cxgb4vf: Fix off-by-one error checking for the end of the mailbox delay array
[deliverable/linux.git] / drivers / net / cxgb4vf / cxgb4vf_main.c
CommitLineData
be839e39
CL
1/*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36#include <linux/version.h>
37#include <linux/module.h>
38#include <linux/moduleparam.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/dma-mapping.h>
42#include <linux/netdevice.h>
43#include <linux/etherdevice.h>
44#include <linux/debugfs.h>
45#include <linux/ethtool.h>
46
47#include "t4vf_common.h"
48#include "t4vf_defs.h"
49
50#include "../cxgb4/t4_regs.h"
51#include "../cxgb4/t4_msg.h"
52
53/*
54 * Generic information about the driver.
55 */
56#define DRV_VERSION "1.0.0"
57#define DRV_DESC "Chelsio T4 Virtual Function (VF) Network Driver"
58
59/*
60 * Module Parameters.
61 * ==================
62 */
63
64/*
65 * Default ethtool "message level" for adapters.
66 */
67#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
68 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
69 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
70
71static int dflt_msg_enable = DFLT_MSG_ENABLE;
72
73module_param(dflt_msg_enable, int, 0644);
74MODULE_PARM_DESC(dflt_msg_enable,
75 "default adapter ethtool message level bitmap");
76
77/*
78 * The driver uses the best interrupt scheme available on a platform in the
79 * order MSI-X then MSI. This parameter determines which of these schemes the
80 * driver may consider as follows:
81 *
82 * msi = 2: choose from among MSI-X and MSI
83 * msi = 1: only consider MSI interrupts
84 *
85 * Note that unlike the Physical Function driver, this Virtual Function driver
86 * does _not_ support legacy INTx interrupts (this limitation is mandated by
87 * the PCI-E SR-IOV standard).
88 */
89#define MSI_MSIX 2
90#define MSI_MSI 1
91#define MSI_DEFAULT MSI_MSIX
92
93static int msi = MSI_DEFAULT;
94
95module_param(msi, int, 0644);
96MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
97
98/*
99 * Fundamental constants.
100 * ======================
101 */
102
103enum {
104 MAX_TXQ_ENTRIES = 16384,
105 MAX_RSPQ_ENTRIES = 16384,
106 MAX_RX_BUFFERS = 16384,
107
108 MIN_TXQ_ENTRIES = 32,
109 MIN_RSPQ_ENTRIES = 128,
110 MIN_FL_ENTRIES = 16,
111
112 /*
113 * For purposes of manipulating the Free List size we need to
114 * recognize that Free Lists are actually Egress Queues (the host
115 * produces free buffers which the hardware consumes), Egress Queues
116 * indices are all in units of Egress Context Units bytes, and free
117 * list entries are 64-bit PCI DMA addresses. And since the state of
118 * the Producer Index == the Consumer Index implies an EMPTY list, we
119 * always have at least one Egress Unit's worth of Free List entries
120 * unused. See sge.c for more details ...
121 */
122 EQ_UNIT = SGE_EQ_IDXSIZE,
123 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
124 MIN_FL_RESID = FL_PER_EQ_UNIT,
125};
126
127/*
128 * Global driver state.
129 * ====================
130 */
131
132static struct dentry *cxgb4vf_debugfs_root;
133
134/*
135 * OS "Callback" functions.
136 * ========================
137 */
138
139/*
140 * The link status has changed on the indicated "port" (Virtual Interface).
141 */
142void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
143{
144 struct net_device *dev = adapter->port[pidx];
145
146 /*
147 * If the port is disabled or the current recorded "link up"
148 * status matches the new status, just return.
149 */
150 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
151 return;
152
153 /*
154 * Tell the OS that the link status has changed and print a short
155 * informative message on the console about the event.
156 */
157 if (link_ok) {
158 const char *s;
159 const char *fc;
160 const struct port_info *pi = netdev_priv(dev);
161
162 netif_carrier_on(dev);
163
164 switch (pi->link_cfg.speed) {
165 case SPEED_10000:
166 s = "10Gbps";
167 break;
168
169 case SPEED_1000:
170 s = "1000Mbps";
171 break;
172
173 case SPEED_100:
174 s = "100Mbps";
175 break;
176
177 default:
178 s = "unknown";
179 break;
180 }
181
182 switch (pi->link_cfg.fc) {
183 case PAUSE_RX:
184 fc = "RX";
185 break;
186
187 case PAUSE_TX:
188 fc = "TX";
189 break;
190
191 case PAUSE_RX|PAUSE_TX:
192 fc = "RX/TX";
193 break;
194
195 default:
196 fc = "no";
197 break;
198 }
199
200 printk(KERN_INFO "%s: link up, %s, full-duplex, %s PAUSE\n",
201 dev->name, s, fc);
202 } else {
203 netif_carrier_off(dev);
204 printk(KERN_INFO "%s: link down\n", dev->name);
205 }
206}
207
208/*
209 * Net device operations.
210 * ======================
211 */
212
213/*
214 * Record our new VLAN Group and enable/disable hardware VLAN Tag extraction
215 * based on whether the specified VLAN Group pointer is NULL or not.
216 */
217static void cxgb4vf_vlan_rx_register(struct net_device *dev,
218 struct vlan_group *grp)
219{
220 struct port_info *pi = netdev_priv(dev);
221
222 pi->vlan_grp = grp;
223 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1, grp != NULL, 0);
224}
225
226/*
227 * Perform the MAC and PHY actions needed to enable a "port" (Virtual
228 * Interface).
229 */
230static int link_start(struct net_device *dev)
231{
232 int ret;
233 struct port_info *pi = netdev_priv(dev);
234
235 /*
236 * We do not set address filters and promiscuity here, the stack does
237 * that step explicitly.
238 */
239 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, -1,
240 true);
241 if (ret == 0) {
242 ret = t4vf_change_mac(pi->adapter, pi->viid,
243 pi->xact_addr_filt, dev->dev_addr, true);
244 if (ret >= 0) {
245 pi->xact_addr_filt = ret;
246 ret = 0;
247 }
248 }
249
250 /*
251 * We don't need to actually "start the link" itself since the
252 * firmware will do that for us when the first Virtual Interface
253 * is enabled on a port.
254 */
255 if (ret == 0)
256 ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true);
257 return ret;
258}
259
260/*
261 * Name the MSI-X interrupts.
262 */
263static void name_msix_vecs(struct adapter *adapter)
264{
265 int namelen = sizeof(adapter->msix_info[0].desc) - 1;
266 int pidx;
267
268 /*
269 * Firmware events.
270 */
271 snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
272 "%s-FWeventq", adapter->name);
273 adapter->msix_info[MSIX_FW].desc[namelen] = 0;
274
275 /*
276 * Ethernet queues.
277 */
278 for_each_port(adapter, pidx) {
279 struct net_device *dev = adapter->port[pidx];
280 const struct port_info *pi = netdev_priv(dev);
281 int qs, msi;
282
283 for (qs = 0, msi = MSIX_NIQFLINT;
284 qs < pi->nqsets;
285 qs++, msi++) {
286 snprintf(adapter->msix_info[msi].desc, namelen,
287 "%s-%d", dev->name, qs);
288 adapter->msix_info[msi].desc[namelen] = 0;
289 }
290 }
291}
292
293/*
294 * Request all of our MSI-X resources.
295 */
296static int request_msix_queue_irqs(struct adapter *adapter)
297{
298 struct sge *s = &adapter->sge;
299 int rxq, msi, err;
300
301 /*
302 * Firmware events.
303 */
304 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
305 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
306 if (err)
307 return err;
308
309 /*
310 * Ethernet queues.
311 */
312 msi = MSIX_NIQFLINT;
313 for_each_ethrxq(s, rxq) {
314 err = request_irq(adapter->msix_info[msi].vec,
315 t4vf_sge_intr_msix, 0,
316 adapter->msix_info[msi].desc,
317 &s->ethrxq[rxq].rspq);
318 if (err)
319 goto err_free_irqs;
320 msi++;
321 }
322 return 0;
323
324err_free_irqs:
325 while (--rxq >= 0)
326 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
327 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
328 return err;
329}
330
331/*
332 * Free our MSI-X resources.
333 */
334static void free_msix_queue_irqs(struct adapter *adapter)
335{
336 struct sge *s = &adapter->sge;
337 int rxq, msi;
338
339 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
340 msi = MSIX_NIQFLINT;
341 for_each_ethrxq(s, rxq)
342 free_irq(adapter->msix_info[msi++].vec,
343 &s->ethrxq[rxq].rspq);
344}
345
346/*
347 * Turn on NAPI and start up interrupts on a response queue.
348 */
349static void qenable(struct sge_rspq *rspq)
350{
351 napi_enable(&rspq->napi);
352
353 /*
354 * 0-increment the Going To Sleep register to start the timer and
355 * enable interrupts.
356 */
357 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
358 CIDXINC(0) |
359 SEINTARM(rspq->intr_params) |
360 INGRESSQID(rspq->cntxt_id));
361}
362
363/*
364 * Enable NAPI scheduling and interrupt generation for all Receive Queues.
365 */
366static void enable_rx(struct adapter *adapter)
367{
368 int rxq;
369 struct sge *s = &adapter->sge;
370
371 for_each_ethrxq(s, rxq)
372 qenable(&s->ethrxq[rxq].rspq);
373 qenable(&s->fw_evtq);
374
375 /*
376 * The interrupt queue doesn't use NAPI so we do the 0-increment of
377 * its Going To Sleep register here to get it started.
378 */
379 if (adapter->flags & USING_MSI)
380 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
381 CIDXINC(0) |
382 SEINTARM(s->intrq.intr_params) |
383 INGRESSQID(s->intrq.cntxt_id));
384
385}
386
387/*
388 * Wait until all NAPI handlers are descheduled.
389 */
390static void quiesce_rx(struct adapter *adapter)
391{
392 struct sge *s = &adapter->sge;
393 int rxq;
394
395 for_each_ethrxq(s, rxq)
396 napi_disable(&s->ethrxq[rxq].rspq.napi);
397 napi_disable(&s->fw_evtq.napi);
398}
399
400/*
401 * Response queue handler for the firmware event queue.
402 */
403static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
404 const struct pkt_gl *gl)
405{
406 /*
407 * Extract response opcode and get pointer to CPL message body.
408 */
409 struct adapter *adapter = rspq->adapter;
410 u8 opcode = ((const struct rss_header *)rsp)->opcode;
411 void *cpl = (void *)(rsp + 1);
412
413 switch (opcode) {
414 case CPL_FW6_MSG: {
415 /*
416 * We've received an asynchronous message from the firmware.
417 */
418 const struct cpl_fw6_msg *fw_msg = cpl;
419 if (fw_msg->type == FW6_TYPE_CMD_RPL)
420 t4vf_handle_fw_rpl(adapter, fw_msg->data);
421 break;
422 }
423
424 case CPL_SGE_EGR_UPDATE: {
425 /*
7f9dd2fa
CL
426 * We've received an Egress Queue Status Update message. We
427 * get these, if the SGE is configured to send these when the
428 * firmware passes certain points in processing our TX
429 * Ethernet Queue or if we make an explicit request for one.
