Merge commit 'v2.6.37-rc7' into x86/security
[deliverable/linux.git] / drivers / net / cxgb4vf / cxgb4vf_main.c
CommitLineData
be839e39
CL
1/*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36#include <linux/version.h>
37#include <linux/module.h>
38#include <linux/moduleparam.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/dma-mapping.h>
42#include <linux/netdevice.h>
43#include <linux/etherdevice.h>
44#include <linux/debugfs.h>
45#include <linux/ethtool.h>
46
47#include "t4vf_common.h"
48#include "t4vf_defs.h"
49
50#include "../cxgb4/t4_regs.h"
51#include "../cxgb4/t4_msg.h"
52
53/*
54 * Generic information about the driver.
55 */
56#define DRV_VERSION "1.0.0"
57#define DRV_DESC "Chelsio T4 Virtual Function (VF) Network Driver"
58
59/*
60 * Module Parameters.
61 * ==================
62 */
63
64/*
65 * Default ethtool "message level" for adapters.
66 */
67#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
68 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
69 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
70
71static int dflt_msg_enable = DFLT_MSG_ENABLE;
72
73module_param(dflt_msg_enable, int, 0644);
74MODULE_PARM_DESC(dflt_msg_enable,
75 "default adapter ethtool message level bitmap");
76
77/*
78 * The driver uses the best interrupt scheme available on a platform in the
79 * order MSI-X then MSI. This parameter determines which of these schemes the
80 * driver may consider as follows:
81 *
82 * msi = 2: choose from among MSI-X and MSI
83 * msi = 1: only consider MSI interrupts
84 *
85 * Note that unlike the Physical Function driver, this Virtual Function driver
86 * does _not_ support legacy INTx interrupts (this limitation is mandated by
87 * the PCI-E SR-IOV standard).
88 */
89#define MSI_MSIX 2
90#define MSI_MSI 1
91#define MSI_DEFAULT MSI_MSIX
92
93static int msi = MSI_DEFAULT;
94
95module_param(msi, int, 0644);
96MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
97
98/*
99 * Fundamental constants.
100 * ======================
101 */
102
103enum {
104 MAX_TXQ_ENTRIES = 16384,
105 MAX_RSPQ_ENTRIES = 16384,
106 MAX_RX_BUFFERS = 16384,
107
108 MIN_TXQ_ENTRIES = 32,
109 MIN_RSPQ_ENTRIES = 128,
110 MIN_FL_ENTRIES = 16,
111
112 /*
113 * For purposes of manipulating the Free List size we need to
114 * recognize that Free Lists are actually Egress Queues (the host
115 * produces free buffers which the hardware consumes), Egress Queues
116 * indices are all in units of Egress Context Units bytes, and free
117 * list entries are 64-bit PCI DMA addresses. And since the state of
118 * the Producer Index == the Consumer Index implies an EMPTY list, we
119 * always have at least one Egress Unit's worth of Free List entries
120 * unused. See sge.c for more details ...
121 */
122 EQ_UNIT = SGE_EQ_IDXSIZE,
123 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
124 MIN_FL_RESID = FL_PER_EQ_UNIT,
125};
126
127/*
128 * Global driver state.
129 * ====================
130 */
131
132static struct dentry *cxgb4vf_debugfs_root;
133
134/*
135 * OS "Callback" functions.
136 * ========================
137 */
138
139/*
140 * The link status has changed on the indicated "port" (Virtual Interface).
141 */
142void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
143{
144 struct net_device *dev = adapter->port[pidx];
145
146 /*
147 * If the port is disabled or the current recorded "link up"
148 * status matches the new status, just return.
149 */
150 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
151 return;
152
153 /*
154 * Tell the OS that the link status has changed and print a short
155 * informative message on the console about the event.
156 */
157 if (link_ok) {
158 const char *s;
159 const char *fc;
160 const struct port_info *pi = netdev_priv(dev);
161
162 netif_carrier_on(dev);
163
164 switch (pi->link_cfg.speed) {
165 case SPEED_10000:
166 s = "10Gbps";
167 break;
168
169 case SPEED_1000:
170 s = "1000Mbps";
171 break;
172
173 case SPEED_100:
174 s = "100Mbps";
175 break;
176
177 default:
178 s = "unknown";
179 break;
180 }
181
182 switch (pi->link_cfg.fc) {
183 case PAUSE_RX:
184 fc = "RX";
185 break;
186
187 case PAUSE_TX:
188 fc = "TX";
189 break;
190
191 case PAUSE_RX|PAUSE_TX:
192 fc = "RX/TX";
193 break;
194
195 default:
196 fc = "no";
197 break;
198 }
199
200 printk(KERN_INFO "%s: link up, %s, full-duplex, %s PAUSE\n",
201 dev->name, s, fc);
202 } else {
203 netif_carrier_off(dev);
204 printk(KERN_INFO "%s: link down\n", dev->name);
205 }
206}
207
208/*
209 * Net device operations.
210 * ======================
211 */
212
213/*
214 * Record our new VLAN Group and enable/disable hardware VLAN Tag extraction
215 * based on whether the specified VLAN Group pointer is NULL or not.
216 */
217static void cxgb4vf_vlan_rx_register(struct net_device *dev,
218 struct vlan_group *grp)
219{
220 struct port_info *pi = netdev_priv(dev);
221
222 pi->vlan_grp = grp;
223 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1, grp != NULL, 0);
224}
225
226/*
227 * Perform the MAC and PHY actions needed to enable a "port" (Virtual
228 * Interface).
229 */
230static int link_start(struct net_device *dev)
231{
232 int ret;
233 struct port_info *pi = netdev_priv(dev);
234
235 /*
236 * We do not set address filters and promiscuity here, the stack does
237 * that step explicitly.
238 */
239 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, -1,
240 true);
241 if (ret == 0) {
242 ret = t4vf_change_mac(pi->adapter, pi->viid,
243 pi->xact_addr_filt, dev->dev_addr, true);
244 if (ret >= 0) {
245 pi->xact_addr_filt = ret;
246 ret = 0;
247 }
248 }
249
250 /*
251 * We don't need to actually "start the link" itself since the
252 * firmware will do that for us when the first Virtual Interface
253 * is enabled on a port.
254 */
255 if (ret == 0)
256 ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true);
257 return ret;
258}
259
260/*
261 * Name the MSI-X interrupts.
262 */
263static void name_msix_vecs(struct adapter *adapter)
264{
265 int namelen = sizeof(adapter->msix_info[0].desc) - 1;
266 int pidx;
267
268 /*
269 * Firmware events.
270 */
271 snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
272 "%s-FWeventq", adapter->name);
273 adapter->msix_info[MSIX_FW].desc[namelen] = 0;
274
275 /*
276 * Ethernet queues.
277 */
278 for_each_port(adapter, pidx) {
279 struct net_device *dev = adapter->port[pidx];
280 const struct port_info *pi = netdev_priv(dev);
281 int qs, msi;
282
283 for (qs = 0, msi = MSIX_NIQFLINT;
284 qs < pi->nqsets;
285 qs++, msi++) {
286 snprintf(adapter->msix_info[msi].desc, namelen,
287 "%s-%d", dev->name, qs);
288 adapter->msix_info[msi].desc[namelen] = 0;
289 }
290 }
291}
292
293/*
294 * Request all of our MSI-X resources.
295 */
296static int request_msix_queue_irqs(struct adapter *adapter)
297{
298 struct sge *s = &adapter->sge;
299 int rxq, msi, err;
300
301 /*
302 * Firmware events.
303 */
304 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
305 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
306 if (err)
307 return err;
308
309 /*
310 * Ethernet queues.
311 */
312 msi = MSIX_NIQFLINT;
313 for_each_ethrxq(s, rxq) {
314 err = request_irq(adapter->msix_info[msi].vec,
315 t4vf_sge_intr_msix, 0,
316 adapter->msix_info[msi].desc,
317 &s->ethrxq[rxq].rspq);
318 if (err)
319 goto err_free_irqs;
320 msi++;
321 }
322 return 0;
323
324err_free_irqs:
325 while (--rxq >= 0)
326 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
327 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
328 return err;
329}
330
331/*
332 * Free our MSI-X resources.
333 */
334static void free_msix_queue_irqs(struct adapter *adapter)
335{
336 struct sge *s = &adapter->sge;
337 int rxq, msi;
338
339 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
340 msi = MSIX_NIQFLINT;
341 for_each_ethrxq(s, rxq)
342 free_irq(adapter->msix_info[msi++].vec,
343 &s->ethrxq[rxq].rspq);
344}
345
346/*
347 * Turn on NAPI and start up interrupts on a response queue.
348 */
349static void qenable(struct sge_rspq *rspq)
350{
351 napi_enable(&rspq->napi);
352
353 /*
354 * 0-increment the Going To Sleep register to start the timer and
355 * enable interrupts.
356 */
357 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
358 CIDXINC(0) |
359 SEINTARM(rspq->intr_params) |
360 INGRESSQID(rspq->cntxt_id));
361}
362
363/*
364 * Enable NAPI scheduling and interrupt generation for all Receive Queues.
365 */
366static void enable_rx(struct adapter *adapter)
367{
368 int rxq;
369 struct sge *s = &adapter->sge;
370
371 for_each_ethrxq(s, rxq)
372 qenable(&s->ethrxq[rxq].rspq);
373 qenable(&s->fw_evtq);
374
375 /*
376 * The interrupt queue doesn't use NAPI so we do the 0-increment of
377 * its Going To Sleep register here to get it started.
378 */
379 if (adapter->flags & USING_MSI)
380 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
381 CIDXINC(0) |
382 SEINTARM(s->intrq.intr_params) |
383 INGRESSQID(s->intrq.cntxt_id));
384
385}
386
387/*
388 * Wait until all NAPI handlers are descheduled.
389 */
390static void quiesce_rx(struct adapter *adapter)
391{
392 struct sge *s = &adapter->sge;
393 int rxq;
394
395 for_each_ethrxq(s, rxq)
396 napi_disable(&s->ethrxq[rxq].rspq.napi);
397 napi_disable(&s->fw_evtq.napi);
398}
399
400/*
401 * Response queue handler for the firmware event queue.
402 */
403static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
404 const struct pkt_gl *gl)
405{
406 /*
407 * Extract response opcode and get pointer to CPL message body.
408 */
409 struct adapter *adapter = rspq->adapter;
410 u8 opcode = ((const struct rss_header *)rsp)->opcode;
411 void *cpl = (void *)(rsp + 1);
412
413 switch (opcode) {
414 case CPL_FW6_MSG: {
415 /*
416 * We've received an asynchronous message from the firmware.
417 */
418 const struct cpl_fw6_msg *fw_msg = cpl;
419 if (fw_msg->type == FW6_TYPE_CMD_RPL)
420 t4vf_handle_fw_rpl(adapter, fw_msg->data);
421 break;
422 }
423
424 case CPL_SGE_EGR_UPDATE: {
425 /*
7f9dd2fa
CL
426 * We've received an Egress Queue Status Update message. We
427 * get these, if the SGE is configured to send these when the
428 * firmware passes certain points in processing our TX
429 * Ethernet Queue or if we make an explicit request for one.
430 * We use these updates to determine when we may need to
431 * restart a TX Ethernet Queue which was stopped for lack of
432 * free TX Queue Descriptors ...
be839e39
CL
433 */
434 const struct cpl_sge_egr_update *p = (void *)cpl;
435 unsigned int qid = EGR_QID(be32_to_cpu(p->opcode_qid));
436 struct sge *s = &adapter->sge;
437 struct sge_txq *tq;
438 struct sge_eth_txq *txq;
439 unsigned int eq_idx;
be839e39
CL
440
441 /*
442 * Perform sanity checking on the Queue ID to make sure it
443 * really refers to one of our TX Ethernet Egress Queues which
444 * is active and matches the queue's ID. None of these error
445 * conditions should ever happen so we may want to either make
446 * them fatal and/or conditionalized under DEBUG.
