[BLUETOOTH]: Introduce skb->data accessor methods for hci_{acl,event,sco}_hdr
[deliverable/linux.git] / drivers / net / cxgb3 / sge.c
CommitLineData
4d22de3e 1/*
1d68e93d 2 * Copyright (c) 2005-2007 Chelsio, Inc. All rights reserved.
4d22de3e 3 *
1d68e93d
DLR
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
4d22de3e 9 *
1d68e93d
DLR
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
4d22de3e 31 */
4d22de3e
DLR
32#include <linux/skbuff.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/if_vlan.h>
36#include <linux/ip.h>
37#include <linux/tcp.h>
38#include <linux/dma-mapping.h>
39#include "common.h"
40#include "regs.h"
41#include "sge_defs.h"
42#include "t3_cpl.h"
43#include "firmware_exports.h"
44
45#define USE_GTS 0
46
47#define SGE_RX_SM_BUF_SIZE 1536
e0994eb1
DLR
48
49/*
50 * If USE_RX_PAGE is defined, the small freelist populated with (partial)
51 * pages instead of skbs. Pages are carved up into RX_PAGE_SIZE chunks (must
52 * be a multiple of the host page size).
53 */
54#define USE_RX_PAGE
55#define RX_PAGE_SIZE 2048
56
57/*
58 * skb freelist packets are copied into a new skb (and the freelist one is
59 * reused) if their len is <=
60 */
4d22de3e
DLR
61#define SGE_RX_COPY_THRES 256
62
e0994eb1
DLR
63/*
64 * Minimum number of freelist entries before we start dropping TUNNEL frames.
65 */
66#define SGE_RX_DROP_THRES 16
4d22de3e
DLR
67
68/*
69 * Period of the Tx buffer reclaim timer. This timer does not need to run
70 * frequently as Tx buffers are usually reclaimed by new Tx packets.
71 */
72#define TX_RECLAIM_PERIOD (HZ / 4)
73
74/* WR size in bytes */
75#define WR_LEN (WR_FLITS * 8)
76
77/*
78 * Types of Tx queues in each queue set. Order here matters, do not change.
79 */
80enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
81
82/* Values for sge_txq.flags */
83enum {
84 TXQ_RUNNING = 1 << 0, /* fetch engine is running */
85 TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */
86};
87
88struct tx_desc {
89 u64 flit[TX_DESC_FLITS];
90};
91
92struct rx_desc {
93 __be32 addr_lo;
94 __be32 len_gen;
95 __be32 gen2;
96 __be32 addr_hi;
97};
98
99struct tx_sw_desc { /* SW state per Tx descriptor */
100 struct sk_buff *skb;
101};
102
103struct rx_sw_desc { /* SW state per Rx descriptor */
e0994eb1
DLR
104 union {
105 struct sk_buff *skb;
106 struct sge_fl_page page;
107 } t;
4d22de3e
DLR
108 DECLARE_PCI_UNMAP_ADDR(dma_addr);
109};
110
111struct rsp_desc { /* response queue descriptor */
112 struct rss_header rss_hdr;
113 __be32 flags;
114 __be32 len_cq;
115 u8 imm_data[47];
116 u8 intr_gen;
117};
118
119struct unmap_info { /* packet unmapping info, overlays skb->cb */
120 int sflit; /* start flit of first SGL entry in Tx descriptor */
121 u16 fragidx; /* first page fragment in current Tx descriptor */
122 u16 addr_idx; /* buffer index of first SGL entry in descriptor */
123 u32 len; /* mapped length of skb main body */
124};
125
99d7cf30
DLR
126/*
127 * Holds unmapping information for Tx packets that need deferred unmapping.
128 * This structure lives at skb->head and must be allocated by callers.
129 */
130struct deferred_unmap_info {
131 struct pci_dev *pdev;
132 dma_addr_t addr[MAX_SKB_FRAGS + 1];
133};
134
4d22de3e
DLR
135/*
136 * Maps a number of flits to the number of Tx descriptors that can hold them.
137 * The formula is
138 *
139 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
140 *
141 * HW allows up to 4 descriptors to be combined into a WR.
142 */
143static u8 flit_desc_map[] = {
144 0,
145#if SGE_NUM_GENBITS == 1
146 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
147 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
148 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
149 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
150#elif SGE_NUM_GENBITS == 2
151 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
152 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
153 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
154 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
155#else
156# error "SGE_NUM_GENBITS must be 1 or 2"
157#endif
158};
159
160static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
161{
162 return container_of(q, struct sge_qset, fl[qidx]);
163}
164
165static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
166{
167 return container_of(q, struct sge_qset, rspq);
168}
169
170static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
171{
172 return container_of(q, struct sge_qset, txq[qidx]);
173}
174
175/**
176 * refill_rspq - replenish an SGE response queue
177 * @adapter: the adapter
178 * @q: the response queue to replenish
179 * @credits: how many new responses to make available
180 *
181 * Replenishes a response queue by making the supplied number of responses
182 * available to HW.
183 */
184static inline void refill_rspq(struct adapter *adapter,
185 const struct sge_rspq *q, unsigned int credits)
186{
187 t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
188 V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
189}
190
191/**
192 * need_skb_unmap - does the platform need unmapping of sk_buffs?
193 *
194 * Returns true if the platfrom needs sk_buff unmapping. The compiler
195 * optimizes away unecessary code if this returns true.
196 */
197static inline int need_skb_unmap(void)
198{
199 /*
200 * This structure is used to tell if the platfrom needs buffer
201 * unmapping by checking if DECLARE_PCI_UNMAP_ADDR defines anything.
202 */
203 struct dummy {
204 DECLARE_PCI_UNMAP_ADDR(addr);
205 };
206
207 return sizeof(struct dummy) != 0;
208}
209
210/**
211 * unmap_skb - unmap a packet main body and its page fragments
212 * @skb: the packet
213 * @q: the Tx queue containing Tx descriptors for the packet
214 * @cidx: index of Tx descriptor
215 * @pdev: the PCI device
216 *
217 * Unmap the main body of an sk_buff and its page fragments, if any.
218 * Because of the fairly complicated structure of our SGLs and the desire
219 * to conserve space for metadata, we keep the information necessary to
220 * unmap an sk_buff partly in the sk_buff itself (in its cb), and partly
221 * in the Tx descriptors (the physical addresses of the various data
222 * buffers). The send functions initialize the state in skb->cb so we
223 * can unmap the buffers held in the first Tx descriptor here, and we
224 * have enough information at this point to update the state for the next
225 * Tx descriptor.
226 */
227static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
228 unsigned int cidx, struct pci_dev *pdev)
229{
230 const struct sg_ent *sgp;
231 struct unmap_info *ui = (struct unmap_info *)skb->cb;
232 int nfrags, frag_idx, curflit, j = ui->addr_idx;
233
234 sgp = (struct sg_ent *)&q->desc[cidx].flit[ui->sflit];
235
236 if (ui->len) {
237 pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]), ui->len,
238 PCI_DMA_TODEVICE);
239 ui->len = 0; /* so we know for next descriptor for this skb */
240 j = 1;
241 }
242
243 frag_idx = ui->fragidx;
244 curflit = ui->sflit + 1 + j;
245 nfrags = skb_shinfo(skb)->nr_frags;
246
247 while (frag_idx < nfrags && curflit < WR_FLITS) {
248 pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
249 skb_shinfo(skb)->frags[frag_idx].size,
250 PCI_DMA_TODEVICE);
251 j ^= 1;
252 if (j == 0) {
253 sgp++;
254 curflit++;
255 }
256 curflit++;
257 frag_idx++;
258 }
259
260 if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */
261 ui->fragidx = frag_idx;
262 ui->addr_idx = j;
263 ui->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
264 }
265}
266
267/**
268 * free_tx_desc - reclaims Tx descriptors and their buffers
269 * @adapter: the adapter
270 * @q: the Tx queue to reclaim descriptors from
271 * @n: the number of descriptors to reclaim
272 *
273 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
274 * Tx buffers. Called with the Tx queue lock held.
275 */
276static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
277 unsigned int n)
278{
279 struct tx_sw_desc *d;
280 struct pci_dev *pdev = adapter->pdev;
281 unsigned int cidx = q->cidx;
282
99d7cf30
DLR
283 const int need_unmap = need_skb_unmap() &&
284 q->cntxt_id >= FW_TUNNEL_SGEEC_START;
285
4d22de3e
DLR
286 d = &q->sdesc[cidx];
287 while (n--) {
288 if (d->skb) { /* an SGL is present */
99d7cf30 289 if (need_unmap)
4d22de3e
DLR
290 unmap_skb(d->skb, q, cidx, pdev);
291 if (d->skb->priority == cidx)
292 kfree_skb(d->skb);
293 }
294 ++d;
295 if (++cidx == q->size) {
296 cidx = 0;
297 d = q->sdesc;
298 }
299 }
300 q->cidx = cidx;
301}
302
303/**
304 * reclaim_completed_tx - reclaims completed Tx descriptors
305 * @adapter: the adapter
306 * @q: the Tx queue to reclaim completed descriptors from
307 *
308 * Reclaims Tx descriptors that the SGE has indicated it has processed,
309 * and frees the associated buffers if possible. Called with the Tx
310 * queue's lock held.
311 */
312static inline void reclaim_completed_tx(struct adapter *adapter,
313 struct sge_txq *q)
314{
315 unsigned int reclaim = q->processed - q->cleaned;
316
317 if (reclaim) {
318 free_tx_desc(adapter, q, reclaim);
319 q->cleaned += reclaim;
320 q->in_use -= reclaim;
321 }
322}
323
324/**
325 * should_restart_tx - are there enough resources to restart a Tx queue?
326 * @q: the Tx queue
327 *
328 * Checks if there are enough descriptors to restart a suspended Tx queue.
329 */
330static inline int should_restart_tx(const struct sge_txq *q)
331{
332 unsigned int r = q->processed - q->cleaned;
333
334 return q->in_use - r < (q->size >> 1);
335}
336
337/**
338 * free_rx_bufs - free the Rx buffers on an SGE free list
339 * @pdev: the PCI device associated with the adapter
340 * @rxq: the SGE free list to clean up
341 *
342 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from
343 * this queue should be stopped before calling this function.
344 */
345static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
346{
347 unsigned int cidx = q->cidx;
348
349 while (q->credits--) {
350 struct rx_sw_desc *d = &q->sdesc[cidx];
351
352 pci_unmap_single(pdev, pci_unmap_addr(d, dma_addr),
353 q->buf_size, PCI_DMA_FROMDEVICE);
e0994eb1
DLR
354
355 if (q->buf_size != RX_PAGE_SIZE) {
356 kfree_skb(d->t.skb);
357 d->t.skb = NULL;
358 } else {
359 if (d->t.page.frag.page)
360 put_page(d->t.page.frag.page);
361 d->t.page.frag.page = NULL;
362 }
4d22de3e
DLR
363 if (++cidx == q->size)
364 cidx = 0;
365 }
e0994eb1
DLR
366
367 if (q->page.frag.page)
368 put_page(q->page.frag.page);
369 q->page.frag.page = NULL;
4d22de3e
DLR
370}
371
372/**
373 * add_one_rx_buf - add a packet buffer to a free-buffer list
e0994eb1 374 * @va: va of the buffer to add
4d22de3e
DLR
375 * @len: the buffer length
376 * @d: the HW Rx descriptor to write
377 * @sd: the SW Rx descriptor to write
378 * @gen: the generation bit value
379 * @pdev: the PCI device associated with the adapter
380 *
381 * Add a buffer of the given length to the supplied HW and SW Rx
382 * descriptors.
383 */
e0994eb1 384static inline void add_one_rx_buf(unsigned char *va, unsigned int len,
4d22de3e
DLR
385 struct rx_desc *d, struct rx_sw_desc *sd,
386 unsigned int gen, struct pci_dev *pdev)
387{
388 dma_addr_t mapping;
389
e0994eb1 390 mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
4d22de3e
DLR
391 pci_unmap_addr_set(sd, dma_addr, mapping);
392
393 d->addr_lo = cpu_to_be32(mapping);
394 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
395 wmb();
396 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
397 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
398}
399
400/**
401 * refill_fl - refill an SGE free-buffer list
402 * @adapter: the adapter
403 * @q: the free-list to refill
404 * @n: the number of new buffers to allocate
405 * @gfp: the gfp flags for allocating new buffers
406 *
407 * (Re)populate an SGE free-buffer list with up to @n new packet buffers,
408 * allocated with the supplied gfp flags. The caller must assure that
409 * @n does not exceed the queue's capacity.