430 * We use these updates to determine when we may need to
431 * restart a TX Ethernet Queue which was stopped for lack of
432 * free TX Queue Descriptors ...
be839e39
CL
433 */
434 const struct cpl_sge_egr_update *p = (void *)cpl;
435 unsigned int qid = EGR_QID(be32_to_cpu(p->opcode_qid));
436 struct sge *s = &adapter->sge;
437 struct sge_txq *tq;
438 struct sge_eth_txq *txq;
439 unsigned int eq_idx;
be839e39
CL
440
441 /*
442 * Perform sanity checking on the Queue ID to make sure it
443 * really refers to one of our TX Ethernet Egress Queues which
444 * is active and matches the queue's ID. None of these error
445 * conditions should ever happen so we may want to either make
446 * them fatal and/or conditionalized under DEBUG.
447 */
448 eq_idx = EQ_IDX(s, qid);
449 if (unlikely(eq_idx >= MAX_EGRQ)) {
450 dev_err(adapter->pdev_dev,
451 "Egress Update QID %d out of range\n", qid);
452 break;
453 }
454 tq = s->egr_map[eq_idx];
455 if (unlikely(tq == NULL)) {
456 dev_err(adapter->pdev_dev,
457 "Egress Update QID %d TXQ=NULL\n", qid);
458 break;
459 }
460 txq = container_of(tq, struct sge_eth_txq, q);
461 if (unlikely(tq->abs_id != qid)) {
462 dev_err(adapter->pdev_dev,
463 "Egress Update QID %d refers to TXQ %d\n",
464 qid, tq->abs_id);
465 break;
466 }
467
be839e39
CL
468 /*
469 * Restart a stopped TX Queue which has less than half of its
470 * TX ring in use ...
471 */
472 txq->q.restarts++;
473 netif_tx_wake_queue(txq->txq);
474 break;
475 }
476
477 default:
478 dev_err(adapter->pdev_dev,
479 "unexpected CPL %#x on FW event queue\n", opcode);
480 }
481
482 return 0;
483}
484
485/*
486 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues
487 * to use and initializes them. We support multiple "Queue Sets" per port if
488 * we have MSI-X, otherwise just one queue set per port.
489 */
490static int setup_sge_queues(struct adapter *adapter)
491{
492 struct sge *s = &adapter->sge;
493 int err, pidx, msix;
494
495 /*
496 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
497 * state.
498 */
499 bitmap_zero(s->starving_fl, MAX_EGRQ);
500
501 /*
502 * If we're using MSI interrupt mode we need to set up a "forwarded
503 * interrupt" queue which we'll set up with our MSI vector. The rest
504 * of the ingress queues will be set up to forward their interrupts to
505 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses
506 * the intrq's queue ID as the interrupt forwarding queue for the
507 * subsequent calls ...
508 */
509 if (adapter->flags & USING_MSI) {
510 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
511 adapter->port[0], 0, NULL, NULL);
512 if (err)
513 goto err_free_queues;
514 }
515
516 /*
517 * Allocate our ingress queue for asynchronous firmware messages.
518 */
519 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
520 MSIX_FW, NULL, fwevtq_handler);
521 if (err)
522 goto err_free_queues;
523
524 /*
525 * Allocate each "port"'s initial Queue Sets. These can be changed
526 * later on ... up to the point where any interface on the adapter is
527 * brought up at which point lots of things get nailed down
528 * permanently ...
529 */
530 msix = MSIX_NIQFLINT;
531 for_each_port(adapter, pidx) {
532 struct net_device *dev = adapter->port[pidx];
533 struct port_info *pi = netdev_priv(dev);
534 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
535 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
536 int nqsets = (adapter->flags & USING_MSIX) ? pi->nqsets : 1;
537 int qs;
538
539 for (qs = 0; qs < nqsets; qs++, rxq++, txq++) {
540 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
541 dev, msix++,
542 &rxq->fl, t4vf_ethrx_handler);
543 if (err)
544 goto err_free_queues;
545
546 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
547 netdev_get_tx_queue(dev, qs),
548 s->fw_evtq.cntxt_id);
549 if (err)
550 goto err_free_queues;
551
552 rxq->rspq.idx = qs;
553 memset(&rxq->stats, 0, sizeof(rxq->stats));
554 }
555 }
556
557 /*
558 * Create the reverse mappings for the queues.
559 */
560 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
561 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
562 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
563 for_each_port(adapter, pidx) {
564 struct net_device *dev = adapter->port[pidx];
565 struct port_info *pi = netdev_priv(dev);
566 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
567 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
568 int nqsets = (adapter->flags & USING_MSIX) ? pi->nqsets : 1;
569 int qs;
570
571 for (qs = 0; qs < nqsets; qs++, rxq++, txq++) {
572 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
573 EQ_MAP(s, txq->q.abs_id) = &txq->q;
574
575 /*
576 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
577 * for Free Lists but since all of the Egress Queues
578 * (including Free Lists) have Relative Queue IDs
579 * which are computed as Absolute - Base Queue ID, we
580 * can synthesize the Absolute Queue IDs for the Free
581 * Lists. This is useful for debugging purposes when
582 * we want to dump Queue Contexts via the PF Driver.
583 */
584 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
585 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
586 }
587 }
588 return 0;
589
590err_free_queues:
591 t4vf_free_sge_resources(adapter);
592 return err;
593}
594
595/*
596 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
597 * queues. We configure the RSS CPU lookup table to distribute to the number
598 * of HW receive queues, and the response queue lookup table to narrow that
599 * down to the response queues actually configured for each "port" (Virtual
600 * Interface). We always configure the RSS mapping for all ports since the
601 * mapping table has plenty of entries.
602 */
603static int setup_rss(struct adapter *adapter)
604{
605 int pidx;
606
607 for_each_port(adapter, pidx) {
608 struct port_info *pi = adap2pinfo(adapter, pidx);
609 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
610 u16 rss[MAX_PORT_QSETS];
611 int qs, err;
612
613 for (qs = 0; qs < pi->nqsets; qs++)
614 rss[qs] = rxq[qs].rspq.abs_id;
615
616 err = t4vf_config_rss_range(adapter, pi->viid,
617 0, pi->rss_size, rss, pi->nqsets);
618 if (err)
619 return err;
620
621 /*
622 * Perform Global RSS Mode-specific initialization.
623 */
624 switch (adapter->params.rss.mode) {
625 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
626 /*
627 * If Tunnel All Lookup isn't specified in the global
628 * RSS Configuration, then we need to specify a
629 * default Ingress Queue for any ingress packets which
630 * aren't hashed. We'll use our first ingress queue
631 * ...
632 */
633 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
634 union rss_vi_config config;
635 err = t4vf_read_rss_vi_config(adapter,
636 pi->viid,
637 &config);
638 if (err)
639 return err;
640 config.basicvirtual.defaultq =
641 rxq[0].rspq.abs_id;
642 err = t4vf_write_rss_vi_config(adapter,
643 pi->viid,
644 &config);
645 if (err)
646 return err;
647 }
648 break;
649 }
650 }
651
652 return 0;
653}
654
655/*
656 * Bring the adapter up. Called whenever we go from no "ports" open to having
657 * one open. This function performs the actions necessary to make an adapter
658 * operational, such as completing the initialization of HW modules, and
659 * enabling interrupts. Must be called with the rtnl lock held. (Note that
660 * this is called "cxgb_up" in the PF Driver.)
661 */
662static int adapter_up(struct adapter *adapter)
663{
664 int err;
665
666 /*
667 * If this is the first time we've been called, perform basic
668 * adapter setup. Once we've done this, many of our adapter
669 * parameters can no longer be changed ...
670 */
671 if ((adapter->flags & FULL_INIT_DONE) == 0) {
672 err = setup_sge_queues(adapter);
673 if (err)
674 return err;
675 err = setup_rss(adapter);
676 if (err) {
677 t4vf_free_sge_resources(adapter);
678 return err;
679 }
680
681 if (adapter->flags & USING_MSIX)
682 name_msix_vecs(adapter);
683 adapter->flags |= FULL_INIT_DONE;
684 }
685
686 /*
687 * Acquire our interrupt resources. We only support MSI-X and MSI.
688 */
689 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
690 if (adapter->flags & USING_MSIX)
691 err = request_msix_queue_irqs(adapter);
692 else
693 err = request_irq(adapter->pdev->irq,
694 t4vf_intr_handler(adapter), 0,
695 adapter->name, adapter);
696 if (err) {
697 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
698 err);
699 return err;
700 }
701
702 /*
703 * Enable NAPI ingress processing and return success.
704 */
705 enable_rx(adapter);
706 t4vf_sge_start(adapter);
707 return 0;
708}
709
710/*
711 * Bring the adapter down. Called whenever the last "port" (Virtual
712 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF
713 * Driver.)
714 */
715static void adapter_down(struct adapter *adapter)
716{
717 /*
718 * Free interrupt resources.
719 */
720 if (adapter->flags & USING_MSIX)
721 free_msix_queue_irqs(adapter);
722 else
723 free_irq(adapter->pdev->irq, adapter);
724
725 /*
726 * Wait for NAPI handlers to finish.
727 */
728 quiesce_rx(adapter);
729}
730
731/*
732 * Start up a net device.
733 */
734static int cxgb4vf_open(struct net_device *dev)
735{
736 int err;
737 struct port_info *pi = netdev_priv(dev);
738 struct adapter *adapter = pi->adapter;
739
740 /*
741 * If this is the first interface that we're opening on the "adapter",
742 * bring the "adapter" up now.
743 */
744 if (adapter->open_device_map == 0) {
745 err = adapter_up(adapter);
746 if (err)
747 return err;
748 }
749
750 /*
751 * Note that this interface is up and start everything up ...
752 */
753 dev->real_num_tx_queues = pi->nqsets;
754 set_bit(pi->port_id, &adapter->open_device_map);
755 link_start(dev);
756 netif_tx_start_all_queues(dev);
757 return 0;
758}
759
760/*
761 * Shut down a net device. This routine is called "cxgb_close" in the PF
762 * Driver ...
763 */
764static int cxgb4vf_stop(struct net_device *dev)
765{
766 int ret;
767 struct port_info *pi = netdev_priv(dev);
768 struct adapter *adapter = pi->adapter;
769
770 netif_tx_stop_all_queues(dev);
771 netif_carrier_off(dev);
772 ret = t4vf_enable_vi(adapter, pi->viid, false, false);
773 pi->link_cfg.link_ok = 0;
774
775 clear_bit(pi->port_id, &adapter->open_device_map);
776 if (adapter->open_device_map == 0)
777 adapter_down(adapter);
778 return 0;
779}
780
781/*
782 * Translate our basic statistics into the standard "ifconfig" statistics.
783 */
784static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
785{
786 struct t4vf_port_stats stats;
787 struct port_info *pi = netdev2pinfo(dev);
788 struct adapter *adapter = pi->adapter;
789 struct net_device_stats *ns = &dev->stats;
790 int err;
791
792 spin_lock(&adapter->stats_lock);
793 err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
794 spin_unlock(&adapter->stats_lock);
795
796 memset(ns, 0, sizeof(*ns));
797 if (err)
798 return ns;
799
800 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
801 stats.tx_ucast_bytes + stats.tx_offload_bytes);
802 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
803 stats.tx_ucast_frames + stats.tx_offload_frames);
804 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
805 stats.rx_ucast_bytes);
806 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
807 stats.rx_ucast_frames);
808 ns->multicast = stats.rx_mcast_frames;
809 ns->tx_errors = stats.tx_drop_frames;
810 ns->rx_errors = stats.rx_err_frames;
811
812 return ns;
813}
814
815/*
816 * Collect up to maxaddrs worth of a netdevice's unicast addresses into an
817 * array of addrss pointers and return the number collected.