447 */
448 eq_idx = EQ_IDX(s, qid);
449 if (unlikely(eq_idx >= MAX_EGRQ)) {
450 dev_err(adapter->pdev_dev,
451 "Egress Update QID %d out of range\n", qid);
452 break;
453 }
454 tq = s->egr_map[eq_idx];
455 if (unlikely(tq == NULL)) {
456 dev_err(adapter->pdev_dev,
457 "Egress Update QID %d TXQ=NULL\n", qid);
458 break;
459 }
460 txq = container_of(tq, struct sge_eth_txq, q);
461 if (unlikely(tq->abs_id != qid)) {
462 dev_err(adapter->pdev_dev,
463 "Egress Update QID %d refers to TXQ %d\n",
464 qid, tq->abs_id);
465 break;
466 }
467
be839e39
CL
468 /*
469 * Restart a stopped TX Queue which has less than half of its
470 * TX ring in use ...
471 */
472 txq->q.restarts++;
473 netif_tx_wake_queue(txq->txq);
474 break;
475 }
476
477 default:
478 dev_err(adapter->pdev_dev,
479 "unexpected CPL %#x on FW event queue\n", opcode);
480 }
481
482 return 0;
483}
484
485/*
486 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues
487 * to use and initializes them. We support multiple "Queue Sets" per port if
488 * we have MSI-X, otherwise just one queue set per port.
489 */
490static int setup_sge_queues(struct adapter *adapter)
491{
492 struct sge *s = &adapter->sge;
493 int err, pidx, msix;
494
495 /*
496 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
497 * state.
498 */
499 bitmap_zero(s->starving_fl, MAX_EGRQ);
500
501 /*
502 * If we're using MSI interrupt mode we need to set up a "forwarded
503 * interrupt" queue which we'll set up with our MSI vector. The rest
504 * of the ingress queues will be set up to forward their interrupts to
505 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses
506 * the intrq's queue ID as the interrupt forwarding queue for the
507 * subsequent calls ...
508 */
509 if (adapter->flags & USING_MSI) {
510 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
511 adapter->port[0], 0, NULL, NULL);
512 if (err)
513 goto err_free_queues;
514 }
515
516 /*
517 * Allocate our ingress queue for asynchronous firmware messages.
518 */
519 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
520 MSIX_FW, NULL, fwevtq_handler);
521 if (err)
522 goto err_free_queues;
523
524 /*
525 * Allocate each "port"'s initial Queue Sets. These can be changed
526 * later on ... up to the point where any interface on the adapter is
527 * brought up at which point lots of things get nailed down
528 * permanently ...
529 */
530 msix = MSIX_NIQFLINT;
531 for_each_port(adapter, pidx) {
532 struct net_device *dev = adapter->port[pidx];
533 struct port_info *pi = netdev_priv(dev);
534 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
535 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
be839e39
CL
536 int qs;
537
c8639a82 538 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
be839e39
CL
539 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
540 dev, msix++,
541 &rxq->fl, t4vf_ethrx_handler);
542 if (err)
543 goto err_free_queues;
544
545 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
546 netdev_get_tx_queue(dev, qs),
547 s->fw_evtq.cntxt_id);
548 if (err)
549 goto err_free_queues;
550
551 rxq->rspq.idx = qs;
552 memset(&rxq->stats, 0, sizeof(rxq->stats));
553 }
554 }
555
556 /*
557 * Create the reverse mappings for the queues.
558 */
559 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
560 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
561 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
562 for_each_port(adapter, pidx) {
563 struct net_device *dev = adapter->port[pidx];
564 struct port_info *pi = netdev_priv(dev);
565 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
566 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
be839e39
CL
567 int qs;
568
c8639a82 569 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
be839e39
CL
570 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
571 EQ_MAP(s, txq->q.abs_id) = &txq->q;
572
573 /*
574 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
575 * for Free Lists but since all of the Egress Queues
576 * (including Free Lists) have Relative Queue IDs
577 * which are computed as Absolute - Base Queue ID, we
578 * can synthesize the Absolute Queue IDs for the Free
579 * Lists. This is useful for debugging purposes when
580 * we want to dump Queue Contexts via the PF Driver.
581 */
582 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
583 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
584 }
585 }
586 return 0;
587
588err_free_queues:
589 t4vf_free_sge_resources(adapter);
590 return err;
591}
592
593/*
594 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
595 * queues. We configure the RSS CPU lookup table to distribute to the number
596 * of HW receive queues, and the response queue lookup table to narrow that
597 * down to the response queues actually configured for each "port" (Virtual
598 * Interface). We always configure the RSS mapping for all ports since the
599 * mapping table has plenty of entries.
600 */
601static int setup_rss(struct adapter *adapter)
602{
603 int pidx;
604
605 for_each_port(adapter, pidx) {
606 struct port_info *pi = adap2pinfo(adapter, pidx);
607 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
608 u16 rss[MAX_PORT_QSETS];
609 int qs, err;
610
611 for (qs = 0; qs < pi->nqsets; qs++)
612 rss[qs] = rxq[qs].rspq.abs_id;
613
614 err = t4vf_config_rss_range(adapter, pi->viid,
615 0, pi->rss_size, rss, pi->nqsets);
616 if (err)
617 return err;
618
619 /*
620 * Perform Global RSS Mode-specific initialization.
621 */
622 switch (adapter->params.rss.mode) {
623 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
624 /*
625 * If Tunnel All Lookup isn't specified in the global
626 * RSS Configuration, then we need to specify a
627 * default Ingress Queue for any ingress packets which
628 * aren't hashed. We'll use our first ingress queue
629 * ...
630 */
631 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
632 union rss_vi_config config;
633 err = t4vf_read_rss_vi_config(adapter,
634 pi->viid,
635 &config);
636 if (err)
637 return err;
638 config.basicvirtual.defaultq =
639 rxq[0].rspq.abs_id;
640 err = t4vf_write_rss_vi_config(adapter,
641 pi->viid,
642 &config);
643 if (err)
644 return err;
645 }
646 break;
647 }
648 }
649
650 return 0;
651}
652
653/*
654 * Bring the adapter up. Called whenever we go from no "ports" open to having
655 * one open. This function performs the actions necessary to make an adapter
656 * operational, such as completing the initialization of HW modules, and
657 * enabling interrupts. Must be called with the rtnl lock held. (Note that
658 * this is called "cxgb_up" in the PF Driver.)
659 */
660static int adapter_up(struct adapter *adapter)
661{
662 int err;
663
664 /*
665 * If this is the first time we've been called, perform basic
666 * adapter setup. Once we've done this, many of our adapter
667 * parameters can no longer be changed ...
668 */
669 if ((adapter->flags & FULL_INIT_DONE) == 0) {
670 err = setup_sge_queues(adapter);
671 if (err)
672 return err;
673 err = setup_rss(adapter);
674 if (err) {
675 t4vf_free_sge_resources(adapter);
676 return err;
677 }
678
679 if (adapter->flags & USING_MSIX)
680 name_msix_vecs(adapter);
681 adapter->flags |= FULL_INIT_DONE;
682 }
683
684 /*
685 * Acquire our interrupt resources. We only support MSI-X and MSI.
686 */
687 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
688 if (adapter->flags & USING_MSIX)
689 err = request_msix_queue_irqs(adapter);
690 else
691 err = request_irq(adapter->pdev->irq,
692 t4vf_intr_handler(adapter), 0,
693 adapter->name, adapter);
694 if (err) {
695 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
696 err);
697 return err;
698 }
699
700 /*
701 * Enable NAPI ingress processing and return success.
702 */
703 enable_rx(adapter);
704 t4vf_sge_start(adapter);
705 return 0;
706}
707
708/*
709 * Bring the adapter down. Called whenever the last "port" (Virtual
710 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF
711 * Driver.)
712 */
713static void adapter_down(struct adapter *adapter)
714{
715 /*
716 * Free interrupt resources.
717 */
718 if (adapter->flags & USING_MSIX)
719 free_msix_queue_irqs(adapter);
720 else
721 free_irq(adapter->pdev->irq, adapter);
722
723 /*
724 * Wait for NAPI handlers to finish.
725 */
726 quiesce_rx(adapter);
727}
728
729/*
730 * Start up a net device.
731 */
732static int cxgb4vf_open(struct net_device *dev)
733{
734 int err;
735 struct port_info *pi = netdev_priv(dev);
736 struct adapter *adapter = pi->adapter;
737
738 /*
739 * If this is the first interface that we're opening on the "adapter",
740 * bring the "adapter" up now.
741 */
742 if (adapter->open_device_map == 0) {
743 err = adapter_up(adapter);
744 if (err)
745 return err;
746 }
747
748 /*
749 * Note that this interface is up and start everything up ...
750 */
003ab674
BH
751 netif_set_real_num_tx_queues(dev, pi->nqsets);
752 err = netif_set_real_num_rx_queues(dev, pi->nqsets);
753 if (err)
754 return err;
be839e39 755 set_bit(pi->port_id, &adapter->open_device_map);
e7a3795f
CL
756 err = link_start(dev);
757 if (err)
758 return err;
be839e39
CL
759 netif_tx_start_all_queues(dev);
760 return 0;
761}
762
763/*
764 * Shut down a net device. This routine is called "cxgb_close" in the PF
765 * Driver ...
766 */
767static int cxgb4vf_stop(struct net_device *dev)
768{
769 int ret;
770 struct port_info *pi = netdev_priv(dev);
771 struct adapter *adapter = pi->adapter;
772
773 netif_tx_stop_all_queues(dev);
774 netif_carrier_off(dev);
775 ret = t4vf_enable_vi(adapter, pi->viid, false, false);
776 pi->link_cfg.link_ok = 0;
777
778 clear_bit(pi->port_id, &adapter->open_device_map);
779 if (adapter->open_device_map == 0)
780 adapter_down(adapter);
781 return 0;
782}
783
784/*
785 * Translate our basic statistics into the standard "ifconfig" statistics.
786 */
787static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
788{
789 struct t4vf_port_stats stats;
790 struct port_info *pi = netdev2pinfo(dev);
791 struct adapter *adapter = pi->adapter;
792 struct net_device_stats *ns = &dev->stats;
793 int err;
794
795 spin_lock(&adapter->stats_lock);
796 err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
797 spin_unlock(&adapter->stats_lock);
798
799 memset(ns, 0, sizeof(*ns));
800 if (err)
801 return ns;
802
803 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
804 stats.tx_ucast_bytes + stats.tx_offload_bytes);
805 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
806 stats.tx_ucast_frames + stats.tx_offload_frames);
807 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
808 stats.rx_ucast_bytes);
809 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
810 stats.rx_ucast_frames);
811 ns->multicast = stats.rx_mcast_frames;
812 ns->tx_errors = stats.tx_drop_frames;
813 ns->rx_errors = stats.rx_err_frames;
814
815 return ns;
816}
817
818/*
42eb59d3
CL
819 * Collect up to maxaddrs worth of a netdevice's unicast addresses, starting
820 * at a specified offset within the list, into an array of addrss pointers and
821 * return the number collected.
be839e39 822 */
42eb59d3
CL
823static inline unsigned int collect_netdev_uc_list_addrs(const struct net_device *dev,
824 const u8 **addr,
825 unsigned int offset,
826 unsigned int maxaddrs)
be839e39 827{
42eb59d3 828 unsigned int index = 0;
be839e39
CL
829 unsigned int naddr = 0;
830 const struct netdev_hw_addr *ha;
831
42eb59d3
CL
832 for_each_dev_addr(dev, ha)
833 if (index++ >= offset) {
834 addr[naddr++] = ha->addr;
835 if (naddr >= maxaddrs)
836 break;
837 }
be839e39
CL
838 return naddr;
839}
840
841/*
42eb59d3
CL
842 * Collect up to maxaddrs worth of a netdevice's multicast addresses, starting
843 * at a specified offset within the list, into an array of addrss pointers and
844 * return the number collected.
be839e39 845 */
42eb59d3
CL
846static inline unsigned int collect_netdev_mc_list_addrs(const struct net_device *dev,
847 const u8 **addr,
848 unsigned int offset,
849 unsigned int maxaddrs)
be839e39 850{
42eb59d3 851 unsigned int index = 0;
be839e39
CL
852 unsigned int naddr = 0;
853 const struct netdev_hw_addr *ha;
854
42eb59d3
CL
855 netdev_for_each_mc_addr(ha, dev)
856 if (index++ >= offset) {
857 addr[naddr++] = ha->addr;
858 if (naddr >= maxaddrs)
859 break;
860 }
be839e39
CL
861 return naddr;
862}
863
864/*
865 * Configure the exact and hash address filters to handle a port's multicast
866 * and secondary unicast MAC addresses.