410 */
411static void refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
412{
413 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
414 struct rx_desc *d = &q->desc[q->pidx];
e0994eb1 415 struct sge_fl_page *p = &q->page;
4d22de3e
DLR
416
417 while (n--) {
e0994eb1 418 unsigned char *va;
4d22de3e 419
e0994eb1
DLR
420 if (unlikely(q->buf_size != RX_PAGE_SIZE)) {
421 struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
422
423 if (!skb) {
424 q->alloc_failed++;
425 break;
426 }
427 va = skb->data;
428 sd->t.skb = skb;
429 } else {
430 if (!p->frag.page) {
431 p->frag.page = alloc_pages(gfp, 0);
432 if (unlikely(!p->frag.page)) {
433 q->alloc_failed++;
434 break;
435 } else {
436 p->frag.size = RX_PAGE_SIZE;
437 p->frag.page_offset = 0;
438 p->va = page_address(p->frag.page);
439 }
440 }
441
442 memcpy(&sd->t, p, sizeof(*p));
443 va = p->va;
444
445 p->frag.page_offset += RX_PAGE_SIZE;
446 BUG_ON(p->frag.page_offset > PAGE_SIZE);
447 p->va += RX_PAGE_SIZE;
448 if (p->frag.page_offset == PAGE_SIZE)
449 p->frag.page = NULL;
450 else
451 get_page(p->frag.page);
452 }
453
454 add_one_rx_buf(va, q->buf_size, d, sd, q->gen, adap->pdev);
4d22de3e 455
4d22de3e
DLR
456 d++;
457 sd++;
458 if (++q->pidx == q->size) {
459 q->pidx = 0;
460 q->gen ^= 1;
461 sd = q->sdesc;
462 d = q->desc;
463 }
464 q->credits++;
465 }
466
467 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
468}
469
470static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
471{
472 refill_fl(adap, fl, min(16U, fl->size - fl->credits), GFP_ATOMIC);
473}
474
475/**
476 * recycle_rx_buf - recycle a receive buffer
477 * @adapter: the adapter
478 * @q: the SGE free list
479 * @idx: index of buffer to recycle
480 *
481 * Recycles the specified buffer on the given free list by adding it at
482 * the next available slot on the list.
483 */
484static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
485 unsigned int idx)
486{
487 struct rx_desc *from = &q->desc[idx];
488 struct rx_desc *to = &q->desc[q->pidx];
489
e0994eb1 490 memcpy(&q->sdesc[q->pidx], &q->sdesc[idx], sizeof(struct rx_sw_desc));
4d22de3e
DLR
491 to->addr_lo = from->addr_lo; /* already big endian */
492 to->addr_hi = from->addr_hi; /* likewise */
493 wmb();
494 to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
495 to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
496 q->credits++;
497
498 if (++q->pidx == q->size) {
499 q->pidx = 0;
500 q->gen ^= 1;
501 }
502 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
503}
504
505/**
506 * alloc_ring - allocate resources for an SGE descriptor ring
507 * @pdev: the PCI device
508 * @nelem: the number of descriptors
509 * @elem_size: the size of each descriptor
510 * @sw_size: the size of the SW state associated with each ring element
511 * @phys: the physical address of the allocated ring
512 * @metadata: address of the array holding the SW state for the ring
513 *
514 * Allocates resources for an SGE descriptor ring, such as Tx queues,
515 * free buffer lists, or response queues. Each SGE ring requires
516 * space for its HW descriptors plus, optionally, space for the SW state
517 * associated with each HW entry (the metadata). The function returns
518 * three values: the virtual address for the HW ring (the return value
519 * of the function), the physical address of the HW ring, and the address
520 * of the SW ring.
521 */
522static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
e0994eb1 523 size_t sw_size, dma_addr_t * phys, void *metadata)
4d22de3e
DLR
524{
525 size_t len = nelem * elem_size;
526 void *s = NULL;
527 void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
528
529 if (!p)
530 return NULL;
531 if (sw_size) {
532 s = kcalloc(nelem, sw_size, GFP_KERNEL);
533
534 if (!s) {
535 dma_free_coherent(&pdev->dev, len, p, *phys);
536 return NULL;
537 }
538 }
539 if (metadata)
540 *(void **)metadata = s;
541 memset(p, 0, len);
542 return p;
543}
544
545/**
546 * free_qset - free the resources of an SGE queue set
547 * @adapter: the adapter owning the queue set
548 * @q: the queue set
549 *
550 * Release the HW and SW resources associated with an SGE queue set, such
551 * as HW contexts, packet buffers, and descriptor rings. Traffic to the
552 * queue set must be quiesced prior to calling this.
553 */
554void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
555{
556 int i;
557 struct pci_dev *pdev = adapter->pdev;
558
559 if (q->tx_reclaim_timer.function)
560 del_timer_sync(&q->tx_reclaim_timer);
561
562 for (i = 0; i < SGE_RXQ_PER_SET; ++i)
563 if (q->fl[i].desc) {
564 spin_lock(&adapter->sge.reg_lock);
565 t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
566 spin_unlock(&adapter->sge.reg_lock);
567 free_rx_bufs(pdev, &q->fl[i]);
568 kfree(q->fl[i].sdesc);
569 dma_free_coherent(&pdev->dev,
570 q->fl[i].size *
571 sizeof(struct rx_desc), q->fl[i].desc,
572 q->fl[i].phys_addr);
573 }
574
575 for (i = 0; i < SGE_TXQ_PER_SET; ++i)
576 if (q->txq[i].desc) {
577 spin_lock(&adapter->sge.reg_lock);
578 t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
579 spin_unlock(&adapter->sge.reg_lock);
580 if (q->txq[i].sdesc) {
581 free_tx_desc(adapter, &q->txq[i],
582 q->txq[i].in_use);
583 kfree(q->txq[i].sdesc);
584 }
585 dma_free_coherent(&pdev->dev,
586 q->txq[i].size *
587 sizeof(struct tx_desc),
588 q->txq[i].desc, q->txq[i].phys_addr);
589 __skb_queue_purge(&q->txq[i].sendq);
590 }
591
592 if (q->rspq.desc) {
593 spin_lock(&adapter->sge.reg_lock);
594 t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
595 spin_unlock(&adapter->sge.reg_lock);
596 dma_free_coherent(&pdev->dev,
597 q->rspq.size * sizeof(struct rsp_desc),
598 q->rspq.desc, q->rspq.phys_addr);
599 }
600
601 if (q->netdev)
602 q->netdev->atalk_ptr = NULL;
603
604 memset(q, 0, sizeof(*q));
605}
606
607/**
608 * init_qset_cntxt - initialize an SGE queue set context info
609 * @qs: the queue set
610 * @id: the queue set id
611 *
612 * Initializes the TIDs and context ids for the queues of a queue set.
613 */
614static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
615{
616 qs->rspq.cntxt_id = id;
617 qs->fl[0].cntxt_id = 2 * id;
618 qs->fl[1].cntxt_id = 2 * id + 1;
619 qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
620 qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
621 qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
622 qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
623 qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
624}
625
626/**
627 * sgl_len - calculates the size of an SGL of the given capacity
628 * @n: the number of SGL entries
629 *
630 * Calculates the number of flits needed for a scatter/gather list that
631 * can hold the given number of entries.
632 */
633static inline unsigned int sgl_len(unsigned int n)
634{
635 /* alternatively: 3 * (n / 2) + 2 * (n & 1) */
636 return (3 * n) / 2 + (n & 1);
637}
638
639/**
640 * flits_to_desc - returns the num of Tx descriptors for the given flits
641 * @n: the number of flits
642 *
643 * Calculates the number of Tx descriptors needed for the supplied number
644 * of flits.
645 */
646static inline unsigned int flits_to_desc(unsigned int n)
647{
648 BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
649 return flit_desc_map[n];
650}
651
4d22de3e
DLR
652/**
653 * get_imm_packet - return the next ingress packet buffer from a response
654 * @resp: the response descriptor containing the packet data
655 *
656 * Return a packet containing the immediate data of the given response.
657 */
658static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
659{
660 struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
661
662 if (skb) {
663 __skb_put(skb, IMMED_PKT_SIZE);
664 memcpy(skb->data, resp->imm_data, IMMED_PKT_SIZE);
665 }
666 return skb;
667}
668
669/**
670 * calc_tx_descs - calculate the number of Tx descriptors for a packet
671 * @skb: the packet
672 *
673 * Returns the number of Tx descriptors needed for the given Ethernet
674 * packet. Ethernet packets require addition of WR and CPL headers.
675 */
676static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
677{
678 unsigned int flits;
679
680 if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
681 return 1;
682
683 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
684 if (skb_shinfo(skb)->gso_size)
685 flits++;
686 return flits_to_desc(flits);
687}
688
689/**
690 * make_sgl - populate a scatter/gather list for a packet
691 * @skb: the packet
692 * @sgp: the SGL to populate
693 * @start: start address of skb main body data to include in the SGL
694 * @len: length of skb main body data to include in the SGL
695 * @pdev: the PCI device
696 *
697 * Generates a scatter/gather list for the buffers that make up a packet
698 * and returns the SGL size in 8-byte words. The caller must size the SGL
699 * appropriately.
700 */
701static inline unsigned int make_sgl(const struct sk_buff *skb,
702 struct sg_ent *sgp, unsigned char *start,
703 unsigned int len, struct pci_dev *pdev)
704{
705 dma_addr_t mapping;
706 unsigned int i, j = 0, nfrags;
707
708 if (len) {
709 mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE);
710 sgp->len[0] = cpu_to_be32(len);
711 sgp->addr[0] = cpu_to_be64(mapping);
712 j = 1;
713 }
714
715 nfrags = skb_shinfo(skb)->nr_frags;
716 for (i = 0; i < nfrags; i++) {
717 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
718
719 mapping = pci_map_page(pdev, frag->page, frag->page_offset,
720 frag->size, PCI_DMA_TODEVICE);
721 sgp->len[j] = cpu_to_be32(frag->size);
722 sgp->addr[j] = cpu_to_be64(mapping);
723 j ^= 1;
724 if (j == 0)
725 ++sgp;
726 }
727 if (j)
728 sgp->len[j] = 0;
729 return ((nfrags + (len != 0)) * 3) / 2 + j;
730}
731
732/**
733 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell
734 * @adap: the adapter
735 * @q: the Tx queue
736 *
737 * Ring the doorbel if a Tx queue is asleep. There is a natural race,
738 * where the HW is going to sleep just after we checked, however,
739 * then the interrupt handler will detect the outstanding TX packet
740 * and ring the doorbell for us.
741 *
742 * When GTS is disabled we unconditionally ring the doorbell.
743 */
744static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
745{
746#if USE_GTS
747 clear_bit(TXQ_LAST_PKT_DB, &q->flags);
748 if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
749 set_bit(TXQ_LAST_PKT_DB, &q->flags);
750 t3_write_reg(adap, A_SG_KDOORBELL,
751 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
752 }
753#else
754 wmb(); /* write descriptors before telling HW */
755 t3_write_reg(adap, A_SG_KDOORBELL,
756 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
757#endif
758}
759
760static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
761{
762#if SGE_NUM_GENBITS == 2
763 d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
764#endif
765}
766
767/**
768 * write_wr_hdr_sgl - write a WR header and, optionally, SGL
769 * @ndesc: number of Tx descriptors spanned by the SGL
770 * @skb: the packet corresponding to the WR
771 * @d: first Tx descriptor to be written
772 * @pidx: index of above descriptors
773 * @q: the SGE Tx queue
774 * @sgl: the SGL
775 * @flits: number of flits to the start of the SGL in the first descriptor
776 * @sgl_flits: the SGL size in flits
777 * @gen: the Tx descriptor generation
778 * @wr_hi: top 32 bits of WR header based on WR type (big endian)
779 * @wr_lo: low 32 bits of WR header based on WR type (big endian)
780 *
781 * Write a work request header and an associated SGL. If the SGL is
782 * small enough to fit into one Tx descriptor it has already been written
783 * and we just need to write the WR header. Otherwise we distribute the
784 * SGL across the number of descriptors it spans.
