cxgb3 - Add page support to jumbo frame Rx queue
[deliverable/linux.git] / drivers / net / cxgb3 / sge.c
CommitLineData
4d22de3e 1/*
1d68e93d 2 * Copyright (c) 2005-2007 Chelsio, Inc. All rights reserved.
4d22de3e 3 *
1d68e93d
DLR
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
4d22de3e 9 *
1d68e93d
DLR
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
4d22de3e 31 */
4d22de3e
DLR
32#include <linux/skbuff.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/if_vlan.h>
36#include <linux/ip.h>
37#include <linux/tcp.h>
38#include <linux/dma-mapping.h>
39#include "common.h"
40#include "regs.h"
41#include "sge_defs.h"
42#include "t3_cpl.h"
43#include "firmware_exports.h"
44
45#define USE_GTS 0
46
47#define SGE_RX_SM_BUF_SIZE 1536
e0994eb1 48
4d22de3e 49#define SGE_RX_COPY_THRES 256
cf992af5 50#define SGE_RX_PULL_LEN 128
4d22de3e 51
e0994eb1 52/*
cf992af5
DLR
53 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
54 * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs
55 * directly.
e0994eb1 56 */
cf992af5 57#define FL0_PG_CHUNK_SIZE 2048
7385ecf3
DLR
58#define FL0_PG_ORDER 0
59#define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
60#define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
cf992af5 61
e0994eb1 62#define SGE_RX_DROP_THRES 16
4d22de3e
DLR
63
64/*
65 * Period of the Tx buffer reclaim timer. This timer does not need to run
66 * frequently as Tx buffers are usually reclaimed by new Tx packets.
67 */
68#define TX_RECLAIM_PERIOD (HZ / 4)
69
70/* WR size in bytes */
71#define WR_LEN (WR_FLITS * 8)
72
73/*
74 * Types of Tx queues in each queue set. Order here matters, do not change.
75 */
76enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
77
78/* Values for sge_txq.flags */
79enum {
80 TXQ_RUNNING = 1 << 0, /* fetch engine is running */
81 TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */
82};
83
84struct tx_desc {
fb8e4444 85 __be64 flit[TX_DESC_FLITS];
4d22de3e
DLR
86};
87
88struct rx_desc {
89 __be32 addr_lo;
90 __be32 len_gen;
91 __be32 gen2;
92 __be32 addr_hi;
93};
94
95struct tx_sw_desc { /* SW state per Tx descriptor */
96 struct sk_buff *skb;
23561c94
DLR
97 u8 eop; /* set if last descriptor for packet */
98 u8 addr_idx; /* buffer index of first SGL entry in descriptor */
99 u8 fragidx; /* first page fragment associated with descriptor */
100 s8 sflit; /* start flit of first SGL entry in descriptor */
4d22de3e
DLR
101};
102
cf992af5 103struct rx_sw_desc { /* SW state per Rx descriptor */
e0994eb1
DLR
104 union {
105 struct sk_buff *skb;
cf992af5
DLR
106 struct fl_pg_chunk pg_chunk;
107 };
108 DECLARE_PCI_UNMAP_ADDR(dma_addr);
4d22de3e
DLR
109};
110
111struct rsp_desc { /* response queue descriptor */
112 struct rss_header rss_hdr;
113 __be32 flags;
114 __be32 len_cq;
115 u8 imm_data[47];
116 u8 intr_gen;
117};
118
99d7cf30
DLR
119/*
120 * Holds unmapping information for Tx packets that need deferred unmapping.
121 * This structure lives at skb->head and must be allocated by callers.
122 */
123struct deferred_unmap_info {
124 struct pci_dev *pdev;
125 dma_addr_t addr[MAX_SKB_FRAGS + 1];
126};
127
4d22de3e
DLR
128/*
129 * Maps a number of flits to the number of Tx descriptors that can hold them.
130 * The formula is
131 *
132 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
133 *
134 * HW allows up to 4 descriptors to be combined into a WR.
135 */
136static u8 flit_desc_map[] = {
137 0,
138#if SGE_NUM_GENBITS == 1
139 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
140 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
141 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
142 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
143#elif SGE_NUM_GENBITS == 2
144 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
145 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
146 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
147 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
148#else
149# error "SGE_NUM_GENBITS must be 1 or 2"
150#endif
151};
152
153static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
154{
155 return container_of(q, struct sge_qset, fl[qidx]);
156}
157
158static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
159{
160 return container_of(q, struct sge_qset, rspq);
161}
162
163static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
164{
165 return container_of(q, struct sge_qset, txq[qidx]);
166}
167
168/**
169 * refill_rspq - replenish an SGE response queue
170 * @adapter: the adapter
171 * @q: the response queue to replenish
172 * @credits: how many new responses to make available
173 *
174 * Replenishes a response queue by making the supplied number of responses
175 * available to HW.
176 */
177static inline void refill_rspq(struct adapter *adapter,
178 const struct sge_rspq *q, unsigned int credits)
179{
afefce66 180 rmb();
4d22de3e
DLR
181 t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
182 V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
183}
184
185/**
186 * need_skb_unmap - does the platform need unmapping of sk_buffs?
187 *
188 * Returns true if the platfrom needs sk_buff unmapping. The compiler
189 * optimizes away unecessary code if this returns true.
190 */
191static inline int need_skb_unmap(void)
192{
193 /*
194 * This structure is used to tell if the platfrom needs buffer
195 * unmapping by checking if DECLARE_PCI_UNMAP_ADDR defines anything.
196 */
197 struct dummy {
198 DECLARE_PCI_UNMAP_ADDR(addr);
199 };
200
201 return sizeof(struct dummy) != 0;
202}
203
204/**
205 * unmap_skb - unmap a packet main body and its page fragments
206 * @skb: the packet
207 * @q: the Tx queue containing Tx descriptors for the packet
208 * @cidx: index of Tx descriptor
209 * @pdev: the PCI device
210 *
211 * Unmap the main body of an sk_buff and its page fragments, if any.
212 * Because of the fairly complicated structure of our SGLs and the desire
23561c94
DLR
213 * to conserve space for metadata, the information necessary to unmap an
214 * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
215 * descriptors (the physical addresses of the various data buffers), and
216 * the SW descriptor state (assorted indices). The send functions
217 * initialize the indices for the first packet descriptor so we can unmap
218 * the buffers held in the first Tx descriptor here, and we have enough
219 * information at this point to set the state for the next Tx descriptor.
220 *
221 * Note that it is possible to clean up the first descriptor of a packet
222 * before the send routines have written the next descriptors, but this
223 * race does not cause any problem. We just end up writing the unmapping
224 * info for the descriptor first.
4d22de3e
DLR
225 */
226static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
227 unsigned int cidx, struct pci_dev *pdev)
228{
229 const struct sg_ent *sgp;
23561c94
DLR
230 struct tx_sw_desc *d = &q->sdesc[cidx];
231 int nfrags, frag_idx, curflit, j = d->addr_idx;
4d22de3e 232
23561c94
DLR
233 sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
234 frag_idx = d->fragidx;
4d22de3e 235
23561c94
DLR
236 if (frag_idx == 0 && skb_headlen(skb)) {
237 pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
238 skb_headlen(skb), PCI_DMA_TODEVICE);
4d22de3e
DLR
239 j = 1;
240 }
241
23561c94 242 curflit = d->sflit + 1 + j;
4d22de3e
DLR
243 nfrags = skb_shinfo(skb)->nr_frags;
244
245 while (frag_idx < nfrags && curflit < WR_FLITS) {
246 pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
247 skb_shinfo(skb)->frags[frag_idx].size,
248 PCI_DMA_TODEVICE);
249 j ^= 1;
250 if (j == 0) {
251 sgp++;
252 curflit++;
253 }
254 curflit++;
255 frag_idx++;
256 }
257
23561c94
DLR
258 if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */
259 d = cidx + 1 == q->size ? q->sdesc : d + 1;
260 d->fragidx = frag_idx;
261 d->addr_idx = j;
262 d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
4d22de3e
DLR
263 }
264}
265
266/**
267 * free_tx_desc - reclaims Tx descriptors and their buffers
268 * @adapter: the adapter
269 * @q: the Tx queue to reclaim descriptors from
270 * @n: the number of descriptors to reclaim
271 *
272 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
273 * Tx buffers. Called with the Tx queue lock held.
274 */
275static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
276 unsigned int n)
277{
278 struct tx_sw_desc *d;
279 struct pci_dev *pdev = adapter->pdev;
280 unsigned int cidx = q->cidx;
281
99d7cf30
DLR
282 const int need_unmap = need_skb_unmap() &&
283 q->cntxt_id >= FW_TUNNEL_SGEEC_START;
284
4d22de3e
DLR
285 d = &q->sdesc[cidx];
286 while (n--) {
287 if (d->skb) { /* an SGL is present */
99d7cf30 288 if (need_unmap)
4d22de3e 289 unmap_skb(d->skb, q, cidx, pdev);
23561c94 290 if (d->eop)
4d22de3e
DLR
291 kfree_skb(d->skb);
292 }
293 ++d;
294 if (++cidx == q->size) {
295 cidx = 0;
296 d = q->sdesc;
297 }
298 }
299 q->cidx = cidx;
300}
301
302/**
303 * reclaim_completed_tx - reclaims completed Tx descriptors
304 * @adapter: the adapter
305 * @q: the Tx queue to reclaim completed descriptors from
306 *
307 * Reclaims Tx descriptors that the SGE has indicated it has processed,
308 * and frees the associated buffers if possible. Called with the Tx
309 * queue's lock held.
310 */
311static inline void reclaim_completed_tx(struct adapter *adapter,
312 struct sge_txq *q)
313{
314 unsigned int reclaim = q->processed - q->cleaned;
315
316 if (reclaim) {
317 free_tx_desc(adapter, q, reclaim);
318 q->cleaned += reclaim;
319 q->in_use -= reclaim;
320 }
321}
322
323/**
324 * should_restart_tx - are there enough resources to restart a Tx queue?
325 * @q: the Tx queue
326 *
327 * Checks if there are enough descriptors to restart a suspended Tx queue.
328 */
329static inline int should_restart_tx(const struct sge_txq *q)
330{
331 unsigned int r = q->processed - q->cleaned;
332
333 return q->in_use - r < (q->size >> 1);
334}
335
336/**
337 * free_rx_bufs - free the Rx buffers on an SGE free list
338 * @pdev: the PCI device associated with the adapter
339 * @rxq: the SGE free list to clean up
340 *
341 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from
342 * this queue should be stopped before calling this function.
343 */
344static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
345{
346 unsigned int cidx = q->cidx;
347
348 while (q->credits--) {
349 struct rx_sw_desc *d = &q->sdesc[cidx];
350
351 pci_unmap_single(pdev, pci_unmap_addr(d, dma_addr),
352 q->buf_size, PCI_DMA_FROMDEVICE);
cf992af5
DLR
353 if (q->use_pages) {
354 put_page(d->pg_chunk.page);
355 d->pg_chunk.page = NULL;
e0994eb1 356 } else {
cf992af5
DLR
357 kfree_skb(d->skb);
358 d->skb = NULL;
e0994eb1 359 }
4d22de3e
DLR
360 if (++cidx == q->size)
361 cidx = 0;
362 }
e0994eb1 363
cf992af5 364 if (q->pg_chunk.page) {
7385ecf3 365 __free_pages(q->pg_chunk.page, q->order);
cf992af5
DLR
366 q->pg_chunk.page = NULL;
367 }
4d22de3e
DLR
368}
369
370/**
371 * add_one_rx_buf - add a packet buffer to a free-buffer list
cf992af5 372 * @va: buffer start VA
4d22de3e
DLR
373 * @len: the buffer length
374 * @d: the HW Rx descriptor to write
375 * @sd: the SW Rx descriptor to write
376 * @gen: the generation bit value
377 * @pdev: the PCI device associated with the adapter
378 *
379 * Add a buffer of the given length to the supplied HW and SW Rx
380 * descriptors.
381 */
b1fb1f28
DLR
382static inline int add_one_rx_buf(void *va, unsigned int len,
383 struct rx_desc *d, struct rx_sw_desc *sd,
384 unsigned int gen, struct pci_dev *pdev)
4d22de3e
DLR
385{
386 dma_addr_t mapping;
387
e0994eb1 388 mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
b1fb1f28
DLR
389 if (unlikely(pci_dma_mapping_error(mapping)))
390 return -ENOMEM;
391
4d22de3e
DLR
392 pci_unmap_addr_set(sd, dma_addr, mapping);
393
394 d->addr_lo = cpu_to_be32(mapping);
395 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
396 wmb();
397 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
398 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
b1fb1f28 399 return 0;
4d22de3e
DLR
400}
401
7385ecf3
DLR
402static int alloc_pg_chunk(struct sge_fl *q, struct rx_sw_desc *sd, gfp_t gfp,
403 unsigned int order)
cf992af5
DLR
404{
405 if (!q->pg_chunk.page) {
7385ecf3 406 q->pg_chunk.page = alloc_pages(gfp, order);
cf992af5
DLR
407 if (unlikely(!q->pg_chunk.page))
408 return -ENOMEM;
409 q->pg_chunk.va = page_address(q->pg_chunk.page);
410 q->pg_chunk.offset = 0;
411 }
412 sd->pg_chunk = q->pg_chunk;
413
414 q->pg_chunk.offset += q->buf_size;
7385ecf3 415 if (q->pg_chunk.offset == (PAGE_SIZE << order))
cf992af5
DLR
416 q->pg_chunk.page = NULL;
417 else {
418 q->pg_chunk.va += q->buf_size;
419 get_page(q->pg_chunk.page);
420 }
421 return 0;
422}
423
4d22de3e
DLR
424/**
425 * refill_fl - refill an SGE free-buffer list
426 * @adapter: the adapter
427 * @q: the free-list to refill
428 * @n: the number of new buffers to allocate
429 * @gfp: the gfp flags for allocating new buffers
430 *
431 * (Re)populate an SGE free-buffer list with up to @n new packet buffers,
432 * allocated with the supplied gfp flags. The caller must assure that
433 * @n does not exceed the queue's capacity.