818 */
819static inline int collect_netdev_uc_list_addrs(const struct net_device *dev,
820 const u8 **addr,
821 unsigned int maxaddrs)
822{
823 unsigned int naddr = 0;
824 const struct netdev_hw_addr *ha;
825
826 for_each_dev_addr(dev, ha) {
827 addr[naddr++] = ha->addr;
828 if (naddr >= maxaddrs)
829 break;
830 }
831 return naddr;
832}
833
834/*
835 * Collect up to maxaddrs worth of a netdevice's multicast addresses into an
836 * array of addrss pointers and return the number collected.
837 */
838static inline int collect_netdev_mc_list_addrs(const struct net_device *dev,
839 const u8 **addr,
840 unsigned int maxaddrs)
841{
842 unsigned int naddr = 0;
843 const struct netdev_hw_addr *ha;
844
845 netdev_for_each_mc_addr(ha, dev) {
846 addr[naddr++] = ha->addr;
847 if (naddr >= maxaddrs)
848 break;
849 }
850 return naddr;
851}
852
853/*
854 * Configure the exact and hash address filters to handle a port's multicast
855 * and secondary unicast MAC addresses.
856 */
857static int set_addr_filters(const struct net_device *dev, bool sleep)
858{
859 u64 mhash = 0;
860 u64 uhash = 0;
861 bool free = true;
862 u16 filt_idx[7];
863 const u8 *addr[7];
864 int ret, naddr = 0;
865 const struct port_info *pi = netdev_priv(dev);
866
867 /* first do the secondary unicast addresses */
868 naddr = collect_netdev_uc_list_addrs(dev, addr, ARRAY_SIZE(addr));
869 if (naddr > 0) {
870 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
871 naddr, addr, filt_idx, &uhash, sleep);
872 if (ret < 0)
873 return ret;
874
875 free = false;
876 }
877
878 /* next set up the multicast addresses */
879 naddr = collect_netdev_mc_list_addrs(dev, addr, ARRAY_SIZE(addr));
880 if (naddr > 0) {
881 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
882 naddr, addr, filt_idx, &mhash, sleep);
883 if (ret < 0)
884 return ret;
885 }
886
887 return t4vf_set_addr_hash(pi->adapter, pi->viid, uhash != 0,
888 uhash | mhash, sleep);
889}
890
891/*
892 * Set RX properties of a port, such as promiscruity, address filters, and MTU.
893 * If @mtu is -1 it is left unchanged.
894 */
895static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
896{
897 int ret;
898 struct port_info *pi = netdev_priv(dev);
899
900 ret = set_addr_filters(dev, sleep_ok);
901 if (ret == 0)
902 ret = t4vf_set_rxmode(pi->adapter, pi->viid, -1,
903 (dev->flags & IFF_PROMISC) != 0,
904 (dev->flags & IFF_ALLMULTI) != 0,
905 1, -1, sleep_ok);
906 return ret;
907}
908
909/*
910 * Set the current receive modes on the device.
911 */
912static void cxgb4vf_set_rxmode(struct net_device *dev)
913{
914 /* unfortunately we can't return errors to the stack */
915 set_rxmode(dev, -1, false);
916}
917
918/*
919 * Find the entry in the interrupt holdoff timer value array which comes
920 * closest to the specified interrupt holdoff value.
921 */
922static int closest_timer(const struct sge *s, int us)
923{
924 int i, timer_idx = 0, min_delta = INT_MAX;
925
926 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
927 int delta = us - s->timer_val[i];
928 if (delta < 0)
929 delta = -delta;
930 if (delta < min_delta) {
931 min_delta = delta;
932 timer_idx = i;
933 }
934 }
935 return timer_idx;
936}
937
938static int closest_thres(const struct sge *s, int thres)
939{
940 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
941
942 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
943 delta = thres - s->counter_val[i];
944 if (delta < 0)
945 delta = -delta;
946 if (delta < min_delta) {
947 min_delta = delta;
948 pktcnt_idx = i;
949 }
950 }
951 return pktcnt_idx;
952}
953
954/*
955 * Return a queue's interrupt hold-off time in us. 0 means no timer.
956 */
957static unsigned int qtimer_val(const struct adapter *adapter,
958 const struct sge_rspq *rspq)
959{
960 unsigned int timer_idx = QINTR_TIMER_IDX_GET(rspq->intr_params);
961
962 return timer_idx < SGE_NTIMERS
963 ? adapter->sge.timer_val[timer_idx]
964 : 0;
965}
966
967/**
968 * set_rxq_intr_params - set a queue's interrupt holdoff parameters
969 * @adapter: the adapter
970 * @rspq: the RX response queue
971 * @us: the hold-off time in us, or 0 to disable timer
972 * @cnt: the hold-off packet count, or 0 to disable counter
973 *
974 * Sets an RX response queue's interrupt hold-off time and packet count.
975 * At least one of the two needs to be enabled for the queue to generate
976 * interrupts.
977 */
978static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
979 unsigned int us, unsigned int cnt)
980{
981 unsigned int timer_idx;
982
983 /*
984 * If both the interrupt holdoff timer and count are specified as
985 * zero, default to a holdoff count of 1 ...
986 */
987 if ((us | cnt) == 0)
988 cnt = 1;
989
990 /*
991 * If an interrupt holdoff count has been specified, then find the
992 * closest configured holdoff count and use that. If the response
993 * queue has already been created, then update its queue context
994 * parameters ...
995 */
996 if (cnt) {
997 int err;
998 u32 v, pktcnt_idx;
999
1000 pktcnt_idx = closest_thres(&adapter->sge, cnt);
1001 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1002 v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1003 FW_PARAMS_PARAM_X(
1004 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1005 FW_PARAMS_PARAM_YZ(rspq->cntxt_id);
1006 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1007 if (err)
1008 return err;
1009 }
1010 rspq->pktcnt_idx = pktcnt_idx;
1011 }
1012
1013 /*
1014 * Compute the closest holdoff timer index from the supplied holdoff
1015 * timer value.
1016 */
1017 timer_idx = (us == 0
1018 ? SGE_TIMER_RSTRT_CNTR
1019 : closest_timer(&adapter->sge, us));
1020
1021 /*
1022 * Update the response queue's interrupt coalescing parameters and
1023 * return success.
1024 */
1025 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
1026 (cnt > 0 ? QINTR_CNT_EN : 0));
1027 return 0;
1028}
1029
1030/*
1031 * Return a version number to identify the type of adapter. The scheme is:
1032 * - bits 0..9: chip version
1033 * - bits 10..15: chip revision
1034 */
1035static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1036{
1037 /*
1038 * Chip version 4, revision 0x3f (cxgb4vf).
1039 */
1040 return 4 | (0x3f << 10);
1041}
1042
1043/*
1044 * Execute the specified ioctl command.
1045 */
1046static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1047{
1048 int ret = 0;
1049
1050 switch (cmd) {
1051 /*
1052 * The VF Driver doesn't have access to any of the other
1053 * common Ethernet device ioctl()'s (like reading/writing
1054 * PHY registers, etc.
1055 */
1056
1057 default:
1058 ret = -EOPNOTSUPP;
1059 break;
1060 }
1061 return ret;
1062}
1063
1064/*
1065 * Change the device's MTU.
1066 */
1067static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1068{
1069 int ret;
1070 struct port_info *pi = netdev_priv(dev);
1071
1072 /* accommodate SACK */
1073 if (new_mtu < 81)
1074 return -EINVAL;
1075
1076 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1077 -1, -1, -1, -1, true);
1078 if (!ret)
1079 dev->mtu = new_mtu;
1080 return ret;
1081}
1082
1083/*
1084 * Change the devices MAC address.
1085 */
1086static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1087{
1088 int ret;
1089 struct sockaddr *addr = _addr;
1090 struct port_info *pi = netdev_priv(dev);
1091
1092 if (!is_valid_ether_addr(addr->sa_data))
1093 return -EINVAL;
1094
1095 ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt,
1096 addr->sa_data, true);
1097 if (ret < 0)
1098 return ret;
1099
1100 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1101 pi->xact_addr_filt = ret;
1102 return 0;
1103}
1104
1105/*
1106 * Return a TX Queue on which to send the specified skb.
1107 */
1108static u16 cxgb4vf_select_queue(struct net_device *dev, struct sk_buff *skb)
1109{
1110 /*
1111 * XXX For now just use the default hash but we probably want to
1112 * XXX look at other possibilities ...
1113 */
1114 return skb_tx_hash(dev, skb);
1115}
1116
1117#ifdef CONFIG_NET_POLL_CONTROLLER
1118/*
1119 * Poll all of our receive queues. This is called outside of normal interrupt
1120 * context.
1121 */
1122static void cxgb4vf_poll_controller(struct net_device *dev)
1123{
1124 struct port_info *pi = netdev_priv(dev);
1125 struct adapter *adapter = pi->adapter;
1126
1127 if (adapter->flags & USING_MSIX) {
1128 struct sge_eth_rxq *rxq;
1129 int nqsets;
1130
1131 rxq = &adapter->sge.ethrxq[pi->first_qset];
1132 for (nqsets = pi->nqsets; nqsets; nqsets--) {
1133 t4vf_sge_intr_msix(0, &rxq->rspq);
1134 rxq++;
1135 }
1136 } else
1137 t4vf_intr_handler(adapter)(0, adapter);
1138}
1139#endif
1140
1141/*
1142 * Ethtool operations.
1143 * ===================
1144 *
1145 * Note that we don't support any ethtool operations which change the physical
1146 * state of the port to which we're linked.
1147 */
1148
1149/*
1150 * Return current port link settings.
1151 */
1152static int cxgb4vf_get_settings(struct net_device *dev,
1153 struct ethtool_cmd *cmd)
1154{
1155 const struct port_info *pi = netdev_priv(dev);
1156
1157 cmd->supported = pi->link_cfg.supported;
1158 cmd->advertising = pi->link_cfg.advertising;
1159 cmd->speed = netif_carrier_ok(dev) ? pi->link_cfg.speed : -1;
1160 cmd->duplex = DUPLEX_FULL;
1161
1162 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1163 cmd->phy_address = pi->port_id;
1164 cmd->transceiver = XCVR_EXTERNAL;
1165 cmd->autoneg = pi->link_cfg.autoneg;
1166 cmd->maxtxpkt = 0;
1167 cmd->maxrxpkt = 0;
1168 return 0;
1169}
1170
1171/*
1172 * Return our driver information.
1173 */
1174static void cxgb4vf_get_drvinfo(struct net_device *dev,
1175 struct ethtool_drvinfo *drvinfo)
1176{
1177 struct adapter *adapter = netdev2adap(dev);
1178
1179 strcpy(drvinfo->driver, KBUILD_MODNAME);
1180 strcpy(drvinfo->version, DRV_VERSION);
1181 strcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)));
1182 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1183 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1184 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.fwrev),
1185 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.fwrev),
1186 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.fwrev),
1187 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.fwrev),
1188 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.tprev),
1189 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.tprev),
1190 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.tprev),
1191 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.tprev));
1192}
1193
1194/*
1195 * Return current adapter message level.
1196 */
1197static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1198{
1199 return netdev2adap(dev)->msg_enable;
1200}
1201
1202/*
1203 * Set current adapter message level.
1204 */
1205static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1206{
1207 netdev2adap(dev)->msg_enable = msglevel;
1208}
1209
1210/*
1211 * Return the device's current Queue Set ring size parameters along with the
1212 * allowed maximum values. Since ethtool doesn't understand the concept of
1213 * multi-queue devices, we just return the current values associated with the
1214 * first Queue Set.
