((cfg & CAS_BMSR_1000_EXTEND) &&
1f26dac3
DM
3490 cas_phy_read(cp, CAS_MII_1000_EXTEND))
3491 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3492 return 0;
3493}
3494
3495/* Must be invoked under cp->lock. */
3496static inline void cas_start_dma(struct cas *cp)
3497{
3498 int i;
3499 u32 val;
3500 int txfailed = 0;
6aa20a22 3501
1f26dac3
DM
3502 /* enable dma */
3503 val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3504 writel(val, cp->regs + REG_TX_CFG);
3505 val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3506 writel(val, cp->regs + REG_RX_CFG);
3507
3508 /* enable the mac */
3509 val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3510 writel(val, cp->regs + REG_MAC_TX_CFG);
3511 val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3512 writel(val, cp->regs + REG_MAC_RX_CFG);
3513
3514 i = STOP_TRIES;
3515 while (i-- > 0) {
3516 val = readl(cp->regs + REG_MAC_TX_CFG);
3517 if ((val & MAC_TX_CFG_EN))
3518 break;
3519 udelay(10);
3520 }
3521 if (i < 0) txfailed = 1;
3522 i = STOP_TRIES;
3523 while (i-- > 0) {
3524 val = readl(cp->regs + REG_MAC_RX_CFG);
3525 if ((val & MAC_RX_CFG_EN)) {
3526 if (txfailed) {
6aa20a22
JG
3527 printk(KERN_ERR
3528 "%s: enabling mac failed [tx:%08x:%08x].\n",
1f26dac3
DM
3529 cp->dev->name,
3530 readl(cp->regs + REG_MIF_STATE_MACHINE),
3531 readl(cp->regs + REG_MAC_STATE_MACHINE));
3532 }
3533 goto enable_rx_done;
3534 }
3535 udelay(10);
3536 }
6aa20a22 3537 printk(KERN_ERR "%s: enabling mac failed [%s:%08x:%08x].\n",
1f26dac3
DM
3538 cp->dev->name,
3539 (txfailed? "tx,rx":"rx"),
3540 readl(cp->regs + REG_MIF_STATE_MACHINE),
3541 readl(cp->regs + REG_MAC_STATE_MACHINE));
3542
3543enable_rx_done:
3544 cas_unmask_intr(cp); /* enable interrupts */
3545 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3546 writel(0, cp->regs + REG_RX_COMP_TAIL);
3547
3548 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
6aa20a22
JG
3549 if (N_RX_DESC_RINGS > 1)
3550 writel(RX_DESC_RINGN_SIZE(1) - 4,
1f26dac3
DM
3551 cp->regs + REG_PLUS_RX_KICK1);
3552
6aa20a22 3553 for (i = 1; i < N_RX_COMP_RINGS; i++)
1f26dac3
DM
3554 writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3555 }
3556}
3557
3558/* Must be invoked under cp->lock. */
3559static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3560 int *pause)
3561{
3562 u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3563 *fd = (val & PCS_MII_LPA_FD) ? 1 : 0;
3564 *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3565 if (val & PCS_MII_LPA_ASYM_PAUSE)
3566 *pause |= 0x10;
3567 *spd = 1000;
3568}
3569
3570/* Must be invoked under cp->lock. */
3571static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3572 int *pause)
3573{
3574 u32 val;
3575
3576 *fd = 0;
3577 *spd = 10;
3578 *pause = 0;
6aa20a22 3579
1f26dac3
DM
3580 /* use GMII registers */
3581 val = cas_phy_read(cp, MII_LPA);
3582 if (val & CAS_LPA_PAUSE)
3583 *pause = 0x01;
3584
3585 if (val & CAS_LPA_ASYM_PAUSE)
3586 *pause |= 0x10;
3587
3588 if (val & LPA_DUPLEX)
3589 *fd = 1;
3590 if (val & LPA_100)
3591 *spd = 100;
3592
3593 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3594 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3595 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3596 *spd = 1000;
3597 if (val & CAS_LPA_1000FULL)
3598 *fd = 1;
3599 }
3600}
3601
3602/* A link-up condition has occurred, initialize and enable the
3603 * rest of the chip.
3604 *
3605 * Must be invoked under cp->lock.
3606 */
3607static void cas_set_link_modes(struct cas *cp)
3608{
3609 u32 val;
3610 int full_duplex, speed, pause;
3611
3612 full_duplex = 0;
3613 speed = 10;
3614 pause = 0;
3615
3616 if (CAS_PHY_MII(cp->phy_type)) {
3617 cas_mif_poll(cp, 0);
3618 val = cas_phy_read(cp, MII_BMCR);
3619 if (val & BMCR_ANENABLE) {
6aa20a22 3620 cas_read_mii_link_mode(cp, &full_duplex, &speed,
1f26dac3
DM
3621 &pause);
3622 } else {
3623 if (val & BMCR_FULLDPLX)
3624 full_duplex = 1;
3625
3626 if (val & BMCR_SPEED100)
3627 speed = 100;
3628 else if (val & CAS_BMCR_SPEED1000)
3629 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3630 1000 : 100;
3631 }
3632 cas_mif_poll(cp, 1);
3633
3634 } else {
3635 val = readl(cp->regs + REG_PCS_MII_CTRL);
3636 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3637 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3638 if (val & PCS_MII_CTRL_DUPLEX)
3639 full_duplex = 1;
3640 }
3641 }
3642
3643 if (netif_msg_link(cp))
3644 printk(KERN_INFO "%s: Link up at %d Mbps, %s-duplex.\n",
3645 cp->dev->name, speed, (full_duplex ? "full" : "half"));
3646
3647 val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3648 if (CAS_PHY_MII(cp->phy_type)) {
3649 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3650 if (!full_duplex)
3651 val |= MAC_XIF_DISABLE_ECHO;
3652 }
6aa20a22 3653 if (full_duplex)
1f26dac3
DM
3654 val |= MAC_XIF_FDPLX_LED;
3655 if (speed == 1000)
3656 val |= MAC_XIF_GMII_MODE;
3657 writel(val, cp->regs + REG_MAC_XIF_CFG);
3658
3659 /* deal with carrier and collision detect. */
3660 val = MAC_TX_CFG_IPG_EN;
3661 if (full_duplex) {
3662 val |= MAC_TX_CFG_IGNORE_CARRIER;
3663 val |= MAC_TX_CFG_IGNORE_COLL;
3664 } else {
3665#ifndef USE_CSMA_CD_PROTO
3666 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3667 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3668#endif
3669 }
3670 /* val now set up for REG_MAC_TX_CFG */
3671
3672 /* If gigabit and half-duplex, enable carrier extension
6aa20a22 3673 * mode. increase slot time to 512 bytes as well.
1f26dac3
DM
3674 * else, disable it and make sure slot time is 64 bytes.
3675 * also activate checksum bug workaround
3676 */
3677 if ((speed == 1000) && !full_duplex) {
6aa20a22 3678 writel(val | MAC_TX_CFG_CARRIER_EXTEND,
1f26dac3
DM
3679 cp->regs + REG_MAC_TX_CFG);
3680
3681 val = readl(cp->regs + REG_MAC_RX_CFG);
3682 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
6aa20a22 3683 writel(val | MAC_RX_CFG_CARRIER_EXTEND,
1f26dac3
DM
3684 cp->regs + REG_MAC_RX_CFG);
3685
3686 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3687
3688 cp->crc_size = 4;
3689 /* minimum size gigabit frame at half duplex */
3690 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3691
3692 } else {
3693 writel(val, cp->regs + REG_MAC_TX_CFG);
3694
6aa20a22 3695 /* checksum bug workaround. don't strip FCS when in
1f26dac3
DM
3696 * half-duplex mode
3697 */
3698 val = readl(cp->regs + REG_MAC_RX_CFG);
3699 if (full_duplex) {
3700 val |= MAC_RX_CFG_STRIP_FCS;
3701 cp->crc_size = 0;
3702 cp->min_frame_size = CAS_MIN_MTU;
3703 } else {
3704 val &= ~MAC_RX_CFG_STRIP_FCS;
3705 cp->crc_size = 4;
3706 cp->min_frame_size = CAS_MIN_FRAME;
3707 }
6aa20a22 3708 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
1f26dac3
DM
3709 cp->regs + REG_MAC_RX_CFG);
3710 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3711 }
3712
3713 if (netif_msg_link(cp)) {
3714 if (pause & 0x01) {
3715 printk(KERN_INFO "%s: Pause is enabled "
3716 "(rxfifo: %d off: %d on: %d)\n",
3717 cp->dev->name,
3718 cp->rx_fifo_size,
3719 cp->rx_pause_off,
3720 cp->rx_pause_on);
3721 } else if (pause & 0x10) {
3722 printk(KERN_INFO "%s: TX pause enabled\n",
3723 cp->dev->name);
3724 } else {
3725 printk(KERN_INFO "%s: Pause is disabled\n",
3726 cp->dev->name);
3727 }
3728 }
3729
3730 val = readl(cp->regs + REG_MAC_CTRL_CFG);
3731 val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3732 if (pause) { /* symmetric or asymmetric pause */
3733 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3734 if (pause & 0x01) { /* symmetric pause */
3735 val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
6aa20a22 3736 }
1f26dac3
DM
3737 }
3738 writel(val, cp->regs + REG_MAC_CTRL_CFG);
3739 cas_start_dma(cp);
3740}
3741
3742/* Must be invoked under cp->lock. */
3743static void cas_init_hw(struct cas *cp, int restart_link)
3744{
3745 if (restart_link)
3746 cas_phy_init(cp);
3747
3748 cas_init_pause_thresholds(cp);
3749 cas_init_mac(cp);
3750 cas_init_dma(cp);
3751
3752 if (restart_link) {
3753 /* Default aneg parameters */
3754 cp->timer_ticks = 0;
3755 cas_begin_auto_negotiation(cp, NULL);
3756 } else if (cp->lstate == link_up) {
3757 cas_set_link_modes(cp);
3758 netif_carrier_on(cp->dev);
3759 }
3760}
3761
3762/* Must be invoked under cp->lock. on earlier cassini boards,
3763 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3764 * let it settle out, and then restore pci state.