434 */
b1fb1f28 435static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
4d22de3e 436{
cf992af5 437 void *buf_start;
4d22de3e
DLR
438 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
439 struct rx_desc *d = &q->desc[q->pidx];
b1fb1f28 440 unsigned int count = 0;
4d22de3e
DLR
441
442 while (n--) {
b1fb1f28
DLR
443 int err;
444
cf992af5 445 if (q->use_pages) {
7385ecf3 446 if (unlikely(alloc_pg_chunk(q, sd, gfp, q->order))) {
cf992af5 447nomem: q->alloc_failed++;
e0994eb1
DLR
448 break;
449 }
cf992af5 450 buf_start = sd->pg_chunk.va;
e0994eb1 451 } else {
cf992af5 452 struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
e0994eb1 453
cf992af5
DLR
454 if (!skb)
455 goto nomem;
e0994eb1 456
cf992af5
DLR
457 sd->skb = skb;
458 buf_start = skb->data;
e0994eb1
DLR
459 }
460
b1fb1f28
DLR
461 err = add_one_rx_buf(buf_start, q->buf_size, d, sd, q->gen,
462 adap->pdev);
463 if (unlikely(err)) {
464 if (!q->use_pages) {
465 kfree_skb(sd->skb);
466 sd->skb = NULL;
467 }
468 break;
469 }
470
4d22de3e
DLR
471 d++;
472 sd++;
473 if (++q->pidx == q->size) {
474 q->pidx = 0;
475 q->gen ^= 1;
476 sd = q->sdesc;
477 d = q->desc;
478 }
479 q->credits++;
b1fb1f28 480 count++;
4d22de3e 481 }
afefce66 482 wmb();
b1fb1f28
DLR
483 if (likely(count))
484 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
485
486 return count;
4d22de3e
DLR
487}
488
489static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
490{
7385ecf3
DLR
491 refill_fl(adap, fl, min(16U, fl->size - fl->credits),
492 GFP_ATOMIC | __GFP_COMP);
4d22de3e
DLR
493}
494
495/**
496 * recycle_rx_buf - recycle a receive buffer
497 * @adapter: the adapter
498 * @q: the SGE free list
499 * @idx: index of buffer to recycle
500 *
501 * Recycles the specified buffer on the given free list by adding it at
502 * the next available slot on the list.
503 */
504static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
505 unsigned int idx)
506{
507 struct rx_desc *from = &q->desc[idx];
508 struct rx_desc *to = &q->desc[q->pidx];
509
cf992af5 510 q->sdesc[q->pidx] = q->sdesc[idx];
4d22de3e
DLR
511 to->addr_lo = from->addr_lo; /* already big endian */
512 to->addr_hi = from->addr_hi; /* likewise */
513 wmb();
514 to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
515 to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
516 q->credits++;
517
518 if (++q->pidx == q->size) {
519 q->pidx = 0;
520 q->gen ^= 1;
521 }
522 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
523}
524
525/**
526 * alloc_ring - allocate resources for an SGE descriptor ring
527 * @pdev: the PCI device
528 * @nelem: the number of descriptors
529 * @elem_size: the size of each descriptor
530 * @sw_size: the size of the SW state associated with each ring element
531 * @phys: the physical address of the allocated ring
532 * @metadata: address of the array holding the SW state for the ring
533 *
534 * Allocates resources for an SGE descriptor ring, such as Tx queues,
535 * free buffer lists, or response queues. Each SGE ring requires
536 * space for its HW descriptors plus, optionally, space for the SW state
537 * associated with each HW entry (the metadata). The function returns
538 * three values: the virtual address for the HW ring (the return value
539 * of the function), the physical address of the HW ring, and the address
540 * of the SW ring.
541 */
542static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
e0994eb1 543 size_t sw_size, dma_addr_t * phys, void *metadata)
4d22de3e
DLR
544{
545 size_t len = nelem * elem_size;
546 void *s = NULL;
547 void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
548
549 if (!p)
550 return NULL;
551 if (sw_size) {
552 s = kcalloc(nelem, sw_size, GFP_KERNEL);
553
554 if (!s) {
555 dma_free_coherent(&pdev->dev, len, p, *phys);
556 return NULL;
557 }
558 }
559 if (metadata)
560 *(void **)metadata = s;
561 memset(p, 0, len);
562 return p;
563}
564
204e2f98
DLR
565/**
566 * t3_reset_qset - reset a sge qset
567 * @q: the queue set
568 *
569 * Reset the qset structure.
570 * the NAPI structure is preserved in the event of
571 * the qset's reincarnation, for example during EEH recovery.
572 */
573static void t3_reset_qset(struct sge_qset *q)
574{
575 if (q->adap &&
576 !(q->adap->flags & NAPI_INIT)) {
577 memset(q, 0, sizeof(*q));
578 return;
579 }
580
581 q->adap = NULL;
582 memset(&q->rspq, 0, sizeof(q->rspq));
583 memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
584 memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
585 q->txq_stopped = 0;
586 memset(&q->tx_reclaim_timer, 0, sizeof(q->tx_reclaim_timer));
587}
588
589
4d22de3e
DLR
590/**
591 * free_qset - free the resources of an SGE queue set
592 * @adapter: the adapter owning the queue set
593 * @q: the queue set
594 *
595 * Release the HW and SW resources associated with an SGE queue set, such
596 * as HW contexts, packet buffers, and descriptor rings. Traffic to the
597 * queue set must be quiesced prior to calling this.
598 */
9265fabf 599static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
4d22de3e
DLR
600{
601 int i;
602 struct pci_dev *pdev = adapter->pdev;
603
604 if (q->tx_reclaim_timer.function)
605 del_timer_sync(&q->tx_reclaim_timer);
606
607 for (i = 0; i < SGE_RXQ_PER_SET; ++i)
608 if (q->fl[i].desc) {
b1186dee 609 spin_lock_irq(&adapter->sge.reg_lock);
4d22de3e 610 t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
b1186dee 611 spin_unlock_irq(&adapter->sge.reg_lock);
4d22de3e
DLR
612 free_rx_bufs(pdev, &q->fl[i]);
613 kfree(q->fl[i].sdesc);
614 dma_free_coherent(&pdev->dev,
615 q->fl[i].size *
616 sizeof(struct rx_desc), q->fl[i].desc,
617 q->fl[i].phys_addr);
618 }
619
620 for (i = 0; i < SGE_TXQ_PER_SET; ++i)
621 if (q->txq[i].desc) {
b1186dee 622 spin_lock_irq(&adapter->sge.reg_lock);
4d22de3e 623 t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
b1186dee 624 spin_unlock_irq(&adapter->sge.reg_lock);
4d22de3e
DLR
625 if (q->txq[i].sdesc) {
626 free_tx_desc(adapter, &q->txq[i],
627 q->txq[i].in_use);
628 kfree(q->txq[i].sdesc);
629 }
630 dma_free_coherent(&pdev->dev,
631 q->txq[i].size *
632 sizeof(struct tx_desc),
633 q->txq[i].desc, q->txq[i].phys_addr);
634 __skb_queue_purge(&q->txq[i].sendq);
635 }
636
637 if (q->rspq.desc) {
b1186dee 638 spin_lock_irq(&adapter->sge.reg_lock);
4d22de3e 639 t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
b1186dee 640 spin_unlock_irq(&adapter->sge.reg_lock);
4d22de3e
DLR
641 dma_free_coherent(&pdev->dev,
642 q->rspq.size * sizeof(struct rsp_desc),
643 q->rspq.desc, q->rspq.phys_addr);
644 }
645
204e2f98 646 t3_reset_qset(q);
4d22de3e
DLR
647}
648
649/**
650 * init_qset_cntxt - initialize an SGE queue set context info
651 * @qs: the queue set
652 * @id: the queue set id
653 *
654 * Initializes the TIDs and context ids for the queues of a queue set.
655 */
656static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
657{
658 qs->rspq.cntxt_id = id;
659 qs->fl[0].cntxt_id = 2 * id;
660 qs->fl[1].cntxt_id = 2 * id + 1;
661 qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
662 qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
663 qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
664 qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
665 qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
666}
667
668/**
669 * sgl_len - calculates the size of an SGL of the given capacity
670 * @n: the number of SGL entries
671 *
672 * Calculates the number of flits needed for a scatter/gather list that
673 * can hold the given number of entries.
674 */
675static inline unsigned int sgl_len(unsigned int n)
676{
677 /* alternatively: 3 * (n / 2) + 2 * (n & 1) */
678 return (3 * n) / 2 + (n & 1);
679}
680
681/**
682 * flits_to_desc - returns the num of Tx descriptors for the given flits
683 * @n: the number of flits
684 *
685 * Calculates the number of Tx descriptors needed for the supplied number
686 * of flits.
687 */
688static inline unsigned int flits_to_desc(unsigned int n)
689{
690 BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
691 return flit_desc_map[n];
692}
693
cf992af5
DLR
694/**
695 * get_packet - return the next ingress packet buffer from a free list
696 * @adap: the adapter that received the packet
697 * @fl: the SGE free list holding the packet
698 * @len: the packet length including any SGE padding
699 * @drop_thres: # of remaining buffers before we start dropping packets
700 *
701 * Get the next packet from a free list and complete setup of the
702 * sk_buff. If the packet is small we make a copy and recycle the
703 * original buffer, otherwise we use the original buffer itself. If a
704 * positive drop threshold is supplied packets are dropped and their
705 * buffers recycled if (a) the number of remaining buffers is under the
706 * threshold and the packet is too big to copy, or (b) the packet should
707 * be copied but there is no memory for the copy.
708 */
709static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
710 unsigned int len, unsigned int drop_thres)
711{
712 struct sk_buff *skb = NULL;
713 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
714
715 prefetch(sd->skb->data);
716 fl->credits--;
717
718 if (len <= SGE_RX_COPY_THRES) {
719 skb = alloc_skb(len, GFP_ATOMIC);
720 if (likely(skb != NULL)) {
721 __skb_put(skb, len);
722 pci_dma_sync_single_for_cpu(adap->pdev,
723 pci_unmap_addr(sd, dma_addr), len,
724 PCI_DMA_FROMDEVICE);
725 memcpy(skb->data, sd->skb->data, len);
726 pci_dma_sync_single_for_device(adap->pdev,
727 pci_unmap_addr(sd, dma_addr), len,
728 PCI_DMA_FROMDEVICE);
729 } else if (!drop_thres)
730 goto use_orig_buf;
731recycle:
732 recycle_rx_buf(adap, fl, fl->cidx);
733 return skb;
734 }
735
736 if (unlikely(fl->credits < drop_thres))
737 goto recycle;
738
739use_orig_buf:
740 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
741 fl->buf_size, PCI_DMA_FROMDEVICE);
742 skb = sd->skb;
743 skb_put(skb, len);
744 __refill_fl(adap, fl);
745 return skb;
746}
747
748/**
749 * get_packet_pg - return the next ingress packet buffer from a free list
750 * @adap: the adapter that received the packet
751 * @fl: the SGE free list holding the packet
752 * @len: the packet length including any SGE padding
753 * @drop_thres: # of remaining buffers before we start dropping packets
754 *
755 * Get the next packet from a free list populated with page chunks.
756 * If the packet is small we make a copy and recycle the original buffer,
757 * otherwise we attach the original buffer as a page fragment to a fresh
758 * sk_buff. If a positive drop threshold is supplied packets are dropped
759 * and their buffers recycled if (a) the number of remaining buffers is
760 * under the threshold and the packet is too big to copy, or (b) there's
761 * no system memory.
762 *
763 * Note: this function is similar to @get_packet but deals with Rx buffers
764 * that are page chunks rather than sk_buffs.