785 */
786static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
787 struct tx_desc *d, unsigned int pidx,
788 const struct sge_txq *q,
789 const struct sg_ent *sgl,
790 unsigned int flits, unsigned int sgl_flits,
791 unsigned int gen, unsigned int wr_hi,
792 unsigned int wr_lo)
793{
794 struct work_request_hdr *wrp = (struct work_request_hdr *)d;
795 struct tx_sw_desc *sd = &q->sdesc[pidx];
796
797 sd->skb = skb;
798 if (need_skb_unmap()) {
799 struct unmap_info *ui = (struct unmap_info *)skb->cb;
800
801 ui->fragidx = 0;
802 ui->addr_idx = 0;
803 ui->sflit = flits;
804 }
805
806 if (likely(ndesc == 1)) {
807 skb->priority = pidx;
808 wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
809 V_WR_SGLSFLT(flits)) | wr_hi;
810 wmb();
811 wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
812 V_WR_GEN(gen)) | wr_lo;
813 wr_gen2(d, gen);
814 } else {
815 unsigned int ogen = gen;
816 const u64 *fp = (const u64 *)sgl;
817 struct work_request_hdr *wp = wrp;
818
819 wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
820 V_WR_SGLSFLT(flits)) | wr_hi;
821
822 while (sgl_flits) {
823 unsigned int avail = WR_FLITS - flits;
824
825 if (avail > sgl_flits)
826 avail = sgl_flits;
827 memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
828 sgl_flits -= avail;
829 ndesc--;
830 if (!sgl_flits)
831 break;
832
833 fp += avail;
834 d++;
835 sd++;
836 if (++pidx == q->size) {
837 pidx = 0;
838 gen ^= 1;
839 d = q->desc;
840 sd = q->sdesc;
841 }
842
843 sd->skb = skb;
844 wrp = (struct work_request_hdr *)d;
845 wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
846 V_WR_SGLSFLT(1)) | wr_hi;
847 wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
848 sgl_flits + 1)) |
849 V_WR_GEN(gen)) | wr_lo;
850 wr_gen2(d, gen);
851 flits = 1;
852 }
853 skb->priority = pidx;
854 wrp->wr_hi |= htonl(F_WR_EOP);
855 wmb();
856 wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
857 wr_gen2((struct tx_desc *)wp, ogen);
858 WARN_ON(ndesc != 0);
859 }
860}
861
862/**
863 * write_tx_pkt_wr - write a TX_PKT work request
864 * @adap: the adapter
865 * @skb: the packet to send
866 * @pi: the egress interface
867 * @pidx: index of the first Tx descriptor to write
868 * @gen: the generation value to use
869 * @q: the Tx queue
870 * @ndesc: number of descriptors the packet will occupy
871 * @compl: the value of the COMPL bit to use
872 *
873 * Generate a TX_PKT work request to send the supplied packet.
874 */
875static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
876 const struct port_info *pi,
877 unsigned int pidx, unsigned int gen,
878 struct sge_txq *q, unsigned int ndesc,
879 unsigned int compl)
880{
881 unsigned int flits, sgl_flits, cntrl, tso_info;
882 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
883 struct tx_desc *d = &q->desc[pidx];
884 struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
885
886 cpl->len = htonl(skb->len | 0x80000000);
887 cntrl = V_TXPKT_INTF(pi->port_id);
888
889 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
890 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb));
891
892 tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
893 if (tso_info) {
894 int eth_type;
895 struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
896
897 d->flit[2] = 0;
898 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
899 hdr->cntrl = htonl(cntrl);
bbe735e4 900 eth_type = skb_network_offset(skb) == ETH_HLEN ?
4d22de3e
DLR
901 CPL_ETH_II : CPL_ETH_II_VLAN;
902 tso_info |= V_LSO_ETH_TYPE(eth_type) |
eddc9ec5 903 V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
aa8223c7 904 V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
4d22de3e
DLR
905 hdr->lso_info = htonl(tso_info);
906 flits = 3;
907 } else {
908 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
909 cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */
910 cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
911 cpl->cntrl = htonl(cntrl);
912
913 if (skb->len <= WR_LEN - sizeof(*cpl)) {
914 q->sdesc[pidx].skb = NULL;
915 if (!skb->data_len)
916 memcpy(&d->flit[2], skb->data, skb->len);
917 else
918 skb_copy_bits(skb, 0, &d->flit[2], skb->len);
919
920 flits = (skb->len + 7) / 8 + 2;
921 cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
922 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
923 | F_WR_SOP | F_WR_EOP | compl);
924 wmb();
925 cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
926 V_WR_TID(q->token));
927 wr_gen2(d, gen);
928 kfree_skb(skb);
929 return;
930 }
931
932 flits = 2;
933 }
934
935 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
936 sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev);
937 if (need_skb_unmap())
938 ((struct unmap_info *)skb->cb)->len = skb_headlen(skb);
939
940 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
941 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
942 htonl(V_WR_TID(q->token)));
943}
944
945/**
946 * eth_xmit - add a packet to the Ethernet Tx queue
947 * @skb: the packet
948 * @dev: the egress net device
949 *
950 * Add a packet to an SGE Tx queue. Runs with softirqs disabled.
951 */
952int t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
953{
954 unsigned int ndesc, pidx, credits, gen, compl;
955 const struct port_info *pi = netdev_priv(dev);
956 struct adapter *adap = dev->priv;
957 struct sge_qset *qs = dev2qset(dev);
958 struct sge_txq *q = &qs->txq[TXQ_ETH];
959
960 /*
961 * The chip min packet length is 9 octets but play safe and reject
962 * anything shorter than an Ethernet header.
963 */
964 if (unlikely(skb->len < ETH_HLEN)) {
965 dev_kfree_skb(skb);
966 return NETDEV_TX_OK;
967 }
968
969 spin_lock(&q->lock);
970 reclaim_completed_tx(adap, q);
971
972 credits = q->size - q->in_use;
973 ndesc = calc_tx_descs(skb);
974
975 if (unlikely(credits < ndesc)) {
976 if (!netif_queue_stopped(dev)) {
977 netif_stop_queue(dev);
978 set_bit(TXQ_ETH, &qs->txq_stopped);
979 q->stops++;
980 dev_err(&adap->pdev->dev,
981 "%s: Tx ring %u full while queue awake!\n",
982 dev->name, q->cntxt_id & 7);
983 }
984 spin_unlock(&q->lock);
985 return NETDEV_TX_BUSY;
986 }
987
988 q->in_use += ndesc;
989 if (unlikely(credits - ndesc < q->stop_thres)) {
990 q->stops++;
991 netif_stop_queue(dev);
992 set_bit(TXQ_ETH, &qs->txq_stopped);
993#if !USE_GTS
994 if (should_restart_tx(q) &&
995 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
996 q->restarts++;
997 netif_wake_queue(dev);
998 }
999#endif
1000 }
1001
1002 gen = q->gen;
1003 q->unacked += ndesc;
1004 compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1005 q->unacked &= 7;
1006 pidx = q->pidx;
1007 q->pidx += ndesc;
1008 if (q->pidx >= q->size) {
1009 q->pidx -= q->size;
1010 q->gen ^= 1;
1011 }
1012
1013 /* update port statistics */
1014 if (skb->ip_summed == CHECKSUM_COMPLETE)
1015 qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1016 if (skb_shinfo(skb)->gso_size)
1017 qs->port_stats[SGE_PSTAT_TSO]++;
1018 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1019 qs->port_stats[SGE_PSTAT_VLANINS]++;
1020
1021 dev->trans_start = jiffies;
1022 spin_unlock(&q->lock);
1023
1024 /*
1025 * We do not use Tx completion interrupts to free DMAd Tx packets.
1026 * This is good for performamce but means that we rely on new Tx
1027 * packets arriving to run the destructors of completed packets,
1028 * which open up space in their sockets' send queues. Sometimes
1029 * we do not get such new packets causing Tx to stall. A single
1030 * UDP transmitter is a good example of this situation. We have
1031 * a clean up timer that periodically reclaims completed packets
1032 * but it doesn't run often enough (nor do we want it to) to prevent
1033 * lengthy stalls. A solution to this problem is to run the
1034 * destructor early, after the packet is queued but before it's DMAd.
1035 * A cons is that we lie to socket memory accounting, but the amount
1036 * of extra memory is reasonable (limited by the number of Tx
1037 * descriptors), the packets do actually get freed quickly by new
1038 * packets almost always, and for protocols like TCP that wait for
1039 * acks to really free up the data the extra memory is even less.
1040 * On the positive side we run the destructors on the sending CPU
1041 * rather than on a potentially different completing CPU, usually a
1042 * good thing. We also run them without holding our Tx queue lock,
1043 * unlike what reclaim_completed_tx() would otherwise do.
1044 *
1045 * Run the destructor before telling the DMA engine about the packet
1046 * to make sure it doesn't complete and get freed prematurely.
1047 */
1048 if (likely(!skb_shared(skb)))
1049 skb_orphan(skb);
1050
1051 write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl);
1052 check_ring_tx_db(adap, q);
1053 return NETDEV_TX_OK;
1054}
1055
1056/**
1057 * write_imm - write a packet into a Tx descriptor as immediate data
1058 * @d: the Tx descriptor to write
1059 * @skb: the packet
1060 * @len: the length of packet data to write as immediate data
1061 * @gen: the generation bit value to write
1062 *
1063 * Writes a packet as immediate data into a Tx descriptor. The packet
1064 * contains a work request at its beginning. We must write the packet
1065 * carefully so the SGE doesn't read accidentally before it's written in
1066 * its entirety.
1067 */
1068static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1069 unsigned int len, unsigned int gen)
1070{
1071 struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1072 struct work_request_hdr *to = (struct work_request_hdr *)d;
1073
1074 memcpy(&to[1], &from[1], len - sizeof(*from));
1075 to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1076 V_WR_BCNTLFLT(len & 7));
1077 wmb();
1078 to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1079 V_WR_LEN((len + 7) / 8));
1080 wr_gen2(d, gen);
1081 kfree_skb(skb);
1082}
1083
1084/**
1085 * check_desc_avail - check descriptor availability on a send queue
1086 * @adap: the adapter
1087 * @q: the send queue
1088 * @skb: the packet needing the descriptors
1089 * @ndesc: the number of Tx descriptors needed
1090 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1091 *
1092 * Checks if the requested number of Tx descriptors is available on an
1093 * SGE send queue. If the queue is already suspended or not enough
1094 * descriptors are available the packet is queued for later transmission.
1095 * Must be called with the Tx queue locked.
1096 *
1097 * Returns 0 if enough descriptors are available, 1 if there aren't
1098 * enough descriptors and the packet has been queued, and 2 if the caller
1099 * needs to retry because there weren't enough descriptors at the
1100 * beginning of the call but some freed up in the mean time.
1101 */
1102static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1103 struct sk_buff *skb, unsigned int ndesc,
1104 unsigned int qid)
1105{
1106 if (unlikely(!skb_queue_empty(&q->sendq))) {
1107 addq_exit:__skb_queue_tail(&q->sendq, skb);
1108 return 1;
1109 }
1110 if (unlikely(q->size - q->in_use < ndesc)) {
1111 struct sge_qset *qs = txq_to_qset(q, qid);
1112
1113 set_bit(qid, &qs->txq_stopped);
1114 smp_mb__after_clear_bit();
1115
1116 if (should_restart_tx(q) &&
1117 test_and_clear_bit(qid, &qs->txq_stopped))
1118 return 2;
1119
1120 q->stops++;
1121 goto addq_exit;
1122 }
1123 return 0;
1124}
1125
1126/**
1127 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1128 * @q: the SGE control Tx queue
1129 *
1130 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1131 * that send only immediate data (presently just the control queues) and
1132 * thus do not have any sk_buffs to release.