1215 */
1216static void cxgb4vf_get_ringparam(struct net_device *dev,
1217 struct ethtool_ringparam *rp)
1218{
1219 const struct port_info *pi = netdev_priv(dev);
1220 const struct sge *s = &pi->adapter->sge;
1221
1222 rp->rx_max_pending = MAX_RX_BUFFERS;
1223 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1224 rp->rx_jumbo_max_pending = 0;
1225 rp->tx_max_pending = MAX_TXQ_ENTRIES;
1226
1227 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1228 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1229 rp->rx_jumbo_pending = 0;
1230 rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1231}
1232
1233/*
1234 * Set the Queue Set ring size parameters for the device. Again, since
1235 * ethtool doesn't allow for the concept of multiple queues per device, we'll
1236 * apply these new values across all of the Queue Sets associated with the
1237 * device -- after vetting them of course!
1238 */
1239static int cxgb4vf_set_ringparam(struct net_device *dev,
1240 struct ethtool_ringparam *rp)
1241{
1242 const struct port_info *pi = netdev_priv(dev);
1243 struct adapter *adapter = pi->adapter;
1244 struct sge *s = &adapter->sge;
1245 int qs;
1246
1247 if (rp->rx_pending > MAX_RX_BUFFERS ||
1248 rp->rx_jumbo_pending ||
1249 rp->tx_pending > MAX_TXQ_ENTRIES ||
1250 rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1251 rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1252 rp->rx_pending < MIN_FL_ENTRIES ||
1253 rp->tx_pending < MIN_TXQ_ENTRIES)
1254 return -EINVAL;
1255
1256 if (adapter->flags & FULL_INIT_DONE)
1257 return -EBUSY;
1258
1259 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1260 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1261 s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1262 s->ethtxq[qs].q.size = rp->tx_pending;
1263 }
1264 return 0;
1265}
1266
1267/*
1268 * Return the interrupt holdoff timer and count for the first Queue Set on the
1269 * device. Our extension ioctl() (the cxgbtool interface) allows the
1270 * interrupt holdoff timer to be read on all of the device's Queue Sets.
1271 */
1272static int cxgb4vf_get_coalesce(struct net_device *dev,
1273 struct ethtool_coalesce *coalesce)
1274{
1275 const struct port_info *pi = netdev_priv(dev);
1276 const struct adapter *adapter = pi->adapter;
1277 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1278
1279 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1280 coalesce->rx_max_coalesced_frames =
1281 ((rspq->intr_params & QINTR_CNT_EN)
1282 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1283 : 0);
1284 return 0;
1285}
1286
1287/*
1288 * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1289 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set
1290 * the interrupt holdoff timer on any of the device's Queue Sets.
1291 */
1292static int cxgb4vf_set_coalesce(struct net_device *dev,
1293 struct ethtool_coalesce *coalesce)
1294{
1295 const struct port_info *pi = netdev_priv(dev);
1296 struct adapter *adapter = pi->adapter;
1297
1298 return set_rxq_intr_params(adapter,
1299 &adapter->sge.ethrxq[pi->first_qset].rspq,
1300 coalesce->rx_coalesce_usecs,
1301 coalesce->rx_max_coalesced_frames);
1302}
1303
1304/*
1305 * Report current port link pause parameter settings.
1306 */
1307static void cxgb4vf_get_pauseparam(struct net_device *dev,
1308 struct ethtool_pauseparam *pauseparam)
1309{
1310 struct port_info *pi = netdev_priv(dev);
1311
1312 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1313 pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0;
1314 pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0;
1315}
1316
1317/*
1318 * Return whether RX Checksum Offloading is currently enabled for the device.
1319 */
1320static u32 cxgb4vf_get_rx_csum(struct net_device *dev)
1321{
1322 struct port_info *pi = netdev_priv(dev);
1323
1324 return (pi->rx_offload & RX_CSO) != 0;
1325}
1326
1327/*
1328 * Turn RX Checksum Offloading on or off for the device.
1329 */
1330static int cxgb4vf_set_rx_csum(struct net_device *dev, u32 csum)
1331{
1332 struct port_info *pi = netdev_priv(dev);
1333
1334 if (csum)
1335 pi->rx_offload |= RX_CSO;
1336 else
1337 pi->rx_offload &= ~RX_CSO;
1338 return 0;
1339}
1340
1341/*
1342 * Identify the port by blinking the port's LED.
1343 */
1344static int cxgb4vf_phys_id(struct net_device *dev, u32 id)
1345{
1346 struct port_info *pi = netdev_priv(dev);
1347
1348 return t4vf_identify_port(pi->adapter, pi->viid, 5);
1349}
1350
1351/*
1352 * Port stats maintained per queue of the port.
1353 */
1354struct queue_port_stats {
1355 u64 tso;
1356 u64 tx_csum;
1357 u64 rx_csum;
1358 u64 vlan_ex;
1359 u64 vlan_ins;
1360};
1361
1362/*
1363 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that
1364 * these need to match the order of statistics returned by
1365 * t4vf_get_port_stats().
1366 */
1367static const char stats_strings[][ETH_GSTRING_LEN] = {
1368 /*
1369 * These must match the layout of the t4vf_port_stats structure.
1370 */
1371 "TxBroadcastBytes ",
1372 "TxBroadcastFrames ",
1373 "TxMulticastBytes ",
1374 "TxMulticastFrames ",
1375 "TxUnicastBytes ",
1376 "TxUnicastFrames ",
1377 "TxDroppedFrames ",
1378 "TxOffloadBytes ",
1379 "TxOffloadFrames ",
1380 "RxBroadcastBytes ",
1381 "RxBroadcastFrames ",
1382 "RxMulticastBytes ",
1383 "RxMulticastFrames ",
1384 "RxUnicastBytes ",
1385 "RxUnicastFrames ",
1386 "RxErrorFrames ",
1387
1388 /*
1389 * These are accumulated per-queue statistics and must match the
1390 * order of the fields in the queue_port_stats structure.
1391 */
1392 "TSO ",
1393 "TxCsumOffload ",
1394 "RxCsumGood ",
1395 "VLANextractions ",
1396 "VLANinsertions ",
1397};
1398
1399/*
1400 * Return the number of statistics in the specified statistics set.
1401 */
1402static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1403{
1404 switch (sset) {
1405 case ETH_SS_STATS:
1406 return ARRAY_SIZE(stats_strings);
1407 default:
1408 return -EOPNOTSUPP;
1409 }
1410 /*NOTREACHED*/
1411}
1412
1413/*
1414 * Return the strings for the specified statistics set.
1415 */
1416static void cxgb4vf_get_strings(struct net_device *dev,
1417 u32 sset,
1418 u8 *data)
1419{
1420 switch (sset) {
1421 case ETH_SS_STATS:
1422 memcpy(data, stats_strings, sizeof(stats_strings));
1423 break;
1424 }
1425}
1426
1427/*
1428 * Small utility routine to accumulate queue statistics across the queues of
1429 * a "port".
1430 */
1431static void collect_sge_port_stats(const struct adapter *adapter,
1432 const struct port_info *pi,
1433 struct queue_port_stats *stats)
1434{
1435 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1436 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1437 int qs;
1438
1439 memset(stats, 0, sizeof(*stats));
1440 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1441 stats->tso += txq->tso;
1442 stats->tx_csum += txq->tx_cso;
1443 stats->rx_csum += rxq->stats.rx_cso;
1444 stats->vlan_ex += rxq->stats.vlan_ex;
1445 stats->vlan_ins += txq->vlan_ins;
1446 }
1447}
1448
1449/*
1450 * Return the ETH_SS_STATS statistics set.
1451 */
1452static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1453 struct ethtool_stats *stats,
1454 u64 *data)
1455{
1456 struct port_info *pi = netdev2pinfo(dev);
1457 struct adapter *adapter = pi->adapter;
1458 int err = t4vf_get_port_stats(adapter, pi->pidx,
1459 (struct t4vf_port_stats *)data);
1460 if (err)
1461 memset(data, 0, sizeof(struct t4vf_port_stats));
1462
1463 data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1464 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1465}
1466
1467/*
1468 * Return the size of our register map.
1469 */
1470static int cxgb4vf_get_regs_len(struct net_device *dev)
1471{
1472 return T4VF_REGMAP_SIZE;
1473}
1474
1475/*
1476 * Dump a block of registers, start to end inclusive, into a buffer.
1477 */
1478static void reg_block_dump(struct adapter *adapter, void *regbuf,
1479 unsigned int start, unsigned int end)
1480{
1481 u32 *bp = regbuf + start - T4VF_REGMAP_START;
1482
1483 for ( ; start <= end; start += sizeof(u32)) {
1484 /*
1485 * Avoid reading the Mailbox Control register since that
1486 * can trigger a Mailbox Ownership Arbitration cycle and
1487 * interfere with communication with the firmware.
1488 */
1489 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1490 *bp++ = 0xffff;
1491 else
1492 *bp++ = t4_read_reg(adapter, start);
1493 }
1494}
1495
1496/*
1497 * Copy our entire register map into the provided buffer.
1498 */
1499static void cxgb4vf_get_regs(struct net_device *dev,
1500 struct ethtool_regs *regs,
1501 void *regbuf)
1502{
1503 struct adapter *adapter = netdev2adap(dev);
1504
1505 regs->version = mk_adap_vers(adapter);
1506
1507 /*
1508 * Fill in register buffer with our register map.
1509 */
1510 memset(regbuf, 0, T4VF_REGMAP_SIZE);
1511
1512 reg_block_dump(adapter, regbuf,
1513 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1514 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1515 reg_block_dump(adapter, regbuf,
1516 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1517 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1518 reg_block_dump(adapter, regbuf,
1519 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1520 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_LAST);
1521 reg_block_dump(adapter, regbuf,
1522 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1523 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1524
1525 reg_block_dump(adapter, regbuf,
1526 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1527 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1528}
1529
1530/*
1531 * Report current Wake On LAN settings.
1532 */
1533static void cxgb4vf_get_wol(struct net_device *dev,
1534 struct ethtool_wolinfo *wol)
1535{
1536 wol->supported = 0;
1537 wol->wolopts = 0;
1538 memset(&wol->sopass, 0, sizeof(wol->sopass));
1539}
1540
1541/*
1542 * Set TCP Segmentation Offloading feature capabilities.
1543 */
1544static int cxgb4vf_set_tso(struct net_device *dev, u32 tso)
1545{
1546 if (tso)
1547 dev->features |= NETIF_F_TSO | NETIF_F_TSO6;
1548 else
1549 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
1550 return 0;
1551}
1552
1553static struct ethtool_ops cxgb4vf_ethtool_ops = {
1554 .get_settings = cxgb4vf_get_settings,
1555 .get_drvinfo = cxgb4vf_get_drvinfo,
1556 .get_msglevel = cxgb4vf_get_msglevel,
1557 .set_msglevel = cxgb4vf_set_msglevel,
1558 .get_ringparam = cxgb4vf_get_ringparam,
1559 .set_ringparam = cxgb4vf_set_ringparam,
1560 .get_coalesce = cxgb4vf_get_coalesce,
1561 .set_coalesce = cxgb4vf_set_coalesce,
1562 .get_pauseparam = cxgb4vf_get_pauseparam,
1563 .get_rx_csum = cxgb4vf_get_rx_csum,
1564 .set_rx_csum = cxgb4vf_set_rx_csum,
1565 .set_tx_csum = ethtool_op_set_tx_ipv6_csum,
1566 .set_sg = ethtool_op_set_sg,
1567 .get_link = ethtool_op_get_link,
1568 .get_strings = cxgb4vf_get_strings,
1569 .phys_id = cxgb4vf_phys_id,
1570 .get_sset_count = cxgb4vf_get_sset_count,
1571 .get_ethtool_stats = cxgb4vf_get_ethtool_stats,
1572 .get_regs_len = cxgb4vf_get_regs_len,
1573 .get_regs = cxgb4vf_get_regs,
1574 .get_wol = cxgb4vf_get_wol,
1575 .set_tso = cxgb4vf_set_tso,
1576};
1577
1578/*
1579 * /sys/kernel/debug/cxgb4vf support code and data.