3765 */
3766static void cas_hard_reset(struct cas *cp)
3767{
6aa20a22 3768 writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
1f26dac3
DM
3769 udelay(20);
3770 pci_restore_state(cp->pdev);
3771}
3772
3773
3774static void cas_global_reset(struct cas *cp, int blkflag)
3775{
3776 int limit;
3777
3778 /* issue a global reset. don't use RSTOUT. */
3779 if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3780 /* For PCS, when the blkflag is set, we should set the
3781 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3782 * the last autonegotiation from being cleared. We'll
3783 * need some special handling if the chip is set into a
3784 * loopback mode.
3785 */
6aa20a22 3786 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
1f26dac3
DM
3787 cp->regs + REG_SW_RESET);
3788 } else {
3789 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3790 }
3791
3792 /* need to wait at least 3ms before polling register */
3793 mdelay(3);
3794
3795 limit = STOP_TRIES;
3796 while (limit-- > 0) {
3797 u32 val = readl(cp->regs + REG_SW_RESET);
3798 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3799 goto done;
3800 udelay(10);
3801 }
3802 printk(KERN_ERR "%s: sw reset failed.\n", cp->dev->name);
3803
3804done:
3805 /* enable various BIM interrupts */
6aa20a22 3806 writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
1f26dac3
DM
3807 BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3808
3809 /* clear out pci error status mask for handled errors.
3810 * we don't deal with DMA counter overflows as they happen
3811 * all the time.
3812 */
6aa20a22
JG
3813 writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3814 PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3815 PCI_ERR_BIM_DMA_READ), cp->regs +
1f26dac3
DM
3816 REG_PCI_ERR_STATUS_MASK);
3817
3818 /* set up for MII by default to address mac rx reset timeout
3819 * issue
3820 */
3821 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3822}
3823
3824static void cas_reset(struct cas *cp, int blkflag)
3825{
3826 u32 val;
3827
3828 cas_mask_intr(cp);
3829 cas_global_reset(cp, blkflag);
3830 cas_mac_reset(cp);
3831 cas_entropy_reset(cp);
3832
3833 /* disable dma engines. */
3834 val = readl(cp->regs + REG_TX_CFG);
3835 val &= ~TX_CFG_DMA_EN;
3836 writel(val, cp->regs + REG_TX_CFG);
3837
3838 val = readl(cp->regs + REG_RX_CFG);
3839 val &= ~RX_CFG_DMA_EN;
3840 writel(val, cp->regs + REG_RX_CFG);
3841
3842 /* program header parser */
3843 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3844 (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3845 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3846 } else {
3847 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3848 }
3849
3850 /* clear out error registers */
3851 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3852 cas_clear_mac_err(cp);
3853 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3854}
3855
758df69e 3856/* Shut down the chip, must be called with pm_mutex held. */
1f26dac3
DM
3857static void cas_shutdown(struct cas *cp)
3858{
3859 unsigned long flags;
3860
3861 /* Make us not-running to avoid timers respawning */
3862 cp->hw_running = 0;
3863
3864 del_timer_sync(&cp->link_timer);
3865
3866 /* Stop the reset task */
3867#if 0
3868 while (atomic_read(&cp->reset_task_pending_mtu) ||
3869 atomic_read(&cp->reset_task_pending_spare) ||
3870 atomic_read(&cp->reset_task_pending_all))
3871 schedule();
3872
3873#else
3874 while (atomic_read(&cp->reset_task_pending))
3875 schedule();
6aa20a22 3876#endif
1f26dac3
DM
3877 /* Actually stop the chip */
3878 cas_lock_all_save(cp, flags);
3879 cas_reset(cp, 0);
3880 if (cp->cas_flags & CAS_FLAG_SATURN)
3881 cas_phy_powerdown(cp);
3882 cas_unlock_all_restore(cp, flags);
3883}
3884
3885static int cas_change_mtu(struct net_device *dev, int new_mtu)
3886{
3887 struct cas *cp = netdev_priv(dev);
3888
3889 if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
3890 return -EINVAL;
3891
3892 dev->mtu = new_mtu;
3893 if (!netif_running(dev) || !netif_device_present(dev))
3894 return 0;
3895
3896 /* let the reset task handle it */
3897#if 1
3898 atomic_inc(&cp->reset_task_pending);
3899 if ((cp->phy_type & CAS_PHY_SERDES)) {
3900 atomic_inc(&cp->reset_task_pending_all);
3901 } else {
3902 atomic_inc(&cp->reset_task_pending_mtu);
3903 }
3904 schedule_work(&cp->reset_task);
3905#else
6aa20a22 3906 atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
1f26dac3
DM
3907 CAS_RESET_ALL : CAS_RESET_MTU);
3908 printk(KERN_ERR "reset called in cas_change_mtu\n");
3909 schedule_work(&cp->reset_task);
3910#endif
3911
3912 flush_scheduled_work();
3913 return 0;
3914}
3915
3916static void cas_clean_txd(struct cas *cp, int ring)
3917{
3918 struct cas_tx_desc *txd = cp->init_txds[ring];
3919 struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3920 u64 daddr, dlen;
3921 int i, size;
3922
3923 size = TX_DESC_RINGN_SIZE(ring);
3924 for (i = 0; i < size; i++) {
3925 int frag;
3926
3927 if (skbs[i] == NULL)
3928 continue;
3929
3930 skb = skbs[i];
3931 skbs[i] = NULL;
3932
3933 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
3934 int ent = i & (size - 1);
3935
3936 /* first buffer is never a tiny buffer and so
3937 * needs to be unmapped.
3938 */
3939 daddr = le64_to_cpu(txd[ent].buffer);
6aa20a22 3940 dlen = CAS_VAL(TX_DESC_BUFLEN,
1f26dac3
DM
3941 le64_to_cpu(txd[ent].control));
3942 pci_unmap_page(cp->pdev, daddr, dlen,
3943 PCI_DMA_TODEVICE);
3944
3945 if (frag != skb_shinfo(skb)->nr_frags) {
3946 i++;
3947
3948 /* next buffer might by a tiny buffer.
3949 * skip past it.
