cxgb4vf: fix up "Section Mismatch" compiler warning.
[deliverable/linux.git] / drivers / net / cxgb4vf / cxgb4vf_main.c
CommitLineData
be839e39
CL
1/*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36#include <linux/version.h>
37#include <linux/module.h>
38#include <linux/moduleparam.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/dma-mapping.h>
42#include <linux/netdevice.h>
43#include <linux/etherdevice.h>
44#include <linux/debugfs.h>
45#include <linux/ethtool.h>
46
47#include "t4vf_common.h"
48#include "t4vf_defs.h"
49
50#include "../cxgb4/t4_regs.h"
51#include "../cxgb4/t4_msg.h"
52
53/*
54 * Generic information about the driver.
55 */
56#define DRV_VERSION "1.0.0"
57#define DRV_DESC "Chelsio T4 Virtual Function (VF) Network Driver"
58
59/*
60 * Module Parameters.
61 * ==================
62 */
63
64/*
65 * Default ethtool "message level" for adapters.
66 */
67#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
68 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
69 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
70
71static int dflt_msg_enable = DFLT_MSG_ENABLE;
72
73module_param(dflt_msg_enable, int, 0644);
74MODULE_PARM_DESC(dflt_msg_enable,
75 "default adapter ethtool message level bitmap");
76
77/*
78 * The driver uses the best interrupt scheme available on a platform in the
79 * order MSI-X then MSI. This parameter determines which of these schemes the
80 * driver may consider as follows:
81 *
82 * msi = 2: choose from among MSI-X and MSI
83 * msi = 1: only consider MSI interrupts
84 *
85 * Note that unlike the Physical Function driver, this Virtual Function driver
86 * does _not_ support legacy INTx interrupts (this limitation is mandated by
87 * the PCI-E SR-IOV standard).
88 */
89#define MSI_MSIX 2
90#define MSI_MSI 1
91#define MSI_DEFAULT MSI_MSIX
92
93static int msi = MSI_DEFAULT;
94
95module_param(msi, int, 0644);
96MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
97
98/*
99 * Fundamental constants.
100 * ======================
101 */
102
103enum {
104 MAX_TXQ_ENTRIES = 16384,
105 MAX_RSPQ_ENTRIES = 16384,
106 MAX_RX_BUFFERS = 16384,
107
108 MIN_TXQ_ENTRIES = 32,
109 MIN_RSPQ_ENTRIES = 128,
110 MIN_FL_ENTRIES = 16,
111
112 /*
113 * For purposes of manipulating the Free List size we need to
114 * recognize that Free Lists are actually Egress Queues (the host
115 * produces free buffers which the hardware consumes), Egress Queues
116 * indices are all in units of Egress Context Units bytes, and free
117 * list entries are 64-bit PCI DMA addresses. And since the state of
118 * the Producer Index == the Consumer Index implies an EMPTY list, we
119 * always have at least one Egress Unit's worth of Free List entries
120 * unused. See sge.c for more details ...
121 */
122 EQ_UNIT = SGE_EQ_IDXSIZE,
123 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
124 MIN_FL_RESID = FL_PER_EQ_UNIT,
125};
126
127/*
128 * Global driver state.
129 * ====================
130 */
131
132static struct dentry *cxgb4vf_debugfs_root;
133
134/*
135 * OS "Callback" functions.
136 * ========================
137 */
138
139/*
140 * The link status has changed on the indicated "port" (Virtual Interface).
141 */
142void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
143{
144 struct net_device *dev = adapter->port[pidx];
145
146 /*
147 * If the port is disabled or the current recorded "link up"
148 * status matches the new status, just return.
149 */
150 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
151 return;
152
153 /*
154 * Tell the OS that the link status has changed and print a short
155 * informative message on the console about the event.
156 */
157 if (link_ok) {
158 const char *s;
159 const char *fc;
160 const struct port_info *pi = netdev_priv(dev);
161
162 netif_carrier_on(dev);
163
164 switch (pi->link_cfg.speed) {
165 case SPEED_10000:
166 s = "10Gbps";
167 break;
168
169 case SPEED_1000:
170 s = "1000Mbps";
171 break;
172
173 case SPEED_100:
174 s = "100Mbps";
175 break;
176
177 default:
178 s = "unknown";
179 break;
180 }
181
182 switch (pi->link_cfg.fc) {
183 case PAUSE_RX:
184 fc = "RX";
185 break;
186
187 case PAUSE_TX:
188 fc = "TX";
189 break;
190
191 case PAUSE_RX|PAUSE_TX:
192 fc = "RX/TX";
193 break;
194
195 default:
196 fc = "no";
197 break;
198 }
199
200 printk(KERN_INFO "%s: link up, %s, full-duplex, %s PAUSE\n",
201 dev->name, s, fc);
202 } else {
203 netif_carrier_off(dev);
204 printk(KERN_INFO "%s: link down\n", dev->name);
205 }
206}
207
208/*
209 * Net device operations.
210 * ======================
211 */
212
213/*
214 * Record our new VLAN Group and enable/disable hardware VLAN Tag extraction
215 * based on whether the specified VLAN Group pointer is NULL or not.
216 */
217static void cxgb4vf_vlan_rx_register(struct net_device *dev,
218 struct vlan_group *grp)
219{
220 struct port_info *pi = netdev_priv(dev);
221
222 pi->vlan_grp = grp;
223 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1, grp != NULL, 0);
224}
225
226/*
227 * Perform the MAC and PHY actions needed to enable a "port" (Virtual
228 * Interface).
229 */
230static int link_start(struct net_device *dev)
231{
232 int ret;
233 struct port_info *pi = netdev_priv(dev);
234
235 /*
236 * We do not set address filters and promiscuity here, the stack does
237 * that step explicitly.
238 */
239 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, -1,
240 true);
241 if (ret == 0) {
242 ret = t4vf_change_mac(pi->adapter, pi->viid,
243 pi->xact_addr_filt, dev->dev_addr, true);
244 if (ret >= 0) {
245 pi->xact_addr_filt = ret;
246 ret = 0;
247 }
248 }
249
250 /*
251 * We don't need to actually "start the link" itself since the
252 * firmware will do that for us when the first Virtual Interface
253 * is enabled on a port.