867 */
868static int set_addr_filters(const struct net_device *dev, bool sleep)
869{
870 u64 mhash = 0;
871 u64 uhash = 0;
872 bool free = true;
42eb59d3 873 unsigned int offset, naddr;
be839e39 874 const u8 *addr[7];
42eb59d3 875 int ret;
be839e39
CL
876 const struct port_info *pi = netdev_priv(dev);
877
878 /* first do the secondary unicast addresses */
42eb59d3
CL
879 for (offset = 0; ; offset += naddr) {
880 naddr = collect_netdev_uc_list_addrs(dev, addr, offset,
881 ARRAY_SIZE(addr));
882 if (naddr == 0)
883 break;
884
be839e39 885 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
42eb59d3 886 naddr, addr, NULL, &uhash, sleep);
be839e39
CL
887 if (ret < 0)
888 return ret;
889
890 free = false;
891 }
892
893 /* next set up the multicast addresses */
42eb59d3
CL
894 for (offset = 0; ; offset += naddr) {
895 naddr = collect_netdev_mc_list_addrs(dev, addr, offset,
896 ARRAY_SIZE(addr));
897 if (naddr == 0)
898 break;
899
be839e39 900 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
42eb59d3 901 naddr, addr, NULL, &mhash, sleep);
be839e39
CL
902 if (ret < 0)
903 return ret;
42eb59d3 904 free = false;
be839e39
CL
905 }
906
907 return t4vf_set_addr_hash(pi->adapter, pi->viid, uhash != 0,
908 uhash | mhash, sleep);
909}
910
911/*
912 * Set RX properties of a port, such as promiscruity, address filters, and MTU.
913 * If @mtu is -1 it is left unchanged.
914 */
915static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
916{
917 int ret;
918 struct port_info *pi = netdev_priv(dev);
919
920 ret = set_addr_filters(dev, sleep_ok);
921 if (ret == 0)
922 ret = t4vf_set_rxmode(pi->adapter, pi->viid, -1,
923 (dev->flags & IFF_PROMISC) != 0,
924 (dev->flags & IFF_ALLMULTI) != 0,
925 1, -1, sleep_ok);
926 return ret;
927}
928
929/*
930 * Set the current receive modes on the device.
931 */
932static void cxgb4vf_set_rxmode(struct net_device *dev)
933{
934 /* unfortunately we can't return errors to the stack */
935 set_rxmode(dev, -1, false);
936}
937
938/*
939 * Find the entry in the interrupt holdoff timer value array which comes
940 * closest to the specified interrupt holdoff value.
941 */
942static int closest_timer(const struct sge *s, int us)
943{
944 int i, timer_idx = 0, min_delta = INT_MAX;
945
946 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
947 int delta = us - s->timer_val[i];
948 if (delta < 0)
949 delta = -delta;
950 if (delta < min_delta) {
951 min_delta = delta;
952 timer_idx = i;
953 }
954 }
955 return timer_idx;
956}
957
958static int closest_thres(const struct sge *s, int thres)
959{
960 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
961
962 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
963 delta = thres - s->counter_val[i];
964 if (delta < 0)
965 delta = -delta;
966 if (delta < min_delta) {
967 min_delta = delta;
968 pktcnt_idx = i;
969 }
970 }
971 return pktcnt_idx;
972}
973
974/*
975 * Return a queue's interrupt hold-off time in us. 0 means no timer.
976 */
977static unsigned int qtimer_val(const struct adapter *adapter,
978 const struct sge_rspq *rspq)
979{
980 unsigned int timer_idx = QINTR_TIMER_IDX_GET(rspq->intr_params);
981
982 return timer_idx < SGE_NTIMERS
983 ? adapter->sge.timer_val[timer_idx]
984 : 0;
985}
986
987/**
988 * set_rxq_intr_params - set a queue's interrupt holdoff parameters
989 * @adapter: the adapter
990 * @rspq: the RX response queue
991 * @us: the hold-off time in us, or 0 to disable timer
992 * @cnt: the hold-off packet count, or 0 to disable counter
993 *
994 * Sets an RX response queue's interrupt hold-off time and packet count.
995 * At least one of the two needs to be enabled for the queue to generate
996 * interrupts.
997 */
998static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
999 unsigned int us, unsigned int cnt)
1000{
1001 unsigned int timer_idx;
1002
1003 /*
1004 * If both the interrupt holdoff timer and count are specified as
1005 * zero, default to a holdoff count of 1 ...
1006 */
1007 if ((us | cnt) == 0)
1008 cnt = 1;
1009
1010 /*
1011 * If an interrupt holdoff count has been specified, then find the
1012 * closest configured holdoff count and use that. If the response
1013 * queue has already been created, then update its queue context
1014 * parameters ...
1015 */
1016 if (cnt) {
1017 int err;
1018 u32 v, pktcnt_idx;
1019
1020 pktcnt_idx = closest_thres(&adapter->sge, cnt);
1021 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1022 v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1023 FW_PARAMS_PARAM_X(
1024 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1025 FW_PARAMS_PARAM_YZ(rspq->cntxt_id);
1026 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1027 if (err)
1028 return err;
1029 }
1030 rspq->pktcnt_idx = pktcnt_idx;
1031 }
1032
1033 /*
1034 * Compute the closest holdoff timer index from the supplied holdoff
1035 * timer value.
1036 */
1037 timer_idx = (us == 0
1038 ? SGE_TIMER_RSTRT_CNTR
1039 : closest_timer(&adapter->sge, us));
1040
1041 /*
1042 * Update the response queue's interrupt coalescing parameters and
1043 * return success.
1044 */
1045 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
1046 (cnt > 0 ? QINTR_CNT_EN : 0));
1047 return 0;
1048}
1049
1050/*
1051 * Return a version number to identify the type of adapter. The scheme is:
1052 * - bits 0..9: chip version
1053 * - bits 10..15: chip revision
1054 */
1055static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1056{
1057 /*
1058 * Chip version 4, revision 0x3f (cxgb4vf).
1059 */
1060 return 4 | (0x3f << 10);
1061}
1062
1063/*
1064 * Execute the specified ioctl command.
1065 */
1066static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1067{
1068 int ret = 0;
1069
1070 switch (cmd) {
1071 /*
1072 * The VF Driver doesn't have access to any of the other
1073 * common Ethernet device ioctl()'s (like reading/writing
1074 * PHY registers, etc.
1075 */
1076
1077 default:
1078 ret = -EOPNOTSUPP;
1079 break;
1080 }
1081 return ret;
1082}
1083
1084/*
1085 * Change the device's MTU.
1086 */
1087static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1088{
1089 int ret;
1090 struct port_info *pi = netdev_priv(dev);
1091
1092 /* accommodate SACK */
1093 if (new_mtu < 81)
1094 return -EINVAL;
1095
1096 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1097 -1, -1, -1, -1, true);
1098 if (!ret)
1099 dev->mtu = new_mtu;
1100 return ret;
1101}
1102
1103/*
1104 * Change the devices MAC address.
1105 */
1106static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1107{
1108 int ret;
1109 struct sockaddr *addr = _addr;
1110 struct port_info *pi = netdev_priv(dev);
1111
1112 if (!is_valid_ether_addr(addr->sa_data))
1113 return -EINVAL;
1114
1115 ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt,
1116 addr->sa_data, true);
1117 if (ret < 0)
1118 return ret;
1119
1120 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1121 pi->xact_addr_filt = ret;
1122 return 0;
1123}
1124
be839e39
CL
1125#ifdef CONFIG_NET_POLL_CONTROLLER
1126/*
1127 * Poll all of our receive queues. This is called outside of normal interrupt
1128 * context.
1129 */
1130static void cxgb4vf_poll_controller(struct net_device *dev)
1131{
1132 struct port_info *pi = netdev_priv(dev);
1133 struct adapter *adapter = pi->adapter;
1134
1135 if (adapter->flags & USING_MSIX) {
1136 struct sge_eth_rxq *rxq;
1137 int nqsets;
1138
1139 rxq = &adapter->sge.ethrxq[pi->first_qset];
1140 for (nqsets = pi->nqsets; nqsets; nqsets--) {
1141 t4vf_sge_intr_msix(0, &rxq->rspq);
1142 rxq++;
1143 }
1144 } else
1145 t4vf_intr_handler(adapter)(0, adapter);
1146}
1147#endif
1148
1149/*
1150 * Ethtool operations.
1151 * ===================
1152 *
1153 * Note that we don't support any ethtool operations which change the physical
1154 * state of the port to which we're linked.
1155 */
1156
1157/*
1158 * Return current port link settings.
1159 */
1160static int cxgb4vf_get_settings(struct net_device *dev,
1161 struct ethtool_cmd *cmd)
1162{
1163 const struct port_info *pi = netdev_priv(dev);
1164
1165 cmd->supported = pi->link_cfg.supported;
1166 cmd->advertising = pi->link_cfg.advertising;
1167 cmd->speed = netif_carrier_ok(dev) ? pi->link_cfg.speed : -1;
1168 cmd->duplex = DUPLEX_FULL;
1169
1170 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1171 cmd->phy_address = pi->port_id;
1172 cmd->transceiver = XCVR_EXTERNAL;
1173 cmd->autoneg = pi->link_cfg.autoneg;
1174 cmd->maxtxpkt = 0;
1175 cmd->maxrxpkt = 0;
1176 return 0;
1177}
1178
1179/*
1180 * Return our driver information.
1181 */
1182static void cxgb4vf_get_drvinfo(struct net_device *dev,
1183 struct ethtool_drvinfo *drvinfo)
1184{
1185 struct adapter *adapter = netdev2adap(dev);
1186
1187 strcpy(drvinfo->driver, KBUILD_MODNAME);
1188 strcpy(drvinfo->version, DRV_VERSION);
1189 strcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)));
1190 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1191 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1192 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.fwrev),
1193 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.fwrev),
1194 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.fwrev),
1195 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.fwrev),
1196 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.tprev),
1197 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.tprev),
1198 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.tprev),
1199 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.tprev));
1200}
1201
1202/*
1203 * Return current adapter message level.
1204 */
1205static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1206{
1207 return netdev2adap(dev)->msg_enable;
1208}
1209
1210/*
1211 * Set current adapter message level.
1212 */
1213static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1214{
1215 netdev2adap(dev)->msg_enable = msglevel;
1216}
1217
1218/*
1219 * Return the device's current Queue Set ring size parameters along with the
1220 * allowed maximum values. Since ethtool doesn't understand the concept of
1221 * multi-queue devices, we just return the current values associated with the
1222 * first Queue Set.