1580 * ================================================
1581 */
1582
1583/*
1584 * Show SGE Queue Set information. We display QPL Queues Sets per line.
1585 */
1586#define QPL 4
1587
1588static int sge_qinfo_show(struct seq_file *seq, void *v)
1589{
1590 struct adapter *adapter = seq->private;
1591 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1592 int qs, r = (uintptr_t)v - 1;
1593
1594 if (r)
1595 seq_putc(seq, '\n');
1596
1597 #define S3(fmt_spec, s, v) \
1598 do {\
1599 seq_printf(seq, "%-12s", s); \
1600 for (qs = 0; qs < n; ++qs) \
1601 seq_printf(seq, " %16" fmt_spec, v); \
1602 seq_putc(seq, '\n'); \
1603 } while (0)
1604 #define S(s, v) S3("s", s, v)
1605 #define T(s, v) S3("u", s, txq[qs].v)
1606 #define R(s, v) S3("u", s, rxq[qs].v)
1607
1608 if (r < eth_entries) {
1609 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1610 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1611 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1612
1613 S("QType:", "Ethernet");
1614 S("Interface:",
1615 (rxq[qs].rspq.netdev
1616 ? rxq[qs].rspq.netdev->name
1617 : "N/A"));
1618 S3("d", "Port:",
1619 (rxq[qs].rspq.netdev
1620 ? ((struct port_info *)
1621 netdev_priv(rxq[qs].rspq.netdev))->port_id
1622 : -1));
1623 T("TxQ ID:", q.abs_id);
1624 T("TxQ size:", q.size);
1625 T("TxQ inuse:", q.in_use);
1626 T("TxQ PIdx:", q.pidx);
1627 T("TxQ CIdx:", q.cidx);
1628 R("RspQ ID:", rspq.abs_id);
1629 R("RspQ size:", rspq.size);
1630 R("RspQE size:", rspq.iqe_len);
1631 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
1632 S3("u", "Intr pktcnt:",
1633 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
1634 R("RspQ CIdx:", rspq.cidx);
1635 R("RspQ Gen:", rspq.gen);
1636 R("FL ID:", fl.abs_id);
1637 R("FL size:", fl.size - MIN_FL_RESID);
1638 R("FL avail:", fl.avail);
1639 R("FL PIdx:", fl.pidx);
1640 R("FL CIdx:", fl.cidx);
1641 return 0;
1642 }
1643
1644 r -= eth_entries;
1645 if (r == 0) {
1646 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1647
1648 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
1649 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
1650 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1651 qtimer_val(adapter, evtq));
1652 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1653 adapter->sge.counter_val[evtq->pktcnt_idx]);
1654 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
1655 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
1656 } else if (r == 1) {
1657 const struct sge_rspq *intrq = &adapter->sge.intrq;
1658
1659 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
1660 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
1661 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1662 qtimer_val(adapter, intrq));
1663 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1664 adapter->sge.counter_val[intrq->pktcnt_idx]);
1665 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
1666 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
1667 }
1668
1669 #undef R
1670 #undef T
1671 #undef S
1672 #undef S3
1673
1674 return 0;
1675}
1676
1677/*
1678 * Return the number of "entries" in our "file". We group the multi-Queue
1679 * sections with QPL Queue Sets per "entry". The sections of the output are:
1680 *
1681 * Ethernet RX/TX Queue Sets
1682 * Firmware Event Queue
1683 * Forwarded Interrupt Queue (if in MSI mode)
1684 */
1685static int sge_queue_entries(const struct adapter *adapter)
1686{
1687 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1688 ((adapter->flags & USING_MSI) != 0);
1689}
1690
1691static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
1692{
1693 int entries = sge_queue_entries(seq->private);
1694
1695 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1696}
1697
1698static void sge_queue_stop(struct seq_file *seq, void *v)
1699{
1700}
1701
1702static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
1703{
1704 int entries = sge_queue_entries(seq->private);
1705
1706 ++*pos;
1707 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1708}
1709
1710static const struct seq_operations sge_qinfo_seq_ops = {
1711 .start = sge_queue_start,
1712 .next = sge_queue_next,
1713 .stop = sge_queue_stop,
1714 .show = sge_qinfo_show
1715};
1716
1717static int sge_qinfo_open(struct inode *inode, struct file *file)
1718{
1719 int res = seq_open(file, &sge_qinfo_seq_ops);
1720
1721 if (!res) {
1722 struct seq_file *seq = file->private_data;
1723 seq->private = inode->i_private;
1724 }
1725 return res;
1726}
1727
1728static const struct file_operations sge_qinfo_debugfs_fops = {
1729 .owner = THIS_MODULE,
1730 .open = sge_qinfo_open,
1731 .read = seq_read,
1732 .llseek = seq_lseek,
1733 .release = seq_release,
1734};
1735
1736/*
1737 * Show SGE Queue Set statistics. We display QPL Queues Sets per line.
1738 */
1739#define QPL 4
1740
1741static int sge_qstats_show(struct seq_file *seq, void *v)
1742{
1743 struct adapter *adapter = seq->private;
1744 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1745 int qs, r = (uintptr_t)v - 1;
1746
1747 if (r)
1748 seq_putc(seq, '\n');
1749
1750 #define S3(fmt, s, v) \
1751 do { \
1752 seq_printf(seq, "%-16s", s); \
1753 for (qs = 0; qs < n; ++qs) \
1754 seq_printf(seq, " %8" fmt, v); \
1755 seq_putc(seq, '\n'); \
1756 } while (0)
1757 #define S(s, v) S3("s", s, v)
1758
1759 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v)
1760 #define T(s, v) T3("lu", s, v)
1761
1762 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v)
1763 #define R(s, v) R3("lu", s, v)
1764
1765 if (r < eth_entries) {
1766 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1767 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1768 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1769
1770 S("QType:", "Ethernet");
1771 S("Interface:",
1772 (rxq[qs].rspq.netdev
1773 ? rxq[qs].rspq.netdev->name
1774 : "N/A"));
68dc9d36 1775 R3("u", "RspQNullInts:", rspq.unhandled_irqs);
be839e39
CL
1776 R("RxPackets:", stats.pkts);
1777 R("RxCSO:", stats.rx_cso);
1778 R("VLANxtract:", stats.vlan_ex);
1779 R("LROmerged:", stats.lro_merged);
1780 R("LROpackets:", stats.lro_pkts);
1781 R("RxDrops:", stats.rx_drops);
1782 T("TSO:", tso);
1783 T("TxCSO:", tx_cso);
1784 T("VLANins:", vlan_ins);
1785 T("TxQFull:", q.stops);
1786 T("TxQRestarts:", q.restarts);
1787 T("TxMapErr:", mapping_err);
1788 R("FLAllocErr:", fl.alloc_failed);
1789 R("FLLrgAlcErr:", fl.large_alloc_failed);
1790 R("FLStarving:", fl.starving);
1791 return 0;
1792 }
1793
1794 r -= eth_entries;
1795 if (r == 0) {
1796 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1797
1798 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
68dc9d36
CL
1799 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1800 evtq->unhandled_irqs);
be839e39
CL
1801 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
1802 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
1803 } else if (r == 1) {
1804 const struct sge_rspq *intrq = &adapter->sge.intrq;
1805
1806 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
68dc9d36
CL
1807 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1808 intrq->unhandled_irqs);
be839e39
CL
1809 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
1810 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
1811 }
1812
1813 #undef R
1814 #undef T
1815 #undef S
1816 #undef R3
1817 #undef T3
1818 #undef S3
1819
1820 return 0;
1821}
1822
1823/*
1824 * Return the number of "entries" in our "file". We group the multi-Queue
1825 * sections with QPL Queue Sets per "entry". The sections of the output are:
1826 *
1827 * Ethernet RX/TX Queue Sets
1828 * Firmware Event Queue
1829 * Forwarded Interrupt Queue (if in MSI mode)
1830 */
1831static int sge_qstats_entries(const struct adapter *adapter)
1832{
1833 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1834 ((adapter->flags & USING_MSI) != 0);
1835}
1836
1837static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
1838{
1839 int entries = sge_qstats_entries(seq->private);
1840
1841 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1842}
1843
1844static void sge_qstats_stop(struct seq_file *seq, void *v)
1845{
1846}
1847
1848static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
1849{
1850 int entries = sge_qstats_entries(seq->private);
1851
1852 (*pos)++;
1853 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1854}
1855
1856static const struct seq_operations sge_qstats_seq_ops = {
1857 .start = sge_qstats_start,
1858 .next = sge_qstats_next,
1859 .stop = sge_qstats_stop,
1860 .show = sge_qstats_show
1861};
1862
1863static int sge_qstats_open(struct inode *inode, struct file *file)
1864{
1865 int res = seq_open(file, &sge_qstats_seq_ops);
1866
1867 if (res == 0) {
1868 struct seq_file *seq = file->private_data;
1869 seq->private = inode->i_private;
1870 }
1871 return res;
1872}
1873
1874static const struct file_operations sge_qstats_proc_fops = {
1875 .owner = THIS_MODULE,
1876 .open = sge_qstats_open,
1877 .read = seq_read,
1878 .llseek = seq_lseek,
1879 .release = seq_release,
1880};
1881
1882/*
1883 * Show PCI-E SR-IOV Virtual Function Resource Limits.
1884 */
1885static int resources_show(struct seq_file *seq, void *v)
1886{
1887 struct adapter *adapter = seq->private;
1888 struct vf_resources *vfres = &adapter->params.vfres;
1889
1890 #define S(desc, fmt, var) \
1891 seq_printf(seq, "%-60s " fmt "\n", \
1892 desc " (" #var "):", vfres->var)
1893
1894 S("Virtual Interfaces", "%d", nvi);
1895 S("Egress Queues", "%d", neq);
1896 S("Ethernet Control", "%d", nethctrl);
1897 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
1898 S("Ingress Queues", "%d", niq);
1899 S("Traffic Class", "%d", tc);
1900 S("Port Access Rights Mask", "%#x", pmask);
1901 S("MAC Address Filters", "%d", nexactf);
1902 S("Firmware Command Read Capabilities", "%#x", r_caps);
1903 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
1904
1905 #undef S
1906
1907 return 0;
1908}
1909
1910static int resources_open(struct inode *inode, struct file *file)
1911{
1912 return single_open(file, resources_show, inode->i_private);
1913}
1914
1915static const struct file_operations resources_proc_fops = {
1916 .owner = THIS_MODULE,
1917 .open = resources_open,
1918 .read = seq_read,
1919 .llseek = seq_lseek,
1920 .release = single_release,
1921};
1922
1923/*
1924 * Show Virtual Interfaces.