254 */
255 if (ret == 0)
256 ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true);
257 return ret;
258}
259
260/*
261 * Name the MSI-X interrupts.
262 */
263static void name_msix_vecs(struct adapter *adapter)
264{
265 int namelen = sizeof(adapter->msix_info[0].desc) - 1;
266 int pidx;
267
268 /*
269 * Firmware events.
270 */
271 snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
272 "%s-FWeventq", adapter->name);
273 adapter->msix_info[MSIX_FW].desc[namelen] = 0;
274
275 /*
276 * Ethernet queues.
277 */
278 for_each_port(adapter, pidx) {
279 struct net_device *dev = adapter->port[pidx];
280 const struct port_info *pi = netdev_priv(dev);
281 int qs, msi;
282
caedda35 283 for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) {
be839e39
CL
284 snprintf(adapter->msix_info[msi].desc, namelen,
285 "%s-%d", dev->name, qs);
286 adapter->msix_info[msi].desc[namelen] = 0;
287 }
288 }
289}
290
291/*
292 * Request all of our MSI-X resources.
293 */
294static int request_msix_queue_irqs(struct adapter *adapter)
295{
296 struct sge *s = &adapter->sge;
297 int rxq, msi, err;
298
299 /*
300 * Firmware events.
301 */
302 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
303 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
304 if (err)
305 return err;
306
307 /*
308 * Ethernet queues.
309 */
caedda35 310 msi = MSIX_IQFLINT;
be839e39
CL
311 for_each_ethrxq(s, rxq) {
312 err = request_irq(adapter->msix_info[msi].vec,
313 t4vf_sge_intr_msix, 0,
314 adapter->msix_info[msi].desc,
315 &s->ethrxq[rxq].rspq);
316 if (err)
317 goto err_free_irqs;
318 msi++;
319 }
320 return 0;
321
322err_free_irqs:
323 while (--rxq >= 0)
324 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
325 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
326 return err;
327}
328
329/*
330 * Free our MSI-X resources.
331 */
332static void free_msix_queue_irqs(struct adapter *adapter)
333{
334 struct sge *s = &adapter->sge;
335 int rxq, msi;
336
337 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
caedda35 338 msi = MSIX_IQFLINT;
be839e39
CL
339 for_each_ethrxq(s, rxq)
340 free_irq(adapter->msix_info[msi++].vec,
341 &s->ethrxq[rxq].rspq);
342}
343
344/*
345 * Turn on NAPI and start up interrupts on a response queue.
346 */
347static void qenable(struct sge_rspq *rspq)
348{
349 napi_enable(&rspq->napi);
350
351 /*
352 * 0-increment the Going To Sleep register to start the timer and
353 * enable interrupts.
354 */
355 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
356 CIDXINC(0) |
357 SEINTARM(rspq->intr_params) |
358 INGRESSQID(rspq->cntxt_id));
359}
360
361/*
362 * Enable NAPI scheduling and interrupt generation for all Receive Queues.
363 */
364static void enable_rx(struct adapter *adapter)
365{
366 int rxq;
367 struct sge *s = &adapter->sge;
368
369 for_each_ethrxq(s, rxq)
370 qenable(&s->ethrxq[rxq].rspq);
371 qenable(&s->fw_evtq);
372
373 /*
374 * The interrupt queue doesn't use NAPI so we do the 0-increment of
375 * its Going To Sleep register here to get it started.
376 */
377 if (adapter->flags & USING_MSI)
378 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
379 CIDXINC(0) |
380 SEINTARM(s->intrq.intr_params) |
381 INGRESSQID(s->intrq.cntxt_id));
382
383}
384
385/*
386 * Wait until all NAPI handlers are descheduled.
387 */
388static void quiesce_rx(struct adapter *adapter)
389{
390 struct sge *s = &adapter->sge;
391 int rxq;
392
393 for_each_ethrxq(s, rxq)
394 napi_disable(&s->ethrxq[rxq].rspq.napi);
395 napi_disable(&s->fw_evtq.napi);
396}
397
398/*
399 * Response queue handler for the firmware event queue.
400 */
401static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
402 const struct pkt_gl *gl)
403{
404 /*
405 * Extract response opcode and get pointer to CPL message body.
406 */
407 struct adapter *adapter = rspq->adapter;
408 u8 opcode = ((const struct rss_header *)rsp)->opcode;
409 void *cpl = (void *)(rsp + 1);
410
411 switch (opcode) {
412 case CPL_FW6_MSG: {
413 /*
414 * We've received an asynchronous message from the firmware.
415 */
416 const struct cpl_fw6_msg *fw_msg = cpl;
417 if (fw_msg->type == FW6_TYPE_CMD_RPL)
418 t4vf_handle_fw_rpl(adapter, fw_msg->data);
419 break;
420 }
421
422 case CPL_SGE_EGR_UPDATE: {
423 /*
7f9dd2fa
CL
424 * We've received an Egress Queue Status Update message. We
425 * get these, if the SGE is configured to send these when the
426 * firmware passes certain points in processing our TX
427 * Ethernet Queue or if we make an explicit request for one.
428 * We use these updates to determine when we may need to
429 * restart a TX Ethernet Queue which was stopped for lack of
430 * free TX Queue Descriptors ...
be839e39
CL
431 */
432 const struct cpl_sge_egr_update *p = (void *)cpl;
433 unsigned int qid = EGR_QID(be32_to_cpu(p->opcode_qid));
434 struct sge *s = &adapter->sge;
435 struct sge_txq *tq;
436 struct sge_eth_txq *txq;
437 unsigned int eq_idx;
be839e39
CL
438
439 /*
440 * Perform sanity checking on the Queue ID to make sure it
441 * really refers to one of our TX Ethernet Egress Queues which
442 * is active and matches the queue's ID. None of these error
443 * conditions should ever happen so we may want to either make
444 * them fatal and/or conditionalized under DEBUG.