3950 */
3951 ent = i & (size - 1);
3952 if (cp->tx_tiny_use[ring][ent].used)
3953 i++;
3954 }
3955 }
3956 dev_kfree_skb_any(skb);
3957 }
3958
3959 /* zero out tiny buf usage */
3960 memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3961}
3962
3963/* freed on close */
3964static inline void cas_free_rx_desc(struct cas *cp, int ring)
3965{
3966 cas_page_t **page = cp->rx_pages[ring];
3967 int i, size;
3968
3969 size = RX_DESC_RINGN_SIZE(ring);
3970 for (i = 0; i < size; i++) {
3971 if (page[i]) {
3972 cas_page_free(cp, page[i]);
3973 page[i] = NULL;
3974 }
3975 }
3976}
3977
3978static void cas_free_rxds(struct cas *cp)
3979{
3980 int i;
3981
3982 for (i = 0; i < N_RX_DESC_RINGS; i++)
3983 cas_free_rx_desc(cp, i);
3984}
3985
3986/* Must be invoked under cp->lock. */
3987static void cas_clean_rings(struct cas *cp)
3988{
3989 int i;
3990
3991 /* need to clean all tx rings */
3992 memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3993 memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3994 for (i = 0; i < N_TX_RINGS; i++)
3995 cas_clean_txd(cp, i);
3996
3997 /* zero out init block */
3998 memset(cp->init_block, 0, sizeof(struct cas_init_block));
3999 cas_clean_rxds(cp);
4000 cas_clean_rxcs(cp);
4001}
4002
4003/* allocated on open */
4004static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
4005{
4006 cas_page_t **page = cp->rx_pages[ring];
4007 int size, i = 0;
4008
4009 size = RX_DESC_RINGN_SIZE(ring);
4010 for (i = 0; i < size; i++) {
6aa20a22 4011 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
1f26dac3
DM
4012 return -1;
4013 }
4014 return 0;
4015}
4016
4017static int cas_alloc_rxds(struct cas *cp)
4018{
4019 int i;
4020
4021 for (i = 0; i < N_RX_DESC_RINGS; i++) {
4022 if (cas_alloc_rx_desc(cp, i) < 0) {
4023 cas_free_rxds(cp);
4024 return -1;
4025 }
4026 }
4027 return 0;
4028}
4029
c4028958 4030static void cas_reset_task(struct work_struct *work)
1f26dac3 4031{
c4028958 4032 struct cas *cp = container_of(work, struct cas, reset_task);
1f26dac3
DM
4033#if 0
4034 int pending = atomic_read(&cp->reset_task_pending);
4035#else
4036 int pending_all = atomic_read(&cp->reset_task_pending_all);
4037 int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4038 int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4039
4040 if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4041 /* We can have more tasks scheduled than actually
4042 * needed.
4043 */
4044 atomic_dec(&cp->reset_task_pending);
4045 return;
4046 }
4047#endif
4048 /* The link went down, we reset the ring, but keep
4049 * DMA stopped. Use this function for reset
4050 * on error as well.
4051 */
4052 if (cp->hw_running) {
4053 unsigned long flags;
4054
4055 /* Make sure we don't get interrupts or tx packets */
4056 netif_device_detach(cp->dev);
4057 cas_lock_all_save(cp, flags);
4058
4059 if (cp->opened) {
4060 /* We call cas_spare_recover when we call cas_open.
4061 * but we do not initialize the lists cas_spare_recover
4062 * uses until cas_open is called.
4063 */
4064 cas_spare_recover(cp, GFP_ATOMIC);
4065 }
4066#if 1
4067 /* test => only pending_spare set */
4068 if (!pending_all && !pending_mtu)
4069 goto done;
4070#else
4071 if (pending == CAS_RESET_SPARE)
4072 goto done;
4073#endif
4074 /* when pending == CAS_RESET_ALL, the following
4075 * call to cas_init_hw will restart auto negotiation.
4076 * Setting the second argument of cas_reset to
4077 * !(pending == CAS_RESET_ALL) will set this argument
6aa20a22 4078 * to 1 (avoiding reinitializing the PHY for the normal
1f26dac3
DM
4079 * PCS case) when auto negotiation is not restarted.
4080 */
4081#if 1
4082 cas_reset(cp, !(pending_all > 0));
4083 if (cp->opened)
4084 cas_clean_rings(cp);
4085 cas_init_hw(cp, (pending_all > 0));
4086#else
4087 cas_reset(cp, !(pending == CAS_RESET_ALL));
4088 if (cp->opened)
4089 cas_clean_rings(cp);
4090 cas_init_hw(cp, pending == CAS_RESET_ALL);
4091#endif
4092
4093done:
4094 cas_unlock_all_restore(cp, flags);
4095 netif_device_attach(cp->dev);
4096 }
4097#if 1
4098 atomic_sub(pending_all, &cp->reset_task_pending_all);
4099 atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4100 atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4101 atomic_dec(&cp->reset_task_pending);
4102#else
4103 atomic_set(&cp->reset_task_pending, 0);
4104#endif
4105}
4106
4107static void cas_link_timer(unsigned long data)
4108{
4109 struct cas *cp = (struct cas *) data;
4110 int mask, pending = 0, reset = 0;
4111 unsigned long flags;
4112
4113 if (link_transition_timeout != 0 &&
4114 cp->link_transition_jiffies_valid &&
6aa20a22 4115 ((jiffies - cp->link_transition_jiffies) >
1f26dac3 4116 (link_transition_timeout))) {
6aa20a22 4117 /* One-second counter so link-down workaround doesn't
1f26dac3
DM
4118 * cause resets to occur so fast as to fool the switch
4119 * into thinking the link is down.
4120 */
4121 cp->link_transition_jiffies_valid = 0;
4122 }
4123
4124 if (!cp->hw_running)
4125 return;
4126
4127 spin_lock_irqsave(&cp->lock, flags);
4128 cas_lock_tx(cp);
4129 cas_entropy_gather(cp);
4130
4131 /* If the link task is still pending, we just
4132 * reschedule the link timer
4133 */
4134#if 1
4135 if (atomic_read(&cp->reset_task_pending_all) ||
4136 atomic_read(&cp->reset_task_pending_spare) ||
6aa20a22 4137 atomic_read(&cp->reset_task_pending_mtu))
1f26dac3
DM
4138 goto done;
4139#else
6aa20a22 4140 if (atomic_read(&cp->reset_task_pending))
1f26dac3
DM
4141 goto done;
4142#endif
4143
4144 /* check for rx cleaning */
4145 if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4146 int i, rmask;
4147
4148 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4149 rmask = CAS_FLAG_RXD_POST(i);
4150 if ((mask & rmask) == 0)
4151 continue;
4152
4153 /* post_rxds will do a mod_timer */
4154 if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4155 pending = 1;
4156 continue;
4157 }
4158 cp->cas_flags &= ~rmask;
4159 }
4160 }
4161
4162 if (CAS_PHY_MII(cp->phy_type)) {
4163 u16 bmsr;
4164 cas_mif_poll(cp, 0);
4165 bmsr = cas_phy_read(cp, MII_BMSR);
4166 /* WTZ: Solaris driver reads this twice, but that
4167 * may be due to the PCS case and the use of a
4168 * common implementation. Read it twice here to be
4169 * safe.
4170 */
4171 bmsr = cas_phy_read(cp, MII_BMSR);
4172 cas_mif_poll(cp, 1);
4173 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4174 reset = cas_mii_link_check(cp, bmsr);
4175 } else {
4176 reset = cas_pcs_link_check(cp);
4177 }
4178
4179 if (reset)
4180 goto done;
4181
4182 /* check for tx state machine confusion */
4183 if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4184 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4185 u32 wptr, rptr;
4186 int tlm = CAS_VAL(MAC_SM_TLM, val);
4187
4188 if (((tlm == 0x5) || (tlm == 0x3)) &&
4189 (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4190 if (netif_msg_tx_err(cp))
4191 printk(KERN_DEBUG "%s: tx err: "
4192 "MAC_STATE[%08x]\n",
4193 cp->dev->name, val);
4194 reset = 1;
4195 goto done;
4196 }
4197
4198 val = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4199 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4200 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4201 if ((val == 0) && (wptr != rptr)) {
4202 if (netif_msg_tx_err(cp))
4203 printk(KERN_DEBUG "%s: tx err: "
4204 "TX_FIFO[%08x:%08x:%08x]\n",
4205 cp->dev->name, val, wptr, rptr);
4206 reset = 1;
4207 }
4208
4209 if (reset)
4210 cas_hard_reset(cp);
4211 }
4212
4213done:
4214 if (reset) {
4215#if 1
4216 atomic_inc(&cp->reset_task_pending);
4217 atomic_inc(&cp->reset_task_pending_all);
4218 schedule_work(&cp->reset_task);
4219#else
4220 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4221 printk(KERN_ERR "reset called in cas_link_timer\n");
4222 schedule_work(&cp->reset_task);
4223#endif
4224 }
4225
4226 if (!pending)
4227 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4228 cas_unlock_tx(cp);
4229 spin_unlock_irqrestore(&cp->lock, flags);
4230}
4231
6aa20a22 4232/* tiny buffers are used to avoid target abort issues with
1f26dac3
DM
4233 * older cassini's
4234 */
4235static void cas_tx_tiny_free(struct cas *cp)
4236{
4237 struct pci_dev *pdev = cp->pdev;
4238 int i;
4239
4240 for (i = 0; i < N_TX_RINGS; i++) {
4241 if (!cp->tx_tiny_bufs[i])
4242 continue;
4243
6aa20a22 4244 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
1f26dac3
DM
4245 cp->tx_tiny_bufs[i],
4246 cp->tx_tiny_dvma[i]);
4247 cp->tx_tiny_bufs[i] = NULL;
4248 }
4249}
4250
4251static int cas_tx_tiny_alloc(struct cas *cp)
4252{
4253 struct pci_dev *pdev = cp->pdev;
4254 int i;
4255
4256 for (i = 0; i < N_TX_RINGS; i++) {
6aa20a22 4257 cp->tx_tiny_bufs[i] =
1f26dac3
DM
4258 pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4259 &cp->tx_tiny_dvma[i]);
4260 if (!cp->tx_tiny_bufs[i]) {
4261 cas_tx_tiny_free(cp);
4262 return -1;
4263 }
4264 }
4265 return 0;
4266}
4267
4268
4269static int cas_open(struct net_device *dev)
4270{
4271 struct cas *cp = netdev_priv(dev);
4272 int hw_was_up, err;
4273 unsigned long flags;
4274
758df69e 4275 mutex_lock(&cp->pm_mutex);
1f26dac3
DM
4276
4277 hw_was_up = cp->hw_running;
4278
758df69e 4279 /* The power-management mutex protects the hw_running
1f26dac3
DM
4280 * etc. state so it is safe to do this bit without cp->lock
4281 */
4282 if (!cp->hw_running) {
4283 /* Reset the chip */
4284 cas_lock_all_save(cp, flags);
4285 /* We set the second arg to cas_reset to zero
6aa20a22 4286 * because cas_init_hw below will have its second
1f26dac3
DM
4287 * argument set to non-zero, which will force
4288 * autonegotiation to start.