765 */
766static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
7385ecf3
DLR
767 struct sge_rspq *q, unsigned int len,
768 unsigned int drop_thres)
cf992af5 769{
7385ecf3 770 struct sk_buff *newskb, *skb;
cf992af5
DLR
771 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
772
7385ecf3
DLR
773 newskb = skb = q->pg_skb;
774
775 if (!skb && (len <= SGE_RX_COPY_THRES)) {
776 newskb = alloc_skb(len, GFP_ATOMIC);
777 if (likely(newskb != NULL)) {
778 __skb_put(newskb, len);
cf992af5
DLR
779 pci_dma_sync_single_for_cpu(adap->pdev,
780 pci_unmap_addr(sd, dma_addr), len,
781 PCI_DMA_FROMDEVICE);
7385ecf3 782 memcpy(newskb->data, sd->pg_chunk.va, len);
cf992af5
DLR
783 pci_dma_sync_single_for_device(adap->pdev,
784 pci_unmap_addr(sd, dma_addr), len,
785 PCI_DMA_FROMDEVICE);
786 } else if (!drop_thres)
787 return NULL;
788recycle:
789 fl->credits--;
790 recycle_rx_buf(adap, fl, fl->cidx);
7385ecf3
DLR
791 q->rx_recycle_buf++;
792 return newskb;
cf992af5
DLR
793 }
794
7385ecf3 795 if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
cf992af5
DLR
796 goto recycle;
797
7385ecf3
DLR
798 if (!skb)
799 newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
800 if (unlikely(!newskb)) {
cf992af5
DLR
801 if (!drop_thres)
802 return NULL;
803 goto recycle;
804 }
805
806 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
807 fl->buf_size, PCI_DMA_FROMDEVICE);
7385ecf3
DLR
808 if (!skb) {
809 __skb_put(newskb, SGE_RX_PULL_LEN);
810 memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
811 skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
812 sd->pg_chunk.offset + SGE_RX_PULL_LEN,
813 len - SGE_RX_PULL_LEN);
814 newskb->len = len;
815 newskb->data_len = len - SGE_RX_PULL_LEN;
816 } else {
817 skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
818 sd->pg_chunk.page,
819 sd->pg_chunk.offset, len);
820 newskb->len += len;
821 newskb->data_len += len;
822 }
823 newskb->truesize += newskb->data_len;
cf992af5
DLR
824
825 fl->credits--;
826 /*
827 * We do not refill FLs here, we let the caller do it to overlap a
828 * prefetch.
829 */
7385ecf3 830 return newskb;
cf992af5
DLR
831}
832
4d22de3e
DLR
833/**
834 * get_imm_packet - return the next ingress packet buffer from a response
835 * @resp: the response descriptor containing the packet data
836 *
837 * Return a packet containing the immediate data of the given response.
838 */
839static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
840{
841 struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
842
843 if (skb) {
844 __skb_put(skb, IMMED_PKT_SIZE);
27d7ff46 845 skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
4d22de3e
DLR
846 }
847 return skb;
848}
849
850/**
851 * calc_tx_descs - calculate the number of Tx descriptors for a packet
852 * @skb: the packet
853 *
854 * Returns the number of Tx descriptors needed for the given Ethernet
855 * packet. Ethernet packets require addition of WR and CPL headers.
856 */
857static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
858{
859 unsigned int flits;
860
861 if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
862 return 1;
863
864 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
865 if (skb_shinfo(skb)->gso_size)
866 flits++;
867 return flits_to_desc(flits);
868}
869
870/**
871 * make_sgl - populate a scatter/gather list for a packet
872 * @skb: the packet
873 * @sgp: the SGL to populate
874 * @start: start address of skb main body data to include in the SGL
875 * @len: length of skb main body data to include in the SGL
876 * @pdev: the PCI device
877 *
878 * Generates a scatter/gather list for the buffers that make up a packet
879 * and returns the SGL size in 8-byte words. The caller must size the SGL
880 * appropriately.
881 */
882static inline unsigned int make_sgl(const struct sk_buff *skb,
883 struct sg_ent *sgp, unsigned char *start,
884 unsigned int len, struct pci_dev *pdev)
885{
886 dma_addr_t mapping;
887 unsigned int i, j = 0, nfrags;
888
889 if (len) {
890 mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE);
891 sgp->len[0] = cpu_to_be32(len);
892 sgp->addr[0] = cpu_to_be64(mapping);
893 j = 1;
894 }
895
896 nfrags = skb_shinfo(skb)->nr_frags;
897 for (i = 0; i < nfrags; i++) {
898 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
899
900 mapping = pci_map_page(pdev, frag->page, frag->page_offset,
901 frag->size, PCI_DMA_TODEVICE);
902 sgp->len[j] = cpu_to_be32(frag->size);
903 sgp->addr[j] = cpu_to_be64(mapping);
904 j ^= 1;
905 if (j == 0)
906 ++sgp;
907 }
908 if (j)
909 sgp->len[j] = 0;
910 return ((nfrags + (len != 0)) * 3) / 2 + j;
911}
912
913/**
914 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell
915 * @adap: the adapter
916 * @q: the Tx queue
917 *
918 * Ring the doorbel if a Tx queue is asleep. There is a natural race,
919 * where the HW is going to sleep just after we checked, however,
920 * then the interrupt handler will detect the outstanding TX packet
921 * and ring the doorbell for us.
922 *
923 * When GTS is disabled we unconditionally ring the doorbell.
924 */
925static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
926{
927#if USE_GTS
928 clear_bit(TXQ_LAST_PKT_DB, &q->flags);
929 if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
930 set_bit(TXQ_LAST_PKT_DB, &q->flags);
931 t3_write_reg(adap, A_SG_KDOORBELL,
932 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
933 }
934#else
935 wmb(); /* write descriptors before telling HW */
936 t3_write_reg(adap, A_SG_KDOORBELL,
937 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
938#endif
939}
940
941static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
942{
943#if SGE_NUM_GENBITS == 2
944 d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
945#endif
946}
947
948/**
949 * write_wr_hdr_sgl - write a WR header and, optionally, SGL
950 * @ndesc: number of Tx descriptors spanned by the SGL
951 * @skb: the packet corresponding to the WR
952 * @d: first Tx descriptor to be written
953 * @pidx: index of above descriptors
954 * @q: the SGE Tx queue
955 * @sgl: the SGL
956 * @flits: number of flits to the start of the SGL in the first descriptor
957 * @sgl_flits: the SGL size in flits
958 * @gen: the Tx descriptor generation
959 * @wr_hi: top 32 bits of WR header based on WR type (big endian)
960 * @wr_lo: low 32 bits of WR header based on WR type (big endian)
961 *
962 * Write a work request header and an associated SGL. If the SGL is
963 * small enough to fit into one Tx descriptor it has already been written
964 * and we just need to write the WR header. Otherwise we distribute the
965 * SGL across the number of descriptors it spans.
966 */
967static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
968 struct tx_desc *d, unsigned int pidx,
969 const struct sge_txq *q,
970 const struct sg_ent *sgl,
971 unsigned int flits, unsigned int sgl_flits,
fb8e4444
AV
972 unsigned int gen, __be32 wr_hi,
973 __be32 wr_lo)
4d22de3e
DLR
974{
975 struct work_request_hdr *wrp = (struct work_request_hdr *)d;
976 struct tx_sw_desc *sd = &q->sdesc[pidx];
977
978 sd->skb = skb;
979 if (need_skb_unmap()) {
23561c94
DLR
980 sd->fragidx = 0;
981 sd->addr_idx = 0;
982 sd->sflit = flits;
4d22de3e
DLR
983 }
984
985 if (likely(ndesc == 1)) {
23561c94 986 sd->eop = 1;
4d22de3e
DLR
987 wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
988 V_WR_SGLSFLT(flits)) | wr_hi;
989 wmb();
990 wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
991 V_WR_GEN(gen)) | wr_lo;
992 wr_gen2(d, gen);
993 } else {
994 unsigned int ogen = gen;
995 const u64 *fp = (const u64 *)sgl;
996 struct work_request_hdr *wp = wrp;
997
998 wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
999 V_WR_SGLSFLT(flits)) | wr_hi;
1000
1001 while (sgl_flits) {
1002 unsigned int avail = WR_FLITS - flits;
1003
1004 if (avail > sgl_flits)
1005 avail = sgl_flits;
1006 memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
1007 sgl_flits -= avail;
1008 ndesc--;
1009 if (!sgl_flits)
1010 break;
1011
1012 fp += avail;
1013 d++;
23561c94 1014 sd->eop = 0;
4d22de3e
DLR
1015 sd++;
1016 if (++pidx == q->size) {
1017 pidx = 0;
1018 gen ^= 1;
1019 d = q->desc;
1020 sd = q->sdesc;
1021 }
1022
1023 sd->skb = skb;
1024 wrp = (struct work_request_hdr *)d;
1025 wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
1026 V_WR_SGLSFLT(1)) | wr_hi;
1027 wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
1028 sgl_flits + 1)) |
1029 V_WR_GEN(gen)) | wr_lo;
1030 wr_gen2(d, gen);
1031 flits = 1;
1032 }
23561c94 1033 sd->eop = 1;
4d22de3e
DLR
1034 wrp->wr_hi |= htonl(F_WR_EOP);
1035 wmb();
1036 wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
1037 wr_gen2((struct tx_desc *)wp, ogen);
1038 WARN_ON(ndesc != 0);
1039 }
1040}
1041
1042/**
1043 * write_tx_pkt_wr - write a TX_PKT work request
1044 * @adap: the adapter
1045 * @skb: the packet to send
1046 * @pi: the egress interface
1047 * @pidx: index of the first Tx descriptor to write
1048 * @gen: the generation value to use
1049 * @q: the Tx queue
1050 * @ndesc: number of descriptors the packet will occupy
1051 * @compl: the value of the COMPL bit to use
1052 *
1053 * Generate a TX_PKT work request to send the supplied packet.
1054 */
1055static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
1056 const struct port_info *pi,
1057 unsigned int pidx, unsigned int gen,
1058 struct sge_txq *q, unsigned int ndesc,
1059 unsigned int compl)
1060{
1061 unsigned int flits, sgl_flits, cntrl, tso_info;
1062 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1063 struct tx_desc *d = &q->desc[pidx];
1064 struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1065
1066 cpl->len = htonl(skb->len | 0x80000000);
1067 cntrl = V_TXPKT_INTF(pi->port_id);
1068
1069 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1070 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb));
1071
1072 tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1073 if (tso_info) {
1074 int eth_type;
1075 struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1076
1077 d->flit[2] = 0;
1078 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1079 hdr->cntrl = htonl(cntrl);
bbe735e4 1080 eth_type = skb_network_offset(skb) == ETH_HLEN ?
4d22de3e
DLR
1081 CPL_ETH_II : CPL_ETH_II_VLAN;
1082 tso_info |= V_LSO_ETH_TYPE(eth_type) |
eddc9ec5 1083 V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
aa8223c7 1084 V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
4d22de3e
DLR
1085 hdr->lso_info = htonl(tso_info);
1086 flits = 3;
1087 } else {
1088 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1089 cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */
1090 cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1091 cpl->cntrl = htonl(cntrl);
1092
1093 if (skb->len <= WR_LEN - sizeof(*cpl)) {
1094 q->sdesc[pidx].skb = NULL;
1095 if (!skb->data_len)
d626f62b
ACM
1096 skb_copy_from_linear_data(skb, &d->flit[2],
1097 skb->len);
4d22de3e
DLR
1098 else
1099 skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1100
1101 flits = (skb->len + 7) / 8 + 2;
1102 cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1103 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1104 | F_WR_SOP | F_WR_EOP | compl);
1105 wmb();
1106 cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1107 V_WR_TID(q->token));
1108 wr_gen2(d, gen);
1109 kfree_skb(skb);
1110 return;
1111 }
1112
1113 flits = 2;
1114 }
1115
1116 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1117 sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev);
4d22de3e
DLR
1118
1119 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1120 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1121 htonl(V_WR_TID(q->token)));
1122}
1123
a8cc21f6
KK
1124static inline void t3_stop_queue(struct net_device *dev, struct sge_qset *qs,
1125 struct sge_txq *q)
1126{
1127 netif_stop_queue(dev);
1128 set_bit(TXQ_ETH, &qs->txq_stopped);
1129 q->stops++;
1130}
1131
4d22de3e
DLR
1132/**
1133 * eth_xmit - add a packet to the Ethernet Tx queue
1134 * @skb: the packet
1135 * @dev: the egress net device
1136 *
1137 * Add a packet to an SGE Tx queue. Runs with softirqs disabled.
1138 */
1139int t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1140{
1141 unsigned int ndesc, pidx, credits, gen, compl;
1142 const struct port_info *pi = netdev_priv(dev);
5fbf816f 1143 struct adapter *adap = pi->adapter;
bea3348e 1144 struct sge_qset *qs = pi->qs;
4d22de3e
DLR
1145 struct sge_txq *q = &qs->txq[TXQ_ETH];
1146
1147 /*
1148 * The chip min packet length is 9 octets but play safe and reject
1149 * anything shorter than an Ethernet header.