1223 */
1224static void cxgb4vf_get_ringparam(struct net_device *dev,
1225 struct ethtool_ringparam *rp)
1226{
1227 const struct port_info *pi = netdev_priv(dev);
1228 const struct sge *s = &pi->adapter->sge;
1229
1230 rp->rx_max_pending = MAX_RX_BUFFERS;
1231 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1232 rp->rx_jumbo_max_pending = 0;
1233 rp->tx_max_pending = MAX_TXQ_ENTRIES;
1234
1235 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1236 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1237 rp->rx_jumbo_pending = 0;
1238 rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1239}
1240
1241/*
1242 * Set the Queue Set ring size parameters for the device. Again, since
1243 * ethtool doesn't allow for the concept of multiple queues per device, we'll
1244 * apply these new values across all of the Queue Sets associated with the
1245 * device -- after vetting them of course!
1246 */
1247static int cxgb4vf_set_ringparam(struct net_device *dev,
1248 struct ethtool_ringparam *rp)
1249{
1250 const struct port_info *pi = netdev_priv(dev);
1251 struct adapter *adapter = pi->adapter;
1252 struct sge *s = &adapter->sge;
1253 int qs;
1254
1255 if (rp->rx_pending > MAX_RX_BUFFERS ||
1256 rp->rx_jumbo_pending ||
1257 rp->tx_pending > MAX_TXQ_ENTRIES ||
1258 rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1259 rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1260 rp->rx_pending < MIN_FL_ENTRIES ||
1261 rp->tx_pending < MIN_TXQ_ENTRIES)
1262 return -EINVAL;
1263
1264 if (adapter->flags & FULL_INIT_DONE)
1265 return -EBUSY;
1266
1267 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1268 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1269 s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1270 s->ethtxq[qs].q.size = rp->tx_pending;
1271 }
1272 return 0;
1273}
1274
1275/*
1276 * Return the interrupt holdoff timer and count for the first Queue Set on the
1277 * device. Our extension ioctl() (the cxgbtool interface) allows the
1278 * interrupt holdoff timer to be read on all of the device's Queue Sets.
1279 */
1280static int cxgb4vf_get_coalesce(struct net_device *dev,
1281 struct ethtool_coalesce *coalesce)
1282{
1283 const struct port_info *pi = netdev_priv(dev);
1284 const struct adapter *adapter = pi->adapter;
1285 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1286
1287 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1288 coalesce->rx_max_coalesced_frames =
1289 ((rspq->intr_params & QINTR_CNT_EN)
1290 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1291 : 0);
1292 return 0;
1293}
1294
1295/*
1296 * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1297 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set
1298 * the interrupt holdoff timer on any of the device's Queue Sets.
1299 */
1300static int cxgb4vf_set_coalesce(struct net_device *dev,
1301 struct ethtool_coalesce *coalesce)
1302{
1303 const struct port_info *pi = netdev_priv(dev);
1304 struct adapter *adapter = pi->adapter;
1305
1306 return set_rxq_intr_params(adapter,
1307 &adapter->sge.ethrxq[pi->first_qset].rspq,
1308 coalesce->rx_coalesce_usecs,
1309 coalesce->rx_max_coalesced_frames);
1310}
1311
1312/*
1313 * Report current port link pause parameter settings.
1314 */
1315static void cxgb4vf_get_pauseparam(struct net_device *dev,
1316 struct ethtool_pauseparam *pauseparam)
1317{
1318 struct port_info *pi = netdev_priv(dev);
1319
1320 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1321 pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0;
1322 pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0;
1323}
1324
1325/*
1326 * Return whether RX Checksum Offloading is currently enabled for the device.
1327 */
1328static u32 cxgb4vf_get_rx_csum(struct net_device *dev)
1329{
1330 struct port_info *pi = netdev_priv(dev);
1331
1332 return (pi->rx_offload & RX_CSO) != 0;
1333}
1334
1335/*
1336 * Turn RX Checksum Offloading on or off for the device.
1337 */
1338static int cxgb4vf_set_rx_csum(struct net_device *dev, u32 csum)
1339{
1340 struct port_info *pi = netdev_priv(dev);
1341
1342 if (csum)
1343 pi->rx_offload |= RX_CSO;
1344 else
1345 pi->rx_offload &= ~RX_CSO;
1346 return 0;
1347}
1348
1349/*
1350 * Identify the port by blinking the port's LED.
1351 */
1352static int cxgb4vf_phys_id(struct net_device *dev, u32 id)
1353{
1354 struct port_info *pi = netdev_priv(dev);
1355
1356 return t4vf_identify_port(pi->adapter, pi->viid, 5);
1357}
1358
1359/*
1360 * Port stats maintained per queue of the port.
1361 */
1362struct queue_port_stats {
1363 u64 tso;
1364 u64 tx_csum;
1365 u64 rx_csum;
1366 u64 vlan_ex;
1367 u64 vlan_ins;
1368};
1369
1370/*
1371 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that
1372 * these need to match the order of statistics returned by
1373 * t4vf_get_port_stats().
1374 */
1375static const char stats_strings[][ETH_GSTRING_LEN] = {
1376 /*
1377 * These must match the layout of the t4vf_port_stats structure.
1378 */
1379 "TxBroadcastBytes ",
1380 "TxBroadcastFrames ",
1381 "TxMulticastBytes ",
1382 "TxMulticastFrames ",
1383 "TxUnicastBytes ",
1384 "TxUnicastFrames ",
1385 "TxDroppedFrames ",
1386 "TxOffloadBytes ",
1387 "TxOffloadFrames ",
1388 "RxBroadcastBytes ",
1389 "RxBroadcastFrames ",
1390 "RxMulticastBytes ",
1391 "RxMulticastFrames ",
1392 "RxUnicastBytes ",
1393 "RxUnicastFrames ",
1394 "RxErrorFrames ",
1395
1396 /*
1397 * These are accumulated per-queue statistics and must match the
1398 * order of the fields in the queue_port_stats structure.
1399 */
1400 "TSO ",
1401 "TxCsumOffload ",
1402 "RxCsumGood ",
1403 "VLANextractions ",
1404 "VLANinsertions ",
1405};
1406
1407/*
1408 * Return the number of statistics in the specified statistics set.
1409 */
1410static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1411{
1412 switch (sset) {
1413 case ETH_SS_STATS:
1414 return ARRAY_SIZE(stats_strings);
1415 default:
1416 return -EOPNOTSUPP;
1417 }
1418 /*NOTREACHED*/
1419}
1420
1421/*
1422 * Return the strings for the specified statistics set.
1423 */
1424static void cxgb4vf_get_strings(struct net_device *dev,
1425 u32 sset,
1426 u8 *data)
1427{
1428 switch (sset) {
1429 case ETH_SS_STATS:
1430 memcpy(data, stats_strings, sizeof(stats_strings));
1431 break;
1432 }
1433}
1434
1435/*
1436 * Small utility routine to accumulate queue statistics across the queues of
1437 * a "port".
1438 */
1439static void collect_sge_port_stats(const struct adapter *adapter,
1440 const struct port_info *pi,
1441 struct queue_port_stats *stats)
1442{
1443 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1444 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1445 int qs;
1446
1447 memset(stats, 0, sizeof(*stats));
1448 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1449 stats->tso += txq->tso;
1450 stats->tx_csum += txq->tx_cso;
1451 stats->rx_csum += rxq->stats.rx_cso;
1452 stats->vlan_ex += rxq->stats.vlan_ex;
1453 stats->vlan_ins += txq->vlan_ins;
1454 }
1455}
1456
1457/*
1458 * Return the ETH_SS_STATS statistics set.
1459 */
1460static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1461 struct ethtool_stats *stats,
1462 u64 *data)
1463{
1464 struct port_info *pi = netdev2pinfo(dev);
1465 struct adapter *adapter = pi->adapter;
1466 int err = t4vf_get_port_stats(adapter, pi->pidx,
1467 (struct t4vf_port_stats *)data);
1468 if (err)
1469 memset(data, 0, sizeof(struct t4vf_port_stats));
1470
1471 data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1472 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1473}
1474
1475/*
1476 * Return the size of our register map.
1477 */
1478static int cxgb4vf_get_regs_len(struct net_device *dev)
1479{
1480 return T4VF_REGMAP_SIZE;
1481}
1482
1483/*
1484 * Dump a block of registers, start to end inclusive, into a buffer.
1485 */
1486static void reg_block_dump(struct adapter *adapter, void *regbuf,
1487 unsigned int start, unsigned int end)
1488{
1489 u32 *bp = regbuf + start - T4VF_REGMAP_START;
1490
1491 for ( ; start <= end; start += sizeof(u32)) {
1492 /*
1493 * Avoid reading the Mailbox Control register since that
1494 * can trigger a Mailbox Ownership Arbitration cycle and
1495 * interfere with communication with the firmware.
1496 */
1497 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1498 *bp++ = 0xffff;
1499 else
1500 *bp++ = t4_read_reg(adapter, start);
1501 }
1502}
1503
1504/*
1505 * Copy our entire register map into the provided buffer.
1506 */
1507static void cxgb4vf_get_regs(struct net_device *dev,
1508 struct ethtool_regs *regs,
1509 void *regbuf)
1510{
1511 struct adapter *adapter = netdev2adap(dev);
1512
1513 regs->version = mk_adap_vers(adapter);
1514
1515 /*
1516 * Fill in register buffer with our register map.
1517 */
1518 memset(regbuf, 0, T4VF_REGMAP_SIZE);
1519
1520 reg_block_dump(adapter, regbuf,
1521 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1522 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1523 reg_block_dump(adapter, regbuf,
1524 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1525 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1526 reg_block_dump(adapter, regbuf,
1527 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1528 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_LAST);
1529 reg_block_dump(adapter, regbuf,
1530 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1531 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1532
1533 reg_block_dump(adapter, regbuf,
1534 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1535 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1536}
1537
1538/*
1539 * Report current Wake On LAN settings.
1540 */
1541static void cxgb4vf_get_wol(struct net_device *dev,
1542 struct ethtool_wolinfo *wol)
1543{
1544 wol->supported = 0;
1545 wol->wolopts = 0;
1546 memset(&wol->sopass, 0, sizeof(wol->sopass));
1547}
1548
1549/*
1550 * Set TCP Segmentation Offloading feature capabilities.
1551 */
1552static int cxgb4vf_set_tso(struct net_device *dev, u32 tso)
1553{
1554 if (tso)
1555 dev->features |= NETIF_F_TSO | NETIF_F_TSO6;
1556 else
1557 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
1558 return 0;
1559}
1560
1561static struct ethtool_ops cxgb4vf_ethtool_ops = {
1562 .get_settings = cxgb4vf_get_settings,
1563 .get_drvinfo = cxgb4vf_get_drvinfo,
1564 .get_msglevel = cxgb4vf_get_msglevel,
1565 .set_msglevel = cxgb4vf_set_msglevel,
1566 .get_ringparam = cxgb4vf_get_ringparam,
1567 .set_ringparam = cxgb4vf_set_ringparam,
1568 .get_coalesce = cxgb4vf_get_coalesce,
1569 .set_coalesce = cxgb4vf_set_coalesce,
1570 .get_pauseparam = cxgb4vf_get_pauseparam,
1571 .get_rx_csum = cxgb4vf_get_rx_csum,
1572 .set_rx_csum = cxgb4vf_set_rx_csum,
1573 .set_tx_csum = ethtool_op_set_tx_ipv6_csum,
1574 .set_sg = ethtool_op_set_sg,
1575 .get_link = ethtool_op_get_link,
1576 .get_strings = cxgb4vf_get_strings,
1577 .phys_id = cxgb4vf_phys_id,
1578 .get_sset_count = cxgb4vf_get_sset_count,
1579 .get_ethtool_stats = cxgb4vf_get_ethtool_stats,
1580 .get_regs_len = cxgb4vf_get_regs_len,
1581 .get_regs = cxgb4vf_get_regs,
1582 .get_wol = cxgb4vf_get_wol,
1583 .set_tso = cxgb4vf_set_tso,
1584};
1585
1586/*
1587 * /sys/kernel/debug/cxgb4vf support code and data.