4289 */
4290 cas_reset(cp, 0);
4291 cp->hw_running = 1;
4292 cas_unlock_all_restore(cp, flags);
4293 }
4294
4295 if (cas_tx_tiny_alloc(cp) < 0)
4296 return -ENOMEM;
4297
4298 /* alloc rx descriptors */
4299 err = -ENOMEM;
4300 if (cas_alloc_rxds(cp) < 0)
4301 goto err_tx_tiny;
6aa20a22 4302
1f26dac3
DM
4303 /* allocate spares */
4304 cas_spare_init(cp);
4305 cas_spare_recover(cp, GFP_KERNEL);
4306
4307 /* We can now request the interrupt as we know it's masked
4308 * on the controller. cassini+ has up to 4 interrupts
6aa20a22 4309 * that can be used, but you need to do explicit pci interrupt
1f26dac3
DM
4310 * mapping to expose them
4311 */
4312 if (request_irq(cp->pdev->irq, cas_interrupt,
1fb9df5d 4313 IRQF_SHARED, dev->name, (void *) dev)) {
6aa20a22 4314 printk(KERN_ERR "%s: failed to request irq !\n",
1f26dac3
DM
4315 cp->dev->name);
4316 err = -EAGAIN;
4317 goto err_spare;
4318 }
4319
bea3348e
SH
4320#ifdef USE_NAPI
4321 napi_enable(&cp->napi);
4322#endif
1f26dac3
DM
4323 /* init hw */
4324 cas_lock_all_save(cp, flags);
4325 cas_clean_rings(cp);
4326 cas_init_hw(cp, !hw_was_up);
4327 cp->opened = 1;
4328 cas_unlock_all_restore(cp, flags);
4329
4330 netif_start_queue(dev);
758df69e 4331 mutex_unlock(&cp->pm_mutex);
1f26dac3
DM
4332 return 0;
4333
4334err_spare:
4335 cas_spare_free(cp);
4336 cas_free_rxds(cp);
4337err_tx_tiny:
4338 cas_tx_tiny_free(cp);
758df69e 4339 mutex_unlock(&cp->pm_mutex);
1f26dac3
DM
4340 return err;
4341}
4342
4343static int cas_close(struct net_device *dev)
4344{
4345 unsigned long flags;
4346 struct cas *cp = netdev_priv(dev);
4347
bea3348e 4348#ifdef USE_NAPI
86216268 4349 napi_disable(&cp->napi);
bea3348e 4350#endif
1f26dac3 4351 /* Make sure we don't get distracted by suspend/resume */
758df69e 4352 mutex_lock(&cp->pm_mutex);
1f26dac3
DM
4353
4354 netif_stop_queue(dev);
4355
4356 /* Stop traffic, mark us closed */
4357 cas_lock_all_save(cp, flags);
6aa20a22 4358 cp->opened = 0;
1f26dac3 4359 cas_reset(cp, 0);
6aa20a22 4360 cas_phy_init(cp);
1f26dac3
DM
4361 cas_begin_auto_negotiation(cp, NULL);
4362 cas_clean_rings(cp);
4363 cas_unlock_all_restore(cp, flags);
4364
4365 free_irq(cp->pdev->irq, (void *) dev);
4366 cas_spare_free(cp);
4367 cas_free_rxds(cp);
4368 cas_tx_tiny_free(cp);
758df69e 4369 mutex_unlock(&cp->pm_mutex);
1f26dac3
DM
4370 return 0;
4371}
4372
4373static struct {
4374 const char name[ETH_GSTRING_LEN];
4375} ethtool_cassini_statnames[] = {
4376 {"collisions"},
4377 {"rx_bytes"},
4378 {"rx_crc_errors"},
4379 {"rx_dropped"},
4380 {"rx_errors"},
4381 {"rx_fifo_errors"},
4382 {"rx_frame_errors"},
4383 {"rx_length_errors"},
4384 {"rx_over_errors"},
4385 {"rx_packets"},
4386 {"tx_aborted_errors"},
4387 {"tx_bytes"},
4388 {"tx_dropped"},
4389 {"tx_errors"},
4390 {"tx_fifo_errors"},
4391 {"tx_packets"}
4392};
4c3616cd 4393#define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
1f26dac3
DM
4394
4395static struct {
4396 const int offsets; /* neg. values for 2nd arg to cas_read_phy */
4397} ethtool_register_table[] = {
4398 {-MII_BMSR},
4399 {-MII_BMCR},
4400 {REG_CAWR},
4401 {REG_INF_BURST},
4402 {REG_BIM_CFG},
4403 {REG_RX_CFG},
4404 {REG_HP_CFG},
4405 {REG_MAC_TX_CFG},
4406 {REG_MAC_RX_CFG},
4407 {REG_MAC_CTRL_CFG},
4408 {REG_MAC_XIF_CFG},
4409 {REG_MIF_CFG},
4410 {REG_PCS_CFG},
4411 {REG_SATURN_PCFG},
4412 {REG_PCS_MII_STATUS},
4413 {REG_PCS_STATE_MACHINE},
4414 {REG_MAC_COLL_EXCESS},
4415 {REG_MAC_COLL_LATE}
4416};
e9edda69 4417#define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table)
1f26dac3
DM
4418#define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4419
a232f767 4420static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
1f26dac3 4421{
1f26dac3
DM
4422 u8 *p;
4423 int i;
4424 unsigned long flags;
4425
1f26dac3 4426 spin_lock_irqsave(&cp->lock, flags);
a232f767 4427 for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
1f26dac3
DM
4428 u16 hval;
4429 u32 val;
4430 if (ethtool_register_table[i].offsets < 0) {
4431 hval = cas_phy_read(cp,
4432 -ethtool_register_table[i].offsets);
4433 val = hval;
4434 } else {
4435 val= readl(cp->regs+ethtool_register_table[i].offsets);
4436 }
4437 memcpy(p, (u8 *)&val, sizeof(u32));
4438 }
4439 spin_unlock_irqrestore(&cp->lock, flags);
1f26dac3
DM
4440}
4441
4442static struct net_device_stats *cas_get_stats(struct net_device *dev)
4443{
4444 struct cas *cp = netdev_priv(dev);
4445 struct net_device_stats *stats = cp->net_stats;
4446 unsigned long flags;
4447 int i;
4448 unsigned long tmp;
4449
4450 /* we collate all of the stats into net_stats[N_TX_RING] */
4451 if (!cp->hw_running)
4452 return stats + N_TX_RINGS;
6aa20a22 4453
1f26dac3
DM
4454 /* collect outstanding stats */
4455 /* WTZ: the Cassini spec gives these as 16 bit counters but
4456 * stored in 32-bit words. Added a mask of 0xffff to be safe,
4457 * in case the chip somehow puts any garbage in the other bits.