445 */
446 eq_idx = EQ_IDX(s, qid);
447 if (unlikely(eq_idx >= MAX_EGRQ)) {
448 dev_err(adapter->pdev_dev,
449 "Egress Update QID %d out of range\n", qid);
450 break;
451 }
452 tq = s->egr_map[eq_idx];
453 if (unlikely(tq == NULL)) {
454 dev_err(adapter->pdev_dev,
455 "Egress Update QID %d TXQ=NULL\n", qid);
456 break;
457 }
458 txq = container_of(tq, struct sge_eth_txq, q);
459 if (unlikely(tq->abs_id != qid)) {
460 dev_err(adapter->pdev_dev,
461 "Egress Update QID %d refers to TXQ %d\n",
462 qid, tq->abs_id);
463 break;
464 }
465
be839e39
CL
466 /*
467 * Restart a stopped TX Queue which has less than half of its
468 * TX ring in use ...
469 */
470 txq->q.restarts++;
471 netif_tx_wake_queue(txq->txq);
472 break;
473 }
474
475 default:
476 dev_err(adapter->pdev_dev,
477 "unexpected CPL %#x on FW event queue\n", opcode);
478 }
479
480 return 0;
481}
482
483/*
484 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues
485 * to use and initializes them. We support multiple "Queue Sets" per port if
486 * we have MSI-X, otherwise just one queue set per port.
487 */
488static int setup_sge_queues(struct adapter *adapter)
489{
490 struct sge *s = &adapter->sge;
491 int err, pidx, msix;
492
493 /*
494 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
495 * state.
496 */
497 bitmap_zero(s->starving_fl, MAX_EGRQ);
498
499 /*
500 * If we're using MSI interrupt mode we need to set up a "forwarded
501 * interrupt" queue which we'll set up with our MSI vector. The rest
502 * of the ingress queues will be set up to forward their interrupts to
503 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses
504 * the intrq's queue ID as the interrupt forwarding queue for the
505 * subsequent calls ...
506 */
507 if (adapter->flags & USING_MSI) {
508 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
509 adapter->port[0], 0, NULL, NULL);
510 if (err)
511 goto err_free_queues;
512 }
513
514 /*
515 * Allocate our ingress queue for asynchronous firmware messages.
516 */
517 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
518 MSIX_FW, NULL, fwevtq_handler);
519 if (err)
520 goto err_free_queues;
521
522 /*
523 * Allocate each "port"'s initial Queue Sets. These can be changed
524 * later on ... up to the point where any interface on the adapter is
525 * brought up at which point lots of things get nailed down
526 * permanently ...
527 */
caedda35 528 msix = MSIX_IQFLINT;
be839e39
CL
529 for_each_port(adapter, pidx) {
530 struct net_device *dev = adapter->port[pidx];
531 struct port_info *pi = netdev_priv(dev);
532 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
533 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
be839e39
CL
534 int qs;
535
c8639a82 536 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
be839e39
CL
537 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
538 dev, msix++,
539 &rxq->fl, t4vf_ethrx_handler);
540 if (err)
541 goto err_free_queues;
542
543 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
544 netdev_get_tx_queue(dev, qs),
545 s->fw_evtq.cntxt_id);
546 if (err)
547 goto err_free_queues;
548
549 rxq->rspq.idx = qs;
550 memset(&rxq->stats, 0, sizeof(rxq->stats));
551 }
552 }
553
554 /*
555 * Create the reverse mappings for the queues.
556 */
557 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
558 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
559 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
560 for_each_port(adapter, pidx) {
561 struct net_device *dev = adapter->port[pidx];
562 struct port_info *pi = netdev_priv(dev);
563 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
564 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
be839e39
CL
565 int qs;
566
c8639a82 567 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
be839e39
CL
568 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
569 EQ_MAP(s, txq->q.abs_id) = &txq->q;
570
571 /*
572 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
573 * for Free Lists but since all of the Egress Queues
574 * (including Free Lists) have Relative Queue IDs
575 * which are computed as Absolute - Base Queue ID, we
576 * can synthesize the Absolute Queue IDs for the Free
577 * Lists. This is useful for debugging purposes when
578 * we want to dump Queue Contexts via the PF Driver.
579 */
580 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
581 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
582 }
583 }
584 return 0;
585
586err_free_queues:
587 t4vf_free_sge_resources(adapter);
588 return err;
589}
590
591/*
592 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
593 * queues. We configure the RSS CPU lookup table to distribute to the number
594 * of HW receive queues, and the response queue lookup table to narrow that
595 * down to the response queues actually configured for each "port" (Virtual
596 * Interface). We always configure the RSS mapping for all ports since the
597 * mapping table has plenty of entries.
598 */
599static int setup_rss(struct adapter *adapter)
600{
601 int pidx;
602
603 for_each_port(adapter, pidx) {
604 struct port_info *pi = adap2pinfo(adapter, pidx);
605 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
606 u16 rss[MAX_PORT_QSETS];
607 int qs, err;
608
609 for (qs = 0; qs < pi->nqsets; qs++)
610 rss[qs] = rxq[qs].rspq.abs_id;
611
612 err = t4vf_config_rss_range(adapter, pi->viid,
613 0, pi->rss_size, rss, pi->nqsets);
614 if (err)
615 return err;
616
617 /*
618 * Perform Global RSS Mode-specific initialization.
619 */
620 switch (adapter->params.rss.mode) {
621 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
622 /*
623 * If Tunnel All Lookup isn't specified in the global
624 * RSS Configuration, then we need to specify a
625 * default Ingress Queue for any ingress packets which
626 * aren't hashed. We'll use our first ingress queue
627 * ...
628 */
629 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
630 union rss_vi_config config;
631 err = t4vf_read_rss_vi_config(adapter,
632 pi->viid,
633 &config);
634 if (err)
635 return err;
636 config.basicvirtual.defaultq =
637 rxq[0].rspq.abs_id;
638 err = t4vf_write_rss_vi_config(adapter,
639 pi->viid,
640 &config);
641 if (err)
642 return err;
643 }
644 break;
645 }
646 }
647
648 return 0;
649}
650
651/*
652 * Bring the adapter up. Called whenever we go from no "ports" open to having
653 * one open. This function performs the actions necessary to make an adapter
654 * operational, such as completing the initialization of HW modules, and
655 * enabling interrupts. Must be called with the rtnl lock held. (Note that
656 * this is called "cxgb_up" in the PF Driver.)