1588 * ================================================
1589 */
1590
1591/*
1592 * Show SGE Queue Set information. We display QPL Queues Sets per line.
1593 */
1594#define QPL 4
1595
1596static int sge_qinfo_show(struct seq_file *seq, void *v)
1597{
1598 struct adapter *adapter = seq->private;
1599 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1600 int qs, r = (uintptr_t)v - 1;
1601
1602 if (r)
1603 seq_putc(seq, '\n');
1604
1605 #define S3(fmt_spec, s, v) \
1606 do {\
1607 seq_printf(seq, "%-12s", s); \
1608 for (qs = 0; qs < n; ++qs) \
1609 seq_printf(seq, " %16" fmt_spec, v); \
1610 seq_putc(seq, '\n'); \
1611 } while (0)
1612 #define S(s, v) S3("s", s, v)
1613 #define T(s, v) S3("u", s, txq[qs].v)
1614 #define R(s, v) S3("u", s, rxq[qs].v)
1615
1616 if (r < eth_entries) {
1617 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1618 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1619 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1620
1621 S("QType:", "Ethernet");
1622 S("Interface:",
1623 (rxq[qs].rspq.netdev
1624 ? rxq[qs].rspq.netdev->name
1625 : "N/A"));
1626 S3("d", "Port:",
1627 (rxq[qs].rspq.netdev
1628 ? ((struct port_info *)
1629 netdev_priv(rxq[qs].rspq.netdev))->port_id
1630 : -1));
1631 T("TxQ ID:", q.abs_id);
1632 T("TxQ size:", q.size);
1633 T("TxQ inuse:", q.in_use);
1634 T("TxQ PIdx:", q.pidx);
1635 T("TxQ CIdx:", q.cidx);
1636 R("RspQ ID:", rspq.abs_id);
1637 R("RspQ size:", rspq.size);
1638 R("RspQE size:", rspq.iqe_len);
1639 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
1640 S3("u", "Intr pktcnt:",
1641 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
1642 R("RspQ CIdx:", rspq.cidx);
1643 R("RspQ Gen:", rspq.gen);
1644 R("FL ID:", fl.abs_id);
1645 R("FL size:", fl.size - MIN_FL_RESID);
1646 R("FL avail:", fl.avail);
1647 R("FL PIdx:", fl.pidx);
1648 R("FL CIdx:", fl.cidx);
1649 return 0;
1650 }
1651
1652 r -= eth_entries;
1653 if (r == 0) {
1654 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1655
1656 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
1657 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
1658 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1659 qtimer_val(adapter, evtq));
1660 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1661 adapter->sge.counter_val[evtq->pktcnt_idx]);
1662 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
1663 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
1664 } else if (r == 1) {
1665 const struct sge_rspq *intrq = &adapter->sge.intrq;
1666
1667 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
1668 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
1669 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1670 qtimer_val(adapter, intrq));
1671 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1672 adapter->sge.counter_val[intrq->pktcnt_idx]);
1673 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
1674 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
1675 }
1676
1677 #undef R
1678 #undef T
1679 #undef S
1680 #undef S3
1681
1682 return 0;
1683}
1684
1685/*
1686 * Return the number of "entries" in our "file". We group the multi-Queue
1687 * sections with QPL Queue Sets per "entry". The sections of the output are:
1688 *
1689 * Ethernet RX/TX Queue Sets
1690 * Firmware Event Queue
1691 * Forwarded Interrupt Queue (if in MSI mode)
1692 */
1693static int sge_queue_entries(const struct adapter *adapter)
1694{
1695 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1696 ((adapter->flags & USING_MSI) != 0);
1697}
1698
1699static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
1700{
1701 int entries = sge_queue_entries(seq->private);
1702
1703 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1704}
1705
1706static void sge_queue_stop(struct seq_file *seq, void *v)
1707{
1708}
1709
1710static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
1711{
1712 int entries = sge_queue_entries(seq->private);
1713
1714 ++*pos;
1715 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1716}
1717
1718static const struct seq_operations sge_qinfo_seq_ops = {
1719 .start = sge_queue_start,
1720 .next = sge_queue_next,
1721 .stop = sge_queue_stop,
1722 .show = sge_qinfo_show
1723};
1724
1725static int sge_qinfo_open(struct inode *inode, struct file *file)
1726{
1727 int res = seq_open(file, &sge_qinfo_seq_ops);
1728
1729 if (!res) {
1730 struct seq_file *seq = file->private_data;
1731 seq->private = inode->i_private;
1732 }
1733 return res;
1734}
1735
1736static const struct file_operations sge_qinfo_debugfs_fops = {
1737 .owner = THIS_MODULE,
1738 .open = sge_qinfo_open,
1739 .read = seq_read,
1740 .llseek = seq_lseek,
1741 .release = seq_release,
1742};
1743
1744/*
1745 * Show SGE Queue Set statistics. We display QPL Queues Sets per line.
1746 */
1747#define QPL 4
1748
1749static int sge_qstats_show(struct seq_file *seq, void *v)
1750{
1751 struct adapter *adapter = seq->private;
1752 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1753 int qs, r = (uintptr_t)v - 1;
1754
1755 if (r)
1756 seq_putc(seq, '\n');
1757
1758 #define S3(fmt, s, v) \
1759 do { \
1760 seq_printf(seq, "%-16s", s); \
1761 for (qs = 0; qs < n; ++qs) \
1762 seq_printf(seq, " %8" fmt, v); \
1763 seq_putc(seq, '\n'); \
1764 } while (0)
1765 #define S(s, v) S3("s", s, v)
1766
1767 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v)
1768 #define T(s, v) T3("lu", s, v)
1769
1770 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v)
1771 #define R(s, v) R3("lu", s, v)
1772
1773 if (r < eth_entries) {
1774 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1775 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1776 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1777
1778 S("QType:", "Ethernet");
1779 S("Interface:",
1780 (rxq[qs].rspq.netdev
1781 ? rxq[qs].rspq.netdev->name
1782 : "N/A"));
68dc9d36 1783 R3("u", "RspQNullInts:", rspq.unhandled_irqs);
be839e39
CL
1784 R("RxPackets:", stats.pkts);
1785 R("RxCSO:", stats.rx_cso);
1786 R("VLANxtract:", stats.vlan_ex);
1787 R("LROmerged:", stats.lro_merged);
1788 R("LROpackets:", stats.lro_pkts);
1789 R("RxDrops:", stats.rx_drops);
1790 T("TSO:", tso);
1791 T("TxCSO:", tx_cso);
1792 T("VLANins:", vlan_ins);
1793 T("TxQFull:", q.stops);
1794 T("TxQRestarts:", q.restarts);
1795 T("TxMapErr:", mapping_err);
1796 R("FLAllocErr:", fl.alloc_failed);
1797 R("FLLrgAlcErr:", fl.large_alloc_failed);
1798 R("FLStarving:", fl.starving);
1799 return 0;
1800 }
1801
1802 r -= eth_entries;
1803 if (r == 0) {
1804 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1805
1806 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
68dc9d36
CL
1807 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1808 evtq->unhandled_irqs);
be839e39
CL
1809 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
1810 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
1811 } else if (r == 1) {
1812 const struct sge_rspq *intrq = &adapter->sge.intrq;
1813
1814 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
68dc9d36
CL
1815 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1816 intrq->unhandled_irqs);
be839e39
CL
1817 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
1818 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
1819 }
1820
1821 #undef R
1822 #undef T
1823 #undef S
1824 #undef R3
1825 #undef T3
1826 #undef S3
1827
1828 return 0;
1829}
1830
1831/*
1832 * Return the number of "entries" in our "file". We group the multi-Queue
1833 * sections with QPL Queue Sets per "entry". The sections of the output are:
1834 *
1835 * Ethernet RX/TX Queue Sets
1836 * Firmware Event Queue
1837 * Forwarded Interrupt Queue (if in MSI mode)
1838 */
1839static int sge_qstats_entries(const struct adapter *adapter)
1840{
1841 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1842 ((adapter->flags & USING_MSI) != 0);
1843}
1844
1845static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
1846{
1847 int entries = sge_qstats_entries(seq->private);
1848
1849 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1850}
1851
1852static void sge_qstats_stop(struct seq_file *seq, void *v)
1853{
1854}
1855
1856static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
1857{
1858 int entries = sge_qstats_entries(seq->private);
1859
1860 (*pos)++;
1861 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1862}
1863
1864static const struct seq_operations sge_qstats_seq_ops = {
1865 .start = sge_qstats_start,
1866 .next = sge_qstats_next,
1867 .stop = sge_qstats_stop,
1868 .show = sge_qstats_show
1869};
1870
1871static int sge_qstats_open(struct inode *inode, struct file *file)
1872{
1873 int res = seq_open(file, &sge_qstats_seq_ops);
1874
1875 if (res == 0) {
1876 struct seq_file *seq = file->private_data;
1877 seq->private = inode->i_private;
1878 }
1879 return res;
1880}
1881
1882static const struct file_operations sge_qstats_proc_fops = {
1883 .owner = THIS_MODULE,
1884 .open = sge_qstats_open,
1885 .read = seq_read,
1886 .llseek = seq_lseek,
1887 .release = seq_release,
1888};
1889
1890/*
1891 * Show PCI-E SR-IOV Virtual Function Resource Limits.
1892 */
1893static int resources_show(struct seq_file *seq, void *v)
1894{
1895 struct adapter *adapter = seq->private;
1896 struct vf_resources *vfres = &adapter->params.vfres;
1897
1898 #define S(desc, fmt, var) \
1899 seq_printf(seq, "%-60s " fmt "\n", \
1900 desc " (" #var "):", vfres->var)
1901
1902 S("Virtual Interfaces", "%d", nvi);
1903 S("Egress Queues", "%d", neq);
1904 S("Ethernet Control", "%d", nethctrl);
1905 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
1906 S("Ingress Queues", "%d", niq);
1907 S("Traffic Class", "%d", tc);
1908 S("Port Access Rights Mask", "%#x", pmask);
1909 S("MAC Address Filters", "%d", nexactf);
1910 S("Firmware Command Read Capabilities", "%#x", r_caps);
1911 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
1912
1913 #undef S
1914
1915 return 0;
1916}
1917
1918static int resources_open(struct inode *inode, struct file *file)
1919{
1920 return single_open(file, resources_show, inode->i_private);
1921}
1922
1923static const struct file_operations resources_proc_fops = {
1924 .owner = THIS_MODULE,
1925 .open = resources_open,
1926 .read = seq_read,
1927 .llseek = seq_lseek,
1928 .release = single_release,
1929};
1930
1931/*
1932 * Show Virtual Interfaces.