1133 */
1134static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1135{
1136 unsigned int reclaim = q->processed - q->cleaned;
1137
1138 q->in_use -= reclaim;
1139 q->cleaned += reclaim;
1140}
1141
1142static inline int immediate(const struct sk_buff *skb)
1143{
1144 return skb->len <= WR_LEN && !skb->data_len;
1145}
1146
1147/**
1148 * ctrl_xmit - send a packet through an SGE control Tx queue
1149 * @adap: the adapter
1150 * @q: the control queue
1151 * @skb: the packet
1152 *
1153 * Send a packet through an SGE control Tx queue. Packets sent through
1154 * a control queue must fit entirely as immediate data in a single Tx
1155 * descriptor and have no page fragments.
1156 */
1157static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1158 struct sk_buff *skb)
1159{
1160 int ret;
1161 struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1162
1163 if (unlikely(!immediate(skb))) {
1164 WARN_ON(1);
1165 dev_kfree_skb(skb);
1166 return NET_XMIT_SUCCESS;
1167 }
1168
1169 wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1170 wrp->wr_lo = htonl(V_WR_TID(q->token));
1171
1172 spin_lock(&q->lock);
1173 again:reclaim_completed_tx_imm(q);
1174
1175 ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1176 if (unlikely(ret)) {
1177 if (ret == 1) {
1178 spin_unlock(&q->lock);
1179 return NET_XMIT_CN;
1180 }
1181 goto again;
1182 }
1183
1184 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1185
1186 q->in_use++;
1187 if (++q->pidx >= q->size) {
1188 q->pidx = 0;
1189 q->gen ^= 1;
1190 }
1191 spin_unlock(&q->lock);
1192 wmb();
1193 t3_write_reg(adap, A_SG_KDOORBELL,
1194 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1195 return NET_XMIT_SUCCESS;
1196}
1197
1198/**
1199 * restart_ctrlq - restart a suspended control queue
1200 * @qs: the queue set cotaining the control queue
1201 *
1202 * Resumes transmission on a suspended Tx control queue.
1203 */
1204static void restart_ctrlq(unsigned long data)
1205{
1206 struct sk_buff *skb;
1207 struct sge_qset *qs = (struct sge_qset *)data;
1208 struct sge_txq *q = &qs->txq[TXQ_CTRL];
1209 struct adapter *adap = qs->netdev->priv;
1210
1211 spin_lock(&q->lock);
1212 again:reclaim_completed_tx_imm(q);
1213
1214 while (q->in_use < q->size && (skb = __skb_dequeue(&q->sendq)) != NULL) {
1215
1216 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1217
1218 if (++q->pidx >= q->size) {
1219 q->pidx = 0;
1220 q->gen ^= 1;
1221 }
1222 q->in_use++;
1223 }
1224
1225 if (!skb_queue_empty(&q->sendq)) {
1226 set_bit(TXQ_CTRL, &qs->txq_stopped);
1227 smp_mb__after_clear_bit();
1228
1229 if (should_restart_tx(q) &&
1230 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1231 goto again;
1232 q->stops++;
1233 }
1234
1235 spin_unlock(&q->lock);
1236 t3_write_reg(adap, A_SG_KDOORBELL,
1237 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1238}
1239
14ab9892
DLR
1240/*
1241 * Send a management message through control queue 0
1242 */
1243int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1244{
1245 return ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1246}
1247
99d7cf30
DLR
1248/**
1249 * deferred_unmap_destructor - unmap a packet when it is freed
1250 * @skb: the packet
1251 *
1252 * This is the packet destructor used for Tx packets that need to remain
1253 * mapped until they are freed rather than until their Tx descriptors are
1254 * freed.
1255 */
1256static void deferred_unmap_destructor(struct sk_buff *skb)
1257{
1258 int i;
1259 const dma_addr_t *p;
1260 const struct skb_shared_info *si;
1261 const struct deferred_unmap_info *dui;
1262 const struct unmap_info *ui = (struct unmap_info *)skb->cb;
1263
1264 dui = (struct deferred_unmap_info *)skb->head;
1265 p = dui->addr;
1266
1267 if (ui->len)
1268 pci_unmap_single(dui->pdev, *p++, ui->len, PCI_DMA_TODEVICE);
1269
1270 si = skb_shinfo(skb);
1271 for (i = 0; i < si->nr_frags; i++)
1272 pci_unmap_page(dui->pdev, *p++, si->frags[i].size,
1273 PCI_DMA_TODEVICE);
1274}
1275
1276static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1277 const struct sg_ent *sgl, int sgl_flits)
1278{
1279 dma_addr_t *p;
1280 struct deferred_unmap_info *dui;
1281
1282 dui = (struct deferred_unmap_info *)skb->head;
1283 dui->pdev = pdev;
1284 for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1285 *p++ = be64_to_cpu(sgl->addr[0]);
1286 *p++ = be64_to_cpu(sgl->addr[1]);
1287 }
1288 if (sgl_flits)
1289 *p = be64_to_cpu(sgl->addr[0]);
1290}
1291
4d22de3e
DLR
1292/**
1293 * write_ofld_wr - write an offload work request
1294 * @adap: the adapter
1295 * @skb: the packet to send
1296 * @q: the Tx queue
1297 * @pidx: index of the first Tx descriptor to write
1298 * @gen: the generation value to use
1299 * @ndesc: number of descriptors the packet will occupy
1300 *
1301 * Write an offload work request to send the supplied packet. The packet
1302 * data already carry the work request with most fields populated.
1303 */
1304static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1305 struct sge_txq *q, unsigned int pidx,
1306 unsigned int gen, unsigned int ndesc)
1307{
1308 unsigned int sgl_flits, flits;
1309 struct work_request_hdr *from;
1310 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1311 struct tx_desc *d = &q->desc[pidx];
1312
1313 if (immediate(skb)) {
1314 q->sdesc[pidx].skb = NULL;
1315 write_imm(d, skb, skb->len, gen);
1316 return;
1317 }
1318
1319 /* Only TX_DATA builds SGLs */
1320
1321 from = (struct work_request_hdr *)skb->data;
ea2ae17d
ACM
1322 memcpy(&d->flit[1], &from[1],
1323 skb_transport_offset(skb) - sizeof(*from));
4d22de3e 1324
ea2ae17d 1325 flits = skb_transport_offset(skb) / 8;
4d22de3e 1326 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
9c70220b 1327 sgl_flits = make_sgl(skb, sgp, skb_transport_header(skb),
27a884dc 1328 skb->tail - skb->transport_header,
4d22de3e 1329 adap->pdev);
99d7cf30
DLR
1330 if (need_skb_unmap()) {
1331 setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1332 skb->destructor = deferred_unmap_destructor;
9c70220b 1333 ((struct unmap_info *)skb->cb)->len = (skb->tail -
27a884dc 1334 skb->transport_header);
99d7cf30 1335 }
4d22de3e
DLR
1336
1337 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1338 gen, from->wr_hi, from->wr_lo);
1339}
1340
1341/**
1342 * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1343 * @skb: the packet
1344 *
1345 * Returns the number of Tx descriptors needed for the given offload
1346 * packet. These packets are already fully constructed.
1347 */
1348static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1349{
1350 unsigned int flits, cnt = skb_shinfo(skb)->nr_frags;
1351
1352 if (skb->len <= WR_LEN && cnt == 0)
1353 return 1; /* packet fits as immediate data */
1354
ea2ae17d 1355 flits = skb_transport_offset(skb) / 8; /* headers */
27a884dc 1356 if (skb->tail != skb->transport_header)
4d22de3e
DLR
1357 cnt++;
1358 return flits_to_desc(flits + sgl_len(cnt));
1359}
1360
1361/**
1362 * ofld_xmit - send a packet through an offload queue
1363 * @adap: the adapter
1364 * @q: the Tx offload queue
1365 * @skb: the packet
1366 *
1367 * Send an offload packet through an SGE offload queue.
1368 */
1369static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1370 struct sk_buff *skb)
1371{
1372 int ret;
1373 unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1374
1375 spin_lock(&q->lock);
1376 again:reclaim_completed_tx(adap, q);
1377
1378 ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1379 if (unlikely(ret)) {
1380 if (ret == 1) {
1381 skb->priority = ndesc; /* save for restart */
1382 spin_unlock(&q->lock);
1383 return NET_XMIT_CN;
1384 }
1385 goto again;
1386 }
1387
1388 gen = q->gen;
1389 q->in_use += ndesc;
1390 pidx = q->pidx;
1391 q->pidx += ndesc;
1392 if (q->pidx >= q->size) {
1393 q->pidx -= q->size;
1394 q->gen ^= 1;
1395 }
1396 spin_unlock(&q->lock);
1397
1398 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1399 check_ring_tx_db(adap, q);
1400 return NET_XMIT_SUCCESS;
1401}
1402
1403/**
1404 * restart_offloadq - restart a suspended offload queue
1405 * @qs: the queue set cotaining the offload queue
1406 *
1407 * Resumes transmission on a suspended Tx offload queue.
1408 */
1409static void restart_offloadq(unsigned long data)
1410{
1411 struct sk_buff *skb;
1412 struct sge_qset *qs = (struct sge_qset *)data;
1413 struct sge_txq *q = &qs->txq[TXQ_OFLD];
1414 struct adapter *adap = qs->netdev->priv;
1415
1416 spin_lock(&q->lock);
1417 again:reclaim_completed_tx(adap, q);
1418
1419 while ((skb = skb_peek(&q->sendq)) != NULL) {
1420 unsigned int gen, pidx;
1421 unsigned int ndesc = skb->priority;
1422
1423 if (unlikely(q->size - q->in_use < ndesc)) {
1424 set_bit(TXQ_OFLD, &qs->txq_stopped);
1425 smp_mb__after_clear_bit();
1426
1427 if (should_restart_tx(q) &&
1428 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1429 goto again;
1430 q->stops++;
1431 break;
1432 }
1433
1434 gen = q->gen;
1435 q->in_use += ndesc;
1436 pidx = q->pidx;
1437 q->pidx += ndesc;
1438 if (q->pidx >= q->size) {
1439 q->pidx -= q->size;
1440 q->gen ^= 1;
1441 }
1442 __skb_unlink(skb, &q->sendq);
1443 spin_unlock(&q->lock);
1444
1445 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1446 spin_lock(&q->lock);
1447 }
1448 spin_unlock(&q->lock);
1449
1450#if USE_GTS
1451 set_bit(TXQ_RUNNING, &q->flags);
1452 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1453#endif
1454 t3_write_reg(adap, A_SG_KDOORBELL,
1455 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1456}
1457
1458/**
1459 * queue_set - return the queue set a packet should use
1460 * @skb: the packet
1461 *
1462 * Maps a packet to the SGE queue set it should use. The desired queue
1463 * set is carried in bits 1-3 in the packet's priority.
1464 */
1465static inline int queue_set(const struct sk_buff *skb)
1466{
1467 return skb->priority >> 1;
1468}
1469
1470/**
1471 * is_ctrl_pkt - return whether an offload packet is a control packet
1472 * @skb: the packet
1473 *
1474 * Determines whether an offload packet should use an OFLD or a CTRL
1475 * Tx queue. This is indicated by bit 0 in the packet's priority.
1476 */
1477static inline int is_ctrl_pkt(const struct sk_buff *skb)
1478{
1479 return skb->priority & 1;
1480}
1481
1482/**
1483 * t3_offload_tx - send an offload packet
1484 * @tdev: the offload device to send to
1485 * @skb: the packet
1486 *
1487 * Sends an offload packet. We use the packet priority to select the
1488 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1489 * should be sent as regular or control, bits 1-3 select the queue set.
1490 */
1491int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1492{
1493 struct adapter *adap = tdev2adap(tdev);
1494 struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1495
1496 if (unlikely(is_ctrl_pkt(skb)))
1497 return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1498
1499 return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1500}
1501
1502/**
1503 * offload_enqueue - add an offload packet to an SGE offload receive queue
1504 * @q: the SGE response queue
1505 * @skb: the packet
1506 *
1507 * Add a new offload packet to an SGE response queue's offload packet
1508 * queue. If the packet is the first on the queue it schedules the RX
1509 * softirq to process the queue.