4458 * Also, counter usage didn't seem to mach what Adrian did
4459 * in the parts of the code that set these quantities. Made
4460 * that consistent.
4461 */
4462 spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
6aa20a22 4463 stats[N_TX_RINGS].rx_crc_errors +=
1f26dac3 4464 readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
6aa20a22 4465 stats[N_TX_RINGS].rx_frame_errors +=
1f26dac3 4466 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
6aa20a22 4467 stats[N_TX_RINGS].rx_length_errors +=
1f26dac3
DM
4468 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4469#if 1
4470 tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4471 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4472 stats[N_TX_RINGS].tx_aborted_errors += tmp;
4473 stats[N_TX_RINGS].collisions +=
4474 tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4475#else
6aa20a22 4476 stats[N_TX_RINGS].tx_aborted_errors +=
1f26dac3
DM
4477 readl(cp->regs + REG_MAC_COLL_EXCESS);
4478 stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4479 readl(cp->regs + REG_MAC_COLL_LATE);
4480#endif
4481 cas_clear_mac_err(cp);
4482
4483 /* saved bits that are unique to ring 0 */
4484 spin_lock(&cp->stat_lock[0]);
4485 stats[N_TX_RINGS].collisions += stats[0].collisions;
4486 stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors;
4487 stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors;
4488 stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors;
4489 stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4490 stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors;
4491 spin_unlock(&cp->stat_lock[0]);
4492
4493 for (i = 0; i < N_TX_RINGS; i++) {
4494 spin_lock(&cp->stat_lock[i]);
6aa20a22 4495 stats[N_TX_RINGS].rx_length_errors +=
1f26dac3
DM
4496 stats[i].rx_length_errors;
4497 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4498 stats[N_TX_RINGS].rx_packets += stats[i].rx_packets;
4499 stats[N_TX_RINGS].tx_packets += stats[i].tx_packets;
4500 stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes;
4501 stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes;
4502 stats[N_TX_RINGS].rx_errors += stats[i].rx_errors;
4503 stats[N_TX_RINGS].tx_errors += stats[i].tx_errors;
4504 stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped;
4505 stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped;
4506 memset(stats + i, 0, sizeof(struct net_device_stats));
4507 spin_unlock(&cp->stat_lock[i]);
4508 }
4509 spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4510 return stats + N_TX_RINGS;
4511}
4512
4513
4514static void cas_set_multicast(struct net_device *dev)
4515{
4516 struct cas *cp = netdev_priv(dev);
4517 u32 rxcfg, rxcfg_new;
4518 unsigned long flags;
4519 int limit = STOP_TRIES;
6aa20a22 4520
1f26dac3
DM
4521 if (!cp->hw_running)
4522 return;
6aa20a22 4523
1f26dac3
DM
4524 spin_lock_irqsave(&cp->lock, flags);
4525 rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4526
4527 /* disable RX MAC and wait for completion */
4528 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4529 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4530 if (!limit--)
4531 break;
4532 udelay(10);
4533 }
4534
4535 /* disable hash filter and wait for completion */
4536 limit = STOP_TRIES;
4537 rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4538 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4539 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4540 if (!limit--)
4541 break;
4542 udelay(10);
4543 }
4544
4545 /* program hash filters */
4546 cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4547 rxcfg |= rxcfg_new;
4548 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4549 spin_unlock_irqrestore(&cp->lock, flags);
4550}
4551
a232f767
AV
4552static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4553{
4554 struct cas *cp = netdev_priv(dev);
4555 strncpy(info->driver, DRV_MODULE_NAME, ETHTOOL_BUSINFO_LEN);
4556 strncpy(info->version, DRV_MODULE_VERSION, ETHTOOL_BUSINFO_LEN);
4557 info->fw_version[0] = '\0';
4558 strncpy(info->bus_info, pci_name(cp->pdev), ETHTOOL_BUSINFO_LEN);
4559 info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
4560 cp->casreg_len : CAS_MAX_REGS;
4561 info->n_stats = CAS_NUM_STAT_KEYS;
4562}
4563
4564static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1f26dac3
DM
4565{
4566 struct cas *cp = netdev_priv(dev);
4567 u16 bmcr;
4568 int full_duplex, speed, pause;
1f26dac3
DM
4569 unsigned long flags;
4570 enum link_state linkstate = link_up;
4571
a232f767
AV
4572 cmd->advertising = 0;
4573 cmd->supported = SUPPORTED_Autoneg;
4574 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4575 cmd->supported |= SUPPORTED_1000baseT_Full;
4576 cmd->advertising |= ADVERTISED_1000baseT_Full;
1f26dac3
DM
4577 }
4578
a232f767
AV
4579 /* Record PHY settings if HW is on. */
4580 spin_lock_irqsave(&cp->lock, flags);
4581 bmcr = 0;
4582 linkstate = cp->lstate;
4583 if (CAS_PHY_MII(cp->phy_type)) {
4584 cmd->port = PORT_MII;
4585 cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4586 XCVR_INTERNAL : XCVR_EXTERNAL;
4587 cmd->phy_address = cp->phy_addr;
4588 cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
6aa20a22
JG
4589 ADVERTISED_10baseT_Half |
4590 ADVERTISED_10baseT_Full |
4591 ADVERTISED_100baseT_Half |
a232f767
AV
4592 ADVERTISED_100baseT_Full;
4593
4594 cmd->supported |=
6aa20a22 4595 (SUPPORTED_10baseT_Half |
a232f767 4596 SUPPORTED_10baseT_Full |
6aa20a22 4597 SUPPORTED_100baseT_Half |
a232f767
AV
4598 SUPPORTED_100baseT_Full |
4599 SUPPORTED_TP | SUPPORTED_MII);
4600
4601 if (cp->hw_running) {
4602 cas_mif_poll(cp, 0);
4603 bmcr = cas_phy_read(cp, MII_BMCR);
6aa20a22 4604 cas_read_mii_link_mode(cp, &full_duplex,
a232f767
AV
4605 &speed, &pause);
4606 cas_mif_poll(cp, 1);
1f26dac3
DM
4607 }
4608
a232f767
AV
4609 } else {
4610 cmd->port = PORT_FIBRE;
4611 cmd->transceiver = XCVR_INTERNAL;
4612 cmd->phy_address = 0;
4613 cmd->supported |= SUPPORTED_FIBRE;
4614 cmd->advertising |= ADVERTISED_FIBRE;
4615
4616 if (cp->hw_running) {
6aa20a22 4617 /* pcs uses the same bits as mii */
a232f767 4618 bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
6aa20a22 4619 cas_read_pcs_link_mode(cp, &full_duplex,
a232f767 4620 &speed, &pause);
1f26dac3 4621 }
a232f767
AV
4622 }
4623 spin_unlock_irqrestore(&cp->lock, flags);
1f26dac3 4624
a232f767
AV
4625 if (bmcr & BMCR_ANENABLE) {
4626 cmd->advertising |= ADVERTISED_Autoneg;
4627 cmd->autoneg = AUTONEG_ENABLE;
4628 cmd->speed = ((speed == 10) ?
4629 SPEED_10 :
4630 ((speed == 1000) ?
4631 SPEED_1000 : SPEED_100));
4632 cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4633 } else {
4634 cmd->autoneg = AUTONEG_DISABLE;
4635 cmd->speed =
4636 (bmcr & CAS_BMCR_SPEED1000) ?
6aa20a22
JG
4637 SPEED_1000 :
4638 ((bmcr & BMCR_SPEED100) ? SPEED_100:
a232f767
AV
4639 SPEED_10);
4640 cmd->duplex =
4641 (bmcr & BMCR_FULLDPLX) ?
4642 DUPLEX_FULL : DUPLEX_HALF;
4643 }
4644 if (linkstate != link_up) {
4645 /* Force these to "unknown" if the link is not up and
6aa20a22 4646 * autonogotiation in enabled. We can set the link
a232f767
AV
4647 * speed to 0, but not cmd->duplex,
4648 * because its legal values are 0 and 1. Ethtool will
4649 * print the value reported in parentheses after the
4650 * word "Unknown" for unrecognized values.
4651 *
4652 * If in forced mode, we report the speed and duplex
4653 * settings that we configured.