1925 */
1926static int interfaces_show(struct seq_file *seq, void *v)
1927{
1928 if (v == SEQ_START_TOKEN) {
1929 seq_puts(seq, "Interface Port VIID\n");
1930 } else {
1931 struct adapter *adapter = seq->private;
1932 int pidx = (uintptr_t)v - 2;
1933 struct net_device *dev = adapter->port[pidx];
1934 struct port_info *pi = netdev_priv(dev);
1935
1936 seq_printf(seq, "%9s %4d %#5x\n",
1937 dev->name, pi->port_id, pi->viid);
1938 }
1939 return 0;
1940}
1941
1942static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
1943{
1944 return pos <= adapter->params.nports
1945 ? (void *)(uintptr_t)(pos + 1)
1946 : NULL;
1947}
1948
1949static void *interfaces_start(struct seq_file *seq, loff_t *pos)
1950{
1951 return *pos
1952 ? interfaces_get_idx(seq->private, *pos)
1953 : SEQ_START_TOKEN;
1954}
1955
1956static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
1957{
1958 (*pos)++;
1959 return interfaces_get_idx(seq->private, *pos);
1960}
1961
1962static void interfaces_stop(struct seq_file *seq, void *v)
1963{
1964}
1965
1966static const struct seq_operations interfaces_seq_ops = {
1967 .start = interfaces_start,
1968 .next = interfaces_next,
1969 .stop = interfaces_stop,
1970 .show = interfaces_show
1971};
1972
1973static int interfaces_open(struct inode *inode, struct file *file)
1974{
1975 int res = seq_open(file, &interfaces_seq_ops);
1976
1977 if (res == 0) {
1978 struct seq_file *seq = file->private_data;
1979 seq->private = inode->i_private;
1980 }
1981 return res;
1982}
1983
1984static const struct file_operations interfaces_proc_fops = {
1985 .owner = THIS_MODULE,
1986 .open = interfaces_open,
1987 .read = seq_read,
1988 .llseek = seq_lseek,
1989 .release = seq_release,
1990};
1991
1992/*
1993 * /sys/kernel/debugfs/cxgb4vf/ files list.
1994 */
1995struct cxgb4vf_debugfs_entry {
1996 const char *name; /* name of debugfs node */
1997 mode_t mode; /* file system mode */
1998 const struct file_operations *fops;
1999};
2000
2001static struct cxgb4vf_debugfs_entry debugfs_files[] = {
2002 { "sge_qinfo", S_IRUGO, &sge_qinfo_debugfs_fops },
2003 { "sge_qstats", S_IRUGO, &sge_qstats_proc_fops },
2004 { "resources", S_IRUGO, &resources_proc_fops },
2005 { "interfaces", S_IRUGO, &interfaces_proc_fops },
2006};
2007
2008/*
2009 * Module and device initialization and cleanup code.
2010 * ==================================================
2011 */
2012
2013/*
2014 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the
2015 * directory (debugfs_root) has already been set up.
2016 */
2017static int __devinit setup_debugfs(struct adapter *adapter)
2018{
2019 int i;
2020
2021 BUG_ON(adapter->debugfs_root == NULL);
2022
2023 /*
2024 * Debugfs support is best effort.
2025 */
2026 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2027 (void)debugfs_create_file(debugfs_files[i].name,
2028 debugfs_files[i].mode,
2029 adapter->debugfs_root,
2030 (void *)adapter,
2031 debugfs_files[i].fops);
2032
2033 return 0;
2034}
2035
2036/*
2037 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave
2038 * it to our caller to tear down the directory (debugfs_root).
2039 */
2040static void __devexit cleanup_debugfs(struct adapter *adapter)
2041{
2042 BUG_ON(adapter->debugfs_root == NULL);
2043
2044 /*
2045 * Unlike our sister routine cleanup_proc(), we don't need to remove
2046 * individual entries because a call will be made to
2047 * debugfs_remove_recursive(). We just need to clean up any ancillary
2048 * persistent state.
2049 */
2050 /* nothing to do */
2051}
2052
2053/*
2054 * Perform early "adapter" initialization. This is where we discover what
2055 * adapter parameters we're going to be using and initialize basic adapter
2056 * hardware support.
2057 */
2058static int adap_init0(struct adapter *adapter)
2059{
2060 struct vf_resources *vfres = &adapter->params.vfres;
2061 struct sge_params *sge_params = &adapter->params.sge;
2062 struct sge *s = &adapter->sge;
2063 unsigned int ethqsets;
2064 int err;
2065
2066 /*
2067 * Wait for the device to become ready before proceeding ...
2068 */
2069 err = t4vf_wait_dev_ready(adapter);
2070 if (err) {
2071 dev_err(adapter->pdev_dev, "device didn't become ready:"
2072 " err=%d\n", err);
2073 return err;
2074 }
2075
2076 /*
2077 * Grab basic operational parameters. These will predominantly have
2078 * been set up by the Physical Function Driver or will be hard coded
2079 * into the adapter. We just have to live with them ... Note that
2080 * we _must_ get our VPD parameters before our SGE parameters because
2081 * we need to know the adapter's core clock from the VPD in order to
2082 * properly decode the SGE Timer Values.
2083 */
2084 err = t4vf_get_dev_params(adapter);
2085 if (err) {
2086 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2087 " device parameters: err=%d\n", err);
2088 return err;
2089 }
2090 err = t4vf_get_vpd_params(adapter);
2091 if (err) {
2092 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2093 " VPD parameters: err=%d\n", err);
2094 return err;
2095 }
2096 err = t4vf_get_sge_params(adapter);
2097 if (err) {
2098 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2099 " SGE parameters: err=%d\n", err);
2100 return err;
2101 }
2102 err = t4vf_get_rss_glb_config(adapter);
2103 if (err) {
2104 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2105 " RSS parameters: err=%d\n", err);
2106 return err;
2107 }
2108 if (adapter->params.rss.mode !=
2109 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2110 dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2111 " mode %d\n", adapter->params.rss.mode);
2112 return -EINVAL;
2113 }
2114 err = t4vf_sge_init(adapter);
2115 if (err) {
2116 dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2117 " err=%d\n", err);
2118 return err;
2119 }
2120
2121 /*
2122 * Retrieve our RX interrupt holdoff timer values and counter
2123 * threshold values from the SGE parameters.
2124 */
2125 s->timer_val[0] = core_ticks_to_us(adapter,
2126 TIMERVALUE0_GET(sge_params->sge_timer_value_0_and_1));
2127 s->timer_val[1] = core_ticks_to_us(adapter,
2128 TIMERVALUE1_GET(sge_params->sge_timer_value_0_and_1));
2129 s->timer_val[2] = core_ticks_to_us(adapter,
2130 TIMERVALUE0_GET(sge_params->sge_timer_value_2_and_3));
2131 s->timer_val[3] = core_ticks_to_us(adapter,
2132 TIMERVALUE1_GET(sge_params->sge_timer_value_2_and_3));
2133 s->timer_val[4] = core_ticks_to_us(adapter,
2134 TIMERVALUE0_GET(sge_params->sge_timer_value_4_and_5));
2135 s->timer_val[5] = core_ticks_to_us(adapter,
2136 TIMERVALUE1_GET(sge_params->sge_timer_value_4_and_5));
2137
2138 s->counter_val[0] =
2139 THRESHOLD_0_GET(sge_params->sge_ingress_rx_threshold);
2140 s->counter_val[1] =
2141 THRESHOLD_1_GET(sge_params->sge_ingress_rx_threshold);
2142 s->counter_val[2] =
2143 THRESHOLD_2_GET(sge_params->sge_ingress_rx_threshold);
2144 s->counter_val[3] =
2145 THRESHOLD_3_GET(sge_params->sge_ingress_rx_threshold);
2146
2147 /*
2148 * Grab our Virtual Interface resource allocation, extract the
2149 * features that we're interested in and do a bit of sanity testing on
2150 * what we discover.
2151 */
2152 err = t4vf_get_vfres(adapter);
2153 if (err) {
2154 dev_err(adapter->pdev_dev, "unable to get virtual interface"
2155 " resources: err=%d\n", err);
2156 return err;
2157 }
2158
2159 /*
2160 * The number of "ports" which we support is equal to the number of
2161 * Virtual Interfaces with which we've been provisioned.
2162 */
2163 adapter->params.nports = vfres->nvi;
2164 if (adapter->params.nports > MAX_NPORTS) {
2165 dev_warn(adapter->pdev_dev, "only using %d of %d allowed"
2166 " virtual interfaces\n", MAX_NPORTS,
2167 adapter->params.nports);
2168 adapter->params.nports = MAX_NPORTS;
2169 }
2170
2171 /*
2172 * We need to reserve a number of the ingress queues with Free List
2173 * and Interrupt capabilities for special interrupt purposes (like
2174 * asynchronous firmware messages, or forwarded interrupts if we're
2175 * using MSI). The rest of the FL/Intr-capable ingress queues will be
2176 * matched up one-for-one with Ethernet/Control egress queues in order
2177 * to form "Queue Sets" which will be aportioned between the "ports".
2178 * For each Queue Set, we'll need the ability to allocate two Egress
2179 * Contexts -- one for the Ingress Queue Free List and one for the TX
2180 * Ethernet Queue.
2181 */
2182 ethqsets = vfres->niqflint - INGQ_EXTRAS;
2183 if (vfres->nethctrl != ethqsets) {
2184 dev_warn(adapter->pdev_dev, "unequal number of [available]"
2185 " ingress/egress queues (%d/%d); using minimum for"
2186 " number of Queue Sets\n", ethqsets, vfres->nethctrl);
2187 ethqsets = min(vfres->nethctrl, ethqsets);
2188 }
2189 if (vfres->neq < ethqsets*2) {
2190 dev_warn(adapter->pdev_dev, "Not enough Egress Contexts (%d)"
2191 " to support Queue Sets (%d); reducing allowed Queue"
2192 " Sets\n", vfres->neq, ethqsets);
2193 ethqsets = vfres->neq/2;
2194 }
2195 if (ethqsets > MAX_ETH_QSETS) {
2196 dev_warn(adapter->pdev_dev, "only using %d of %d allowed Queue"
2197 " Sets\n", MAX_ETH_QSETS, adapter->sge.max_ethqsets);
2198 ethqsets = MAX_ETH_QSETS;
2199 }
2200 if (vfres->niq != 0 || vfres->neq > ethqsets*2) {
2201 dev_warn(adapter->pdev_dev, "unused resources niq/neq (%d/%d)"
2202 " ignored\n", vfres->niq, vfres->neq - ethqsets*2);
2203 }
2204 adapter->sge.max_ethqsets = ethqsets;
2205
2206 /*
2207 * Check for various parameter sanity issues. Most checks simply
2208 * result in us using fewer resources than our provissioning but we
2209 * do need at least one "port" with which to work ...
2210 */
2211 if (adapter->sge.max_ethqsets < adapter->params.nports) {
2212 dev_warn(adapter->pdev_dev, "only using %d of %d available"
2213 " virtual interfaces (too few Queue Sets)\n",
2214 adapter->sge.max_ethqsets, adapter->params.nports);
2215 adapter->params.nports = adapter->sge.max_ethqsets;
2216 }
2217 if (adapter->params.nports == 0) {
2218 dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2219 "usable!\n");
2220 return -EINVAL;
2221 }
2222 return 0;
2223}
2224
2225static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2226 u8 pkt_cnt_idx, unsigned int size,
2227 unsigned int iqe_size)
2228{
2229 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
2230 (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0));
2231 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2232 ? pkt_cnt_idx
2233 : 0);
2234 rspq->iqe_len = iqe_size;
2235 rspq->size = size;
2236}
2237
2238/*
2239 * Perform default configuration of DMA queues depending on the number and
2240 * type of ports we found and the number of available CPUs. Most settings can
2241 * be modified by the admin via ethtool and cxgbtool prior to the adapter
2242 * being brought up for the first time.