1150 */
1151 if (unlikely(skb->len < ETH_HLEN)) {
1152 dev_kfree_skb(skb);
1153 return NETDEV_TX_OK;
1154 }
1155
1156 spin_lock(&q->lock);
1157 reclaim_completed_tx(adap, q);
1158
1159 credits = q->size - q->in_use;
1160 ndesc = calc_tx_descs(skb);
1161
1162 if (unlikely(credits < ndesc)) {
a8cc21f6
KK
1163 t3_stop_queue(dev, qs, q);
1164 dev_err(&adap->pdev->dev,
1165 "%s: Tx ring %u full while queue awake!\n",
1166 dev->name, q->cntxt_id & 7);
4d22de3e
DLR
1167 spin_unlock(&q->lock);
1168 return NETDEV_TX_BUSY;
1169 }
1170
1171 q->in_use += ndesc;
cd7e9034
DLR
1172 if (unlikely(credits - ndesc < q->stop_thres)) {
1173 t3_stop_queue(dev, qs, q);
1174
1175 if (should_restart_tx(q) &&
1176 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1177 q->restarts++;
1178 netif_wake_queue(dev);
1179 }
1180 }
4d22de3e
DLR
1181
1182 gen = q->gen;
1183 q->unacked += ndesc;
1184 compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1185 q->unacked &= 7;
1186 pidx = q->pidx;
1187 q->pidx += ndesc;
1188 if (q->pidx >= q->size) {
1189 q->pidx -= q->size;
1190 q->gen ^= 1;
1191 }
1192
1193 /* update port statistics */
1194 if (skb->ip_summed == CHECKSUM_COMPLETE)
1195 qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1196 if (skb_shinfo(skb)->gso_size)
1197 qs->port_stats[SGE_PSTAT_TSO]++;
1198 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1199 qs->port_stats[SGE_PSTAT_VLANINS]++;
1200
1201 dev->trans_start = jiffies;
1202 spin_unlock(&q->lock);
1203
1204 /*
1205 * We do not use Tx completion interrupts to free DMAd Tx packets.
1206 * This is good for performamce but means that we rely on new Tx
1207 * packets arriving to run the destructors of completed packets,
1208 * which open up space in their sockets' send queues. Sometimes
1209 * we do not get such new packets causing Tx to stall. A single
1210 * UDP transmitter is a good example of this situation. We have
1211 * a clean up timer that periodically reclaims completed packets
1212 * but it doesn't run often enough (nor do we want it to) to prevent
1213 * lengthy stalls. A solution to this problem is to run the
1214 * destructor early, after the packet is queued but before it's DMAd.
1215 * A cons is that we lie to socket memory accounting, but the amount
1216 * of extra memory is reasonable (limited by the number of Tx
1217 * descriptors), the packets do actually get freed quickly by new
1218 * packets almost always, and for protocols like TCP that wait for
1219 * acks to really free up the data the extra memory is even less.
1220 * On the positive side we run the destructors on the sending CPU
1221 * rather than on a potentially different completing CPU, usually a
1222 * good thing. We also run them without holding our Tx queue lock,
1223 * unlike what reclaim_completed_tx() would otherwise do.
1224 *
1225 * Run the destructor before telling the DMA engine about the packet
1226 * to make sure it doesn't complete and get freed prematurely.
1227 */
1228 if (likely(!skb_shared(skb)))
1229 skb_orphan(skb);
1230
1231 write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl);
1232 check_ring_tx_db(adap, q);
1233 return NETDEV_TX_OK;
1234}
1235
1236/**
1237 * write_imm - write a packet into a Tx descriptor as immediate data
1238 * @d: the Tx descriptor to write
1239 * @skb: the packet
1240 * @len: the length of packet data to write as immediate data
1241 * @gen: the generation bit value to write
1242 *
1243 * Writes a packet as immediate data into a Tx descriptor. The packet
1244 * contains a work request at its beginning. We must write the packet
27186dc3
DLR
1245 * carefully so the SGE doesn't read it accidentally before it's written
1246 * in its entirety.
4d22de3e
DLR
1247 */
1248static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1249 unsigned int len, unsigned int gen)
1250{
1251 struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1252 struct work_request_hdr *to = (struct work_request_hdr *)d;
1253
27186dc3
DLR
1254 if (likely(!skb->data_len))
1255 memcpy(&to[1], &from[1], len - sizeof(*from));
1256 else
1257 skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1258
4d22de3e
DLR
1259 to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1260 V_WR_BCNTLFLT(len & 7));
1261 wmb();
1262 to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1263 V_WR_LEN((len + 7) / 8));
1264 wr_gen2(d, gen);
1265 kfree_skb(skb);
1266}
1267
1268/**
1269 * check_desc_avail - check descriptor availability on a send queue
1270 * @adap: the adapter
1271 * @q: the send queue
1272 * @skb: the packet needing the descriptors
1273 * @ndesc: the number of Tx descriptors needed
1274 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1275 *
1276 * Checks if the requested number of Tx descriptors is available on an
1277 * SGE send queue. If the queue is already suspended or not enough
1278 * descriptors are available the packet is queued for later transmission.
1279 * Must be called with the Tx queue locked.
1280 *
1281 * Returns 0 if enough descriptors are available, 1 if there aren't
1282 * enough descriptors and the packet has been queued, and 2 if the caller
1283 * needs to retry because there weren't enough descriptors at the
1284 * beginning of the call but some freed up in the mean time.
1285 */
1286static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1287 struct sk_buff *skb, unsigned int ndesc,
1288 unsigned int qid)
1289{
1290 if (unlikely(!skb_queue_empty(&q->sendq))) {
1291 addq_exit:__skb_queue_tail(&q->sendq, skb);
1292 return 1;
1293 }
1294 if (unlikely(q->size - q->in_use < ndesc)) {
1295 struct sge_qset *qs = txq_to_qset(q, qid);
1296
1297 set_bit(qid, &qs->txq_stopped);
1298 smp_mb__after_clear_bit();
1299
1300 if (should_restart_tx(q) &&
1301 test_and_clear_bit(qid, &qs->txq_stopped))
1302 return 2;
1303
1304 q->stops++;
1305 goto addq_exit;
1306 }
1307 return 0;
1308}
1309
1310/**
1311 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1312 * @q: the SGE control Tx queue
1313 *
1314 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1315 * that send only immediate data (presently just the control queues) and
1316 * thus do not have any sk_buffs to release.
1317 */
1318static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1319{
1320 unsigned int reclaim = q->processed - q->cleaned;
1321
1322 q->in_use -= reclaim;
1323 q->cleaned += reclaim;
1324}
1325
1326static inline int immediate(const struct sk_buff *skb)
1327{
27186dc3 1328 return skb->len <= WR_LEN;
4d22de3e
DLR
1329}
1330
1331/**
1332 * ctrl_xmit - send a packet through an SGE control Tx queue
1333 * @adap: the adapter
1334 * @q: the control queue
1335 * @skb: the packet
1336 *
1337 * Send a packet through an SGE control Tx queue. Packets sent through
1338 * a control queue must fit entirely as immediate data in a single Tx
1339 * descriptor and have no page fragments.
1340 */
1341static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1342 struct sk_buff *skb)
1343{
1344 int ret;
1345 struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1346
1347 if (unlikely(!immediate(skb))) {
1348 WARN_ON(1);
1349 dev_kfree_skb(skb);
1350 return NET_XMIT_SUCCESS;
1351 }
1352
1353 wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1354 wrp->wr_lo = htonl(V_WR_TID(q->token));
1355
1356 spin_lock(&q->lock);
1357 again:reclaim_completed_tx_imm(q);
1358
1359 ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1360 if (unlikely(ret)) {
1361 if (ret == 1) {
1362 spin_unlock(&q->lock);
1363 return NET_XMIT_CN;
1364 }
1365 goto again;
1366 }
1367
1368 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1369
1370 q->in_use++;
1371 if (++q->pidx >= q->size) {
1372 q->pidx = 0;
1373 q->gen ^= 1;
1374 }
1375 spin_unlock(&q->lock);
1376 wmb();
1377 t3_write_reg(adap, A_SG_KDOORBELL,
1378 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1379 return NET_XMIT_SUCCESS;
1380}
1381
1382/**
1383 * restart_ctrlq - restart a suspended control queue
1384 * @qs: the queue set cotaining the control queue
1385 *
1386 * Resumes transmission on a suspended Tx control queue.
1387 */
1388static void restart_ctrlq(unsigned long data)
1389{
1390 struct sk_buff *skb;
1391 struct sge_qset *qs = (struct sge_qset *)data;
1392 struct sge_txq *q = &qs->txq[TXQ_CTRL];
4d22de3e
DLR
1393
1394 spin_lock(&q->lock);
1395 again:reclaim_completed_tx_imm(q);
1396
bea3348e
SH
1397 while (q->in_use < q->size &&
1398 (skb = __skb_dequeue(&q->sendq)) != NULL) {
4d22de3e
DLR
1399
1400 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1401
1402 if (++q->pidx >= q->size) {
1403 q->pidx = 0;
1404 q->gen ^= 1;
1405 }
1406 q->in_use++;
1407 }
1408
1409 if (!skb_queue_empty(&q->sendq)) {
1410 set_bit(TXQ_CTRL, &qs->txq_stopped);
1411 smp_mb__after_clear_bit();
1412
1413 if (should_restart_tx(q) &&
1414 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1415 goto again;
1416 q->stops++;
1417 }
1418
1419 spin_unlock(&q->lock);
afefce66 1420 wmb();
bea3348e 1421 t3_write_reg(qs->adap, A_SG_KDOORBELL,
4d22de3e
DLR
1422 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1423}
1424
14ab9892
DLR
1425/*
1426 * Send a management message through control queue 0
1427 */
1428int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1429{
204e2f98 1430 int ret;
bc4b6b52
DLR
1431 local_bh_disable();
1432 ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1433 local_bh_enable();
1434
1435 return ret;
14ab9892
DLR
1436}
1437
99d7cf30
DLR
1438/**
1439 * deferred_unmap_destructor - unmap a packet when it is freed
1440 * @skb: the packet
1441 *
1442 * This is the packet destructor used for Tx packets that need to remain
1443 * mapped until they are freed rather than until their Tx descriptors are
1444 * freed.
1445 */
1446static void deferred_unmap_destructor(struct sk_buff *skb)
1447{
1448 int i;
1449 const dma_addr_t *p;
1450 const struct skb_shared_info *si;
1451 const struct deferred_unmap_info *dui;
99d7cf30
DLR
1452
1453 dui = (struct deferred_unmap_info *)skb->head;
1454 p = dui->addr;
1455
23561c94
DLR
1456 if (skb->tail - skb->transport_header)
1457 pci_unmap_single(dui->pdev, *p++,
1458 skb->tail - skb->transport_header,
1459 PCI_DMA_TODEVICE);
99d7cf30
DLR
1460
1461 si = skb_shinfo(skb);
1462 for (i = 0; i < si->nr_frags; i++)
1463 pci_unmap_page(dui->pdev, *p++, si->frags[i].size,
1464 PCI_DMA_TODEVICE);
1465}
1466
1467static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1468 const struct sg_ent *sgl, int sgl_flits)
1469{
1470 dma_addr_t *p;
1471 struct deferred_unmap_info *dui;
1472
1473 dui = (struct deferred_unmap_info *)skb->head;
1474 dui->pdev = pdev;
1475 for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1476 *p++ = be64_to_cpu(sgl->addr[0]);
1477 *p++ = be64_to_cpu(sgl->addr[1]);
1478 }
1479 if (sgl_flits)
1480 *p = be64_to_cpu(sgl->addr[0]);
1481}
1482
4d22de3e
DLR
1483/**
1484 * write_ofld_wr - write an offload work request
1485 * @adap: the adapter
1486 * @skb: the packet to send
1487 * @q: the Tx queue
1488 * @pidx: index of the first Tx descriptor to write
1489 * @gen: the generation value to use
1490 * @ndesc: number of descriptors the packet will occupy
1491 *
1492 * Write an offload work request to send the supplied packet. The packet
1493 * data already carry the work request with most fields populated.
1494 */
1495static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1496 struct sge_txq *q, unsigned int pidx,
1497 unsigned int gen, unsigned int ndesc)
1498{
1499 unsigned int sgl_flits, flits;
1500 struct work_request_hdr *from;
1501 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1502 struct tx_desc *d = &q->desc[pidx];
1503
1504 if (immediate(skb)) {
1505 q->sdesc[pidx].skb = NULL;
1506 write_imm(d, skb, skb->len, gen);
1507 return;
1508 }
1509
1510 /* Only TX_DATA builds SGLs */
1511
1512 from = (struct work_request_hdr *)skb->data;
ea2ae17d
ACM
1513 memcpy(&d->flit[1], &from[1],
1514 skb_transport_offset(skb) - sizeof(*from));
4d22de3e 1515
ea2ae17d 1516 flits = skb_transport_offset(skb) / 8;
4d22de3e 1517 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
9c70220b 1518 sgl_flits = make_sgl(skb, sgp, skb_transport_header(skb),
27a884dc 1519 skb->tail - skb->transport_header,
4d22de3e 1520 adap->pdev);
99d7cf30
DLR
1521 if (need_skb_unmap()) {
1522 setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1523 skb->destructor = deferred_unmap_destructor;
99d7cf30 1524 }
4d22de3e
DLR
1525
1526 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1527 gen, from->wr_hi, from->wr_lo);
1528}
1529
1530/**
1531 * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1532 * @skb: the packet
1533 *
1534 * Returns the number of Tx descriptors needed for the given offload
1535 * packet. These packets are already fully constructed.