4654 */
4655 if (cp->link_cntl & BMCR_ANENABLE) {
4656 cmd->speed = 0;
4657 cmd->duplex = 0xff;
1f26dac3 4658 } else {
a232f767
AV
4659 cmd->speed = SPEED_10;
4660 if (cp->link_cntl & BMCR_SPEED100) {
4661 cmd->speed = SPEED_100;
4662 } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4663 cmd->speed = SPEED_1000;
1f26dac3 4664 }
a232f767
AV
4665 cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
4666 DUPLEX_FULL : DUPLEX_HALF;
1f26dac3 4667 }
a232f767
AV
4668 }
4669 return 0;
4670}
1f26dac3 4671
a232f767
AV
4672static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4673{
4674 struct cas *cp = netdev_priv(dev);
4675 unsigned long flags;
1f26dac3 4676
a232f767
AV
4677 /* Verify the settings we care about. */
4678 if (cmd->autoneg != AUTONEG_ENABLE &&
4679 cmd->autoneg != AUTONEG_DISABLE)
4680 return -EINVAL;
1f26dac3 4681
a232f767
AV
4682 if (cmd->autoneg == AUTONEG_DISABLE &&
4683 ((cmd->speed != SPEED_1000 &&
4684 cmd->speed != SPEED_100 &&
4685 cmd->speed != SPEED_10) ||
4686 (cmd->duplex != DUPLEX_HALF &&
4687 cmd->duplex != DUPLEX_FULL)))
4688 return -EINVAL;
1f26dac3 4689
a232f767
AV
4690 /* Apply settings and restart link process. */
4691 spin_lock_irqsave(&cp->lock, flags);
4692 cas_begin_auto_negotiation(cp, cmd);
4693 spin_unlock_irqrestore(&cp->lock, flags);
4694 return 0;
4695}
1f26dac3 4696
a232f767
AV
4697static int cas_nway_reset(struct net_device *dev)
4698{
4699 struct cas *cp = netdev_priv(dev);
4700 unsigned long flags;
1f26dac3 4701
a232f767
AV
4702 if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4703 return -EINVAL;
1f26dac3 4704
a232f767
AV
4705 /* Restart link process. */
4706 spin_lock_irqsave(&cp->lock, flags);
4707 cas_begin_auto_negotiation(cp, NULL);
4708 spin_unlock_irqrestore(&cp->lock, flags);
1f26dac3 4709
a232f767
AV
4710 return 0;
4711}
1f26dac3 4712
a232f767
AV
4713static u32 cas_get_link(struct net_device *dev)
4714{
4715 struct cas *cp = netdev_priv(dev);
4716 return cp->lstate == link_up;
4717}
1f26dac3 4718
a232f767
AV
4719static u32 cas_get_msglevel(struct net_device *dev)
4720{
4721 struct cas *cp = netdev_priv(dev);
4722 return cp->msg_enable;
4723}
1f26dac3 4724
a232f767
AV
4725static void cas_set_msglevel(struct net_device *dev, u32 value)
4726{
4727 struct cas *cp = netdev_priv(dev);
4728 cp->msg_enable = value;
4729}
1f26dac3 4730
a232f767
AV
4731static int cas_get_regs_len(struct net_device *dev)
4732{
4733 struct cas *cp = netdev_priv(dev);
4734 return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4735}
1f26dac3 4736
a232f767
AV
4737static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4738 void *p)
4739{
4740 struct cas *cp = netdev_priv(dev);
4741 regs->version = 0;
4742 /* cas_read_regs handles locks (cp->lock). */
4743 cas_read_regs(cp, p, regs->len / sizeof(u32));
4744}
1f26dac3 4745
b9f2c044 4746static int cas_get_sset_count(struct net_device *dev, int sset)
a232f767 4747{
b9f2c044
JG
4748 switch (sset) {
4749 case ETH_SS_STATS:
4750 return CAS_NUM_STAT_KEYS;
4751 default:
4752 return -EOPNOTSUPP;
4753 }
a232f767 4754}
1f26dac3 4755
a232f767
AV
4756static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4757{
6aa20a22 4758 memcpy(data, &ethtool_cassini_statnames,
a232f767
AV
4759 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4760}
1f26dac3 4761
a232f767
AV
4762static void cas_get_ethtool_stats(struct net_device *dev,
4763 struct ethtool_stats *estats, u64 *data)
4764{
4765 struct cas *cp = netdev_priv(dev);
4766 struct net_device_stats *stats = cas_get_stats(cp->dev);
4767 int i = 0;
4768 data[i++] = stats->collisions;
4769 data[i++] = stats->rx_bytes;
4770 data[i++] = stats->rx_crc_errors;
4771 data[i++] = stats->rx_dropped;
4772 data[i++] = stats->rx_errors;
4773 data[i++] = stats->rx_fifo_errors;
4774 data[i++] = stats->rx_frame_errors;
4775 data[i++] = stats->rx_length_errors;
4776 data[i++] = stats->rx_over_errors;
4777 data[i++] = stats->rx_packets;
4778 data[i++] = stats->tx_aborted_errors;
4779 data[i++] = stats->tx_bytes;
4780 data[i++] = stats->tx_dropped;
4781 data[i++] = stats->tx_errors;
4782 data[i++] = stats->tx_fifo_errors;
4783 data[i++] = stats->tx_packets;
4784 BUG_ON(i != CAS_NUM_STAT_KEYS);
1f26dac3
DM
4785}
4786
7282d491 4787static const struct ethtool_ops cas_ethtool_ops = {
a232f767
AV
4788 .get_drvinfo = cas_get_drvinfo,
4789 .get_settings = cas_get_settings,
4790 .set_settings = cas_set_settings,
4791 .nway_reset = cas_nway_reset,
4792 .get_link = cas_get_link,
4793 .get_msglevel = cas_get_msglevel,
4794 .set_msglevel = cas_set_msglevel,
4795 .get_regs_len = cas_get_regs_len,
4796 .get_regs = cas_get_regs,
b9f2c044 4797 .get_sset_count = cas_get_sset_count,
a232f767
AV
4798 .get_strings = cas_get_strings,
4799 .get_ethtool_stats = cas_get_ethtool_stats,
4800};
4801
1f26dac3
DM
4802static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4803{
4804 struct cas *cp = netdev_priv(dev);
46d7031e 4805 struct mii_ioctl_data *data = if_mii(ifr);
1f26dac3
DM
4806 unsigned long flags;
4807 int rc = -EOPNOTSUPP;
6aa20a22 4808
758df69e 4809 /* Hold the PM mutex while doing ioctl's or we may collide
1f26dac3
DM
4810 * with open/close and power management and oops.
4811 */
758df69e 4812 mutex_lock(&cp->pm_mutex);
1f26dac3 4813 switch (cmd) {
1f26dac3
DM
4814 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
4815 data->phy_id = cp->phy_addr;
4816 /* Fallthrough... */
4817
4818 case SIOCGMIIREG: /* Read MII PHY register. */
4819 spin_lock_irqsave(&cp->lock, flags);
4820 cas_mif_poll(cp, 0);
4821 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4822 cas_mif_poll(cp, 1);
4823 spin_unlock_irqrestore(&cp->lock, flags);
4824 rc = 0;
4825 break;
4826
4827 case SIOCSMIIREG: /* Write MII PHY register. */
4828 if (!capable(CAP_NET_ADMIN)) {
4829 rc = -EPERM;
4830 break;
4831 }
4832 spin_lock_irqsave(&cp->lock, flags);
4833 cas_mif_poll(cp, 0);
4834 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4835 cas_mif_poll(cp, 1);
4836 spin_unlock_irqrestore(&cp->lock, flags);
4837 break;
4838 default:
4839 break;
4840 };
4841
758df69e 4842 mutex_unlock(&cp->pm_mutex);
1f26dac3
DM
4843 return rc;
4844}
4845
9e1848b6
DM
4846/* When this chip sits underneath an Intel 31154 bridge, it is the
4847 * only subordinate device and we can tweak the bridge settings to
4848 * reflect that fact.
4849 */
4850static void __devinit cas_program_bridge(struct pci_dev *cas_pdev)
4851{
4852 struct pci_dev *pdev = cas_pdev->bus->self;
4853 u32 val;
4854
4855 if (!pdev)
4856 return;
4857
4858 if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4859 return;
4860
4861 /* Clear bit 10 (Bus Parking Control) in the Secondary
4862 * Arbiter Control/Status Register which lives at offset
4863 * 0x41. Using a 32-bit word read/modify/write at 0x40
4864 * is much simpler so that's how we do this.
4865 */
4866 pci_read_config_dword(pdev, 0x40, &val);
4867 val &= ~0x00040000;
4868 pci_write_config_dword(pdev, 0x40, val);
4869
4870 /* Max out the Multi-Transaction Timer settings since
4871 * Cassini is the only device present.