657 */
658static int adapter_up(struct adapter *adapter)
659{
660 int err;
661
662 /*
663 * If this is the first time we've been called, perform basic
664 * adapter setup. Once we've done this, many of our adapter
665 * parameters can no longer be changed ...
666 */
667 if ((adapter->flags & FULL_INIT_DONE) == 0) {
668 err = setup_sge_queues(adapter);
669 if (err)
670 return err;
671 err = setup_rss(adapter);
672 if (err) {
673 t4vf_free_sge_resources(adapter);
674 return err;
675 }
676
677 if (adapter->flags & USING_MSIX)
678 name_msix_vecs(adapter);
679 adapter->flags |= FULL_INIT_DONE;
680 }
681
682 /*
683 * Acquire our interrupt resources. We only support MSI-X and MSI.
684 */
685 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
686 if (adapter->flags & USING_MSIX)
687 err = request_msix_queue_irqs(adapter);
688 else
689 err = request_irq(adapter->pdev->irq,
690 t4vf_intr_handler(adapter), 0,
691 adapter->name, adapter);
692 if (err) {
693 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
694 err);
695 return err;
696 }
697
698 /*
699 * Enable NAPI ingress processing and return success.
700 */
701 enable_rx(adapter);
702 t4vf_sge_start(adapter);
703 return 0;
704}
705
706/*
707 * Bring the adapter down. Called whenever the last "port" (Virtual
708 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF
709 * Driver.)
710 */
711static void adapter_down(struct adapter *adapter)
712{
713 /*
714 * Free interrupt resources.
715 */
716 if (adapter->flags & USING_MSIX)
717 free_msix_queue_irqs(adapter);
718 else
719 free_irq(adapter->pdev->irq, adapter);
720
721 /*
722 * Wait for NAPI handlers to finish.
723 */
724 quiesce_rx(adapter);
725}
726
727/*
728 * Start up a net device.
729 */
730static int cxgb4vf_open(struct net_device *dev)
731{
732 int err;
733 struct port_info *pi = netdev_priv(dev);
734 struct adapter *adapter = pi->adapter;
735
736 /*
737 * If this is the first interface that we're opening on the "adapter",
738 * bring the "adapter" up now.
739 */
740 if (adapter->open_device_map == 0) {
741 err = adapter_up(adapter);
742 if (err)
743 return err;
744 }
745
746 /*
747 * Note that this interface is up and start everything up ...
748 */
003ab674
BH
749 netif_set_real_num_tx_queues(dev, pi->nqsets);
750 err = netif_set_real_num_rx_queues(dev, pi->nqsets);
751 if (err)
752 return err;
be839e39 753 set_bit(pi->port_id, &adapter->open_device_map);
e7a3795f
CL
754 err = link_start(dev);
755 if (err)
756 return err;
be839e39
CL
757 netif_tx_start_all_queues(dev);
758 return 0;
759}
760
761/*
762 * Shut down a net device. This routine is called "cxgb_close" in the PF
763 * Driver ...
764 */
765static int cxgb4vf_stop(struct net_device *dev)
766{
767 int ret;
768 struct port_info *pi = netdev_priv(dev);
769 struct adapter *adapter = pi->adapter;
770
771 netif_tx_stop_all_queues(dev);
772 netif_carrier_off(dev);
773 ret = t4vf_enable_vi(adapter, pi->viid, false, false);
774 pi->link_cfg.link_ok = 0;
775
776 clear_bit(pi->port_id, &adapter->open_device_map);
777 if (adapter->open_device_map == 0)
778 adapter_down(adapter);
779 return 0;
780}
781
782/*
783 * Translate our basic statistics into the standard "ifconfig" statistics.
784 */
785static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
786{
787 struct t4vf_port_stats stats;
788 struct port_info *pi = netdev2pinfo(dev);
789 struct adapter *adapter = pi->adapter;
790 struct net_device_stats *ns = &dev->stats;
791 int err;
792
793 spin_lock(&adapter->stats_lock);
794 err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
795 spin_unlock(&adapter->stats_lock);
796
797 memset(ns, 0, sizeof(*ns));
798 if (err)
799 return ns;
800
801 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
802 stats.tx_ucast_bytes + stats.tx_offload_bytes);
803 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
804 stats.tx_ucast_frames + stats.tx_offload_frames);
805 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
806 stats.rx_ucast_bytes);
807 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
808 stats.rx_ucast_frames);
809 ns->multicast = stats.rx_mcast_frames;
810 ns->tx_errors = stats.tx_drop_frames;
811 ns->rx_errors = stats.rx_err_frames;
812
813 return ns;
814}
815
816/*
817 * Collect up to maxaddrs worth of a netdevice's unicast addresses into an
818 * array of addrss pointers and return the number collected.
819 */
820static inline int collect_netdev_uc_list_addrs(const struct net_device *dev,
821 const u8 **addr,
822 unsigned int maxaddrs)
823{
824 unsigned int naddr = 0;
825 const struct netdev_hw_addr *ha;
826
827 for_each_dev_addr(dev, ha) {
828 addr[naddr++] = ha->addr;
829 if (naddr >= maxaddrs)
830 break;
831 }
832 return naddr;
833}
834
835/*
836 * Collect up to maxaddrs worth of a netdevice's multicast addresses into an
837 * array of addrss pointers and return the number collected.
838 */
839static inline int collect_netdev_mc_list_addrs(const struct net_device *dev,
840 const u8 **addr,
841 unsigned int maxaddrs)
842{
843 unsigned int naddr = 0;
844 const struct netdev_hw_addr *ha;
845
846 netdev_for_each_mc_addr(ha, dev) {
847 addr[naddr++] = ha->addr;
848 if (naddr >= maxaddrs)
849 break;
850 }
851 return naddr;
852}
853
854/*
855 * Configure the exact and hash address filters to handle a port's multicast
856 * and secondary unicast MAC addresses.