1536 */
1537static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1538{
27186dc3 1539 unsigned int flits, cnt;
4d22de3e 1540
27186dc3 1541 if (skb->len <= WR_LEN)
4d22de3e
DLR
1542 return 1; /* packet fits as immediate data */
1543
ea2ae17d 1544 flits = skb_transport_offset(skb) / 8; /* headers */
27186dc3 1545 cnt = skb_shinfo(skb)->nr_frags;
27a884dc 1546 if (skb->tail != skb->transport_header)
4d22de3e
DLR
1547 cnt++;
1548 return flits_to_desc(flits + sgl_len(cnt));
1549}
1550
1551/**
1552 * ofld_xmit - send a packet through an offload queue
1553 * @adap: the adapter
1554 * @q: the Tx offload queue
1555 * @skb: the packet
1556 *
1557 * Send an offload packet through an SGE offload queue.
1558 */
1559static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1560 struct sk_buff *skb)
1561{
1562 int ret;
1563 unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1564
1565 spin_lock(&q->lock);
1566 again:reclaim_completed_tx(adap, q);
1567
1568 ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1569 if (unlikely(ret)) {
1570 if (ret == 1) {
1571 skb->priority = ndesc; /* save for restart */
1572 spin_unlock(&q->lock);
1573 return NET_XMIT_CN;
1574 }
1575 goto again;
1576 }
1577
1578 gen = q->gen;
1579 q->in_use += ndesc;
1580 pidx = q->pidx;
1581 q->pidx += ndesc;
1582 if (q->pidx >= q->size) {
1583 q->pidx -= q->size;
1584 q->gen ^= 1;
1585 }
1586 spin_unlock(&q->lock);
1587
1588 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1589 check_ring_tx_db(adap, q);
1590 return NET_XMIT_SUCCESS;
1591}
1592
1593/**
1594 * restart_offloadq - restart a suspended offload queue
1595 * @qs: the queue set cotaining the offload queue
1596 *
1597 * Resumes transmission on a suspended Tx offload queue.
1598 */
1599static void restart_offloadq(unsigned long data)
1600{
1601 struct sk_buff *skb;
1602 struct sge_qset *qs = (struct sge_qset *)data;
1603 struct sge_txq *q = &qs->txq[TXQ_OFLD];
5fbf816f
DLR
1604 const struct port_info *pi = netdev_priv(qs->netdev);
1605 struct adapter *adap = pi->adapter;
4d22de3e
DLR
1606
1607 spin_lock(&q->lock);
1608 again:reclaim_completed_tx(adap, q);
1609
1610 while ((skb = skb_peek(&q->sendq)) != NULL) {
1611 unsigned int gen, pidx;
1612 unsigned int ndesc = skb->priority;
1613
1614 if (unlikely(q->size - q->in_use < ndesc)) {
1615 set_bit(TXQ_OFLD, &qs->txq_stopped);
1616 smp_mb__after_clear_bit();
1617
1618 if (should_restart_tx(q) &&
1619 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1620 goto again;
1621 q->stops++;
1622 break;
1623 }
1624
1625 gen = q->gen;
1626 q->in_use += ndesc;
1627 pidx = q->pidx;
1628 q->pidx += ndesc;
1629 if (q->pidx >= q->size) {
1630 q->pidx -= q->size;
1631 q->gen ^= 1;
1632 }
1633 __skb_unlink(skb, &q->sendq);
1634 spin_unlock(&q->lock);
1635
1636 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1637 spin_lock(&q->lock);
1638 }
1639 spin_unlock(&q->lock);
1640
1641#if USE_GTS
1642 set_bit(TXQ_RUNNING, &q->flags);
1643 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1644#endif
afefce66 1645 wmb();
4d22de3e
DLR
1646 t3_write_reg(adap, A_SG_KDOORBELL,
1647 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1648}
1649
1650/**
1651 * queue_set - return the queue set a packet should use
1652 * @skb: the packet
1653 *
1654 * Maps a packet to the SGE queue set it should use. The desired queue
1655 * set is carried in bits 1-3 in the packet's priority.
1656 */
1657static inline int queue_set(const struct sk_buff *skb)
1658{
1659 return skb->priority >> 1;
1660}
1661
1662/**
1663 * is_ctrl_pkt - return whether an offload packet is a control packet
1664 * @skb: the packet
1665 *
1666 * Determines whether an offload packet should use an OFLD or a CTRL
1667 * Tx queue. This is indicated by bit 0 in the packet's priority.
1668 */
1669static inline int is_ctrl_pkt(const struct sk_buff *skb)
1670{
1671 return skb->priority & 1;
1672}
1673
1674/**
1675 * t3_offload_tx - send an offload packet
1676 * @tdev: the offload device to send to
1677 * @skb: the packet
1678 *
1679 * Sends an offload packet. We use the packet priority to select the
1680 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1681 * should be sent as regular or control, bits 1-3 select the queue set.
1682 */
1683int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1684{
1685 struct adapter *adap = tdev2adap(tdev);
1686 struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1687
1688 if (unlikely(is_ctrl_pkt(skb)))
1689 return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1690
1691 return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1692}
1693
1694/**
1695 * offload_enqueue - add an offload packet to an SGE offload receive queue
1696 * @q: the SGE response queue
1697 * @skb: the packet
1698 *
1699 * Add a new offload packet to an SGE response queue's offload packet
1700 * queue. If the packet is the first on the queue it schedules the RX
1701 * softirq to process the queue.
1702 */
1703static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1704{
1705 skb->next = skb->prev = NULL;
1706 if (q->rx_tail)
1707 q->rx_tail->next = skb;
1708 else {
1709 struct sge_qset *qs = rspq_to_qset(q);
1710
bea3348e 1711 napi_schedule(&qs->napi);
4d22de3e
DLR
1712 q->rx_head = skb;
1713 }
1714 q->rx_tail = skb;
1715}
1716
1717/**
1718 * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1719 * @tdev: the offload device that will be receiving the packets
1720 * @q: the SGE response queue that assembled the bundle
1721 * @skbs: the partial bundle
1722 * @n: the number of packets in the bundle
1723 *
1724 * Delivers a (partial) bundle of Rx offload packets to an offload device.
1725 */
1726static inline void deliver_partial_bundle(struct t3cdev *tdev,
1727 struct sge_rspq *q,
1728 struct sk_buff *skbs[], int n)
1729{
1730 if (n) {
1731 q->offload_bundles++;
1732 tdev->recv(tdev, skbs, n);
1733 }
1734}
1735
1736/**
1737 * ofld_poll - NAPI handler for offload packets in interrupt mode
1738 * @dev: the network device doing the polling
1739 * @budget: polling budget
1740 *
1741 * The NAPI handler for offload packets when a response queue is serviced
1742 * by the hard interrupt handler, i.e., when it's operating in non-polling
1743 * mode. Creates small packet batches and sends them through the offload
1744 * receive handler. Batches need to be of modest size as we do prefetches
1745 * on the packets in each.
1746 */
bea3348e 1747static int ofld_poll(struct napi_struct *napi, int budget)
4d22de3e 1748{
bea3348e 1749 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
4d22de3e 1750 struct sge_rspq *q = &qs->rspq;
bea3348e
SH
1751 struct adapter *adapter = qs->adap;
1752 int work_done = 0;
4d22de3e 1753
bea3348e 1754 while (work_done < budget) {
4d22de3e
DLR
1755 struct sk_buff *head, *tail, *skbs[RX_BUNDLE_SIZE];
1756 int ngathered;
1757
1758 spin_lock_irq(&q->lock);
1759 head = q->rx_head;
1760 if (!head) {
bea3348e 1761 napi_complete(napi);
4d22de3e 1762 spin_unlock_irq(&q->lock);
bea3348e 1763 return work_done;
4d22de3e
DLR
1764 }
1765
1766 tail = q->rx_tail;
1767 q->rx_head = q->rx_tail = NULL;
1768 spin_unlock_irq(&q->lock);
1769
bea3348e 1770 for (ngathered = 0; work_done < budget && head; work_done++) {
4d22de3e
DLR
1771 prefetch(head->data);
1772 skbs[ngathered] = head;
1773 head = head->next;
1774 skbs[ngathered]->next = NULL;
1775 if (++ngathered == RX_BUNDLE_SIZE) {
1776 q->offload_bundles++;
1777 adapter->tdev.recv(&adapter->tdev, skbs,
1778 ngathered);
1779 ngathered = 0;
1780 }
1781 }
1782 if (head) { /* splice remaining packets back onto Rx queue */
1783 spin_lock_irq(&q->lock);
1784 tail->next = q->rx_head;
1785 if (!q->rx_head)
1786 q->rx_tail = tail;
1787 q->rx_head = head;
1788 spin_unlock_irq(&q->lock);
1789 }
1790 deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1791 }
bea3348e
SH
1792
1793 return work_done;
4d22de3e
DLR
1794}
1795
1796/**
1797 * rx_offload - process a received offload packet
1798 * @tdev: the offload device receiving the packet
1799 * @rq: the response queue that received the packet
1800 * @skb: the packet
1801 * @rx_gather: a gather list of packets if we are building a bundle
1802 * @gather_idx: index of the next available slot in the bundle
1803 *
1804 * Process an ingress offload pakcet and add it to the offload ingress
1805 * queue. Returns the index of the next available slot in the bundle.
1806 */
1807static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1808 struct sk_buff *skb, struct sk_buff *rx_gather[],
1809 unsigned int gather_idx)
1810{
459a98ed 1811 skb_reset_mac_header(skb);
c1d2bbe1 1812 skb_reset_network_header(skb);
badff6d0 1813 skb_reset_transport_header(skb);
4d22de3e
DLR
1814
1815 if (rq->polling) {
1816 rx_gather[gather_idx++] = skb;
1817 if (gather_idx == RX_BUNDLE_SIZE) {
1818 tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1819 gather_idx = 0;
1820 rq->offload_bundles++;
1821 }
1822 } else
1823 offload_enqueue(rq, skb);
1824
1825 return gather_idx;
1826}
1827
4d22de3e
DLR
1828/**
1829 * restart_tx - check whether to restart suspended Tx queues
1830 * @qs: the queue set to resume
1831 *
1832 * Restarts suspended Tx queues of an SGE queue set if they have enough
1833 * free resources to resume operation.
1834 */
1835static void restart_tx(struct sge_qset *qs)
1836{
1837 if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1838 should_restart_tx(&qs->txq[TXQ_ETH]) &&
1839 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1840 qs->txq[TXQ_ETH].restarts++;
1841 if (netif_running(qs->netdev))
1842 netif_wake_queue(qs->netdev);
1843 }
1844
1845 if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1846 should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1847 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1848 qs->txq[TXQ_OFLD].restarts++;
1849 tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
1850 }
1851 if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
1852 should_restart_tx(&qs->txq[TXQ_CTRL]) &&
1853 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
1854 qs->txq[TXQ_CTRL].restarts++;
1855 tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
1856 }
1857}
1858
1859/**
1860 * rx_eth - process an ingress ethernet packet
1861 * @adap: the adapter
1862 * @rq: the response queue that received the packet
1863 * @skb: the packet
1864 * @pad: amount of padding at the start of the buffer
1865 *
1866 * Process an ingress ethernet pakcet and deliver it to the stack.
1867 * The padding is 2 if the packet was delivered in an Rx buffer and 0
1868 * if it was immediate data in a response.
1869 */
1870static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
1871 struct sk_buff *skb, int pad)
1872{
1873 struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
1874 struct port_info *pi;
1875
4d22de3e 1876 skb_pull(skb, sizeof(*p) + pad);
4c13eb66 1877 skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
e360b562 1878 skb->dev->last_rx = jiffies;
4d22de3e 1879 pi = netdev_priv(skb->dev);
05e5c116 1880 if (pi->rx_csum_offload && p->csum_valid && p->csum == htons(0xffff) &&
4d22de3e
DLR
1881 !p->fragment) {
1882 rspq_to_qset(rq)->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
1883 skb->ip_summed = CHECKSUM_UNNECESSARY;
1884 } else
1885 skb->ip_summed = CHECKSUM_NONE;
1886
1887 if (unlikely(p->vlan_valid)) {
1888 struct vlan_group *grp = pi->vlan_grp;
1889
1890 rspq_to_qset(rq)->port_stats[SGE_PSTAT_VLANEX]++;
1891 if (likely(grp))
1892 __vlan_hwaccel_rx(skb, grp, ntohs(p->vlan),
1893 rq->polling);
1894 else
1895 dev_kfree_skb_any(skb);
1896 } else if (rq->polling)
1897 netif_receive_skb(skb);
1898 else
1899 netif_rx(skb);
1900}
1901
1902/**
1903 * handle_rsp_cntrl_info - handles control information in a response
1904 * @qs: the queue set corresponding to the response
1905 * @flags: the response control flags
4d22de3e
DLR
1906 *
1907 * Handles the control information of an SGE response, such as GTS
1908 * indications and completion credits for the queue set's Tx queues.