4872 *
4873 * The register is 16-bit and lives at 0x50. When the
4874 * settings are enabled, it extends the GRANT# signal
4875 * for a requestor after a transaction is complete. This
4876 * allows the next request to run without first needing
4877 * to negotiate the GRANT# signal back.
4878 *
4879 * Bits 12:10 define the grant duration:
4880 *
4881 * 1 -- 16 clocks
4882 * 2 -- 32 clocks
4883 * 3 -- 64 clocks
4884 * 4 -- 128 clocks
4885 * 5 -- 256 clocks
4886 *
4887 * All other values are illegal.
4888 *
4889 * Bits 09:00 define which REQ/GNT signal pairs get the
4890 * GRANT# signal treatment. We set them all.
4891 */
4892 pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4893
4894 /* The Read Prefecth Policy register is 16-bit and sits at
4895 * offset 0x52. It enables a "smart" pre-fetch policy. We
4896 * enable it and max out all of the settings since only one
4897 * device is sitting underneath and thus bandwidth sharing is
4898 * not an issue.
4899 *
4900 * The register has several 3 bit fields, which indicates a
4901 * multiplier applied to the base amount of prefetching the
4902 * chip would do. These fields are at:
4903 *
4904 * 15:13 --- ReRead Primary Bus
4905 * 12:10 --- FirstRead Primary Bus
4906 * 09:07 --- ReRead Secondary Bus
4907 * 06:04 --- FirstRead Secondary Bus
4908 *
4909 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4910 * get enabled on. Bit 3 is a grouped enabler which controls
4911 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control
4912 * the individual REQ/GNT pairs [2:0].
4913 */
4914 pci_write_config_word(pdev, 0x52,
4915 (0x7 << 13) |
4916 (0x7 << 10) |
4917 (0x7 << 7) |
4918 (0x7 << 4) |
4919 (0xf << 0));
4920
4921 /* Force cacheline size to 0x8 */
4922 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4923
4924 /* Force latency timer to maximum setting so Cassini can
4925 * sit on the bus as long as it likes.
4926 */
4927 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4928}
4929
1f26dac3
DM
4930static int __devinit cas_init_one(struct pci_dev *pdev,
4931 const struct pci_device_id *ent)
4932{
4933 static int cas_version_printed = 0;
18e37f2a 4934 unsigned long casreg_len;
1f26dac3
DM
4935 struct net_device *dev;
4936 struct cas *cp;
4937 int i, err, pci_using_dac;
4938 u16 pci_cmd;
4939 u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
0795af57 4940 DECLARE_MAC_BUF(mac);
1f26dac3
DM
4941
4942 if (cas_version_printed++ == 0)
4943 printk(KERN_INFO "%s", version);
4944
4945 err = pci_enable_device(pdev);
4946 if (err) {
9b91cf9d 4947 dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
1f26dac3
DM
4948 return err;
4949 }
4950
4951 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
9b91cf9d 4952 dev_err(&pdev->dev, "Cannot find proper PCI device "
1f26dac3
DM
4953 "base address, aborting.\n");
4954 err = -ENODEV;
4955 goto err_out_disable_pdev;
4956 }
4957
4958 dev = alloc_etherdev(sizeof(*cp));
4959 if (!dev) {
9b91cf9d 4960 dev_err(&pdev->dev, "Etherdev alloc failed, aborting.\n");
1f26dac3
DM
4961 err = -ENOMEM;
4962 goto err_out_disable_pdev;
4963 }
1f26dac3
DM
4964 SET_NETDEV_DEV(dev, &pdev->dev);
4965
4966 err = pci_request_regions(pdev, dev->name);
4967 if (err) {
9b91cf9d 4968 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
1f26dac3
DM
4969 goto err_out_free_netdev;
4970 }
4971 pci_set_master(pdev);
4972
4973 /* we must always turn on parity response or else parity
4974 * doesn't get generated properly. disable SERR/PERR as well.
4975 * in addition, we want to turn MWI on.
4976 */
4977 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4978 pci_cmd &= ~PCI_COMMAND_SERR;
4979 pci_cmd |= PCI_COMMAND_PARITY;
4980 pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
694625c0 4981 if (pci_try_set_mwi(pdev))
4738d2fa 4982 printk(KERN_WARNING PFX "Could not enable MWI for %s\n",
04efb878
DM
4983 pci_name(pdev));
4984
9e1848b6
DM
4985 cas_program_bridge(pdev);
4986
1f26dac3
DM
4987 /*
4988 * On some architectures, the default cache line size set
694625c0 4989 * by pci_try_set_mwi reduces perforamnce. We have to increase
1f26dac3
DM
4990 * it for this case. To start, we'll print some configuration
4991 * data.
4992 */
4993#if 1
4994 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4995 &orig_cacheline_size);
4996 if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
6aa20a22
JG
4997 cas_cacheline_size =
4998 (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
1f26dac3 4999 CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
6aa20a22
JG
5000 if (pci_write_config_byte(pdev,
5001 PCI_CACHE_LINE_SIZE,
1f26dac3 5002 cas_cacheline_size)) {
9b91cf9d 5003 dev_err(&pdev->dev, "Could not set PCI cache "
1f26dac3
DM
5004 "line size\n");
5005 goto err_write_cacheline;
5006 }
5007 }
5008#endif
5009
5010
5011 /* Configure DMA attributes. */
5012 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
5013 pci_using_dac = 1;
5014 err = pci_set_consistent_dma_mask(pdev,
5015 DMA_64BIT_MASK);
5016 if (err < 0) {
9b91cf9d 5017 dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
1f26dac3
DM
5018 "for consistent allocations\n");
5019 goto err_out_free_res;
5020 }
5021
5022 } else {
5023 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
5024 if (err) {
9b91cf9d 5025 dev_err(&pdev->dev, "No usable DMA configuration, "
1f26dac3
DM
5026 "aborting.\n");
5027 goto err_out_free_res;
5028 }
5029 pci_using_dac = 0;
5030 }
5031
1f26dac3
DM
5032 casreg_len = pci_resource_len(pdev, 0);
5033
5034 cp = netdev_priv(dev);
5035 cp->pdev = pdev;
5036#if 1
5037 /* A value of 0 indicates we never explicitly set it */
5038 cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
5039#endif
5040 cp->dev = dev;
6aa20a22 5041 cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
1f26dac3
DM
5042 cassini_debug;
5043
5044 cp->link_transition = LINK_TRANSITION_UNKNOWN;
5045 cp->link_transition_jiffies_valid = 0;
5046
5047 spin_lock_init(&cp->lock);
5048 spin_lock_init(&cp->rx_inuse_lock);
5049 spin_lock_init(&cp->rx_spare_lock);
5050 for (i = 0; i < N_TX_RINGS; i++) {
5051 spin_lock_init(&cp->stat_lock[i]);
5052 spin_lock_init(&cp->tx_lock[i]);
5053 }
5054 spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
758df69e 5055 mutex_init(&cp->pm_mutex);
1f26dac3
DM
5056
5057 init_timer(&cp->link_timer);
5058 cp->link_timer.function = cas_link_timer;
5059 cp->link_timer.data = (unsigned long) cp;
5060
5061#if 1
5062 /* Just in case the implementation of atomic operations
5063 * change so that an explicit initialization is necessary.