1933 */
1934static int interfaces_show(struct seq_file *seq, void *v)
1935{
1936 if (v == SEQ_START_TOKEN) {
1937 seq_puts(seq, "Interface Port VIID\n");
1938 } else {
1939 struct adapter *adapter = seq->private;
1940 int pidx = (uintptr_t)v - 2;
1941 struct net_device *dev = adapter->port[pidx];
1942 struct port_info *pi = netdev_priv(dev);
1943
1944 seq_printf(seq, "%9s %4d %#5x\n",
1945 dev->name, pi->port_id, pi->viid);
1946 }
1947 return 0;
1948}
1949
1950static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
1951{
1952 return pos <= adapter->params.nports
1953 ? (void *)(uintptr_t)(pos + 1)
1954 : NULL;
1955}
1956
1957static void *interfaces_start(struct seq_file *seq, loff_t *pos)
1958{
1959 return *pos
1960 ? interfaces_get_idx(seq->private, *pos)
1961 : SEQ_START_TOKEN;
1962}
1963
1964static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
1965{
1966 (*pos)++;
1967 return interfaces_get_idx(seq->private, *pos);
1968}
1969
1970static void interfaces_stop(struct seq_file *seq, void *v)
1971{
1972}
1973
1974static const struct seq_operations interfaces_seq_ops = {
1975 .start = interfaces_start,
1976 .next = interfaces_next,
1977 .stop = interfaces_stop,
1978 .show = interfaces_show
1979};
1980
1981static int interfaces_open(struct inode *inode, struct file *file)
1982{
1983 int res = seq_open(file, &interfaces_seq_ops);
1984
1985 if (res == 0) {
1986 struct seq_file *seq = file->private_data;
1987 seq->private = inode->i_private;
1988 }
1989 return res;
1990}
1991
1992static const struct file_operations interfaces_proc_fops = {
1993 .owner = THIS_MODULE,
1994 .open = interfaces_open,
1995 .read = seq_read,
1996 .llseek = seq_lseek,
1997 .release = seq_release,
1998};
1999
2000/*
2001 * /sys/kernel/debugfs/cxgb4vf/ files list.
2002 */
2003struct cxgb4vf_debugfs_entry {
2004 const char *name; /* name of debugfs node */
2005 mode_t mode; /* file system mode */
2006 const struct file_operations *fops;
2007};
2008
2009static struct cxgb4vf_debugfs_entry debugfs_files[] = {
2010 { "sge_qinfo", S_IRUGO, &sge_qinfo_debugfs_fops },
2011 { "sge_qstats", S_IRUGO, &sge_qstats_proc_fops },
2012 { "resources", S_IRUGO, &resources_proc_fops },
2013 { "interfaces", S_IRUGO, &interfaces_proc_fops },
2014};
2015
2016/*
2017 * Module and device initialization and cleanup code.
2018 * ==================================================
2019 */
2020
2021/*
2022 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the
2023 * directory (debugfs_root) has already been set up.
2024 */
2025static int __devinit setup_debugfs(struct adapter *adapter)
2026{
2027 int i;
2028
2029 BUG_ON(adapter->debugfs_root == NULL);
2030
2031 /*
2032 * Debugfs support is best effort.
2033 */
2034 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2035 (void)debugfs_create_file(debugfs_files[i].name,
2036 debugfs_files[i].mode,
2037 adapter->debugfs_root,
2038 (void *)adapter,
2039 debugfs_files[i].fops);
2040
2041 return 0;
2042}
2043
2044/*
2045 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave
2046 * it to our caller to tear down the directory (debugfs_root).
2047 */
2048static void __devexit cleanup_debugfs(struct adapter *adapter)
2049{
2050 BUG_ON(adapter->debugfs_root == NULL);
2051
2052 /*
2053 * Unlike our sister routine cleanup_proc(), we don't need to remove
2054 * individual entries because a call will be made to
2055 * debugfs_remove_recursive(). We just need to clean up any ancillary
2056 * persistent state.
2057 */
2058 /* nothing to do */
2059}
2060
2061/*
2062 * Perform early "adapter" initialization. This is where we discover what
2063 * adapter parameters we're going to be using and initialize basic adapter
2064 * hardware support.
2065 */
2066static int adap_init0(struct adapter *adapter)
2067{
2068 struct vf_resources *vfres = &adapter->params.vfres;
2069 struct sge_params *sge_params = &adapter->params.sge;
2070 struct sge *s = &adapter->sge;
2071 unsigned int ethqsets;
2072 int err;
2073
2074 /*
2075 * Wait for the device to become ready before proceeding ...
2076 */
2077 err = t4vf_wait_dev_ready(adapter);
2078 if (err) {
2079 dev_err(adapter->pdev_dev, "device didn't become ready:"
2080 " err=%d\n", err);
2081 return err;
2082 }
2083
e68e6133
CL
2084 /*
2085 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2086 * 2.6.31 and later we can't call pci_reset_function() in order to
2087 * issue an FLR because of a self- deadlock on the device semaphore.
2088 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2089 * cases where they're needed -- for instance, some versions of KVM
2090 * fail to reset "Assigned Devices" when the VM reboots. Therefore we
2091 * use the firmware based reset in order to reset any per function
2092 * state.
2093 */
2094 err = t4vf_fw_reset(adapter);
2095 if (err < 0) {
2096 dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2097 return err;
2098 }
2099
be839e39
CL
2100 /*
2101 * Grab basic operational parameters. These will predominantly have
2102 * been set up by the Physical Function Driver or will be hard coded
2103 * into the adapter. We just have to live with them ... Note that
2104 * we _must_ get our VPD parameters before our SGE parameters because
2105 * we need to know the adapter's core clock from the VPD in order to
2106 * properly decode the SGE Timer Values.
2107 */
2108 err = t4vf_get_dev_params(adapter);
2109 if (err) {
2110 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2111 " device parameters: err=%d\n", err);
2112 return err;
2113 }
2114 err = t4vf_get_vpd_params(adapter);
2115 if (err) {
2116 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2117 " VPD parameters: err=%d\n", err);
2118 return err;
2119 }
2120 err = t4vf_get_sge_params(adapter);
2121 if (err) {
2122 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2123 " SGE parameters: err=%d\n", err);
2124 return err;
2125 }
2126 err = t4vf_get_rss_glb_config(adapter);
2127 if (err) {
2128 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2129 " RSS parameters: err=%d\n", err);
2130 return err;
2131 }
2132 if (adapter->params.rss.mode !=
2133 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2134 dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2135 " mode %d\n", adapter->params.rss.mode);
2136 return -EINVAL;
2137 }
2138 err = t4vf_sge_init(adapter);
2139 if (err) {
2140 dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2141 " err=%d\n", err);
2142 return err;
2143 }
2144
2145 /*
2146 * Retrieve our RX interrupt holdoff timer values and counter
2147 * threshold values from the SGE parameters.
2148 */
2149 s->timer_val[0] = core_ticks_to_us(adapter,
2150 TIMERVALUE0_GET(sge_params->sge_timer_value_0_and_1));
2151 s->timer_val[1] = core_ticks_to_us(adapter,
2152 TIMERVALUE1_GET(sge_params->sge_timer_value_0_and_1));
2153 s->timer_val[2] = core_ticks_to_us(adapter,
2154 TIMERVALUE0_GET(sge_params->sge_timer_value_2_and_3));
2155 s->timer_val[3] = core_ticks_to_us(adapter,
2156 TIMERVALUE1_GET(sge_params->sge_timer_value_2_and_3));
2157 s->timer_val[4] = core_ticks_to_us(adapter,
2158 TIMERVALUE0_GET(sge_params->sge_timer_value_4_and_5));
2159 s->timer_val[5] = core_ticks_to_us(adapter,
2160 TIMERVALUE1_GET(sge_params->sge_timer_value_4_and_5));
2161
2162 s->counter_val[0] =
2163 THRESHOLD_0_GET(sge_params->sge_ingress_rx_threshold);
2164 s->counter_val[1] =
2165 THRESHOLD_1_GET(sge_params->sge_ingress_rx_threshold);
2166 s->counter_val[2] =
2167 THRESHOLD_2_GET(sge_params->sge_ingress_rx_threshold);
2168 s->counter_val[3] =
2169 THRESHOLD_3_GET(sge_params->sge_ingress_rx_threshold);
2170
2171 /*
2172 * Grab our Virtual Interface resource allocation, extract the
2173 * features that we're interested in and do a bit of sanity testing on
2174 * what we discover.
2175 */
2176 err = t4vf_get_vfres(adapter);
2177 if (err) {
2178 dev_err(adapter->pdev_dev, "unable to get virtual interface"
2179 " resources: err=%d\n", err);
2180 return err;
2181 }
2182
2183 /*
2184 * The number of "ports" which we support is equal to the number of
2185 * Virtual Interfaces with which we've been provisioned.
2186 */
2187 adapter->params.nports = vfres->nvi;
2188 if (adapter->params.nports > MAX_NPORTS) {
2189 dev_warn(adapter->pdev_dev, "only using %d of %d allowed"
2190 " virtual interfaces\n", MAX_NPORTS,
2191 adapter->params.nports);
2192 adapter->params.nports = MAX_NPORTS;
2193 }
2194
2195 /*
2196 * We need to reserve a number of the ingress queues with Free List
2197 * and Interrupt capabilities for special interrupt purposes (like
2198 * asynchronous firmware messages, or forwarded interrupts if we're
2199 * using MSI). The rest of the FL/Intr-capable ingress queues will be
2200 * matched up one-for-one with Ethernet/Control egress queues in order
2201 * to form "Queue Sets" which will be aportioned between the "ports".
2202 * For each Queue Set, we'll need the ability to allocate two Egress
2203 * Contexts -- one for the Ingress Queue Free List and one for the TX
2204 * Ethernet Queue.
2205 */
2206 ethqsets = vfres->niqflint - INGQ_EXTRAS;
2207 if (vfres->nethctrl != ethqsets) {
2208 dev_warn(adapter->pdev_dev, "unequal number of [available]"
2209 " ingress/egress queues (%d/%d); using minimum for"
2210 " number of Queue Sets\n", ethqsets, vfres->nethctrl);
2211 ethqsets = min(vfres->nethctrl, ethqsets);
2212 }
2213 if (vfres->neq < ethqsets*2) {
2214 dev_warn(adapter->pdev_dev, "Not enough Egress Contexts (%d)"
2215 " to support Queue Sets (%d); reducing allowed Queue"
2216 " Sets\n", vfres->neq, ethqsets);
2217 ethqsets = vfres->neq/2;
2218 }
2219 if (ethqsets > MAX_ETH_QSETS) {
2220 dev_warn(adapter->pdev_dev, "only using %d of %d allowed Queue"
2221 " Sets\n", MAX_ETH_QSETS, adapter->sge.max_ethqsets);
2222 ethqsets = MAX_ETH_QSETS;
2223 }
2224 if (vfres->niq != 0 || vfres->neq > ethqsets*2) {
2225 dev_warn(adapter->pdev_dev, "unused resources niq/neq (%d/%d)"
2226 " ignored\n", vfres->niq, vfres->neq - ethqsets*2);
2227 }
2228 adapter->sge.max_ethqsets = ethqsets;
2229
2230 /*
2231 * Check for various parameter sanity issues. Most checks simply
2232 * result in us using fewer resources than our provissioning but we
2233 * do need at least one "port" with which to work ...
2234 */
2235 if (adapter->sge.max_ethqsets < adapter->params.nports) {
2236 dev_warn(adapter->pdev_dev, "only using %d of %d available"
2237 " virtual interfaces (too few Queue Sets)\n",
2238 adapter->sge.max_ethqsets, adapter->params.nports);
2239 adapter->params.nports = adapter->sge.max_ethqsets;
2240 }
2241 if (adapter->params.nports == 0) {
2242 dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2243 "usable!\n");
2244 return -EINVAL;
2245 }
2246 return 0;
2247}
2248
2249static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2250 u8 pkt_cnt_idx, unsigned int size,
2251 unsigned int iqe_size)
2252{
2253 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
2254 (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0));
2255 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2256 ? pkt_cnt_idx
2257 : 0);
2258 rspq->iqe_len = iqe_size;
2259 rspq->size = size;
2260}
2261
2262/*
2263 * Perform default configuration of DMA queues depending on the number and
2264 * type of ports we found and the number of available CPUs. Most settings can
2265 * be modified by the admin via ethtool and cxgbtool prior to the adapter
2266 * being brought up for the first time.