1510 */
1511static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1512{
1513 skb->next = skb->prev = NULL;
1514 if (q->rx_tail)
1515 q->rx_tail->next = skb;
1516 else {
1517 struct sge_qset *qs = rspq_to_qset(q);
1518
1519 if (__netif_rx_schedule_prep(qs->netdev))
1520 __netif_rx_schedule(qs->netdev);
1521 q->rx_head = skb;
1522 }
1523 q->rx_tail = skb;
1524}
1525
1526/**
1527 * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1528 * @tdev: the offload device that will be receiving the packets
1529 * @q: the SGE response queue that assembled the bundle
1530 * @skbs: the partial bundle
1531 * @n: the number of packets in the bundle
1532 *
1533 * Delivers a (partial) bundle of Rx offload packets to an offload device.
1534 */
1535static inline void deliver_partial_bundle(struct t3cdev *tdev,
1536 struct sge_rspq *q,
1537 struct sk_buff *skbs[], int n)
1538{
1539 if (n) {
1540 q->offload_bundles++;
1541 tdev->recv(tdev, skbs, n);
1542 }
1543}
1544
1545/**
1546 * ofld_poll - NAPI handler for offload packets in interrupt mode
1547 * @dev: the network device doing the polling
1548 * @budget: polling budget
1549 *
1550 * The NAPI handler for offload packets when a response queue is serviced
1551 * by the hard interrupt handler, i.e., when it's operating in non-polling
1552 * mode. Creates small packet batches and sends them through the offload
1553 * receive handler. Batches need to be of modest size as we do prefetches
1554 * on the packets in each.
1555 */
1556static int ofld_poll(struct net_device *dev, int *budget)
1557{
1558 struct adapter *adapter = dev->priv;
1559 struct sge_qset *qs = dev2qset(dev);
1560 struct sge_rspq *q = &qs->rspq;
1561 int work_done, limit = min(*budget, dev->quota), avail = limit;
1562
1563 while (avail) {
1564 struct sk_buff *head, *tail, *skbs[RX_BUNDLE_SIZE];
1565 int ngathered;
1566
1567 spin_lock_irq(&q->lock);
1568 head = q->rx_head;
1569 if (!head) {
1570 work_done = limit - avail;
1571 *budget -= work_done;
1572 dev->quota -= work_done;
1573 __netif_rx_complete(dev);
1574 spin_unlock_irq(&q->lock);
1575 return 0;
1576 }
1577
1578 tail = q->rx_tail;
1579 q->rx_head = q->rx_tail = NULL;
1580 spin_unlock_irq(&q->lock);
1581
1582 for (ngathered = 0; avail && head; avail--) {
1583 prefetch(head->data);
1584 skbs[ngathered] = head;
1585 head = head->next;
1586 skbs[ngathered]->next = NULL;
1587 if (++ngathered == RX_BUNDLE_SIZE) {
1588 q->offload_bundles++;
1589 adapter->tdev.recv(&adapter->tdev, skbs,
1590 ngathered);
1591 ngathered = 0;
1592 }
1593 }
1594 if (head) { /* splice remaining packets back onto Rx queue */
1595 spin_lock_irq(&q->lock);
1596 tail->next = q->rx_head;
1597 if (!q->rx_head)
1598 q->rx_tail = tail;
1599 q->rx_head = head;
1600 spin_unlock_irq(&q->lock);
1601 }
1602 deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1603 }
1604 work_done = limit - avail;
1605 *budget -= work_done;
1606 dev->quota -= work_done;
1607 return 1;
1608}
1609
1610/**
1611 * rx_offload - process a received offload packet
1612 * @tdev: the offload device receiving the packet
1613 * @rq: the response queue that received the packet
1614 * @skb: the packet
1615 * @rx_gather: a gather list of packets if we are building a bundle
1616 * @gather_idx: index of the next available slot in the bundle
1617 *
1618 * Process an ingress offload pakcet and add it to the offload ingress
1619 * queue. Returns the index of the next available slot in the bundle.
1620 */
1621static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1622 struct sk_buff *skb, struct sk_buff *rx_gather[],
1623 unsigned int gather_idx)
1624{
1625 rq->offload_pkts++;
459a98ed 1626 skb_reset_mac_header(skb);
c1d2bbe1 1627 skb_reset_network_header(skb);
badff6d0 1628 skb_reset_transport_header(skb);
4d22de3e
DLR
1629
1630 if (rq->polling) {
1631 rx_gather[gather_idx++] = skb;
1632 if (gather_idx == RX_BUNDLE_SIZE) {
1633 tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1634 gather_idx = 0;
1635 rq->offload_bundles++;
1636 }
1637 } else
1638 offload_enqueue(rq, skb);
1639
1640 return gather_idx;
1641}
1642
4d22de3e
DLR
1643/**
1644 * restart_tx - check whether to restart suspended Tx queues
1645 * @qs: the queue set to resume
1646 *
1647 * Restarts suspended Tx queues of an SGE queue set if they have enough
1648 * free resources to resume operation.
1649 */
1650static void restart_tx(struct sge_qset *qs)
1651{
1652 if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1653 should_restart_tx(&qs->txq[TXQ_ETH]) &&
1654 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1655 qs->txq[TXQ_ETH].restarts++;
1656 if (netif_running(qs->netdev))
1657 netif_wake_queue(qs->netdev);
1658 }
1659
1660 if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1661 should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1662 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1663 qs->txq[TXQ_OFLD].restarts++;
1664 tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
1665 }
1666 if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
1667 should_restart_tx(&qs->txq[TXQ_CTRL]) &&
1668 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
1669 qs->txq[TXQ_CTRL].restarts++;
1670 tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
1671 }
1672}
1673
1674/**
1675 * rx_eth - process an ingress ethernet packet
1676 * @adap: the adapter
1677 * @rq: the response queue that received the packet
1678 * @skb: the packet
1679 * @pad: amount of padding at the start of the buffer
1680 *
1681 * Process an ingress ethernet pakcet and deliver it to the stack.
1682 * The padding is 2 if the packet was delivered in an Rx buffer and 0
1683 * if it was immediate data in a response.
1684 */
1685static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
1686 struct sk_buff *skb, int pad)
1687{
1688 struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
1689 struct port_info *pi;
1690
4d22de3e 1691 skb_pull(skb, sizeof(*p) + pad);
4d22de3e 1692 skb->dev->last_rx = jiffies;
4c13eb66 1693 skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
4d22de3e
DLR
1694 pi = netdev_priv(skb->dev);
1695 if (pi->rx_csum_offload && p->csum_valid && p->csum == 0xffff &&
1696 !p->fragment) {
1697 rspq_to_qset(rq)->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
1698 skb->ip_summed = CHECKSUM_UNNECESSARY;
1699 } else
1700 skb->ip_summed = CHECKSUM_NONE;
1701
1702 if (unlikely(p->vlan_valid)) {
1703 struct vlan_group *grp = pi->vlan_grp;
1704
1705 rspq_to_qset(rq)->port_stats[SGE_PSTAT_VLANEX]++;
1706 if (likely(grp))
1707 __vlan_hwaccel_rx(skb, grp, ntohs(p->vlan),
1708 rq->polling);
1709 else
1710 dev_kfree_skb_any(skb);
1711 } else if (rq->polling)
1712 netif_receive_skb(skb);
1713 else
1714 netif_rx(skb);
1715}
1716
e0994eb1
DLR
1717#define SKB_DATA_SIZE 128
1718
1719static void skb_data_init(struct sk_buff *skb, struct sge_fl_page *p,
1720 unsigned int len)
1721{
1722 skb->len = len;
1723 if (len <= SKB_DATA_SIZE) {
1724 memcpy(skb->data, p->va, len);
1725 skb->tail += len;
1726 put_page(p->frag.page);
1727 } else {
1728 memcpy(skb->data, p->va, SKB_DATA_SIZE);
1729 skb_shinfo(skb)->frags[0].page = p->frag.page;
1730 skb_shinfo(skb)->frags[0].page_offset =
1731 p->frag.page_offset + SKB_DATA_SIZE;
1732 skb_shinfo(skb)->frags[0].size = len - SKB_DATA_SIZE;
1733 skb_shinfo(skb)->nr_frags = 1;
1734 skb->data_len = len - SKB_DATA_SIZE;
1735 skb->tail += SKB_DATA_SIZE;
1736 skb->truesize += skb->data_len;
1737 }
1738}
1739
1740/**
1741* get_packet - return the next ingress packet buffer from a free list
1742* @adap: the adapter that received the packet
1743* @fl: the SGE free list holding the packet
1744* @len: the packet length including any SGE padding
1745* @drop_thres: # of remaining buffers before we start dropping packets
1746*
1747* Get the next packet from a free list and complete setup of the
1748* sk_buff. If the packet is small we make a copy and recycle the
1749* original buffer, otherwise we use the original buffer itself. If a
1750* positive drop threshold is supplied packets are dropped and their
1751* buffers recycled if (a) the number of remaining buffers is under the
1752* threshold and the packet is too big to copy, or (b) the packet should
1753* be copied but there is no memory for the copy.
1754*/
1755static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
1756 unsigned int len, unsigned int drop_thres)
1757{
1758 struct sk_buff *skb = NULL;
1759 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
1760
1761 prefetch(sd->t.skb->data);
1762
1763 if (len <= SGE_RX_COPY_THRES) {
1764 skb = alloc_skb(len, GFP_ATOMIC);
1765 if (likely(skb != NULL)) {
1766 struct rx_desc *d = &fl->desc[fl->cidx];
1767 dma_addr_t mapping =
1768 (dma_addr_t)((u64) be32_to_cpu(d->addr_hi) << 32 |
1769 be32_to_cpu(d->addr_lo));
1770
1771 __skb_put(skb, len);
1772 pci_dma_sync_single_for_cpu(adap->pdev, mapping, len,
1773 PCI_DMA_FROMDEVICE);
1774 memcpy(skb->data, sd->t.skb->data, len);
1775 pci_dma_sync_single_for_device(adap->pdev, mapping, len,
1776 PCI_DMA_FROMDEVICE);
1777 } else if (!drop_thres)
1778 goto use_orig_buf;
1779recycle:
1780 recycle_rx_buf(adap, fl, fl->cidx);
1781 return skb;
1782 }
1783
1784 if (unlikely(fl->credits < drop_thres))
1785 goto recycle;
1786
1787use_orig_buf:
1788 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
1789 fl->buf_size, PCI_DMA_FROMDEVICE);
1790 skb = sd->t.skb;
1791 skb_put(skb, len);
1792 __refill_fl(adap, fl);
1793 return skb;
1794}
1795
4d22de3e
DLR
1796/**
1797 * handle_rsp_cntrl_info - handles control information in a response
1798 * @qs: the queue set corresponding to the response
1799 * @flags: the response control flags
4d22de3e
DLR
1800 *
1801 * Handles the control information of an SGE response, such as GTS
1802 * indications and completion credits for the queue set's Tx queues.
6195c71d 1803 * HW coalesces credits, we don't do any extra SW coalescing.
4d22de3e 1804 */
6195c71d 1805static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
4d22de3e
DLR
1806{
1807 unsigned int credits;
1808
1809#if USE_GTS
1810 if (flags & F_RSPD_TXQ0_GTS)
1811 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
1812#endif
1813
4d22de3e
DLR
1814 credits = G_RSPD_TXQ0_CR(flags);
1815 if (credits)
1816 qs->txq[TXQ_ETH].processed += credits;
1817
6195c71d
DLR
1818 credits = G_RSPD_TXQ2_CR(flags);
1819 if (credits)
1820 qs->txq[TXQ_CTRL].processed += credits;
1821
4d22de3e
DLR
1822# if USE_GTS
1823 if (flags & F_RSPD_TXQ1_GTS)
1824 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
1825# endif
6195c71d
DLR
1826 credits = G_RSPD_TXQ1_CR(flags);
1827 if (credits)
1828 qs->txq[TXQ_OFLD].processed += credits;
4d22de3e
DLR
1829}
1830
1831/**
1832 * check_ring_db - check if we need to ring any doorbells
1833 * @adapter: the adapter
1834 * @qs: the queue set whose Tx queues are to be examined
1835 * @sleeping: indicates which Tx queue sent GTS
1836 *
1837 * Checks if some of a queue set's Tx queues need to ring their doorbells
1838 * to resume transmission after idling while they still have unprocessed
1839 * descriptors.