5064 */
5065 atomic_set(&cp->reset_task_pending, 0);
5066 atomic_set(&cp->reset_task_pending_all, 0);
5067 atomic_set(&cp->reset_task_pending_spare, 0);
5068 atomic_set(&cp->reset_task_pending_mtu, 0);
5069#endif
c4028958 5070 INIT_WORK(&cp->reset_task, cas_reset_task);
1f26dac3
DM
5071
5072 /* Default link parameters */
5073 if (link_mode >= 0 && link_mode <= 6)
5074 cp->link_cntl = link_modes[link_mode];
5075 else
5076 cp->link_cntl = BMCR_ANENABLE;
5077 cp->lstate = link_down;
5078 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5079 netif_carrier_off(cp->dev);
5080 cp->timer_ticks = 0;
5081
5082 /* give us access to cassini registers */
18e37f2a 5083 cp->regs = pci_iomap(pdev, 0, casreg_len);
79ea13ce 5084 if (!cp->regs) {
9b91cf9d 5085 dev_err(&pdev->dev, "Cannot map device registers, aborting.\n");
1f26dac3
DM
5086 goto err_out_free_res;
5087 }
5088 cp->casreg_len = casreg_len;
5089
5090 pci_save_state(pdev);
5091 cas_check_pci_invariants(cp);
5092 cas_hard_reset(cp);
5093 cas_reset(cp, 0);
5094 if (cas_check_invariants(cp))
5095 goto err_out_iounmap;
5096
5097 cp->init_block = (struct cas_init_block *)
5098 pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5099 &cp->block_dvma);
5100 if (!cp->init_block) {
9b91cf9d 5101 dev_err(&pdev->dev, "Cannot allocate init block, aborting.\n");
1f26dac3
DM
5102 goto err_out_iounmap;
5103 }
5104
6aa20a22 5105 for (i = 0; i < N_TX_RINGS; i++)
1f26dac3
DM
5106 cp->init_txds[i] = cp->init_block->txds[i];
5107
6aa20a22 5108 for (i = 0; i < N_RX_DESC_RINGS; i++)
1f26dac3
DM
5109 cp->init_rxds[i] = cp->init_block->rxds[i];
5110
6aa20a22 5111 for (i = 0; i < N_RX_COMP_RINGS; i++)
1f26dac3
DM
5112 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5113
5114 for (i = 0; i < N_RX_FLOWS; i++)
5115 skb_queue_head_init(&cp->rx_flows[i]);
5116
5117 dev->open = cas_open;
5118 dev->stop = cas_close;
5119 dev->hard_start_xmit = cas_start_xmit;
5120 dev->get_stats = cas_get_stats;
5121 dev->set_multicast_list = cas_set_multicast;
5122 dev->do_ioctl = cas_ioctl;
a232f767 5123 dev->ethtool_ops = &cas_ethtool_ops;
1f26dac3
DM
5124 dev->tx_timeout = cas_tx_timeout;
5125 dev->watchdog_timeo = CAS_TX_TIMEOUT;
5126 dev->change_mtu = cas_change_mtu;
5127#ifdef USE_NAPI
bea3348e 5128 netif_napi_add(dev, &cp->napi, cas_poll, 64);
1f26dac3
DM
5129#endif
5130#ifdef CONFIG_NET_POLL_CONTROLLER
5131 dev->poll_controller = cas_netpoll;
5132#endif
5133 dev->irq = pdev->irq;
5134 dev->dma = 0;
5135
5136 /* Cassini features. */
5137 if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5138 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5139
5140 if (pci_using_dac)
5141 dev->features |= NETIF_F_HIGHDMA;
5142
5143 if (register_netdev(dev)) {
9b91cf9d 5144 dev_err(&pdev->dev, "Cannot register net device, aborting.\n");
1f26dac3
DM
5145 goto err_out_free_consistent;
5146 }
5147
5148 i = readl(cp->regs + REG_BIM_CFG);
5149 printk(KERN_INFO "%s: Sun Cassini%s (%sbit/%sMHz PCI/%s) "
0795af57 5150 "Ethernet[%d] %s\n", dev->name,
6aa20a22 5151 (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
1f26dac3
DM
5152 (i & BIM_CFG_32BIT) ? "32" : "64",
5153 (i & BIM_CFG_66MHZ) ? "66" : "33",
0795af57
JP
5154 (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5155 print_mac(mac, dev->dev_addr));
1f26dac3
DM
5156
5157 pci_set_drvdata(pdev, dev);
5158 cp->hw_running = 1;
5159 cas_entropy_reset(cp);
5160 cas_phy_init(cp);
5161 cas_begin_auto_negotiation(cp, NULL);
5162 return 0;
5163
5164err_out_free_consistent:
5165 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5166 cp->init_block, cp->block_dvma);
5167
5168err_out_iounmap:
758df69e 5169 mutex_lock(&cp->pm_mutex);
1f26dac3
DM
5170 if (cp->hw_running)
5171 cas_shutdown(cp);
758df69e 5172 mutex_unlock(&cp->pm_mutex);
1f26dac3 5173
18e37f2a 5174 pci_iounmap(pdev, cp->regs);
1f26dac3
DM
5175
5176
5177err_out_free_res:
5178 pci_release_regions(pdev);
5179
5180err_write_cacheline:
5181 /* Try to restore it in case the error occured after we
6aa20a22 5182 * set it.
1f26dac3
DM
5183 */
5184 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5185
5186err_out_free_netdev:
5187 free_netdev(dev);
5188
5189err_out_disable_pdev:
5190 pci_disable_device(pdev);
5191 pci_set_drvdata(pdev, NULL);
5192 return -ENODEV;
5193}
5194
5195static void __devexit cas_remove_one(struct pci_dev *pdev)
5196{
5197 struct net_device *dev = pci_get_drvdata(pdev);
5198 struct cas *cp;
5199 if (!dev)
5200 return;
5201
5202 cp = netdev_priv(dev);
5203 unregister_netdev(dev);
5204
758df69e 5205 mutex_lock(&cp->pm_mutex);
1f26dac3
DM
5206 flush_scheduled_work();
5207 if (cp->hw_running)
5208 cas_shutdown(cp);
758df69e 5209 mutex_unlock(&cp->pm_mutex);
1f26dac3
DM
5210
5211#if 1
5212 if (cp->orig_cacheline_size) {
5213 /* Restore the cache line size if we had modified
5214 * it.
5215 */
6aa20a22 5216 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
1f26dac3
DM
5217 cp->orig_cacheline_size);
5218 }
5219#endif
5220 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5221 cp->init_block, cp->block_dvma);
18e37f2a 5222 pci_iounmap(pdev, cp->regs);
1f26dac3
DM
5223 free_netdev(dev);
5224 pci_release_regions(pdev);
5225 pci_disable_device(pdev);
5226 pci_set_drvdata(pdev, NULL);
5227}
5228
5229#ifdef CONFIG_PM
46d7031e 5230static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
1f26dac3
DM
5231{
5232 struct net_device *dev = pci_get_drvdata(pdev);
5233 struct cas *cp = netdev_priv(dev);
5234 unsigned long flags;
5235
758df69e 5236 mutex_lock(&cp->pm_mutex);
6aa20a22 5237
1f26dac3
DM
5238 /* If the driver is opened, we stop the DMA */
5239 if (cp->opened) {
5240 netif_device_detach(dev);
5241
5242 cas_lock_all_save(cp, flags);
5243
5244 /* We can set the second arg of cas_reset to 0
5245 * because on resume, we'll call cas_init_hw with
5246 * its second arg set so that autonegotiation is
5247 * restarted.
5248 */
5249 cas_reset(cp, 0);
5250 cas_clean_rings(cp);
5251 cas_unlock_all_restore(cp, flags);
5252 }
5253
5254 if (cp->hw_running)
5255 cas_shutdown(cp);
758df69e 5256 mutex_unlock(&cp->pm_mutex);
1f26dac3
DM
5257
5258 return 0;
5259}
5260
5261static int cas_resume(struct pci_dev *pdev)
5262{
5263 struct net_device *dev = pci_get_drvdata(pdev);
5264 struct cas *cp = netdev_priv(dev);
5265
5266 printk(KERN_INFO "%s: resuming\n", dev->name);
5267
758df69e 5268 mutex_lock(&cp->pm_mutex);
1f26dac3
DM
5269 cas_hard_reset(cp);
5270 if (cp->opened) {
5271 unsigned long flags;
5272 cas_lock_all_save(cp, flags);
5273 cas_reset(cp, 0);
5274 cp->hw_running = 1;
5275 cas_clean_rings(cp);
5276 cas_init_hw(cp, 1);
5277 cas_unlock_all_restore(cp, flags);
5278
5279 netif_device_attach(dev);
5280 }
758df69e 5281 mutex_unlock(&cp->pm_mutex);
1f26dac3
DM
5282 return 0;
5283}
5284#endif /* CONFIG_PM */
5285
5286static struct pci_driver cas_driver = {
5287 .name = DRV_MODULE_NAME,
5288 .id_table = cas_pci_tbl,
5289 .probe = cas_init_one,
5290 .remove = __devexit_p(cas_remove_one),
5291#ifdef CONFIG_PM
5292 .suspend = cas_suspend,
5293 .resume = cas_resume
5294#endif
5295};
5296
5297static int __init cas_init(void)
5298{
5299 if (linkdown_timeout > 0)
5300 link_transition_timeout = linkdown_timeout * HZ;
5301 else
5302 link_transition_timeout = 0;
5303
29917620 5304 return pci_register_driver(&cas_driver);
1f26dac3
DM
5305}
5306
5307static void __exit cas_cleanup(void)
5308{
5309 pci_unregister_driver(&cas_driver);
5310}
5311
5312module_init(cas_init);
5313module_exit(cas_cleanup);
This page took 0.630766 seconds and 5 git commands to generate.