857 */
858static int set_addr_filters(const struct net_device *dev, bool sleep)
859{
860 u64 mhash = 0;
861 u64 uhash = 0;
862 bool free = true;
863 u16 filt_idx[7];
864 const u8 *addr[7];
865 int ret, naddr = 0;
866 const struct port_info *pi = netdev_priv(dev);
867
868 /* first do the secondary unicast addresses */
869 naddr = collect_netdev_uc_list_addrs(dev, addr, ARRAY_SIZE(addr));
870 if (naddr > 0) {
871 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
872 naddr, addr, filt_idx, &uhash, sleep);
873 if (ret < 0)
874 return ret;
875
876 free = false;
877 }
878
879 /* next set up the multicast addresses */
880 naddr = collect_netdev_mc_list_addrs(dev, addr, ARRAY_SIZE(addr));
881 if (naddr > 0) {
882 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
883 naddr, addr, filt_idx, &mhash, sleep);
884 if (ret < 0)
885 return ret;
886 }
887
888 return t4vf_set_addr_hash(pi->adapter, pi->viid, uhash != 0,
889 uhash | mhash, sleep);
890}
891
892/*
893 * Set RX properties of a port, such as promiscruity, address filters, and MTU.
894 * If @mtu is -1 it is left unchanged.
895 */
896static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
897{
898 int ret;
899 struct port_info *pi = netdev_priv(dev);
900
901 ret = set_addr_filters(dev, sleep_ok);
902 if (ret == 0)
903 ret = t4vf_set_rxmode(pi->adapter, pi->viid, -1,
904 (dev->flags & IFF_PROMISC) != 0,
905 (dev->flags & IFF_ALLMULTI) != 0,
906 1, -1, sleep_ok);
907 return ret;
908}
909
910/*
911 * Set the current receive modes on the device.
912 */
913static void cxgb4vf_set_rxmode(struct net_device *dev)
914{
915 /* unfortunately we can't return errors to the stack */
916 set_rxmode(dev, -1, false);
917}
918
919/*
920 * Find the entry in the interrupt holdoff timer value array which comes
921 * closest to the specified interrupt holdoff value.
922 */
923static int closest_timer(const struct sge *s, int us)
924{
925 int i, timer_idx = 0, min_delta = INT_MAX;
926
927 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
928 int delta = us - s->timer_val[i];
929 if (delta < 0)
930 delta = -delta;
931 if (delta < min_delta) {
932 min_delta = delta;
933 timer_idx = i;
934 }
935 }
936 return timer_idx;
937}
938
939static int closest_thres(const struct sge *s, int thres)
940{
941 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
942
943 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
944 delta = thres - s->counter_val[i];
945 if (delta < 0)
946 delta = -delta;
947 if (delta < min_delta) {
948 min_delta = delta;
949 pktcnt_idx = i;
950 }
951 }
952 return pktcnt_idx;
953}
954
955/*
956 * Return a queue's interrupt hold-off time in us. 0 means no timer.
957 */
958static unsigned int qtimer_val(const struct adapter *adapter,
959 const struct sge_rspq *rspq)
960{
961 unsigned int timer_idx = QINTR_TIMER_IDX_GET(rspq->intr_params);
962
963 return timer_idx < SGE_NTIMERS
964 ? adapter->sge.timer_val[timer_idx]
965 : 0;
966}
967
968/**
969 * set_rxq_intr_params - set a queue's interrupt holdoff parameters
970 * @adapter: the adapter
971 * @rspq: the RX response queue
972 * @us: the hold-off time in us, or 0 to disable timer
973 * @cnt: the hold-off packet count, or 0 to disable counter
974 *
975 * Sets an RX response queue's interrupt hold-off time and packet count.
976 * At least one of the two needs to be enabled for the queue to generate
977 * interrupts.
978 */
979static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
980 unsigned int us, unsigned int cnt)
981{
982 unsigned int timer_idx;
983
984 /*
985 * If both the interrupt holdoff timer and count are specified as
986 * zero, default to a holdoff count of 1 ...
987 */
988 if ((us | cnt) == 0)
989 cnt = 1;
990
991 /*
992 * If an interrupt holdoff count has been specified, then find the
993 * closest configured holdoff count and use that. If the response
994 * queue has already been created, then update its queue context
995 * parameters ...
996 */
997 if (cnt) {
998 int err;
999 u32 v, pktcnt_idx;
1000
1001 pktcnt_idx = closest_thres(&adapter->sge, cnt);
1002 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1003 v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1004 FW_PARAMS_PARAM_X(
1005 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1006 FW_PARAMS_PARAM_YZ(rspq->cntxt_id);
1007 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1008 if (err)
1009 return err;
1010 }
1011 rspq->pktcnt_idx = pktcnt_idx;
1012 }
1013
1014 /*
1015 * Compute the closest holdoff timer index from the supplied holdoff
1016 * timer value.
1017 */
1018 timer_idx = (us == 0
1019 ? SGE_TIMER_RSTRT_CNTR
1020 : closest_timer(&adapter->sge, us));
1021
1022 /*
1023 * Update the response queue's interrupt coalescing parameters and
1024 * return success.
1025 */
1026 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
1027 (cnt > 0 ? QINTR_CNT_EN : 0));
1028 return 0;
1029}
1030
1031/*
1032 * Return a version number to identify the type of adapter. The scheme is:
1033 * - bits 0..9: chip version
1034 * - bits 10..15: chip revision
1035 */
1036static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1037{
1038 /*
1039 * Chip version 4, revision 0x3f (cxgb4vf).
1040 */
1041 return 4 | (0x3f << 10);
1042}
1043
1044/*
1045 * Execute the specified ioctl command.
1046 */
1047static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1048{
1049 int ret = 0;
1050
1051 switch (cmd) {
1052 /*
1053 * The VF Driver doesn't have access to any of the other
1054 * common Ethernet device ioctl()'s (like reading/writing
1055 * PHY registers, etc.
1056 */
1057
1058 default:
1059 ret = -EOPNOTSUPP;
1060 break;
1061 }
1062 return ret;
1063}
1064
1065/*
1066 * Change the device's MTU.