6195c71d 1909 * HW coalesces credits, we don't do any extra SW coalescing.
4d22de3e 1910 */
6195c71d 1911static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
4d22de3e
DLR
1912{
1913 unsigned int credits;
1914
1915#if USE_GTS
1916 if (flags & F_RSPD_TXQ0_GTS)
1917 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
1918#endif
1919
4d22de3e
DLR
1920 credits = G_RSPD_TXQ0_CR(flags);
1921 if (credits)
1922 qs->txq[TXQ_ETH].processed += credits;
1923
6195c71d
DLR
1924 credits = G_RSPD_TXQ2_CR(flags);
1925 if (credits)
1926 qs->txq[TXQ_CTRL].processed += credits;
1927
4d22de3e
DLR
1928# if USE_GTS
1929 if (flags & F_RSPD_TXQ1_GTS)
1930 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
1931# endif
6195c71d
DLR
1932 credits = G_RSPD_TXQ1_CR(flags);
1933 if (credits)
1934 qs->txq[TXQ_OFLD].processed += credits;
4d22de3e
DLR
1935}
1936
1937/**
1938 * check_ring_db - check if we need to ring any doorbells
1939 * @adapter: the adapter
1940 * @qs: the queue set whose Tx queues are to be examined
1941 * @sleeping: indicates which Tx queue sent GTS
1942 *
1943 * Checks if some of a queue set's Tx queues need to ring their doorbells
1944 * to resume transmission after idling while they still have unprocessed
1945 * descriptors.
1946 */
1947static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
1948 unsigned int sleeping)
1949{
1950 if (sleeping & F_RSPD_TXQ0_GTS) {
1951 struct sge_txq *txq = &qs->txq[TXQ_ETH];
1952
1953 if (txq->cleaned + txq->in_use != txq->processed &&
1954 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
1955 set_bit(TXQ_RUNNING, &txq->flags);
1956 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
1957 V_EGRCNTX(txq->cntxt_id));
1958 }
1959 }
1960
1961 if (sleeping & F_RSPD_TXQ1_GTS) {
1962 struct sge_txq *txq = &qs->txq[TXQ_OFLD];
1963
1964 if (txq->cleaned + txq->in_use != txq->processed &&
1965 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
1966 set_bit(TXQ_RUNNING, &txq->flags);
1967 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
1968 V_EGRCNTX(txq->cntxt_id));
1969 }
1970 }
1971}
1972
1973/**
1974 * is_new_response - check if a response is newly written
1975 * @r: the response descriptor
1976 * @q: the response queue
1977 *
1978 * Returns true if a response descriptor contains a yet unprocessed
1979 * response.
1980 */
1981static inline int is_new_response(const struct rsp_desc *r,
1982 const struct sge_rspq *q)
1983{
1984 return (r->intr_gen & F_RSPD_GEN2) == q->gen;
1985}
1986
7385ecf3
DLR
1987static inline void clear_rspq_bufstate(struct sge_rspq * const q)
1988{
1989 q->pg_skb = NULL;
1990 q->rx_recycle_buf = 0;
1991}
1992
4d22de3e
DLR
1993#define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
1994#define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
1995 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
1996 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
1997 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
1998
1999/* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2000#define NOMEM_INTR_DELAY 2500
2001
2002/**
2003 * process_responses - process responses from an SGE response queue
2004 * @adap: the adapter
2005 * @qs: the queue set to which the response queue belongs
2006 * @budget: how many responses can be processed in this round
2007 *
2008 * Process responses from an SGE response queue up to the supplied budget.
2009 * Responses include received packets as well as credits and other events
2010 * for the queues that belong to the response queue's queue set.
2011 * A negative budget is effectively unlimited.
2012 *
2013 * Additionally choose the interrupt holdoff time for the next interrupt
2014 * on this queue. If the system is under memory shortage use a fairly
2015 * long delay to help recovery.
2016 */
2017static int process_responses(struct adapter *adap, struct sge_qset *qs,
2018 int budget)
2019{
2020 struct sge_rspq *q = &qs->rspq;
2021 struct rsp_desc *r = &q->desc[q->cidx];
2022 int budget_left = budget;
6195c71d 2023 unsigned int sleeping = 0;
4d22de3e
DLR
2024 struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
2025 int ngathered = 0;
2026
2027 q->next_holdoff = q->holdoff_tmr;
2028
2029 while (likely(budget_left && is_new_response(r, q))) {
7385ecf3 2030 int packet_complete, eth, ethpad = 2;
4d22de3e
DLR
2031 struct sk_buff *skb = NULL;
2032 u32 len, flags = ntohl(r->flags);
7385ecf3
DLR
2033 __be32 rss_hi = *(const __be32 *)r,
2034 rss_lo = r->rss_hdr.rss_hash_val;
4d22de3e
DLR
2035
2036 eth = r->rss_hdr.opcode == CPL_RX_PKT;
2037
2038 if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
2039 skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
2040 if (!skb)
2041 goto no_mem;
2042
2043 memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE);
2044 skb->data[0] = CPL_ASYNC_NOTIF;
2045 rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
2046 q->async_notif++;
2047 } else if (flags & F_RSPD_IMM_DATA_VALID) {
2048 skb = get_imm_packet(r);
2049 if (unlikely(!skb)) {
cf992af5 2050no_mem:
4d22de3e
DLR
2051 q->next_holdoff = NOMEM_INTR_DELAY;
2052 q->nomem++;
2053 /* consume one credit since we tried */
2054 budget_left--;
2055 break;
2056 }
2057 q->imm_data++;
e0994eb1 2058 ethpad = 0;
4d22de3e 2059 } else if ((len = ntohl(r->len_cq)) != 0) {
cf992af5 2060 struct sge_fl *fl;
e0994eb1 2061
cf992af5
DLR
2062 fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
2063 if (fl->use_pages) {
2064 void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
e0994eb1 2065
cf992af5
DLR
2066 prefetch(addr);
2067#if L1_CACHE_BYTES < 128
2068 prefetch(addr + L1_CACHE_BYTES);
2069#endif
e0994eb1
DLR
2070 __refill_fl(adap, fl);
2071
7385ecf3
DLR
2072 skb = get_packet_pg(adap, fl, q,
2073 G_RSPD_LEN(len),
2074 eth ?
2075 SGE_RX_DROP_THRES : 0);
2076 q->pg_skb = skb;
cf992af5 2077 } else
e0994eb1
DLR
2078 skb = get_packet(adap, fl, G_RSPD_LEN(len),
2079 eth ? SGE_RX_DROP_THRES : 0);
cf992af5
DLR
2080 if (unlikely(!skb)) {
2081 if (!eth)
2082 goto no_mem;
2083 q->rx_drops++;
2084 } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2085 __skb_pull(skb, 2);
4d22de3e 2086
4d22de3e
DLR
2087 if (++fl->cidx == fl->size)
2088 fl->cidx = 0;
2089 } else
2090 q->pure_rsps++;
2091
2092 if (flags & RSPD_CTRL_MASK) {
2093 sleeping |= flags & RSPD_GTS_MASK;
6195c71d 2094 handle_rsp_cntrl_info(qs, flags);
4d22de3e
DLR
2095 }
2096
2097 r++;
2098 if (unlikely(++q->cidx == q->size)) {
2099 q->cidx = 0;
2100 q->gen ^= 1;
2101 r = q->desc;
2102 }
2103 prefetch(r);
2104
2105 if (++q->credits >= (q->size / 4)) {
2106 refill_rspq(adap, q, q->credits);
2107 q->credits = 0;
2108 }
2109
7385ecf3
DLR
2110 packet_complete = flags &
2111 (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
2112 F_RSPD_ASYNC_NOTIF);
2113
2114 if (skb != NULL && packet_complete) {
4d22de3e
DLR
2115 if (eth)
2116 rx_eth(adap, q, skb, ethpad);
2117 else {
afefce66 2118 q->offload_pkts++;
cf992af5
DLR
2119 /* Preserve the RSS info in csum & priority */
2120 skb->csum = rss_hi;
2121 skb->priority = rss_lo;
2122 ngathered = rx_offload(&adap->tdev, q, skb,
2123 offload_skbs,
e0994eb1 2124 ngathered);
4d22de3e 2125 }
7385ecf3
DLR
2126
2127 if (flags & F_RSPD_EOP)
2128 clear_rspq_bufstate(q);
4d22de3e 2129 }
4d22de3e
DLR
2130 --budget_left;
2131 }
2132
4d22de3e
DLR
2133 deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2134 if (sleeping)
2135 check_ring_db(adap, qs, sleeping);
2136
2137 smp_mb(); /* commit Tx queue .processed updates */
2138 if (unlikely(qs->txq_stopped != 0))
2139 restart_tx(qs);
2140
2141 budget -= budget_left;
2142 return budget;
2143}
2144
2145static inline int is_pure_response(const struct rsp_desc *r)
2146{
2147 u32 n = ntohl(r->flags) & (F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2148
2149 return (n | r->len_cq) == 0;
2150}
2151
2152/**
2153 * napi_rx_handler - the NAPI handler for Rx processing
bea3348e 2154 * @napi: the napi instance
4d22de3e
DLR
2155 * @budget: how many packets we can process in this round
2156 *
2157 * Handler for new data events when using NAPI.
2158 */
bea3348e 2159static int napi_rx_handler(struct napi_struct *napi, int budget)
4d22de3e 2160{
bea3348e
SH
2161 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2162 struct adapter *adap = qs->adap;
2163 int work_done = process_responses(adap, qs, budget);
4d22de3e 2164
bea3348e
SH
2165 if (likely(work_done < budget)) {
2166 napi_complete(napi);
4d22de3e 2167
bea3348e
SH
2168 /*
2169 * Because we don't atomically flush the following
2170 * write it is possible that in very rare cases it can
2171 * reach the device in a way that races with a new
2172 * response being written plus an error interrupt
2173 * causing the NAPI interrupt handler below to return
2174 * unhandled status to the OS. To protect against
2175 * this would require flushing the write and doing
2176 * both the write and the flush with interrupts off.
2177 * Way too expensive and unjustifiable given the
2178 * rarity of the race.
2179 *
2180 * The race cannot happen at all with MSI-X.
2181 */
2182 t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2183 V_NEWTIMER(qs->rspq.next_holdoff) |
2184 V_NEWINDEX(qs->rspq.cidx));
2185 }
2186 return work_done;
4d22de3e
DLR
2187}
2188
2189/*
2190 * Returns true if the device is already scheduled for polling.
2191 */
bea3348e 2192static inline int napi_is_scheduled(struct napi_struct *napi)
4d22de3e 2193{
bea3348e 2194 return test_bit(NAPI_STATE_SCHED, &napi->state);
4d22de3e
DLR
2195}
2196
2197/**
2198 * process_pure_responses - process pure responses from a response queue
2199 * @adap: the adapter
2200 * @qs: the queue set owning the response queue
2201 * @r: the first pure response to process
2202 *
2203 * A simpler version of process_responses() that handles only pure (i.e.,
2204 * non data-carrying) responses. Such respones are too light-weight to
2205 * justify calling a softirq under NAPI, so we handle them specially in
2206 * the interrupt handler. The function is called with a pointer to a
2207 * response, which the caller must ensure is a valid pure response.
2208 *
2209 * Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2210 */
2211static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2212 struct rsp_desc *r)
2213{
2214 struct sge_rspq *q = &qs->rspq;
6195c71d 2215 unsigned int sleeping = 0;
4d22de3e
DLR
2216
2217 do {
2218 u32 flags = ntohl(r->flags);
2219
2220 r++;
2221 if (unlikely(++q->cidx == q->size)) {
2222 q->cidx = 0;
2223 q->gen ^= 1;
2224 r = q->desc;
2225 }
2226 prefetch(r);
2227
2228 if (flags & RSPD_CTRL_MASK) {
2229 sleeping |= flags & RSPD_GTS_MASK;
6195c71d 2230 handle_rsp_cntrl_info(qs, flags);
4d22de3e
DLR
2231 }
2232
2233 q->pure_rsps++;
2234 if (++q->credits >= (q->size / 4)) {
2235 refill_rspq(adap, q, q->credits);
2236 q->credits = 0;
2237 }
2238 } while (is_new_response(r, q) && is_pure_response(r));
2239
4d22de3e
DLR
2240 if (sleeping)
2241 check_ring_db(adap, qs, sleeping);
2242
2243 smp_mb(); /* commit Tx queue .processed updates */
2244 if (unlikely(qs->txq_stopped != 0))
2245 restart_tx(qs);
2246
2247 return is_new_response(r, q);
2248}
2249
2250/**
2251 * handle_responses - decide what to do with new responses in NAPI mode
2252 * @adap: the adapter
2253 * @q: the response queue
2254 *
2255 * This is used by the NAPI interrupt handlers to decide what to do with
2256 * new SGE responses. If there are no new responses it returns -1. If
2257 * there are new responses and they are pure (i.e., non-data carrying)
2258 * it handles them straight in hard interrupt context as they are very
2259 * cheap and don't deliver any packets. Finally, if there are any data
2260 * signaling responses it schedules the NAPI handler. Returns 1 if it
2261 * schedules NAPI, 0 if all new responses were pure.