1840 */
1841static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
1842 unsigned int sleeping)
1843{
1844 if (sleeping & F_RSPD_TXQ0_GTS) {
1845 struct sge_txq *txq = &qs->txq[TXQ_ETH];
1846
1847 if (txq->cleaned + txq->in_use != txq->processed &&
1848 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
1849 set_bit(TXQ_RUNNING, &txq->flags);
1850 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
1851 V_EGRCNTX(txq->cntxt_id));
1852 }
1853 }
1854
1855 if (sleeping & F_RSPD_TXQ1_GTS) {
1856 struct sge_txq *txq = &qs->txq[TXQ_OFLD];
1857
1858 if (txq->cleaned + txq->in_use != txq->processed &&
1859 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
1860 set_bit(TXQ_RUNNING, &txq->flags);
1861 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
1862 V_EGRCNTX(txq->cntxt_id));
1863 }
1864 }
1865}
1866
1867/**
1868 * is_new_response - check if a response is newly written
1869 * @r: the response descriptor
1870 * @q: the response queue
1871 *
1872 * Returns true if a response descriptor contains a yet unprocessed
1873 * response.
1874 */
1875static inline int is_new_response(const struct rsp_desc *r,
1876 const struct sge_rspq *q)
1877{
1878 return (r->intr_gen & F_RSPD_GEN2) == q->gen;
1879}
1880
1881#define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
1882#define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
1883 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
1884 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
1885 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
1886
1887/* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
1888#define NOMEM_INTR_DELAY 2500
1889
1890/**
1891 * process_responses - process responses from an SGE response queue
1892 * @adap: the adapter
1893 * @qs: the queue set to which the response queue belongs
1894 * @budget: how many responses can be processed in this round
1895 *
1896 * Process responses from an SGE response queue up to the supplied budget.
1897 * Responses include received packets as well as credits and other events
1898 * for the queues that belong to the response queue's queue set.
1899 * A negative budget is effectively unlimited.
1900 *
1901 * Additionally choose the interrupt holdoff time for the next interrupt
1902 * on this queue. If the system is under memory shortage use a fairly
1903 * long delay to help recovery.
1904 */
1905static int process_responses(struct adapter *adap, struct sge_qset *qs,
1906 int budget)
1907{
1908 struct sge_rspq *q = &qs->rspq;
1909 struct rsp_desc *r = &q->desc[q->cidx];
1910 int budget_left = budget;
6195c71d 1911 unsigned int sleeping = 0;
4d22de3e
DLR
1912 struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
1913 int ngathered = 0;
1914
1915 q->next_holdoff = q->holdoff_tmr;
1916
1917 while (likely(budget_left && is_new_response(r, q))) {
e0994eb1 1918 int eth, ethpad = 2;
4d22de3e
DLR
1919 struct sk_buff *skb = NULL;
1920 u32 len, flags = ntohl(r->flags);
1921 u32 rss_hi = *(const u32 *)r, rss_lo = r->rss_hdr.rss_hash_val;
1922
1923 eth = r->rss_hdr.opcode == CPL_RX_PKT;
1924
1925 if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
1926 skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
1927 if (!skb)
1928 goto no_mem;
1929
1930 memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE);
1931 skb->data[0] = CPL_ASYNC_NOTIF;
1932 rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
1933 q->async_notif++;
1934 } else if (flags & F_RSPD_IMM_DATA_VALID) {
1935 skb = get_imm_packet(r);
1936 if (unlikely(!skb)) {
1937 no_mem:
1938 q->next_holdoff = NOMEM_INTR_DELAY;
1939 q->nomem++;
1940 /* consume one credit since we tried */
1941 budget_left--;
1942 break;
1943 }
1944 q->imm_data++;
e0994eb1 1945 ethpad = 0;
4d22de3e 1946 } else if ((len = ntohl(r->len_cq)) != 0) {
e0994eb1
DLR
1947 struct sge_fl *fl =
1948 (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
1949
1950 if (fl->buf_size == RX_PAGE_SIZE) {
1951 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
1952 struct sge_fl_page *p = &sd->t.page;
1953
1954 prefetch(p->va);
1955 prefetch(p->va + L1_CACHE_BYTES);
1956
1957 __refill_fl(adap, fl);
1958
1959 pci_unmap_single(adap->pdev,
1960 pci_unmap_addr(sd, dma_addr),
1961 fl->buf_size,
1962 PCI_DMA_FROMDEVICE);
1963
1964 if (eth) {
1965 if (unlikely(fl->credits <
1966 SGE_RX_DROP_THRES))
1967 goto eth_recycle;
1968
1969 skb = alloc_skb(SKB_DATA_SIZE,
1970 GFP_ATOMIC);
1971 if (unlikely(!skb)) {
1972eth_recycle:
1973 q->rx_drops++;
1974 recycle_rx_buf(adap, fl,
1975 fl->cidx);
1976 goto eth_done;
1977 }
1978 } else {
1979 skb = alloc_skb(SKB_DATA_SIZE,
1980 GFP_ATOMIC);
1981 if (unlikely(!skb))
1982 goto no_mem;
1983 }
1984
1985 skb_data_init(skb, p, G_RSPD_LEN(len));
1986eth_done:
1987 fl->credits--;
1988 q->eth_pkts++;
1989 } else {
1990 fl->credits--;
1991 skb = get_packet(adap, fl, G_RSPD_LEN(len),
1992 eth ? SGE_RX_DROP_THRES : 0);
1993 }
4d22de3e 1994
4d22de3e
DLR
1995 if (++fl->cidx == fl->size)
1996 fl->cidx = 0;
1997 } else
1998 q->pure_rsps++;
1999
2000 if (flags & RSPD_CTRL_MASK) {
2001 sleeping |= flags & RSPD_GTS_MASK;
6195c71d 2002 handle_rsp_cntrl_info(qs, flags);
4d22de3e
DLR
2003 }
2004
2005 r++;
2006 if (unlikely(++q->cidx == q->size)) {
2007 q->cidx = 0;
2008 q->gen ^= 1;
2009 r = q->desc;
2010 }
2011 prefetch(r);
2012
2013 if (++q->credits >= (q->size / 4)) {
2014 refill_rspq(adap, q, q->credits);
2015 q->credits = 0;
2016 }
2017
e0994eb1
DLR
2018 if (skb) {
2019 /* Preserve the RSS info in csum & priority */
2020 skb->csum = rss_hi;
2021 skb->priority = rss_lo;
2022
4d22de3e
DLR
2023 if (eth)
2024 rx_eth(adap, q, skb, ethpad);
2025 else {
e0994eb1
DLR
2026 if (unlikely(r->rss_hdr.opcode ==
2027 CPL_TRACE_PKT))
2028 __skb_pull(skb, ethpad);
2029
2030 ngathered = rx_offload(&adap->tdev, q,
2031 skb, offload_skbs,
2032 ngathered);
4d22de3e
DLR
2033 }
2034 }
4d22de3e
DLR
2035 --budget_left;
2036 }
2037
4d22de3e
DLR
2038 deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2039 if (sleeping)
2040 check_ring_db(adap, qs, sleeping);
2041
2042 smp_mb(); /* commit Tx queue .processed updates */
2043 if (unlikely(qs->txq_stopped != 0))
2044 restart_tx(qs);
2045
2046 budget -= budget_left;
2047 return budget;
2048}
2049
2050static inline int is_pure_response(const struct rsp_desc *r)
2051{
2052 u32 n = ntohl(r->flags) & (F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2053
2054 return (n | r->len_cq) == 0;
2055}
2056
2057/**
2058 * napi_rx_handler - the NAPI handler for Rx processing
2059 * @dev: the net device
2060 * @budget: how many packets we can process in this round
2061 *
2062 * Handler for new data events when using NAPI.
2063 */
2064static int napi_rx_handler(struct net_device *dev, int *budget)
2065{
2066 struct adapter *adap = dev->priv;
2067 struct sge_qset *qs = dev2qset(dev);
2068 int effective_budget = min(*budget, dev->quota);
2069
2070 int work_done = process_responses(adap, qs, effective_budget);
2071 *budget -= work_done;
2072 dev->quota -= work_done;
2073
2074 if (work_done >= effective_budget)
2075 return 1;
2076
2077 netif_rx_complete(dev);
2078
2079 /*
2080 * Because we don't atomically flush the following write it is
2081 * possible that in very rare cases it can reach the device in a way
2082 * that races with a new response being written plus an error interrupt
2083 * causing the NAPI interrupt handler below to return unhandled status
2084 * to the OS. To protect against this would require flushing the write
2085 * and doing both the write and the flush with interrupts off. Way too
2086 * expensive and unjustifiable given the rarity of the race.
2087 *
2088 * The race cannot happen at all with MSI-X.
2089 */
2090 t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2091 V_NEWTIMER(qs->rspq.next_holdoff) |
2092 V_NEWINDEX(qs->rspq.cidx));
2093 return 0;
2094}
2095
2096/*
2097 * Returns true if the device is already scheduled for polling.
2098 */
2099static inline int napi_is_scheduled(struct net_device *dev)
2100{
2101 return test_bit(__LINK_STATE_RX_SCHED, &dev->state);
2102}
2103
2104/**
2105 * process_pure_responses - process pure responses from a response queue
2106 * @adap: the adapter
2107 * @qs: the queue set owning the response queue
2108 * @r: the first pure response to process
2109 *
2110 * A simpler version of process_responses() that handles only pure (i.e.,
2111 * non data-carrying) responses. Such respones are too light-weight to
2112 * justify calling a softirq under NAPI, so we handle them specially in
2113 * the interrupt handler. The function is called with a pointer to a
2114 * response, which the caller must ensure is a valid pure response.
2115 *
2116 * Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2117 */
2118static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2119 struct rsp_desc *r)
2120{
2121 struct sge_rspq *q = &qs->rspq;
6195c71d 2122 unsigned int sleeping = 0;
4d22de3e
DLR
2123
2124 do {
2125 u32 flags = ntohl(r->flags);
2126
2127 r++;
2128 if (unlikely(++q->cidx == q->size)) {
2129 q->cidx = 0;
2130 q->gen ^= 1;
2131 r = q->desc;
2132 }
2133 prefetch(r);
2134
2135 if (flags & RSPD_CTRL_MASK) {
2136 sleeping |= flags & RSPD_GTS_MASK;
6195c71d 2137 handle_rsp_cntrl_info(qs, flags);
4d22de3e
DLR
2138 }
2139
2140 q->pure_rsps++;
2141 if (++q->credits >= (q->size / 4)) {
2142 refill_rspq(adap, q, q->credits);
2143 q->credits = 0;
2144 }
2145 } while (is_new_response(r, q) && is_pure_response(r));
2146
4d22de3e
DLR
2147 if (sleeping)
2148 check_ring_db(adap, qs, sleeping);
2149
2150 smp_mb(); /* commit Tx queue .processed updates */
2151 if (unlikely(qs->txq_stopped != 0))
2152 restart_tx(qs);
2153
2154 return is_new_response(r, q);
2155}
2156
2157/**
2158 * handle_responses - decide what to do with new responses in NAPI mode
2159 * @adap: the adapter
2160 * @q: the response queue
2161 *
2162 * This is used by the NAPI interrupt handlers to decide what to do with
2163 * new SGE responses. If there are no new responses it returns -1. If
2164 * there are new responses and they are pure (i.e., non-data carrying)
2165 * it handles them straight in hard interrupt context as they are very
2166 * cheap and don't deliver any packets. Finally, if there are any data
2167 * signaling responses it schedules the NAPI handler. Returns 1 if it
2168 * schedules NAPI, 0 if all new responses were pure.
2169 *
2170 * The caller must ascertain NAPI is not already running.
2171 */
2172static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2173{
2174 struct sge_qset *qs = rspq_to_qset(q);
2175 struct rsp_desc *r = &q->desc[q->cidx];
2176
2177 if (!is_new_response(r, q))
2178 return -1;
2179 if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2180 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2181 V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2182 return 0;
2183 }
2184 if (likely(__netif_rx_schedule_prep(qs->netdev)))
2185 __netif_rx_schedule(qs->netdev);
2186 return 1;
2187}
2188
2189/*
2190 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2191 * (i.e., response queue serviced in hard interrupt).