1067 */
1068static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1069{
1070 int ret;
1071 struct port_info *pi = netdev_priv(dev);
1072
1073 /* accommodate SACK */
1074 if (new_mtu < 81)
1075 return -EINVAL;
1076
1077 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1078 -1, -1, -1, -1, true);
1079 if (!ret)
1080 dev->mtu = new_mtu;
1081 return ret;
1082}
1083
1084/*
1085 * Change the devices MAC address.
1086 */
1087static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1088{
1089 int ret;
1090 struct sockaddr *addr = _addr;
1091 struct port_info *pi = netdev_priv(dev);
1092
1093 if (!is_valid_ether_addr(addr->sa_data))
1094 return -EINVAL;
1095
1096 ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt,
1097 addr->sa_data, true);
1098 if (ret < 0)
1099 return ret;
1100
1101 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1102 pi->xact_addr_filt = ret;
1103 return 0;
1104}
1105
be839e39
CL
1106#ifdef CONFIG_NET_POLL_CONTROLLER
1107/*
1108 * Poll all of our receive queues. This is called outside of normal interrupt
1109 * context.
1110 */
1111static void cxgb4vf_poll_controller(struct net_device *dev)
1112{
1113 struct port_info *pi = netdev_priv(dev);
1114 struct adapter *adapter = pi->adapter;
1115
1116 if (adapter->flags & USING_MSIX) {
1117 struct sge_eth_rxq *rxq;
1118 int nqsets;
1119
1120 rxq = &adapter->sge.ethrxq[pi->first_qset];
1121 for (nqsets = pi->nqsets; nqsets; nqsets--) {
1122 t4vf_sge_intr_msix(0, &rxq->rspq);
1123 rxq++;
1124 }
1125 } else
1126 t4vf_intr_handler(adapter)(0, adapter);
1127}
1128#endif
1129
1130/*
1131 * Ethtool operations.
1132 * ===================
1133 *
1134 * Note that we don't support any ethtool operations which change the physical
1135 * state of the port to which we're linked.
1136 */
1137
1138/*
1139 * Return current port link settings.
1140 */
1141static int cxgb4vf_get_settings(struct net_device *dev,
1142 struct ethtool_cmd *cmd)
1143{
1144 const struct port_info *pi = netdev_priv(dev);
1145
1146 cmd->supported = pi->link_cfg.supported;
1147 cmd->advertising = pi->link_cfg.advertising;
1148 cmd->speed = netif_carrier_ok(dev) ? pi->link_cfg.speed : -1;
1149 cmd->duplex = DUPLEX_FULL;
1150
1151 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1152 cmd->phy_address = pi->port_id;
1153 cmd->transceiver = XCVR_EXTERNAL;
1154 cmd->autoneg = pi->link_cfg.autoneg;
1155 cmd->maxtxpkt = 0;
1156 cmd->maxrxpkt = 0;
1157 return 0;
1158}
1159
1160/*
1161 * Return our driver information.
1162 */
1163static void cxgb4vf_get_drvinfo(struct net_device *dev,
1164 struct ethtool_drvinfo *drvinfo)
1165{
1166 struct adapter *adapter = netdev2adap(dev);
1167
1168 strcpy(drvinfo->driver, KBUILD_MODNAME);
1169 strcpy(drvinfo->version, DRV_VERSION);
1170 strcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)));
1171 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1172 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1173 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.fwrev),
1174 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.fwrev),
1175 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.fwrev),
1176 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.fwrev),
1177 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.tprev),
1178 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.tprev),
1179 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.tprev),
1180 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.tprev));
1181}
1182
1183/*
1184 * Return current adapter message level.
1185 */
1186static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1187{
1188 return netdev2adap(dev)->msg_enable;
1189}
1190
1191/*
1192 * Set current adapter message level.
1193 */
1194static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1195{
1196 netdev2adap(dev)->msg_enable = msglevel;
1197}
1198
1199/*
1200 * Return the device's current Queue Set ring size parameters along with the
1201 * allowed maximum values. Since ethtool doesn't understand the concept of
1202 * multi-queue devices, we just return the current values associated with the
1203 * first Queue Set.
1204 */
1205static void cxgb4vf_get_ringparam(struct net_device *dev,
1206 struct ethtool_ringparam *rp)
1207{
1208 const struct port_info *pi = netdev_priv(dev);
1209 const struct sge *s = &pi->adapter->sge;
1210
1211 rp->rx_max_pending = MAX_RX_BUFFERS;
1212 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1213 rp->rx_jumbo_max_pending = 0;
1214 rp->tx_max_pending = MAX_TXQ_ENTRIES;
1215
1216 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1217 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1218 rp->rx_jumbo_pending = 0;
1219 rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1220}
1221
1222/*
1223 * Set the Queue Set ring size parameters for the device. Again, since
1224 * ethtool doesn't allow for the concept of multiple queues per device, we'll
1225 * apply these new values across all of the Queue Sets associated with the
1226 * device -- after vetting them of course!
1227 */
1228static int cxgb4vf_set_ringparam(struct net_device *dev,
1229 struct ethtool_ringparam *rp)
1230{
1231 const struct port_info *pi = netdev_priv(dev);
1232 struct adapter *adapter = pi->adapter;
1233 struct sge *s = &adapter->sge;
1234 int qs;
1235
1236 if (rp->rx_pending > MAX_RX_BUFFERS ||
1237 rp->rx_jumbo_pending ||
1238 rp->tx_pending > MAX_TXQ_ENTRIES ||
1239 rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1240 rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1241 rp->rx_pending < MIN_FL_ENTRIES ||
1242 rp->tx_pending < MIN_TXQ_ENTRIES)
1243 return -EINVAL;
1244
1245 if (adapter->flags & FULL_INIT_DONE)
1246 return -EBUSY;
1247
1248 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1249 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1250 s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1251 s->ethtxq[qs].q.size = rp->tx_pending;
1252 }
1253 return 0;
1254}
1255
1256/*
1257 * Return the interrupt holdoff timer and count for the first Queue Set on the
1258 * device. Our extension ioctl() (the cxgbtool interface) allows the
1259 * interrupt holdoff timer to be read on all of the device's Queue Sets.