2262 *
2263 * The caller must ascertain NAPI is not already running.
2264 */
2265static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2266{
2267 struct sge_qset *qs = rspq_to_qset(q);
2268 struct rsp_desc *r = &q->desc[q->cidx];
2269
2270 if (!is_new_response(r, q))
2271 return -1;
2272 if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2273 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2274 V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2275 return 0;
2276 }
bea3348e 2277 napi_schedule(&qs->napi);
4d22de3e
DLR
2278 return 1;
2279}
2280
2281/*
2282 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2283 * (i.e., response queue serviced in hard interrupt).
2284 */
2285irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2286{
2287 struct sge_qset *qs = cookie;
bea3348e 2288 struct adapter *adap = qs->adap;
4d22de3e
DLR
2289 struct sge_rspq *q = &qs->rspq;
2290
2291 spin_lock(&q->lock);
2292 if (process_responses(adap, qs, -1) == 0)
2293 q->unhandled_irqs++;
2294 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2295 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2296 spin_unlock(&q->lock);
2297 return IRQ_HANDLED;
2298}
2299
2300/*
2301 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2302 * (i.e., response queue serviced by NAPI polling).
2303 */
9265fabf 2304static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
4d22de3e
DLR
2305{
2306 struct sge_qset *qs = cookie;
4d22de3e
DLR
2307 struct sge_rspq *q = &qs->rspq;
2308
2309 spin_lock(&q->lock);
4d22de3e 2310
bea3348e 2311 if (handle_responses(qs->adap, q) < 0)
4d22de3e
DLR
2312 q->unhandled_irqs++;
2313 spin_unlock(&q->lock);
2314 return IRQ_HANDLED;
2315}
2316
2317/*
2318 * The non-NAPI MSI interrupt handler. This needs to handle data events from
2319 * SGE response queues as well as error and other async events as they all use
2320 * the same MSI vector. We use one SGE response queue per port in this mode
2321 * and protect all response queues with queue 0's lock.
2322 */
2323static irqreturn_t t3_intr_msi(int irq, void *cookie)
2324{
2325 int new_packets = 0;
2326 struct adapter *adap = cookie;
2327 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2328
2329 spin_lock(&q->lock);
2330
2331 if (process_responses(adap, &adap->sge.qs[0], -1)) {
2332 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2333 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2334 new_packets = 1;
2335 }
2336
2337 if (adap->params.nports == 2 &&
2338 process_responses(adap, &adap->sge.qs[1], -1)) {
2339 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2340
2341 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2342 V_NEWTIMER(q1->next_holdoff) |
2343 V_NEWINDEX(q1->cidx));
2344 new_packets = 1;
2345 }
2346
2347 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2348 q->unhandled_irqs++;
2349
2350 spin_unlock(&q->lock);
2351 return IRQ_HANDLED;
2352}
2353
bea3348e 2354static int rspq_check_napi(struct sge_qset *qs)
4d22de3e 2355{
bea3348e
SH
2356 struct sge_rspq *q = &qs->rspq;
2357
2358 if (!napi_is_scheduled(&qs->napi) &&
2359 is_new_response(&q->desc[q->cidx], q)) {
2360 napi_schedule(&qs->napi);
4d22de3e
DLR
2361 return 1;
2362 }
2363 return 0;
2364}
2365
2366/*
2367 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2368 * by NAPI polling). Handles data events from SGE response queues as well as
2369 * error and other async events as they all use the same MSI vector. We use
2370 * one SGE response queue per port in this mode and protect all response
2371 * queues with queue 0's lock.
2372 */
9265fabf 2373static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
4d22de3e
DLR
2374{
2375 int new_packets;
2376 struct adapter *adap = cookie;
2377 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2378
2379 spin_lock(&q->lock);
2380
bea3348e 2381 new_packets = rspq_check_napi(&adap->sge.qs[0]);
4d22de3e 2382 if (adap->params.nports == 2)
bea3348e 2383 new_packets += rspq_check_napi(&adap->sge.qs[1]);
4d22de3e
DLR
2384 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2385 q->unhandled_irqs++;
2386
2387 spin_unlock(&q->lock);
2388 return IRQ_HANDLED;
2389}
2390
2391/*
2392 * A helper function that processes responses and issues GTS.
2393 */
2394static inline int process_responses_gts(struct adapter *adap,
2395 struct sge_rspq *rq)
2396{
2397 int work;
2398
2399 work = process_responses(adap, rspq_to_qset(rq), -1);
2400 t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2401 V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2402 return work;
2403}
2404
2405/*
2406 * The legacy INTx interrupt handler. This needs to handle data events from
2407 * SGE response queues as well as error and other async events as they all use
2408 * the same interrupt pin. We use one SGE response queue per port in this mode
2409 * and protect all response queues with queue 0's lock.
2410 */
2411static irqreturn_t t3_intr(int irq, void *cookie)
2412{
2413 int work_done, w0, w1;
2414 struct adapter *adap = cookie;
2415 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2416 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2417
2418 spin_lock(&q0->lock);
2419
2420 w0 = is_new_response(&q0->desc[q0->cidx], q0);
2421 w1 = adap->params.nports == 2 &&
2422 is_new_response(&q1->desc[q1->cidx], q1);
2423
2424 if (likely(w0 | w1)) {
2425 t3_write_reg(adap, A_PL_CLI, 0);
2426 t3_read_reg(adap, A_PL_CLI); /* flush */
2427
2428 if (likely(w0))
2429 process_responses_gts(adap, q0);
2430
2431 if (w1)
2432 process_responses_gts(adap, q1);
2433
2434 work_done = w0 | w1;
2435 } else
2436 work_done = t3_slow_intr_handler(adap);
2437
2438 spin_unlock(&q0->lock);
2439 return IRQ_RETVAL(work_done != 0);
2440}
2441
2442/*
2443 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2444 * Handles data events from SGE response queues as well as error and other
2445 * async events as they all use the same interrupt pin. We use one SGE
2446 * response queue per port in this mode and protect all response queues with
2447 * queue 0's lock.
2448 */
2449static irqreturn_t t3b_intr(int irq, void *cookie)
2450{
2451 u32 map;
2452 struct adapter *adap = cookie;
2453 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2454
2455 t3_write_reg(adap, A_PL_CLI, 0);
2456 map = t3_read_reg(adap, A_SG_DATA_INTR);
2457
2458 if (unlikely(!map)) /* shared interrupt, most likely */
2459 return IRQ_NONE;
2460
2461 spin_lock(&q0->lock);
2462
2463 if (unlikely(map & F_ERRINTR))
2464 t3_slow_intr_handler(adap);
2465
2466 if (likely(map & 1))
2467 process_responses_gts(adap, q0);
2468
2469 if (map & 2)
2470 process_responses_gts(adap, &adap->sge.qs[1].rspq);
2471
2472 spin_unlock(&q0->lock);
2473 return IRQ_HANDLED;
2474}
2475
2476/*
2477 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2478 * Handles data events from SGE response queues as well as error and other
2479 * async events as they all use the same interrupt pin. We use one SGE
2480 * response queue per port in this mode and protect all response queues with
2481 * queue 0's lock.
2482 */
2483static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2484{
2485 u32 map;
4d22de3e 2486 struct adapter *adap = cookie;
bea3348e
SH
2487 struct sge_qset *qs0 = &adap->sge.qs[0];
2488 struct sge_rspq *q0 = &qs0->rspq;
4d22de3e
DLR
2489
2490 t3_write_reg(adap, A_PL_CLI, 0);
2491 map = t3_read_reg(adap, A_SG_DATA_INTR);
2492
2493 if (unlikely(!map)) /* shared interrupt, most likely */
2494 return IRQ_NONE;
2495
2496 spin_lock(&q0->lock);
2497
2498 if (unlikely(map & F_ERRINTR))
2499 t3_slow_intr_handler(adap);
2500
bea3348e
SH
2501 if (likely(map & 1))
2502 napi_schedule(&qs0->napi);
4d22de3e 2503
bea3348e
SH
2504 if (map & 2)
2505 napi_schedule(&adap->sge.qs[1].napi);
4d22de3e
DLR
2506
2507 spin_unlock(&q0->lock);
2508 return IRQ_HANDLED;
2509}
2510
2511/**
2512 * t3_intr_handler - select the top-level interrupt handler
2513 * @adap: the adapter
2514 * @polling: whether using NAPI to service response queues
2515 *
2516 * Selects the top-level interrupt handler based on the type of interrupts
2517 * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2518 * response queues.
2519 */
7c239975 2520irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
4d22de3e
DLR
2521{
2522 if (adap->flags & USING_MSIX)
2523 return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2524 if (adap->flags & USING_MSI)
2525 return polling ? t3_intr_msi_napi : t3_intr_msi;
2526 if (adap->params.rev > 0)
2527 return polling ? t3b_intr_napi : t3b_intr;
2528 return t3_intr;
2529}
2530
b881955b
DLR
2531#define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2532 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2533 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2534 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2535 F_HIRCQPARITYERROR)
2536#define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2537#define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2538 F_RSPQDISABLED)
2539
4d22de3e
DLR
2540/**
2541 * t3_sge_err_intr_handler - SGE async event interrupt handler
2542 * @adapter: the adapter
2543 *
2544 * Interrupt handler for SGE asynchronous (non-data) events.
2545 */
2546void t3_sge_err_intr_handler(struct adapter *adapter)
2547{
2548 unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2549
b881955b
DLR
2550 if (status & SGE_PARERR)
2551 CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2552 status & SGE_PARERR);
2553 if (status & SGE_FRAMINGERR)
2554 CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2555 status & SGE_FRAMINGERR);
2556
4d22de3e
DLR
2557 if (status & F_RSPQCREDITOVERFOW)
2558 CH_ALERT(adapter, "SGE response queue credit overflow\n");
2559
2560 if (status & F_RSPQDISABLED) {
2561 v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2562
2563 CH_ALERT(adapter,
2564 "packet delivered to disabled response queue "
2565 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2566 }
2567
6e3f03b7
DLR
2568 if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2569 CH_ALERT(adapter, "SGE dropped %s priority doorbell\n",
2570 status & F_HIPIODRBDROPERR ? "high" : "lo");
2571
4d22de3e 2572 t3_write_reg(adapter, A_SG_INT_CAUSE, status);
b881955b 2573 if (status & SGE_FATALERR)
4d22de3e
DLR
2574 t3_fatal_err(adapter);
2575}
2576
2577/**
2578 * sge_timer_cb - perform periodic maintenance of an SGE qset
2579 * @data: the SGE queue set to maintain
2580 *
2581 * Runs periodically from a timer to perform maintenance of an SGE queue
2582 * set. It performs two tasks:
2583 *
2584 * a) Cleans up any completed Tx descriptors that may still be pending.
2585 * Normal descriptor cleanup happens when new packets are added to a Tx
2586 * queue so this timer is relatively infrequent and does any cleanup only
2587 * if the Tx queue has not seen any new packets in a while. We make a
2588 * best effort attempt to reclaim descriptors, in that we don't wait
2589 * around if we cannot get a queue's lock (which most likely is because
2590 * someone else is queueing new packets and so will also handle the clean
2591 * up). Since control queues use immediate data exclusively we don't
2592 * bother cleaning them up here.
2593 *
2594 * b) Replenishes Rx queues that have run out due to memory shortage.
2595 * Normally new Rx buffers are added when existing ones are consumed but
2596 * when out of memory a queue can become empty. We try to add only a few
2597 * buffers here, the queue will be replenished fully as these new buffers
2598 * are used up if memory shortage has subsided.
2599 */
2600static void sge_timer_cb(unsigned long data)
2601{
2602 spinlock_t *lock;
2603 struct sge_qset *qs = (struct sge_qset *)data;
bea3348e 2604 struct adapter *adap = qs->adap;
4d22de3e
DLR
2605
2606 if (spin_trylock(&qs->txq[TXQ_ETH].lock)) {
2607 reclaim_completed_tx(adap, &qs->txq[TXQ_ETH]);
2608 spin_unlock(&qs->txq[TXQ_ETH].lock);
2609 }
2610 if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2611 reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD]);
2612 spin_unlock(&qs->txq[TXQ_OFLD].lock);
2613 }
2614 lock = (adap->flags & USING_MSIX) ? &qs->rspq.lock :
bea3348e 2615 &adap->sge.qs[0].rspq.lock;
4d22de3e 2616 if (spin_trylock_irq(lock)) {
bea3348e 2617 if (!napi_is_scheduled(&qs->napi)) {
bae73f44
DLR
2618 u32 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2619
4d22de3e
DLR
2620 if (qs->fl[0].credits < qs->fl[0].size)
2621 __refill_fl(adap, &qs->fl[0]);
2622 if (qs->fl[1].credits < qs->fl[1].size)
2623 __refill_fl(adap, &qs->fl[1]);
bae73f44
DLR
2624
2625 if (status & (1 << qs->rspq.cntxt_id)) {
2626 qs->rspq.starved++;
2627 if (qs->rspq.credits) {
2628 refill_rspq(adap, &qs->rspq, 1);
2629 qs->rspq.credits--;
2630 qs->rspq.restarted++;
e0994eb1 2631 t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
bae73f44
DLR
2632 1 << qs->rspq.cntxt_id);
2633 }
2634 }
4d22de3e
DLR
2635 }
2636 spin_unlock_irq(lock);
2637 }
2638 mod_timer(&qs->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2639}
2640
2641/**
2642 * t3_update_qset_coalesce - update coalescing settings for a queue set
2643 * @qs: the SGE queue set
2644 * @p: new queue set parameters
2645 *
2646 * Update the coalescing settings for an SGE queue set. Nothing is done
2647 * if the queue set is not initialized yet.