2192 */
2193irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2194{
2195 struct sge_qset *qs = cookie;
2196 struct adapter *adap = qs->netdev->priv;
2197 struct sge_rspq *q = &qs->rspq;
2198
2199 spin_lock(&q->lock);
2200 if (process_responses(adap, qs, -1) == 0)
2201 q->unhandled_irqs++;
2202 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2203 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2204 spin_unlock(&q->lock);
2205 return IRQ_HANDLED;
2206}
2207
2208/*
2209 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2210 * (i.e., response queue serviced by NAPI polling).
2211 */
2212irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
2213{
2214 struct sge_qset *qs = cookie;
2215 struct adapter *adap = qs->netdev->priv;
2216 struct sge_rspq *q = &qs->rspq;
2217
2218 spin_lock(&q->lock);
2219 BUG_ON(napi_is_scheduled(qs->netdev));
2220
2221 if (handle_responses(adap, q) < 0)
2222 q->unhandled_irqs++;
2223 spin_unlock(&q->lock);
2224 return IRQ_HANDLED;
2225}
2226
2227/*
2228 * The non-NAPI MSI interrupt handler. This needs to handle data events from
2229 * SGE response queues as well as error and other async events as they all use
2230 * the same MSI vector. We use one SGE response queue per port in this mode
2231 * and protect all response queues with queue 0's lock.
2232 */
2233static irqreturn_t t3_intr_msi(int irq, void *cookie)
2234{
2235 int new_packets = 0;
2236 struct adapter *adap = cookie;
2237 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2238
2239 spin_lock(&q->lock);
2240
2241 if (process_responses(adap, &adap->sge.qs[0], -1)) {
2242 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2243 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2244 new_packets = 1;
2245 }
2246
2247 if (adap->params.nports == 2 &&
2248 process_responses(adap, &adap->sge.qs[1], -1)) {
2249 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2250
2251 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2252 V_NEWTIMER(q1->next_holdoff) |
2253 V_NEWINDEX(q1->cidx));
2254 new_packets = 1;
2255 }
2256
2257 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2258 q->unhandled_irqs++;
2259
2260 spin_unlock(&q->lock);
2261 return IRQ_HANDLED;
2262}
2263
2264static int rspq_check_napi(struct net_device *dev, struct sge_rspq *q)
2265{
2266 if (!napi_is_scheduled(dev) && is_new_response(&q->desc[q->cidx], q)) {
2267 if (likely(__netif_rx_schedule_prep(dev)))
2268 __netif_rx_schedule(dev);
2269 return 1;
2270 }
2271 return 0;
2272}
2273
2274/*
2275 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2276 * by NAPI polling). Handles data events from SGE response queues as well as
2277 * error and other async events as they all use the same MSI vector. We use
2278 * one SGE response queue per port in this mode and protect all response
2279 * queues with queue 0's lock.
2280 */
2281irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
2282{
2283 int new_packets;
2284 struct adapter *adap = cookie;
2285 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2286
2287 spin_lock(&q->lock);
2288
2289 new_packets = rspq_check_napi(adap->sge.qs[0].netdev, q);
2290 if (adap->params.nports == 2)
2291 new_packets += rspq_check_napi(adap->sge.qs[1].netdev,
2292 &adap->sge.qs[1].rspq);
2293 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2294 q->unhandled_irqs++;
2295
2296 spin_unlock(&q->lock);
2297 return IRQ_HANDLED;
2298}
2299
2300/*
2301 * A helper function that processes responses and issues GTS.
2302 */
2303static inline int process_responses_gts(struct adapter *adap,
2304 struct sge_rspq *rq)
2305{
2306 int work;
2307
2308 work = process_responses(adap, rspq_to_qset(rq), -1);
2309 t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2310 V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2311 return work;
2312}
2313
2314/*
2315 * The legacy INTx interrupt handler. This needs to handle data events from
2316 * SGE response queues as well as error and other async events as they all use
2317 * the same interrupt pin. We use one SGE response queue per port in this mode
2318 * and protect all response queues with queue 0's lock.
2319 */
2320static irqreturn_t t3_intr(int irq, void *cookie)
2321{
2322 int work_done, w0, w1;
2323 struct adapter *adap = cookie;
2324 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2325 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2326
2327 spin_lock(&q0->lock);
2328
2329 w0 = is_new_response(&q0->desc[q0->cidx], q0);
2330 w1 = adap->params.nports == 2 &&
2331 is_new_response(&q1->desc[q1->cidx], q1);
2332
2333 if (likely(w0 | w1)) {
2334 t3_write_reg(adap, A_PL_CLI, 0);
2335 t3_read_reg(adap, A_PL_CLI); /* flush */
2336
2337 if (likely(w0))
2338 process_responses_gts(adap, q0);
2339
2340 if (w1)
2341 process_responses_gts(adap, q1);
2342
2343 work_done = w0 | w1;
2344 } else
2345 work_done = t3_slow_intr_handler(adap);
2346
2347 spin_unlock(&q0->lock);
2348 return IRQ_RETVAL(work_done != 0);
2349}
2350
2351/*
2352 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2353 * Handles data events from SGE response queues as well as error and other
2354 * async events as they all use the same interrupt pin. We use one SGE
2355 * response queue per port in this mode and protect all response queues with
2356 * queue 0's lock.
2357 */
2358static irqreturn_t t3b_intr(int irq, void *cookie)
2359{
2360 u32 map;
2361 struct adapter *adap = cookie;
2362 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2363
2364 t3_write_reg(adap, A_PL_CLI, 0);
2365 map = t3_read_reg(adap, A_SG_DATA_INTR);
2366
2367 if (unlikely(!map)) /* shared interrupt, most likely */
2368 return IRQ_NONE;
2369
2370 spin_lock(&q0->lock);
2371
2372 if (unlikely(map & F_ERRINTR))
2373 t3_slow_intr_handler(adap);
2374
2375 if (likely(map & 1))
2376 process_responses_gts(adap, q0);
2377
2378 if (map & 2)
2379 process_responses_gts(adap, &adap->sge.qs[1].rspq);
2380
2381 spin_unlock(&q0->lock);
2382 return IRQ_HANDLED;
2383}
2384
2385/*
2386 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2387 * Handles data events from SGE response queues as well as error and other
2388 * async events as they all use the same interrupt pin. We use one SGE
2389 * response queue per port in this mode and protect all response queues with
2390 * queue 0's lock.
2391 */
2392static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2393{
2394 u32 map;
2395 struct net_device *dev;
2396 struct adapter *adap = cookie;
2397 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2398
2399 t3_write_reg(adap, A_PL_CLI, 0);
2400 map = t3_read_reg(adap, A_SG_DATA_INTR);
2401
2402 if (unlikely(!map)) /* shared interrupt, most likely */
2403 return IRQ_NONE;
2404
2405 spin_lock(&q0->lock);
2406
2407 if (unlikely(map & F_ERRINTR))
2408 t3_slow_intr_handler(adap);
2409
2410 if (likely(map & 1)) {
2411 dev = adap->sge.qs[0].netdev;
2412
4d22de3e
DLR
2413 if (likely(__netif_rx_schedule_prep(dev)))
2414 __netif_rx_schedule(dev);
2415 }
2416 if (map & 2) {
2417 dev = adap->sge.qs[1].netdev;
2418
4d22de3e
DLR
2419 if (likely(__netif_rx_schedule_prep(dev)))
2420 __netif_rx_schedule(dev);
2421 }
2422
2423 spin_unlock(&q0->lock);
2424 return IRQ_HANDLED;
2425}
2426
2427/**
2428 * t3_intr_handler - select the top-level interrupt handler
2429 * @adap: the adapter
2430 * @polling: whether using NAPI to service response queues
2431 *
2432 * Selects the top-level interrupt handler based on the type of interrupts
2433 * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2434 * response queues.
2435 */
2436intr_handler_t t3_intr_handler(struct adapter *adap, int polling)
2437{
2438 if (adap->flags & USING_MSIX)
2439 return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2440 if (adap->flags & USING_MSI)
2441 return polling ? t3_intr_msi_napi : t3_intr_msi;
2442 if (adap->params.rev > 0)
2443 return polling ? t3b_intr_napi : t3b_intr;
2444 return t3_intr;
2445}
2446
2447/**
2448 * t3_sge_err_intr_handler - SGE async event interrupt handler
2449 * @adapter: the adapter
2450 *
2451 * Interrupt handler for SGE asynchronous (non-data) events.
2452 */
2453void t3_sge_err_intr_handler(struct adapter *adapter)
2454{
2455 unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2456
2457 if (status & F_RSPQCREDITOVERFOW)
2458 CH_ALERT(adapter, "SGE response queue credit overflow\n");
2459
2460 if (status & F_RSPQDISABLED) {
2461 v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2462
2463 CH_ALERT(adapter,
2464 "packet delivered to disabled response queue "
2465 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2466 }
2467
2468 t3_write_reg(adapter, A_SG_INT_CAUSE, status);
2469 if (status & (F_RSPQCREDITOVERFOW | F_RSPQDISABLED))
2470 t3_fatal_err(adapter);
2471}
2472
2473/**
2474 * sge_timer_cb - perform periodic maintenance of an SGE qset
2475 * @data: the SGE queue set to maintain
2476 *
2477 * Runs periodically from a timer to perform maintenance of an SGE queue
2478 * set. It performs two tasks:
2479 *
2480 * a) Cleans up any completed Tx descriptors that may still be pending.
2481 * Normal descriptor cleanup happens when new packets are added to a Tx
2482 * queue so this timer is relatively infrequent and does any cleanup only
2483 * if the Tx queue has not seen any new packets in a while. We make a
2484 * best effort attempt to reclaim descriptors, in that we don't wait
2485 * around if we cannot get a queue's lock (which most likely is because
2486 * someone else is queueing new packets and so will also handle the clean
2487 * up). Since control queues use immediate data exclusively we don't
2488 * bother cleaning them up here.
2489 *
2490 * b) Replenishes Rx queues that have run out due to memory shortage.
2491 * Normally new Rx buffers are added when existing ones are consumed but
2492 * when out of memory a queue can become empty. We try to add only a few
2493 * buffers here, the queue will be replenished fully as these new buffers
2494 * are used up if memory shortage has subsided.
2495 */
2496static void sge_timer_cb(unsigned long data)
2497{
2498 spinlock_t *lock;
2499 struct sge_qset *qs = (struct sge_qset *)data;
2500 struct adapter *adap = qs->netdev->priv;
2501
2502 if (spin_trylock(&qs->txq[TXQ_ETH].lock)) {
2503 reclaim_completed_tx(adap, &qs->txq[TXQ_ETH]);
2504 spin_unlock(&qs->txq[TXQ_ETH].lock);
2505 }
2506 if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2507 reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD]);
2508 spin_unlock(&qs->txq[TXQ_OFLD].lock);
2509 }
2510 lock = (adap->flags & USING_MSIX) ? &qs->rspq.lock :
e0994eb1 2511 &adap->sge.qs[0].rspq.lock;
4d22de3e
DLR
2512 if (spin_trylock_irq(lock)) {
2513 if (!napi_is_scheduled(qs->netdev)) {
bae73f44
DLR
2514 u32 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2515
4d22de3e
DLR
2516 if (qs->fl[0].credits < qs->fl[0].size)
2517 __refill_fl(adap, &qs->fl[0]);
2518 if (qs->fl[1].credits < qs->fl[1].size)
2519 __refill_fl(adap, &qs->fl[1]);
bae73f44
DLR
2520
2521 if (status & (1 << qs->rspq.cntxt_id)) {
2522 qs->rspq.starved++;
2523 if (qs->rspq.credits) {
2524 refill_rspq(adap, &qs->rspq, 1);
2525 qs->rspq.credits--;
2526 qs->rspq.restarted++;
e0994eb1 2527 t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
bae73f44
DLR
2528 1 << qs->rspq.cntxt_id);
2529 }
2530 }
4d22de3e
DLR
2531 }
2532 spin_unlock_irq(lock);
2533 }
2534 mod_timer(&qs->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2535}
2536
2537/**
2538 * t3_update_qset_coalesce - update coalescing settings for a queue set
2539 * @qs: the SGE queue set
2540 * @p: new queue set parameters
2541 *
2542 * Update the coalescing settings for an SGE queue set. Nothing is done
2543 * if the queue set is not initialized yet.