2243 */
2244static void __devinit cfg_queues(struct adapter *adapter)
2245{
2246 struct sge *s = &adapter->sge;
2247 int q10g, n10g, qidx, pidx, qs;
2248
2249 /*
2250 * We should not be called till we know how many Queue Sets we can
2251 * support. In particular, this means that we need to know what kind
2252 * of interrupts we'll be using ...
2253 */
2254 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2255
2256 /*
2257 * Count the number of 10GbE Virtual Interfaces that we have.
2258 */
2259 n10g = 0;
2260 for_each_port(adapter, pidx)
2261 n10g += is_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2262
2263 /*
2264 * We default to 1 queue per non-10G port and up to # of cores queues
2265 * per 10G port.
2266 */
2267 if (n10g == 0)
2268 q10g = 0;
2269 else {
2270 int n1g = (adapter->params.nports - n10g);
2271 q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2272 if (q10g > num_online_cpus())
2273 q10g = num_online_cpus();
2274 }
2275
2276 /*
2277 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2278 * The layout will be established in setup_sge_queues() when the
2279 * adapter is brough up for the first time.
2280 */
2281 qidx = 0;
2282 for_each_port(adapter, pidx) {
2283 struct port_info *pi = adap2pinfo(adapter, pidx);
2284
2285 pi->first_qset = qidx;
2286 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1;
2287 qidx += pi->nqsets;
2288 }
2289 s->ethqsets = qidx;
2290
2291 /*
2292 * Set up default Queue Set parameters ... Start off with the
2293 * shortest interrupt holdoff timer.
2294 */
2295 for (qs = 0; qs < s->max_ethqsets; qs++) {
2296 struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2297 struct sge_eth_txq *txq = &s->ethtxq[qs];
2298
2299 init_rspq(&rxq->rspq, 0, 0, 1024, L1_CACHE_BYTES);
2300 rxq->fl.size = 72;
2301 txq->q.size = 1024;
2302 }
2303
2304 /*
2305 * The firmware event queue is used for link state changes and
2306 * notifications of TX DMA completions.
2307 */
2308 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512,
2309 L1_CACHE_BYTES);
2310
2311 /*
2312 * The forwarded interrupt queue is used when we're in MSI interrupt
2313 * mode. In this mode all interrupts associated with RX queues will
2314 * be forwarded to a single queue which we'll associate with our MSI
2315 * interrupt vector. The messages dropped in the forwarded interrupt
2316 * queue will indicate which ingress queue needs servicing ... This
2317 * queue needs to be large enough to accommodate all of the ingress
2318 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2319 * from equalling the CIDX if every ingress queue has an outstanding
2320 * interrupt). The queue doesn't need to be any larger because no
2321 * ingress queue will ever have more than one outstanding interrupt at
2322 * any time ...
2323 */
2324 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
2325 L1_CACHE_BYTES);
2326}
2327
2328/*
2329 * Reduce the number of Ethernet queues across all ports to at most n.
2330 * n provides at least one queue per port.
2331 */
2332static void __devinit reduce_ethqs(struct adapter *adapter, int n)
2333{
2334 int i;
2335 struct port_info *pi;
2336
2337 /*
2338 * While we have too many active Ether Queue Sets, interate across the
2339 * "ports" and reduce their individual Queue Set allocations.
2340 */
2341 BUG_ON(n < adapter->params.nports);
2342 while (n < adapter->sge.ethqsets)
2343 for_each_port(adapter, i) {
2344 pi = adap2pinfo(adapter, i);
2345 if (pi->nqsets > 1) {
2346 pi->nqsets--;
2347 adapter->sge.ethqsets--;
2348 if (adapter->sge.ethqsets <= n)
2349 break;
2350 }
2351 }
2352
2353 /*
2354 * Reassign the starting Queue Sets for each of the "ports" ...
2355 */
2356 n = 0;
2357 for_each_port(adapter, i) {
2358 pi = adap2pinfo(adapter, i);
2359 pi->first_qset = n;
2360 n += pi->nqsets;
2361 }
2362}
2363
2364/*
2365 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally
2366 * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2367 * need. Minimally we need one for every Virtual Interface plus those needed
2368 * for our "extras". Note that this process may lower the maximum number of
2369 * allowed Queue Sets ...
2370 */
2371static int __devinit enable_msix(struct adapter *adapter)
2372{
2373 int i, err, want, need;
2374 struct msix_entry entries[MSIX_ENTRIES];
2375 struct sge *s = &adapter->sge;
2376
2377 for (i = 0; i < MSIX_ENTRIES; ++i)
2378 entries[i].entry = i;
2379
2380 /*
2381 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2382 * plus those needed for our "extras" (for example, the firmware
2383 * message queue). We _need_ at least one "Queue Set" per Virtual
2384 * Interface plus those needed for our "extras". So now we get to see
2385 * if the song is right ...
2386 */
2387 want = s->max_ethqsets + MSIX_EXTRAS;
2388 need = adapter->params.nports + MSIX_EXTRAS;
2389 while ((err = pci_enable_msix(adapter->pdev, entries, want)) >= need)
2390 want = err;
2391
2392 if (err == 0) {
2393 int nqsets = want - MSIX_EXTRAS;
2394 if (nqsets < s->max_ethqsets) {
2395 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2396 " for %d Queue Sets\n", nqsets);
2397 s->max_ethqsets = nqsets;
2398 if (nqsets < s->ethqsets)
2399 reduce_ethqs(adapter, nqsets);
2400 }
2401 for (i = 0; i < want; ++i)
2402 adapter->msix_info[i].vec = entries[i].vector;
2403 } else if (err > 0) {
2404 pci_disable_msix(adapter->pdev);
2405 dev_info(adapter->pdev_dev, "only %d MSI-X vectors left,"
2406 " not using MSI-X\n", err);
2407 }
2408 return err;
2409}
2410
2411#ifdef HAVE_NET_DEVICE_OPS
2412static const struct net_device_ops cxgb4vf_netdev_ops = {
2413 .ndo_open = cxgb4vf_open,
2414 .ndo_stop = cxgb4vf_stop,
2415 .ndo_start_xmit = t4vf_eth_xmit,
2416 .ndo_get_stats = cxgb4vf_get_stats,
2417 .ndo_set_rx_mode = cxgb4vf_set_rxmode,
2418 .ndo_set_mac_address = cxgb4vf_set_mac_addr,
2419 .ndo_select_queue = cxgb4vf_select_queue,
2420 .ndo_validate_addr = eth_validate_addr,
2421 .ndo_do_ioctl = cxgb4vf_do_ioctl,
2422 .ndo_change_mtu = cxgb4vf_change_mtu,
2423 .ndo_vlan_rx_register = cxgb4vf_vlan_rx_register,
2424#ifdef CONFIG_NET_POLL_CONTROLLER
2425 .ndo_poll_controller = cxgb4vf_poll_controller,
2426#endif
2427};
2428#endif
2429
2430/*
2431 * "Probe" a device: initialize a device and construct all kernel and driver
2432 * state needed to manage the device. This routine is called "init_one" in
2433 * the PF Driver ...
2434 */
2435static int __devinit cxgb4vf_pci_probe(struct pci_dev *pdev,
2436 const struct pci_device_id *ent)
2437{
2438 static int version_printed;
2439
2440 int pci_using_dac;
2441 int err, pidx;
2442 unsigned int pmask;
2443 struct adapter *adapter;
2444 struct port_info *pi;
2445 struct net_device *netdev;
2446
2447 /*
2448 * Vet our module parameters.
2449 */
2450 if (msi != MSI_MSIX && msi != MSI_MSI) {
2451 dev_err(&pdev->dev, "bad module parameter msi=%d; must be %d"
2452 " (MSI-X or MSI) or %d (MSI)\n", msi, MSI_MSIX,
2453 MSI_MSI);
2454 err = -EINVAL;
2455 goto err_out;
2456 }
2457
2458 /*
2459 * Print our driver banner the first time we're called to initialize a
2460 * device.
2461 */
2462 if (version_printed == 0) {
2463 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
2464 version_printed = 1;
2465 }
2466
2467 /*
2468 * Reserve PCI resources for the device. If we can't get them some
2469 * other driver may have already claimed the device ...
2470 */
2471 err = pci_request_regions(pdev, KBUILD_MODNAME);
2472 if (err) {
2473 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2474 return err;
2475 }
2476
2477 /*
2478 * Initialize generic PCI device state.
2479 */
2480 err = pci_enable_device(pdev);
2481 if (err) {
2482 dev_err(&pdev->dev, "cannot enable PCI device\n");
2483 goto err_release_regions;
2484 }
2485
2486 /*
2487 * Set up our DMA mask: try for 64-bit address masking first and
2488 * fall back to 32-bit if we can't get 64 bits ...
2489 */
2490 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2491 if (err == 0) {
2492 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2493 if (err) {
2494 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2495 " coherent allocations\n");
2496 goto err_disable_device;
2497 }
2498 pci_using_dac = 1;
2499 } else {
2500 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2501 if (err != 0) {
2502 dev_err(&pdev->dev, "no usable DMA configuration\n");
2503 goto err_disable_device;
2504 }
2505 pci_using_dac = 0;
2506 }
2507
2508 /*
2509 * Enable bus mastering for the device ...
2510 */
2511 pci_set_master(pdev);
2512
2513 /*
2514 * Allocate our adapter data structure and attach it to the device.
2515 */
2516 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2517 if (!adapter) {
2518 err = -ENOMEM;
2519 goto err_disable_device;
2520 }
2521 pci_set_drvdata(pdev, adapter);
2522 adapter->pdev = pdev;
2523 adapter->pdev_dev = &pdev->dev;
2524
2525 /*
2526 * Initialize SMP data synchronization resources.
2527 */
2528 spin_lock_init(&adapter->stats_lock);
2529
2530 /*
2531 * Map our I/O registers in BAR0.
2532 */
2533 adapter->regs = pci_ioremap_bar(pdev, 0);
2534 if (!adapter->regs) {
2535 dev_err(&pdev->dev, "cannot map device registers\n");
2536 err = -ENOMEM;
2537 goto err_free_adapter;
2538 }
2539
2540 /*
2541 * Initialize adapter level features.
2542 */
2543 adapter->name = pci_name(pdev);
2544 adapter->msg_enable = dflt_msg_enable;
2545 err = adap_init0(adapter);
2546 if (err)
2547 goto err_unmap_bar;
2548
2549 /*
2550 * Allocate our "adapter ports" and stitch everything together.
2551 */
2552 pmask = adapter->params.vfres.pmask;
2553 for_each_port(adapter, pidx) {
2554 int port_id, viid;
2555
2556 /*
2557 * We simplistically allocate our virtual interfaces
2558 * sequentially across the port numbers to which we have
2559 * access rights. This should be configurable in some manner
2560 * ...