2648 */
2649void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
2650{
4d22de3e
DLR
2651 qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
2652 qs->rspq.polling = p->polling;
bea3348e 2653 qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
4d22de3e
DLR
2654}
2655
2656/**
2657 * t3_sge_alloc_qset - initialize an SGE queue set
2658 * @adapter: the adapter
2659 * @id: the queue set id
2660 * @nports: how many Ethernet ports will be using this queue set
2661 * @irq_vec_idx: the IRQ vector index for response queue interrupts
2662 * @p: configuration parameters for this queue set
2663 * @ntxq: number of Tx queues for the queue set
2664 * @netdev: net device associated with this queue set
2665 *
2666 * Allocate resources and initialize an SGE queue set. A queue set
2667 * comprises a response queue, two Rx free-buffer queues, and up to 3
2668 * Tx queues. The Tx queues are assigned roles in the order Ethernet
2669 * queue, offload queue, and control queue.
2670 */
2671int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
2672 int irq_vec_idx, const struct qset_params *p,
bea3348e 2673 int ntxq, struct net_device *dev)
4d22de3e 2674{
b1fb1f28 2675 int i, avail, ret = -ENOMEM;
4d22de3e
DLR
2676 struct sge_qset *q = &adapter->sge.qs[id];
2677
2678 init_qset_cntxt(q, id);
2679 init_timer(&q->tx_reclaim_timer);
2680 q->tx_reclaim_timer.data = (unsigned long)q;
2681 q->tx_reclaim_timer.function = sge_timer_cb;
2682
2683 q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
2684 sizeof(struct rx_desc),
2685 sizeof(struct rx_sw_desc),
2686 &q->fl[0].phys_addr, &q->fl[0].sdesc);
2687 if (!q->fl[0].desc)
2688 goto err;
2689
2690 q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
2691 sizeof(struct rx_desc),
2692 sizeof(struct rx_sw_desc),
2693 &q->fl[1].phys_addr, &q->fl[1].sdesc);
2694 if (!q->fl[1].desc)
2695 goto err;
2696
2697 q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
2698 sizeof(struct rsp_desc), 0,
2699 &q->rspq.phys_addr, NULL);
2700 if (!q->rspq.desc)
2701 goto err;
2702
2703 for (i = 0; i < ntxq; ++i) {
2704 /*
2705 * The control queue always uses immediate data so does not
2706 * need to keep track of any sk_buffs.
2707 */
2708 size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
2709
2710 q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
2711 sizeof(struct tx_desc), sz,
2712 &q->txq[i].phys_addr,
2713 &q->txq[i].sdesc);
2714 if (!q->txq[i].desc)
2715 goto err;
2716
2717 q->txq[i].gen = 1;
2718 q->txq[i].size = p->txq_size[i];
2719 spin_lock_init(&q->txq[i].lock);
2720 skb_queue_head_init(&q->txq[i].sendq);
2721 }
2722
2723 tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
2724 (unsigned long)q);
2725 tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
2726 (unsigned long)q);
2727
2728 q->fl[0].gen = q->fl[1].gen = 1;
2729 q->fl[0].size = p->fl_size;
2730 q->fl[1].size = p->jumbo_size;
2731
2732 q->rspq.gen = 1;
2733 q->rspq.size = p->rspq_size;
2734 spin_lock_init(&q->rspq.lock);
2735
2736 q->txq[TXQ_ETH].stop_thres = nports *
2737 flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
2738
cf992af5
DLR
2739#if FL0_PG_CHUNK_SIZE > 0
2740 q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
e0994eb1 2741#else
cf992af5 2742 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
e0994eb1 2743#endif
7385ecf3
DLR
2744#if FL1_PG_CHUNK_SIZE > 0
2745 q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
2746#else
cf992af5
DLR
2747 q->fl[1].buf_size = is_offload(adapter) ?
2748 (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
2749 MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
7385ecf3
DLR
2750#endif
2751
2752 q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
2753 q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
2754 q->fl[0].order = FL0_PG_ORDER;
2755 q->fl[1].order = FL1_PG_ORDER;
4d22de3e 2756
b1186dee 2757 spin_lock_irq(&adapter->sge.reg_lock);
4d22de3e
DLR
2758
2759 /* FL threshold comparison uses < */
2760 ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
2761 q->rspq.phys_addr, q->rspq.size,
2762 q->fl[0].buf_size, 1, 0);
2763 if (ret)
2764 goto err_unlock;
2765
2766 for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
2767 ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
2768 q->fl[i].phys_addr, q->fl[i].size,
2769 q->fl[i].buf_size, p->cong_thres, 1,
2770 0);
2771 if (ret)
2772 goto err_unlock;
2773 }
2774
2775 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
2776 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
2777 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
2778 1, 0);
2779 if (ret)
2780 goto err_unlock;
2781
2782 if (ntxq > 1) {
2783 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
2784 USE_GTS, SGE_CNTXT_OFLD, id,
2785 q->txq[TXQ_OFLD].phys_addr,
2786 q->txq[TXQ_OFLD].size, 0, 1, 0);
2787 if (ret)
2788 goto err_unlock;
2789 }
2790
2791 if (ntxq > 2) {
2792 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
2793 SGE_CNTXT_CTRL, id,
2794 q->txq[TXQ_CTRL].phys_addr,
2795 q->txq[TXQ_CTRL].size,
2796 q->txq[TXQ_CTRL].token, 1, 0);
2797 if (ret)
2798 goto err_unlock;
2799 }
2800
b1186dee 2801 spin_unlock_irq(&adapter->sge.reg_lock);
4d22de3e 2802
bea3348e
SH
2803 q->adap = adapter;
2804 q->netdev = dev;
2805 t3_update_qset_coalesce(q, p);
7385ecf3
DLR
2806 avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
2807 GFP_KERNEL | __GFP_COMP);
b1fb1f28
DLR
2808 if (!avail) {
2809 CH_ALERT(adapter, "free list queue 0 initialization failed\n");
2810 goto err;
2811 }
2812 if (avail < q->fl[0].size)
2813 CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
2814 avail);
2815
7385ecf3
DLR
2816 avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
2817 GFP_KERNEL | __GFP_COMP);
b1fb1f28
DLR
2818 if (avail < q->fl[1].size)
2819 CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
2820 avail);
4d22de3e
DLR
2821 refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
2822
2823 t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
2824 V_NEWTIMER(q->rspq.holdoff_tmr));
2825
2826 mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2827 return 0;
2828
b1fb1f28 2829err_unlock:
b1186dee 2830 spin_unlock_irq(&adapter->sge.reg_lock);
b1fb1f28 2831err:
4d22de3e
DLR
2832 t3_free_qset(adapter, q);
2833 return ret;
2834}
2835
2836/**
2837 * t3_free_sge_resources - free SGE resources
2838 * @adap: the adapter
2839 *
2840 * Frees resources used by the SGE queue sets.
2841 */
2842void t3_free_sge_resources(struct adapter *adap)
2843{
2844 int i;
2845
2846 for (i = 0; i < SGE_QSETS; ++i)
2847 t3_free_qset(adap, &adap->sge.qs[i]);
2848}
2849
2850/**
2851 * t3_sge_start - enable SGE
2852 * @adap: the adapter
2853 *
2854 * Enables the SGE for DMAs. This is the last step in starting packet
2855 * transfers.
2856 */
2857void t3_sge_start(struct adapter *adap)
2858{
2859 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
2860}
2861
2862/**
2863 * t3_sge_stop - disable SGE operation
2864 * @adap: the adapter
2865 *
2866 * Disables the DMA engine. This can be called in emeregencies (e.g.,
2867 * from error interrupts) or from normal process context. In the latter
2868 * case it also disables any pending queue restart tasklets. Note that
2869 * if it is called in interrupt context it cannot disable the restart
2870 * tasklets as it cannot wait, however the tasklets will have no effect
2871 * since the doorbells are disabled and the driver will call this again
2872 * later from process context, at which time the tasklets will be stopped
2873 * if they are still running.
2874 */
2875void t3_sge_stop(struct adapter *adap)
2876{
2877 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
2878 if (!in_interrupt()) {
2879 int i;
2880
2881 for (i = 0; i < SGE_QSETS; ++i) {
2882 struct sge_qset *qs = &adap->sge.qs[i];
2883
2884 tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
2885 tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
2886 }
2887 }
2888}
2889
2890/**
2891 * t3_sge_init - initialize SGE
2892 * @adap: the adapter
2893 * @p: the SGE parameters
2894 *
2895 * Performs SGE initialization needed every time after a chip reset.
2896 * We do not initialize any of the queue sets here, instead the driver
2897 * top-level must request those individually. We also do not enable DMA
2898 * here, that should be done after the queues have been set up.
2899 */
2900void t3_sge_init(struct adapter *adap, struct sge_params *p)
2901{
2902 unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
2903
2904 ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
b881955b 2905 F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
4d22de3e
DLR
2906 V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
2907 V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
2908#if SGE_NUM_GENBITS == 1
2909 ctrl |= F_EGRGENCTRL;
2910#endif
2911 if (adap->params.rev > 0) {
2912 if (!(adap->flags & (USING_MSIX | USING_MSI)))
2913 ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
4d22de3e
DLR
2914 }
2915 t3_write_reg(adap, A_SG_CONTROL, ctrl);
2916 t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
2917 V_LORCQDRBTHRSH(512));
2918 t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
2919 t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
6195c71d 2920 V_TIMEOUT(200 * core_ticks_per_usec(adap)));
b881955b
DLR
2921 t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
2922 adap->params.rev < T3_REV_C ? 1000 : 500);
4d22de3e
DLR
2923 t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
2924 t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
2925 t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
2926 t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
2927 t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
2928}
2929
2930/**
2931 * t3_sge_prep - one-time SGE initialization
2932 * @adap: the associated adapter
2933 * @p: SGE parameters
2934 *
2935 * Performs one-time initialization of SGE SW state. Includes determining
2936 * defaults for the assorted SGE parameters, which admins can change until
2937 * they are used to initialize the SGE.
2938 */
7b9b0943 2939void t3_sge_prep(struct adapter *adap, struct sge_params *p)
4d22de3e
DLR
2940{
2941 int i;
2942
2943 p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
2944 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2945
2946 for (i = 0; i < SGE_QSETS; ++i) {
2947 struct qset_params *q = p->qset + i;
2948
2949 q->polling = adap->params.rev > 0;
2950 q->coalesce_usecs = 5;
2951 q->rspq_size = 1024;
e0994eb1 2952 q->fl_size = 1024;
7385ecf3 2953 q->jumbo_size = 512;
4d22de3e
DLR
2954 q->txq_size[TXQ_ETH] = 1024;
2955 q->txq_size[TXQ_OFLD] = 1024;
2956 q->txq_size[TXQ_CTRL] = 256;
2957 q->cong_thres = 0;
2958 }
2959
2960 spin_lock_init(&adap->sge.reg_lock);
2961}
2962
2963/**
2964 * t3_get_desc - dump an SGE descriptor for debugging purposes
2965 * @qs: the queue set
2966 * @qnum: identifies the specific queue (0..2: Tx, 3:response, 4..5: Rx)
2967 * @idx: the descriptor index in the queue
2968 * @data: where to dump the descriptor contents
2969 *
2970 * Dumps the contents of a HW descriptor of an SGE queue. Returns the
2971 * size of the descriptor.
2972 */
2973int t3_get_desc(const struct sge_qset *qs, unsigned int qnum, unsigned int idx,
2974 unsigned char *data)
2975{
2976 if (qnum >= 6)
2977 return -EINVAL;
2978
2979 if (qnum < 3) {
2980 if (!qs->txq[qnum].desc || idx >= qs->txq[qnum].size)
2981 return -EINVAL;
2982 memcpy(data, &qs->txq[qnum].desc[idx], sizeof(struct tx_desc));
2983 return sizeof(struct tx_desc);
2984 }
2985
2986 if (qnum == 3) {
2987 if (!qs->rspq.desc || idx >= qs->rspq.size)
2988 return -EINVAL;
2989 memcpy(data, &qs->rspq.desc[idx], sizeof(struct rsp_desc));
2990 return sizeof(struct rsp_desc);
2991 }
2992
2993 qnum -= 4;
2994 if (!qs->fl[qnum].desc || idx >= qs->fl[qnum].size)
2995 return -EINVAL;
2996 memcpy(data, &qs->fl[qnum].desc[idx], sizeof(struct rx_desc));
2997 return sizeof(struct rx_desc);
2998}
This page took 0.377249 seconds and 5 git commands to generate.