2544 */
2545void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
2546{
2547 if (!qs->netdev)
2548 return;
2549
2550 qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
2551 qs->rspq.polling = p->polling;
2552 qs->netdev->poll = p->polling ? napi_rx_handler : ofld_poll;
2553}
2554
2555/**
2556 * t3_sge_alloc_qset - initialize an SGE queue set
2557 * @adapter: the adapter
2558 * @id: the queue set id
2559 * @nports: how many Ethernet ports will be using this queue set
2560 * @irq_vec_idx: the IRQ vector index for response queue interrupts
2561 * @p: configuration parameters for this queue set
2562 * @ntxq: number of Tx queues for the queue set
2563 * @netdev: net device associated with this queue set
2564 *
2565 * Allocate resources and initialize an SGE queue set. A queue set
2566 * comprises a response queue, two Rx free-buffer queues, and up to 3
2567 * Tx queues. The Tx queues are assigned roles in the order Ethernet
2568 * queue, offload queue, and control queue.
2569 */
2570int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
2571 int irq_vec_idx, const struct qset_params *p,
2572 int ntxq, struct net_device *netdev)
2573{
2574 int i, ret = -ENOMEM;
2575 struct sge_qset *q = &adapter->sge.qs[id];
2576
2577 init_qset_cntxt(q, id);
2578 init_timer(&q->tx_reclaim_timer);
2579 q->tx_reclaim_timer.data = (unsigned long)q;
2580 q->tx_reclaim_timer.function = sge_timer_cb;
2581
2582 q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
2583 sizeof(struct rx_desc),
2584 sizeof(struct rx_sw_desc),
2585 &q->fl[0].phys_addr, &q->fl[0].sdesc);
2586 if (!q->fl[0].desc)
2587 goto err;
2588
2589 q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
2590 sizeof(struct rx_desc),
2591 sizeof(struct rx_sw_desc),
2592 &q->fl[1].phys_addr, &q->fl[1].sdesc);
2593 if (!q->fl[1].desc)
2594 goto err;
2595
2596 q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
2597 sizeof(struct rsp_desc), 0,
2598 &q->rspq.phys_addr, NULL);
2599 if (!q->rspq.desc)
2600 goto err;
2601
2602 for (i = 0; i < ntxq; ++i) {
2603 /*
2604 * The control queue always uses immediate data so does not
2605 * need to keep track of any sk_buffs.
2606 */
2607 size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
2608
2609 q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
2610 sizeof(struct tx_desc), sz,
2611 &q->txq[i].phys_addr,
2612 &q->txq[i].sdesc);
2613 if (!q->txq[i].desc)
2614 goto err;
2615
2616 q->txq[i].gen = 1;
2617 q->txq[i].size = p->txq_size[i];
2618 spin_lock_init(&q->txq[i].lock);
2619 skb_queue_head_init(&q->txq[i].sendq);
2620 }
2621
2622 tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
2623 (unsigned long)q);
2624 tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
2625 (unsigned long)q);
2626
2627 q->fl[0].gen = q->fl[1].gen = 1;
2628 q->fl[0].size = p->fl_size;
2629 q->fl[1].size = p->jumbo_size;
2630
2631 q->rspq.gen = 1;
2632 q->rspq.size = p->rspq_size;
2633 spin_lock_init(&q->rspq.lock);
2634
2635 q->txq[TXQ_ETH].stop_thres = nports *
2636 flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
2637
8ac3ba68 2638 if (!is_offload(adapter)) {
e0994eb1
DLR
2639#ifdef USE_RX_PAGE
2640 q->fl[0].buf_size = RX_PAGE_SIZE;
2641#else
4d22de3e
DLR
2642 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + 2 +
2643 sizeof(struct cpl_rx_pkt);
e0994eb1 2644#endif
4d22de3e
DLR
2645 q->fl[1].buf_size = MAX_FRAME_SIZE + 2 +
2646 sizeof(struct cpl_rx_pkt);
2647 } else {
e0994eb1
DLR
2648#ifdef USE_RX_PAGE
2649 q->fl[0].buf_size = RX_PAGE_SIZE;
2650#else
4d22de3e
DLR
2651 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE +
2652 sizeof(struct cpl_rx_data);
e0994eb1 2653#endif
4d22de3e
DLR
2654 q->fl[1].buf_size = (16 * 1024) -
2655 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2656 }
2657
2658 spin_lock(&adapter->sge.reg_lock);
2659
2660 /* FL threshold comparison uses < */
2661 ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
2662 q->rspq.phys_addr, q->rspq.size,
2663 q->fl[0].buf_size, 1, 0);
2664 if (ret)
2665 goto err_unlock;
2666
2667 for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
2668 ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
2669 q->fl[i].phys_addr, q->fl[i].size,
2670 q->fl[i].buf_size, p->cong_thres, 1,
2671 0);
2672 if (ret)
2673 goto err_unlock;
2674 }
2675
2676 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
2677 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
2678 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
2679 1, 0);
2680 if (ret)
2681 goto err_unlock;
2682
2683 if (ntxq > 1) {
2684 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
2685 USE_GTS, SGE_CNTXT_OFLD, id,
2686 q->txq[TXQ_OFLD].phys_addr,
2687 q->txq[TXQ_OFLD].size, 0, 1, 0);
2688 if (ret)
2689 goto err_unlock;
2690 }
2691
2692 if (ntxq > 2) {
2693 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
2694 SGE_CNTXT_CTRL, id,
2695 q->txq[TXQ_CTRL].phys_addr,
2696 q->txq[TXQ_CTRL].size,
2697 q->txq[TXQ_CTRL].token, 1, 0);
2698 if (ret)
2699 goto err_unlock;
2700 }
2701
2702 spin_unlock(&adapter->sge.reg_lock);
2703 q->netdev = netdev;
2704 t3_update_qset_coalesce(q, p);
2705
2706 /*
2707 * We use atalk_ptr as a backpointer to a qset. In case a device is
2708 * associated with multiple queue sets only the first one sets
2709 * atalk_ptr.
2710 */
2711 if (netdev->atalk_ptr == NULL)
2712 netdev->atalk_ptr = q;
2713
2714 refill_fl(adapter, &q->fl[0], q->fl[0].size, GFP_KERNEL);
2715 refill_fl(adapter, &q->fl[1], q->fl[1].size, GFP_KERNEL);
2716 refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
2717
2718 t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
2719 V_NEWTIMER(q->rspq.holdoff_tmr));
2720
2721 mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2722 return 0;
2723
2724 err_unlock:
2725 spin_unlock(&adapter->sge.reg_lock);
2726 err:
2727 t3_free_qset(adapter, q);
2728 return ret;
2729}
2730
2731/**
2732 * t3_free_sge_resources - free SGE resources
2733 * @adap: the adapter
2734 *
2735 * Frees resources used by the SGE queue sets.
2736 */
2737void t3_free_sge_resources(struct adapter *adap)
2738{
2739 int i;
2740
2741 for (i = 0; i < SGE_QSETS; ++i)
2742 t3_free_qset(adap, &adap->sge.qs[i]);
2743}
2744
2745/**
2746 * t3_sge_start - enable SGE
2747 * @adap: the adapter
2748 *
2749 * Enables the SGE for DMAs. This is the last step in starting packet
2750 * transfers.
2751 */
2752void t3_sge_start(struct adapter *adap)
2753{
2754 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
2755}
2756
2757/**
2758 * t3_sge_stop - disable SGE operation
2759 * @adap: the adapter
2760 *
2761 * Disables the DMA engine. This can be called in emeregencies (e.g.,
2762 * from error interrupts) or from normal process context. In the latter
2763 * case it also disables any pending queue restart tasklets. Note that
2764 * if it is called in interrupt context it cannot disable the restart
2765 * tasklets as it cannot wait, however the tasklets will have no effect
2766 * since the doorbells are disabled and the driver will call this again
2767 * later from process context, at which time the tasklets will be stopped
2768 * if they are still running.
2769 */
2770void t3_sge_stop(struct adapter *adap)
2771{
2772 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
2773 if (!in_interrupt()) {
2774 int i;
2775
2776 for (i = 0; i < SGE_QSETS; ++i) {
2777 struct sge_qset *qs = &adap->sge.qs[i];
2778
2779 tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
2780 tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
2781 }
2782 }
2783}
2784
2785/**
2786 * t3_sge_init - initialize SGE
2787 * @adap: the adapter
2788 * @p: the SGE parameters
2789 *
2790 * Performs SGE initialization needed every time after a chip reset.
2791 * We do not initialize any of the queue sets here, instead the driver
2792 * top-level must request those individually. We also do not enable DMA
2793 * here, that should be done after the queues have been set up.
2794 */
2795void t3_sge_init(struct adapter *adap, struct sge_params *p)
2796{
2797 unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
2798
2799 ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
2800 F_CQCRDTCTRL |
2801 V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
2802 V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
2803#if SGE_NUM_GENBITS == 1
2804 ctrl |= F_EGRGENCTRL;
2805#endif
2806 if (adap->params.rev > 0) {
2807 if (!(adap->flags & (USING_MSIX | USING_MSI)))
2808 ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
2809 ctrl |= F_CQCRDTCTRL | F_AVOIDCQOVFL;
2810 }
2811 t3_write_reg(adap, A_SG_CONTROL, ctrl);
2812 t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
2813 V_LORCQDRBTHRSH(512));
2814 t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
2815 t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
6195c71d 2816 V_TIMEOUT(200 * core_ticks_per_usec(adap)));
4d22de3e
DLR
2817 t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH, 1000);
2818 t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
2819 t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
2820 t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
2821 t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
2822 t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
2823}
2824
2825/**
2826 * t3_sge_prep - one-time SGE initialization
2827 * @adap: the associated adapter
2828 * @p: SGE parameters
2829 *
2830 * Performs one-time initialization of SGE SW state. Includes determining
2831 * defaults for the assorted SGE parameters, which admins can change until
2832 * they are used to initialize the SGE.
2833 */
2834void __devinit t3_sge_prep(struct adapter *adap, struct sge_params *p)
2835{
2836 int i;
2837
2838 p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
2839 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2840
2841 for (i = 0; i < SGE_QSETS; ++i) {
2842 struct qset_params *q = p->qset + i;
2843
2844 q->polling = adap->params.rev > 0;
2845 q->coalesce_usecs = 5;
2846 q->rspq_size = 1024;
e0994eb1 2847 q->fl_size = 1024;
4d22de3e
DLR
2848 q->jumbo_size = 512;
2849 q->txq_size[TXQ_ETH] = 1024;
2850 q->txq_size[TXQ_OFLD] = 1024;
2851 q->txq_size[TXQ_CTRL] = 256;
2852 q->cong_thres = 0;
2853 }
2854
2855 spin_lock_init(&adap->sge.reg_lock);
2856}
2857
2858/**
2859 * t3_get_desc - dump an SGE descriptor for debugging purposes
2860 * @qs: the queue set
2861 * @qnum: identifies the specific queue (0..2: Tx, 3:response, 4..5: Rx)
2862 * @idx: the descriptor index in the queue
2863 * @data: where to dump the descriptor contents
2864 *
2865 * Dumps the contents of a HW descriptor of an SGE queue. Returns the
2866 * size of the descriptor.
2867 */
2868int t3_get_desc(const struct sge_qset *qs, unsigned int qnum, unsigned int idx,
2869 unsigned char *data)
2870{
2871 if (qnum >= 6)
2872 return -EINVAL;
2873
2874 if (qnum < 3) {
2875 if (!qs->txq[qnum].desc || idx >= qs->txq[qnum].size)
2876 return -EINVAL;
2877 memcpy(data, &qs->txq[qnum].desc[idx], sizeof(struct tx_desc));
2878 return sizeof(struct tx_desc);
2879 }
2880
2881 if (qnum == 3) {
2882 if (!qs->rspq.desc || idx >= qs->rspq.size)
2883 return -EINVAL;
2884 memcpy(data, &qs->rspq.desc[idx], sizeof(struct rsp_desc));
2885 return sizeof(struct rsp_desc);
2886 }
2887
2888 qnum -= 4;
2889 if (!qs->fl[qnum].desc || idx >= qs->fl[qnum].size)
2890 return -EINVAL;
2891 memcpy(data, &qs->fl[qnum].desc[idx], sizeof(struct rx_desc));
2892 return sizeof(struct rx_desc);
2893}
This page took 0.213905 seconds and 5 git commands to generate.