2267 */
2268static void __devinit cfg_queues(struct adapter *adapter)
2269{
2270 struct sge *s = &adapter->sge;
2271 int q10g, n10g, qidx, pidx, qs;
c710245c 2272 size_t iqe_size;
be839e39
CL
2273
2274 /*
2275 * We should not be called till we know how many Queue Sets we can
2276 * support. In particular, this means that we need to know what kind
2277 * of interrupts we'll be using ...
2278 */
2279 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2280
2281 /*
2282 * Count the number of 10GbE Virtual Interfaces that we have.
2283 */
2284 n10g = 0;
2285 for_each_port(adapter, pidx)
2286 n10g += is_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2287
2288 /*
2289 * We default to 1 queue per non-10G port and up to # of cores queues
2290 * per 10G port.
2291 */
2292 if (n10g == 0)
2293 q10g = 0;
2294 else {
2295 int n1g = (adapter->params.nports - n10g);
2296 q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2297 if (q10g > num_online_cpus())
2298 q10g = num_online_cpus();
2299 }
2300
2301 /*
2302 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2303 * The layout will be established in setup_sge_queues() when the
2304 * adapter is brough up for the first time.
2305 */
2306 qidx = 0;
2307 for_each_port(adapter, pidx) {
2308 struct port_info *pi = adap2pinfo(adapter, pidx);
2309
2310 pi->first_qset = qidx;
2311 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1;
2312 qidx += pi->nqsets;
2313 }
2314 s->ethqsets = qidx;
2315
c710245c
CL
2316 /*
2317 * The Ingress Queue Entry Size for our various Response Queues needs
2318 * to be big enough to accommodate the largest message we can receive
2319 * from the chip/firmware; which is 64 bytes ...
2320 */
2321 iqe_size = 64;
2322
be839e39
CL
2323 /*
2324 * Set up default Queue Set parameters ... Start off with the
2325 * shortest interrupt holdoff timer.
2326 */
2327 for (qs = 0; qs < s->max_ethqsets; qs++) {
2328 struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2329 struct sge_eth_txq *txq = &s->ethtxq[qs];
2330
c710245c 2331 init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size);
be839e39
CL
2332 rxq->fl.size = 72;
2333 txq->q.size = 1024;
2334 }
2335
2336 /*
2337 * The firmware event queue is used for link state changes and
2338 * notifications of TX DMA completions.
2339 */
c710245c 2340 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size);
be839e39
CL
2341
2342 /*
2343 * The forwarded interrupt queue is used when we're in MSI interrupt
2344 * mode. In this mode all interrupts associated with RX queues will
2345 * be forwarded to a single queue which we'll associate with our MSI
2346 * interrupt vector. The messages dropped in the forwarded interrupt
2347 * queue will indicate which ingress queue needs servicing ... This
2348 * queue needs to be large enough to accommodate all of the ingress
2349 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2350 * from equalling the CIDX if every ingress queue has an outstanding
2351 * interrupt). The queue doesn't need to be any larger because no
2352 * ingress queue will ever have more than one outstanding interrupt at
2353 * any time ...
2354 */
2355 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
c710245c 2356 iqe_size);
be839e39
CL
2357}
2358
2359/*
2360 * Reduce the number of Ethernet queues across all ports to at most n.
2361 * n provides at least one queue per port.
2362 */
2363static void __devinit reduce_ethqs(struct adapter *adapter, int n)
2364{
2365 int i;
2366 struct port_info *pi;
2367
2368 /*
2369 * While we have too many active Ether Queue Sets, interate across the
2370 * "ports" and reduce their individual Queue Set allocations.
2371 */
2372 BUG_ON(n < adapter->params.nports);
2373 while (n < adapter->sge.ethqsets)
2374 for_each_port(adapter, i) {
2375 pi = adap2pinfo(adapter, i);
2376 if (pi->nqsets > 1) {
2377 pi->nqsets--;
2378 adapter->sge.ethqsets--;
2379 if (adapter->sge.ethqsets <= n)
2380 break;
2381 }
2382 }
2383
2384 /*
2385 * Reassign the starting Queue Sets for each of the "ports" ...
2386 */
2387 n = 0;
2388 for_each_port(adapter, i) {
2389 pi = adap2pinfo(adapter, i);
2390 pi->first_qset = n;
2391 n += pi->nqsets;
2392 }
2393}
2394
2395/*
2396 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally
2397 * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2398 * need. Minimally we need one for every Virtual Interface plus those needed
2399 * for our "extras". Note that this process may lower the maximum number of
2400 * allowed Queue Sets ...
2401 */
2402static int __devinit enable_msix(struct adapter *adapter)
2403{
2404 int i, err, want, need;
2405 struct msix_entry entries[MSIX_ENTRIES];
2406 struct sge *s = &adapter->sge;
2407
2408 for (i = 0; i < MSIX_ENTRIES; ++i)
2409 entries[i].entry = i;
2410
2411 /*
2412 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2413 * plus those needed for our "extras" (for example, the firmware
2414 * message queue). We _need_ at least one "Queue Set" per Virtual
2415 * Interface plus those needed for our "extras". So now we get to see
2416 * if the song is right ...
2417 */
2418 want = s->max_ethqsets + MSIX_EXTRAS;
2419 need = adapter->params.nports + MSIX_EXTRAS;
2420 while ((err = pci_enable_msix(adapter->pdev, entries, want)) >= need)
2421 want = err;
2422
2423 if (err == 0) {
2424 int nqsets = want - MSIX_EXTRAS;
2425 if (nqsets < s->max_ethqsets) {
2426 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2427 " for %d Queue Sets\n", nqsets);
2428 s->max_ethqsets = nqsets;
2429 if (nqsets < s->ethqsets)
2430 reduce_ethqs(adapter, nqsets);
2431 }
2432 for (i = 0; i < want; ++i)
2433 adapter->msix_info[i].vec = entries[i].vector;
2434 } else if (err > 0) {
2435 pci_disable_msix(adapter->pdev);
2436 dev_info(adapter->pdev_dev, "only %d MSI-X vectors left,"
2437 " not using MSI-X\n", err);
2438 }
2439 return err;
2440}
2441
2442#ifdef HAVE_NET_DEVICE_OPS
2443static const struct net_device_ops cxgb4vf_netdev_ops = {
2444 .ndo_open = cxgb4vf_open,
2445 .ndo_stop = cxgb4vf_stop,
2446 .ndo_start_xmit = t4vf_eth_xmit,
2447 .ndo_get_stats = cxgb4vf_get_stats,
2448 .ndo_set_rx_mode = cxgb4vf_set_rxmode,
2449 .ndo_set_mac_address = cxgb4vf_set_mac_addr,
be839e39
CL
2450 .ndo_validate_addr = eth_validate_addr,
2451 .ndo_do_ioctl = cxgb4vf_do_ioctl,
2452 .ndo_change_mtu = cxgb4vf_change_mtu,
2453 .ndo_vlan_rx_register = cxgb4vf_vlan_rx_register,
2454#ifdef CONFIG_NET_POLL_CONTROLLER
2455 .ndo_poll_controller = cxgb4vf_poll_controller,
2456#endif
2457};
2458#endif
2459
2460/*
2461 * "Probe" a device: initialize a device and construct all kernel and driver
2462 * state needed to manage the device. This routine is called "init_one" in
2463 * the PF Driver ...
2464 */
2465static int __devinit cxgb4vf_pci_probe(struct pci_dev *pdev,
2466 const struct pci_device_id *ent)
2467{
2468 static int version_printed;
2469
2470 int pci_using_dac;
2471 int err, pidx;
2472 unsigned int pmask;
2473 struct adapter *adapter;
2474 struct port_info *pi;
2475 struct net_device *netdev;
2476
2477 /*
2478 * Vet our module parameters.
2479 */
2480 if (msi != MSI_MSIX && msi != MSI_MSI) {
2481 dev_err(&pdev->dev, "bad module parameter msi=%d; must be %d"
2482 " (MSI-X or MSI) or %d (MSI)\n", msi, MSI_MSIX,
2483 MSI_MSI);
2484 err = -EINVAL;
2485 goto err_out;
2486 }
2487
2488 /*
2489 * Print our driver banner the first time we're called to initialize a
2490 * device.
2491 */
2492 if (version_printed == 0) {
2493 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
2494 version_printed = 1;
2495 }
2496
7a0c2029 2497
be839e39 2498 /*
7a0c2029 2499 * Initialize generic PCI device state.
be839e39 2500 */
7a0c2029 2501 err = pci_enable_device(pdev);
be839e39 2502 if (err) {
7a0c2029 2503 dev_err(&pdev->dev, "cannot enable PCI device\n");
be839e39
CL
2504 return err;
2505 }
2506
2507 /*
7a0c2029
KV
2508 * Reserve PCI resources for the device. If we can't get them some
2509 * other driver may have already claimed the device ...
be839e39 2510 */
7a0c2029 2511 err = pci_request_regions(pdev, KBUILD_MODNAME);
be839e39 2512 if (err) {
7a0c2029
KV
2513 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2514 goto err_disable_device;
be839e39
CL
2515 }
2516
2517 /*
2518 * Set up our DMA mask: try for 64-bit address masking first and
2519 * fall back to 32-bit if we can't get 64 bits ...
2520 */
2521 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2522 if (err == 0) {
2523 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2524 if (err) {
2525 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2526 " coherent allocations\n");
7a0c2029 2527 goto err_release_regions;
be839e39
CL
2528 }
2529 pci_using_dac = 1;
2530 } else {
2531 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2532 if (err != 0) {
2533 dev_err(&pdev->dev, "no usable DMA configuration\n");
7a0c2029 2534 goto err_release_regions;
be839e39
CL
2535 }
2536 pci_using_dac = 0;
2537 }
2538
2539 /*
2540 * Enable bus mastering for the device ...
2541 */
2542 pci_set_master(pdev);
2543
2544 /*
2545 * Allocate our adapter data structure and attach it to the device.
2546 */
2547 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2548 if (!adapter) {
2549 err = -ENOMEM;
7a0c2029 2550 goto err_release_regions;
be839e39
CL
2551 }
2552 pci_set_drvdata(pdev, adapter);
2553 adapter->pdev = pdev;
2554 adapter->pdev_dev = &pdev->dev;
2555
2556 /*
2557 * Initialize SMP data synchronization resources.
2558 */
2559 spin_lock_init(&adapter->stats_lock);
2560
2561 /*
2562 * Map our I/O registers in BAR0.
2563 */
2564 adapter->regs = pci_ioremap_bar(pdev, 0);
2565 if (!adapter->regs) {
2566 dev_err(&pdev->dev, "cannot map device registers\n");
2567 err = -ENOMEM;
2568 goto err_free_adapter;
2569 }
2570
2571 /*
2572 * Initialize adapter level features.
2573 */
2574 adapter->name = pci_name(pdev);
2575 adapter->msg_enable = dflt_msg_enable;
2576 err = adap_init0(adapter);
2577 if (err)
2578 goto err_unmap_bar;
2579
2580 /*
2581 * Allocate our "adapter ports" and stitch everything together.
2582 */
2583 pmask = adapter->params.vfres.pmask;
2584 for_each_port(adapter, pidx) {
2585 int port_id, viid;
2586
2587 /*
2588 * We simplistically allocate our virtual interfaces
2589 * sequentially across the port numbers to which we have
2590 * access rights. This should be configurable in some manner
2591 * ...
2592 */
2593 if (pmask == 0)
2594 break;
2595 port_id = ffs(pmask) - 1;
2596 pmask &= ~(1 << port_id);
2597 viid = t4vf_alloc_vi(adapter, port_id);
2598 if (viid < 0) {
2599 dev_err(&pdev->dev, "cannot allocate VI for port %d:"
2600 " err=%d\n", port_id, viid);
2601 err = viid;
2602 goto err_free_dev;
2603 }
2604
2605 /*
2606 * Allocate our network device and stitch things together.