2561 */
2562 if (pmask == 0)
2563 break;
2564 port_id = ffs(pmask) - 1;
2565 pmask &= ~(1 << port_id);
2566 viid = t4vf_alloc_vi(adapter, port_id);
2567 if (viid < 0) {
2568 dev_err(&pdev->dev, "cannot allocate VI for port %d:"
2569 " err=%d\n", port_id, viid);
2570 err = viid;
2571 goto err_free_dev;
2572 }
2573
2574 /*
2575 * Allocate our network device and stitch things together.
2576 */
2577 netdev = alloc_etherdev_mq(sizeof(struct port_info),
2578 MAX_PORT_QSETS);
2579 if (netdev == NULL) {
2580 dev_err(&pdev->dev, "cannot allocate netdev for"
2581 " port %d\n", port_id);
2582 t4vf_free_vi(adapter, viid);
2583 err = -ENOMEM;
2584 goto err_free_dev;
2585 }
2586 adapter->port[pidx] = netdev;
2587 SET_NETDEV_DEV(netdev, &pdev->dev);
2588 pi = netdev_priv(netdev);
2589 pi->adapter = adapter;
2590 pi->pidx = pidx;
2591 pi->port_id = port_id;
2592 pi->viid = viid;
2593
2594 /*
2595 * Initialize the starting state of our "port" and register
2596 * it.
2597 */
2598 pi->xact_addr_filt = -1;
2599 pi->rx_offload = RX_CSO;
2600 netif_carrier_off(netdev);
2601 netif_tx_stop_all_queues(netdev);
2602 netdev->irq = pdev->irq;
2603
2604 netdev->features = (NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO6 |
2605 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2606 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
2607 NETIF_F_GRO);
2608 if (pci_using_dac)
2609 netdev->features |= NETIF_F_HIGHDMA;
2610 netdev->vlan_features =
2611 (netdev->features &
2612 ~(NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX));
2613
2614#ifdef HAVE_NET_DEVICE_OPS
2615 netdev->netdev_ops = &cxgb4vf_netdev_ops;
2616#else
2617 netdev->vlan_rx_register = cxgb4vf_vlan_rx_register;
2618 netdev->open = cxgb4vf_open;
2619 netdev->stop = cxgb4vf_stop;
2620 netdev->hard_start_xmit = t4vf_eth_xmit;
2621 netdev->get_stats = cxgb4vf_get_stats;
2622 netdev->set_rx_mode = cxgb4vf_set_rxmode;
2623 netdev->do_ioctl = cxgb4vf_do_ioctl;
2624 netdev->change_mtu = cxgb4vf_change_mtu;
2625 netdev->set_mac_address = cxgb4vf_set_mac_addr;
2626 netdev->select_queue = cxgb4vf_select_queue;
2627#ifdef CONFIG_NET_POLL_CONTROLLER
2628 netdev->poll_controller = cxgb4vf_poll_controller;
2629#endif
2630#endif
2631 SET_ETHTOOL_OPS(netdev, &cxgb4vf_ethtool_ops);
2632
2633 /*
2634 * Initialize the hardware/software state for the port.
2635 */
2636 err = t4vf_port_init(adapter, pidx);
2637 if (err) {
2638 dev_err(&pdev->dev, "cannot initialize port %d\n",
2639 pidx);
2640 goto err_free_dev;
2641 }
2642 }
2643
2644 /*
2645 * The "card" is now ready to go. If any errors occur during device
2646 * registration we do not fail the whole "card" but rather proceed
2647 * only with the ports we manage to register successfully. However we
2648 * must register at least one net device.
2649 */
2650 for_each_port(adapter, pidx) {
2651 netdev = adapter->port[pidx];
2652 if (netdev == NULL)
2653 continue;
2654
2655 err = register_netdev(netdev);
2656 if (err) {
2657 dev_warn(&pdev->dev, "cannot register net device %s,"
2658 " skipping\n", netdev->name);
2659 continue;
2660 }
2661
2662 set_bit(pidx, &adapter->registered_device_map);
2663 }
2664 if (adapter->registered_device_map == 0) {
2665 dev_err(&pdev->dev, "could not register any net devices\n");
2666 goto err_free_dev;
2667 }
2668
2669 /*
2670 * Set up our debugfs entries.
2671 */
2672 if (cxgb4vf_debugfs_root) {
2673 adapter->debugfs_root =
2674 debugfs_create_dir(pci_name(pdev),
2675 cxgb4vf_debugfs_root);
2676 if (adapter->debugfs_root == NULL)
2677 dev_warn(&pdev->dev, "could not create debugfs"
2678 " directory");
2679 else
2680 setup_debugfs(adapter);
2681 }
2682
2683 /*
2684 * See what interrupts we'll be using. If we've been configured to
2685 * use MSI-X interrupts, try to enable them but fall back to using
2686 * MSI interrupts if we can't enable MSI-X interrupts. If we can't
2687 * get MSI interrupts we bail with the error.
2688 */
2689 if (msi == MSI_MSIX && enable_msix(adapter) == 0)
2690 adapter->flags |= USING_MSIX;
2691 else {
2692 err = pci_enable_msi(pdev);
2693 if (err) {
2694 dev_err(&pdev->dev, "Unable to allocate %s interrupts;"
2695 " err=%d\n",
2696 msi == MSI_MSIX ? "MSI-X or MSI" : "MSI", err);
2697 goto err_free_debugfs;
2698 }
2699 adapter->flags |= USING_MSI;
2700 }
2701
2702 /*
2703 * Now that we know how many "ports" we have and what their types are,
2704 * and how many Queue Sets we can support, we can configure our queue
2705 * resources.
2706 */
2707 cfg_queues(adapter);
2708
2709 /*
2710 * Print a short notice on the existance and configuration of the new
2711 * VF network device ...
2712 */
2713 for_each_port(adapter, pidx) {
2714 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
2715 adapter->port[pidx]->name,
2716 (adapter->flags & USING_MSIX) ? "MSI-X" :
2717 (adapter->flags & USING_MSI) ? "MSI" : "");
2718 }
2719
2720 /*
2721 * Return success!
2722 */
2723 return 0;
2724
2725 /*
2726 * Error recovery and exit code. Unwind state that's been created
2727 * so far and return the error.
2728 */
2729
2730err_free_debugfs:
2731 if (adapter->debugfs_root) {
2732 cleanup_debugfs(adapter);
2733 debugfs_remove_recursive(adapter->debugfs_root);
2734 }
2735
2736err_free_dev:
2737 for_each_port(adapter, pidx) {
2738 netdev = adapter->port[pidx];
2739 if (netdev == NULL)
2740 continue;
2741 pi = netdev_priv(netdev);
2742 t4vf_free_vi(adapter, pi->viid);
2743 if (test_bit(pidx, &adapter->registered_device_map))
2744 unregister_netdev(netdev);
2745 free_netdev(netdev);
2746 }
2747
2748err_unmap_bar:
2749 iounmap(adapter->regs);
2750
2751err_free_adapter:
2752 kfree(adapter);
2753 pci_set_drvdata(pdev, NULL);
2754
2755err_disable_device:
2756 pci_disable_device(pdev);
2757 pci_clear_master(pdev);
2758
2759err_release_regions:
2760 pci_release_regions(pdev);
2761 pci_set_drvdata(pdev, NULL);
2762
2763err_out:
2764 return err;
2765}
2766
2767/*
2768 * "Remove" a device: tear down all kernel and driver state created in the
2769 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note
2770 * that this is called "remove_one" in the PF Driver.)
2771 */
2772static void __devexit cxgb4vf_pci_remove(struct pci_dev *pdev)
2773{
2774 struct adapter *adapter = pci_get_drvdata(pdev);
2775
2776 /*
2777 * Tear down driver state associated with device.
2778 */
2779 if (adapter) {
2780 int pidx;
2781
2782 /*
2783 * Stop all of our activity. Unregister network port,
2784 * disable interrupts, etc.
2785 */
2786 for_each_port(adapter, pidx)
2787 if (test_bit(pidx, &adapter->registered_device_map))
2788 unregister_netdev(adapter->port[pidx]);
2789 t4vf_sge_stop(adapter);
2790 if (adapter->flags & USING_MSIX) {
2791 pci_disable_msix(adapter->pdev);
2792 adapter->flags &= ~USING_MSIX;
2793 } else if (adapter->flags & USING_MSI) {
2794 pci_disable_msi(adapter->pdev);
2795 adapter->flags &= ~USING_MSI;
2796 }
2797
2798 /*
2799 * Tear down our debugfs entries.
2800 */
2801 if (adapter->debugfs_root) {
2802 cleanup_debugfs(adapter);
2803 debugfs_remove_recursive(adapter->debugfs_root);
2804 }
2805
2806 /*
2807 * Free all of the various resources which we've acquired ...
2808 */
2809 t4vf_free_sge_resources(adapter);
2810 for_each_port(adapter, pidx) {
2811 struct net_device *netdev = adapter->port[pidx];
2812 struct port_info *pi;
2813
2814 if (netdev == NULL)
2815 continue;
2816
2817 pi = netdev_priv(netdev);
2818 t4vf_free_vi(adapter, pi->viid);
2819 free_netdev(netdev);
2820 }
2821 iounmap(adapter->regs);
2822 kfree(adapter);
2823 pci_set_drvdata(pdev, NULL);
2824 }
2825
2826 /*
2827 * Disable the device and release its PCI resources.
2828 */
2829 pci_disable_device(pdev);
2830 pci_clear_master(pdev);
2831 pci_release_regions(pdev);
2832}
2833
2834/*
2835 * PCI Device registration data structures.
2836 */
2837#define CH_DEVICE(devid, idx) \
2838 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
2839
2840static struct pci_device_id cxgb4vf_pci_tbl[] = {
2841 CH_DEVICE(0xb000, 0), /* PE10K FPGA */
2842 CH_DEVICE(0x4800, 0), /* T440-dbg */
2843 CH_DEVICE(0x4801, 0), /* T420-cr */
2844 CH_DEVICE(0x4802, 0), /* T422-cr */
2845 { 0, }
2846};
2847
2848MODULE_DESCRIPTION(DRV_DESC);
2849MODULE_AUTHOR("Chelsio Communications");
2850MODULE_LICENSE("Dual BSD/GPL");
2851MODULE_VERSION(DRV_VERSION);
2852MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
2853
2854static struct pci_driver cxgb4vf_driver = {
2855 .name = KBUILD_MODNAME,
2856 .id_table = cxgb4vf_pci_tbl,
2857 .probe = cxgb4vf_pci_probe,
2858 .remove = __devexit_p(cxgb4vf_pci_remove),
2859};
2860
2861/*
2862 * Initialize global driver state.
2863 */
2864static int __init cxgb4vf_module_init(void)
2865{
2866 int ret;
2867
2868 /* Debugfs support is optional, just warn if this fails */
2869 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
2870 if (!cxgb4vf_debugfs_root)
2871 printk(KERN_WARNING KBUILD_MODNAME ": could not create"
2872 " debugfs entry, continuing\n");
2873
2874 ret = pci_register_driver(&cxgb4vf_driver);
2875 if (ret < 0)
2876 debugfs_remove(cxgb4vf_debugfs_root);
2877 return ret;
2878}
2879
2880/*
2881 * Tear down global driver state.
2882 */
2883static void __exit cxgb4vf_module_exit(void)
2884{
2885 pci_unregister_driver(&cxgb4vf_driver);
2886 debugfs_remove(cxgb4vf_debugfs_root);
2887}
2888
2889module_init(cxgb4vf_module_init);
2890module_exit(cxgb4vf_module_exit);
This page took 0.144692 seconds and 5 git commands to generate.