1260 */
1261static int cxgb4vf_get_coalesce(struct net_device *dev,
1262 struct ethtool_coalesce *coalesce)
1263{
1264 const struct port_info *pi = netdev_priv(dev);
1265 const struct adapter *adapter = pi->adapter;
1266 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1267
1268 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1269 coalesce->rx_max_coalesced_frames =
1270 ((rspq->intr_params & QINTR_CNT_EN)
1271 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1272 : 0);
1273 return 0;
1274}
1275
1276/*
1277 * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1278 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set
1279 * the interrupt holdoff timer on any of the device's Queue Sets.
1280 */
1281static int cxgb4vf_set_coalesce(struct net_device *dev,
1282 struct ethtool_coalesce *coalesce)
1283{
1284 const struct port_info *pi = netdev_priv(dev);
1285 struct adapter *adapter = pi->adapter;
1286
1287 return set_rxq_intr_params(adapter,
1288 &adapter->sge.ethrxq[pi->first_qset].rspq,
1289 coalesce->rx_coalesce_usecs,
1290 coalesce->rx_max_coalesced_frames);
1291}
1292
1293/*
1294 * Report current port link pause parameter settings.
1295 */
1296static void cxgb4vf_get_pauseparam(struct net_device *dev,
1297 struct ethtool_pauseparam *pauseparam)
1298{
1299 struct port_info *pi = netdev_priv(dev);
1300
1301 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1302 pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0;
1303 pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0;
1304}
1305
1306/*
1307 * Return whether RX Checksum Offloading is currently enabled for the device.
1308 */
1309static u32 cxgb4vf_get_rx_csum(struct net_device *dev)
1310{
1311 struct port_info *pi = netdev_priv(dev);
1312
1313 return (pi->rx_offload & RX_CSO) != 0;
1314}
1315
1316/*
1317 * Turn RX Checksum Offloading on or off for the device.
1318 */
1319static int cxgb4vf_set_rx_csum(struct net_device *dev, u32 csum)
1320{
1321 struct port_info *pi = netdev_priv(dev);
1322
1323 if (csum)
1324 pi->rx_offload |= RX_CSO;
1325 else
1326 pi->rx_offload &= ~RX_CSO;
1327 return 0;
1328}
1329
1330/*
1331 * Identify the port by blinking the port's LED.
1332 */
1333static int cxgb4vf_phys_id(struct net_device *dev, u32 id)
1334{
1335 struct port_info *pi = netdev_priv(dev);
1336
1337 return t4vf_identify_port(pi->adapter, pi->viid, 5);
1338}
1339
1340/*
1341 * Port stats maintained per queue of the port.
1342 */
1343struct queue_port_stats {
1344 u64 tso;
1345 u64 tx_csum;
1346 u64 rx_csum;
1347 u64 vlan_ex;
1348 u64 vlan_ins;
f12fe353
CL
1349 u64 lro_pkts;
1350 u64 lro_merged;
be839e39
CL
1351};
1352
1353/*
1354 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that
1355 * these need to match the order of statistics returned by
1356 * t4vf_get_port_stats().
1357 */
1358static const char stats_strings[][ETH_GSTRING_LEN] = {
1359 /*
1360 * These must match the layout of the t4vf_port_stats structure.
1361 */
1362 "TxBroadcastBytes ",
1363 "TxBroadcastFrames ",
1364 "TxMulticastBytes ",
1365 "TxMulticastFrames ",
1366 "TxUnicastBytes ",
1367 "TxUnicastFrames ",
1368 "TxDroppedFrames ",
1369 "TxOffloadBytes ",
1370 "TxOffloadFrames ",
1371 "RxBroadcastBytes ",
1372 "RxBroadcastFrames ",
1373 "RxMulticastBytes ",
1374 "RxMulticastFrames ",
1375 "RxUnicastBytes ",
1376 "RxUnicastFrames ",
1377 "RxErrorFrames ",
1378
1379 /*
1380 * These are accumulated per-queue statistics and must match the
1381 * order of the fields in the queue_port_stats structure.
1382 */
1383 "TSO ",
1384 "TxCsumOffload ",
1385 "RxCsumGood ",
1386 "VLANextractions ",
1387 "VLANinsertions ",
f12fe353
CL
1388 "GROPackets ",
1389 "GROMerged ",
be839e39
CL
1390};
1391
1392/*
1393 * Return the number of statistics in the specified statistics set.
1394 */
1395static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1396{
1397 switch (sset) {
1398 case ETH_SS_STATS:
1399 return ARRAY_SIZE(stats_strings);
1400 default:
1401 return -EOPNOTSUPP;
1402 }
1403 /*NOTREACHED*/
1404}
1405
1406/*
1407 * Return the strings for the specified statistics set.
1408 */
1409static void cxgb4vf_get_strings(struct net_device *dev,
1410 u32 sset,
1411 u8 *data)
1412{
1413 switch (sset) {
1414 case ETH_SS_STATS:
1415 memcpy(data, stats_strings, sizeof(stats_strings));
1416 break;
1417 }
1418}
1419
1420/*
1421 * Small utility routine to accumulate queue statistics across the queues of
1422 * a "port".
1423 */
1424static void collect_sge_port_stats(const struct adapter *adapter,
1425 const struct port_info *pi,
1426 struct queue_port_stats *stats)
1427{
1428 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1429 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1430 int qs;
1431
1432 memset(stats, 0, sizeof(*stats));
1433 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1434 stats->tso += txq->tso;
1435 stats->tx_csum += txq->tx_cso;
1436 stats->rx_csum += rxq->stats.rx_cso;
1437 stats->vlan_ex += rxq->stats.vlan_ex;
1438 stats->vlan_ins += txq->vlan_ins;
f12fe353
CL
1439 stats->lro_pkts += rxq->stats.lro_pkts;
1440 stats->lro_merged += rxq->stats.lro_merged;
be839e39
CL
1441 }
1442}
1443
1444/*
1445 * Return the ETH_SS_STATS statistics set.