2607 */
2608 netdev = alloc_etherdev_mq(sizeof(struct port_info),
2609 MAX_PORT_QSETS);
2610 if (netdev == NULL) {
2611 dev_err(&pdev->dev, "cannot allocate netdev for"
2612 " port %d\n", port_id);
2613 t4vf_free_vi(adapter, viid);
2614 err = -ENOMEM;
2615 goto err_free_dev;
2616 }
2617 adapter->port[pidx] = netdev;
2618 SET_NETDEV_DEV(netdev, &pdev->dev);
2619 pi = netdev_priv(netdev);
2620 pi->adapter = adapter;
2621 pi->pidx = pidx;
2622 pi->port_id = port_id;
2623 pi->viid = viid;
2624
2625 /*
2626 * Initialize the starting state of our "port" and register
2627 * it.
2628 */
2629 pi->xact_addr_filt = -1;
2630 pi->rx_offload = RX_CSO;
2631 netif_carrier_off(netdev);
be839e39
CL
2632 netdev->irq = pdev->irq;
2633
2634 netdev->features = (NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO6 |
2635 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2636 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
2637 NETIF_F_GRO);
2638 if (pci_using_dac)
2639 netdev->features |= NETIF_F_HIGHDMA;
2640 netdev->vlan_features =
2641 (netdev->features &
2642 ~(NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX));
2643
2644#ifdef HAVE_NET_DEVICE_OPS
2645 netdev->netdev_ops = &cxgb4vf_netdev_ops;
2646#else
2647 netdev->vlan_rx_register = cxgb4vf_vlan_rx_register;
2648 netdev->open = cxgb4vf_open;
2649 netdev->stop = cxgb4vf_stop;
2650 netdev->hard_start_xmit = t4vf_eth_xmit;
2651 netdev->get_stats = cxgb4vf_get_stats;
2652 netdev->set_rx_mode = cxgb4vf_set_rxmode;
2653 netdev->do_ioctl = cxgb4vf_do_ioctl;
2654 netdev->change_mtu = cxgb4vf_change_mtu;
2655 netdev->set_mac_address = cxgb4vf_set_mac_addr;
be839e39
CL
2656#ifdef CONFIG_NET_POLL_CONTROLLER
2657 netdev->poll_controller = cxgb4vf_poll_controller;
2658#endif
2659#endif
2660 SET_ETHTOOL_OPS(netdev, &cxgb4vf_ethtool_ops);
2661
2662 /*
2663 * Initialize the hardware/software state for the port.
2664 */
2665 err = t4vf_port_init(adapter, pidx);
2666 if (err) {
2667 dev_err(&pdev->dev, "cannot initialize port %d\n",
2668 pidx);
2669 goto err_free_dev;
2670 }
2671 }
2672
2673 /*
2674 * The "card" is now ready to go. If any errors occur during device
2675 * registration we do not fail the whole "card" but rather proceed
2676 * only with the ports we manage to register successfully. However we
2677 * must register at least one net device.
2678 */
2679 for_each_port(adapter, pidx) {
2680 netdev = adapter->port[pidx];
2681 if (netdev == NULL)
2682 continue;
2683
2684 err = register_netdev(netdev);
2685 if (err) {
2686 dev_warn(&pdev->dev, "cannot register net device %s,"
2687 " skipping\n", netdev->name);
2688 continue;
2689 }
2690
2691 set_bit(pidx, &adapter->registered_device_map);
2692 }
2693 if (adapter->registered_device_map == 0) {
2694 dev_err(&pdev->dev, "could not register any net devices\n");
2695 goto err_free_dev;
2696 }
2697
2698 /*
2699 * Set up our debugfs entries.
2700 */
2701 if (cxgb4vf_debugfs_root) {
2702 adapter->debugfs_root =
2703 debugfs_create_dir(pci_name(pdev),
2704 cxgb4vf_debugfs_root);
2705 if (adapter->debugfs_root == NULL)
2706 dev_warn(&pdev->dev, "could not create debugfs"
2707 " directory");
2708 else
2709 setup_debugfs(adapter);
2710 }
2711
2712 /*
2713 * See what interrupts we'll be using. If we've been configured to
2714 * use MSI-X interrupts, try to enable them but fall back to using
2715 * MSI interrupts if we can't enable MSI-X interrupts. If we can't
2716 * get MSI interrupts we bail with the error.
2717 */
2718 if (msi == MSI_MSIX && enable_msix(adapter) == 0)
2719 adapter->flags |= USING_MSIX;
2720 else {
2721 err = pci_enable_msi(pdev);
2722 if (err) {
2723 dev_err(&pdev->dev, "Unable to allocate %s interrupts;"
2724 " err=%d\n",
2725 msi == MSI_MSIX ? "MSI-X or MSI" : "MSI", err);
2726 goto err_free_debugfs;
2727 }
2728 adapter->flags |= USING_MSI;
2729 }
2730
2731 /*
2732 * Now that we know how many "ports" we have and what their types are,
2733 * and how many Queue Sets we can support, we can configure our queue
2734 * resources.
2735 */
2736 cfg_queues(adapter);
2737
2738 /*
2739 * Print a short notice on the existance and configuration of the new
2740 * VF network device ...
2741 */
2742 for_each_port(adapter, pidx) {
2743 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
2744 adapter->port[pidx]->name,
2745 (adapter->flags & USING_MSIX) ? "MSI-X" :
2746 (adapter->flags & USING_MSI) ? "MSI" : "");
2747 }
2748
2749 /*
2750 * Return success!
2751 */
2752 return 0;
2753
2754 /*
2755 * Error recovery and exit code. Unwind state that's been created
2756 * so far and return the error.
2757 */
2758
2759err_free_debugfs:
2760 if (adapter->debugfs_root) {
2761 cleanup_debugfs(adapter);
2762 debugfs_remove_recursive(adapter->debugfs_root);
2763 }
2764
2765err_free_dev:
2766 for_each_port(adapter, pidx) {
2767 netdev = adapter->port[pidx];
2768 if (netdev == NULL)
2769 continue;
2770 pi = netdev_priv(netdev);
2771 t4vf_free_vi(adapter, pi->viid);
2772 if (test_bit(pidx, &adapter->registered_device_map))
2773 unregister_netdev(netdev);
2774 free_netdev(netdev);
2775 }
2776
2777err_unmap_bar:
2778 iounmap(adapter->regs);
2779
2780err_free_adapter:
2781 kfree(adapter);
2782 pci_set_drvdata(pdev, NULL);
2783
be839e39
CL
2784err_release_regions:
2785 pci_release_regions(pdev);
2786 pci_set_drvdata(pdev, NULL);
7a0c2029
KV
2787 pci_clear_master(pdev);
2788
2789err_disable_device:
2790 pci_disable_device(pdev);
be839e39
CL
2791
2792err_out:
2793 return err;
2794}
2795
2796/*
2797 * "Remove" a device: tear down all kernel and driver state created in the
2798 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note
2799 * that this is called "remove_one" in the PF Driver.)
2800 */
2801static void __devexit cxgb4vf_pci_remove(struct pci_dev *pdev)
2802{
2803 struct adapter *adapter = pci_get_drvdata(pdev);
2804
2805 /*
2806 * Tear down driver state associated with device.
2807 */
2808 if (adapter) {
2809 int pidx;
2810
2811 /*
2812 * Stop all of our activity. Unregister network port,
2813 * disable interrupts, etc.
2814 */
2815 for_each_port(adapter, pidx)
2816 if (test_bit(pidx, &adapter->registered_device_map))
2817 unregister_netdev(adapter->port[pidx]);
2818 t4vf_sge_stop(adapter);
2819 if (adapter->flags & USING_MSIX) {
2820 pci_disable_msix(adapter->pdev);
2821 adapter->flags &= ~USING_MSIX;
2822 } else if (adapter->flags & USING_MSI) {
2823 pci_disable_msi(adapter->pdev);
2824 adapter->flags &= ~USING_MSI;
2825 }
2826
2827 /*
2828 * Tear down our debugfs entries.
2829 */
2830 if (adapter->debugfs_root) {
2831 cleanup_debugfs(adapter);
2832 debugfs_remove_recursive(adapter->debugfs_root);
2833 }
2834
2835 /*
2836 * Free all of the various resources which we've acquired ...
2837 */
2838 t4vf_free_sge_resources(adapter);
2839 for_each_port(adapter, pidx) {
2840 struct net_device *netdev = adapter->port[pidx];
2841 struct port_info *pi;
2842
2843 if (netdev == NULL)
2844 continue;
2845
2846 pi = netdev_priv(netdev);
2847 t4vf_free_vi(adapter, pi->viid);
2848 free_netdev(netdev);
2849 }
2850 iounmap(adapter->regs);
2851 kfree(adapter);
2852 pci_set_drvdata(pdev, NULL);
2853 }
2854
2855 /*
2856 * Disable the device and release its PCI resources.
2857 */
2858 pci_disable_device(pdev);
2859 pci_clear_master(pdev);
2860 pci_release_regions(pdev);
2861}
2862
2863/*
2864 * PCI Device registration data structures.
2865 */
2866#define CH_DEVICE(devid, idx) \
2867 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
2868
2869static struct pci_device_id cxgb4vf_pci_tbl[] = {
2870 CH_DEVICE(0xb000, 0), /* PE10K FPGA */
2871 CH_DEVICE(0x4800, 0), /* T440-dbg */
2872 CH_DEVICE(0x4801, 0), /* T420-cr */
2873 CH_DEVICE(0x4802, 0), /* T422-cr */
8b6edf87
CL
2874 CH_DEVICE(0x4803, 0), /* T440-cr */
2875 CH_DEVICE(0x4804, 0), /* T420-bch */
2876 CH_DEVICE(0x4805, 0), /* T440-bch */
2877 CH_DEVICE(0x4806, 0), /* T460-ch */
2878 CH_DEVICE(0x4807, 0), /* T420-so */
2879 CH_DEVICE(0x4808, 0), /* T420-cx */
2880 CH_DEVICE(0x4809, 0), /* T420-bt */
2881 CH_DEVICE(0x480a, 0), /* T404-bt */
be839e39
CL
2882 { 0, }
2883};
2884
2885MODULE_DESCRIPTION(DRV_DESC);
2886MODULE_AUTHOR("Chelsio Communications");
2887MODULE_LICENSE("Dual BSD/GPL");
2888MODULE_VERSION(DRV_VERSION);
2889MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
2890
2891static struct pci_driver cxgb4vf_driver = {
2892 .name = KBUILD_MODNAME,
2893 .id_table = cxgb4vf_pci_tbl,
2894 .probe = cxgb4vf_pci_probe,
2895 .remove = __devexit_p(cxgb4vf_pci_remove),
2896};
2897
2898/*
2899 * Initialize global driver state.
2900 */
2901static int __init cxgb4vf_module_init(void)
2902{
2903 int ret;
2904
2905 /* Debugfs support is optional, just warn if this fails */
2906 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
2907 if (!cxgb4vf_debugfs_root)
2908 printk(KERN_WARNING KBUILD_MODNAME ": could not create"
2909 " debugfs entry, continuing\n");
2910
2911 ret = pci_register_driver(&cxgb4vf_driver);
2912 if (ret < 0)
2913 debugfs_remove(cxgb4vf_debugfs_root);
2914 return ret;
2915}
2916
2917/*
2918 * Tear down global driver state.
2919 */
2920static void __exit cxgb4vf_module_exit(void)
2921{
2922 pci_unregister_driver(&cxgb4vf_driver);
2923 debugfs_remove(cxgb4vf_debugfs_root);
2924}
2925
2926module_init(cxgb4vf_module_init);
2927module_exit(cxgb4vf_module_exit);
This page took 0.177254 seconds and 5 git commands to generate.