1446 */
1447static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1448 struct ethtool_stats *stats,
1449 u64 *data)
1450{
1451 struct port_info *pi = netdev2pinfo(dev);
1452 struct adapter *adapter = pi->adapter;
1453 int err = t4vf_get_port_stats(adapter, pi->pidx,
1454 (struct t4vf_port_stats *)data);
1455 if (err)
1456 memset(data, 0, sizeof(struct t4vf_port_stats));
1457
1458 data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1459 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1460}
1461
1462/*
1463 * Return the size of our register map.
1464 */
1465static int cxgb4vf_get_regs_len(struct net_device *dev)
1466{
1467 return T4VF_REGMAP_SIZE;
1468}
1469
1470/*
1471 * Dump a block of registers, start to end inclusive, into a buffer.
1472 */
1473static void reg_block_dump(struct adapter *adapter, void *regbuf,
1474 unsigned int start, unsigned int end)
1475{
1476 u32 *bp = regbuf + start - T4VF_REGMAP_START;
1477
1478 for ( ; start <= end; start += sizeof(u32)) {
1479 /*
1480 * Avoid reading the Mailbox Control register since that
1481 * can trigger a Mailbox Ownership Arbitration cycle and
1482 * interfere with communication with the firmware.
1483 */
1484 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1485 *bp++ = 0xffff;
1486 else
1487 *bp++ = t4_read_reg(adapter, start);
1488 }
1489}
1490
1491/*
1492 * Copy our entire register map into the provided buffer.
1493 */
1494static void cxgb4vf_get_regs(struct net_device *dev,
1495 struct ethtool_regs *regs,
1496 void *regbuf)
1497{
1498 struct adapter *adapter = netdev2adap(dev);
1499
1500 regs->version = mk_adap_vers(adapter);
1501
1502 /*
1503 * Fill in register buffer with our register map.
1504 */
1505 memset(regbuf, 0, T4VF_REGMAP_SIZE);
1506
1507 reg_block_dump(adapter, regbuf,
1508 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1509 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1510 reg_block_dump(adapter, regbuf,
1511 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1512 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1513 reg_block_dump(adapter, regbuf,
1514 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1515 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_LAST);
1516 reg_block_dump(adapter, regbuf,
1517 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1518 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1519
1520 reg_block_dump(adapter, regbuf,
1521 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1522 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1523}
1524
1525/*
1526 * Report current Wake On LAN settings.
1527 */
1528static void cxgb4vf_get_wol(struct net_device *dev,
1529 struct ethtool_wolinfo *wol)
1530{
1531 wol->supported = 0;
1532 wol->wolopts = 0;
1533 memset(&wol->sopass, 0, sizeof(wol->sopass));
1534}
1535
1536/*
1537 * Set TCP Segmentation Offloading feature capabilities.
1538 */
1539static int cxgb4vf_set_tso(struct net_device *dev, u32 tso)
1540{
1541 if (tso)
1542 dev->features |= NETIF_F_TSO | NETIF_F_TSO6;
1543 else
1544 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
1545 return 0;
1546}
1547
1548static struct ethtool_ops cxgb4vf_ethtool_ops = {
1549 .get_settings = cxgb4vf_get_settings,
1550 .get_drvinfo = cxgb4vf_get_drvinfo,
1551 .get_msglevel = cxgb4vf_get_msglevel,
1552 .set_msglevel = cxgb4vf_set_msglevel,
1553 .get_ringparam = cxgb4vf_get_ringparam,
1554 .set_ringparam = cxgb4vf_set_ringparam,
1555 .get_coalesce = cxgb4vf_get_coalesce,
1556 .set_coalesce = cxgb4vf_set_coalesce,
1557 .get_pauseparam = cxgb4vf_get_pauseparam,
1558 .get_rx_csum = cxgb4vf_get_rx_csum,
1559 .set_rx_csum = cxgb4vf_set_rx_csum,
1560 .set_tx_csum = ethtool_op_set_tx_ipv6_csum,
1561 .set_sg = ethtool_op_set_sg,
1562 .get_link = ethtool_op_get_link,
1563 .get_strings = cxgb4vf_get_strings,
1564 .phys_id = cxgb4vf_phys_id,
1565 .get_sset_count = cxgb4vf_get_sset_count,
1566 .get_ethtool_stats = cxgb4vf_get_ethtool_stats,
1567 .get_regs_len = cxgb4vf_get_regs_len,
1568 .get_regs = cxgb4vf_get_regs,
1569 .get_wol = cxgb4vf_get_wol,
1570 .set_tso = cxgb4vf_set_tso,
1571};
1572
1573/*
1574 * /sys/kernel/debug/cxgb4vf support code and data.
1575 * ================================================
1576 */
1577
1578/*
1579 * Show SGE Queue Set information. We display QPL Queues Sets per line.
1580 */
1581#define QPL 4
1582
1583static int sge_qinfo_show(struct seq_file *seq, void *v)
1584{
1585 struct adapter *adapter = seq->private;
1586 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1587 int qs, r = (uintptr_t)v - 1;
1588
1589 if (r)
1590 seq_putc(seq, '\n');
1591
1592 #define S3(fmt_spec, s, v) \
1593 do {\
1594 seq_printf(seq, "%-12s", s); \
1595 for (qs = 0; qs < n; ++qs) \
1596 seq_printf(seq, " %16" fmt_spec, v); \
1597 seq_putc(seq, '\n'); \
1598 } while (0)
1599 #define S(s, v) S3("s", s, v)
1600 #define T(s, v) S3("u", s, txq[qs].v)
1601 #define R(s, v) S3("u", s, rxq[qs].v)
1602
1603 if (r < eth_entries) {
1604 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1605 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1606 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1607
1608 S("QType:", "Ethernet");
1609 S("Interface:",
1610 (rxq[qs].rspq.netdev
1611 ? rxq[qs].rspq.netdev->name
1612 : "N/A"));
1613 S3("d", "Port:",
1614 (rxq[qs].rspq.netdev
1615 ? ((struct port_info *)
1616 netdev_priv(rxq[qs].rspq.netdev))->port_id
1617 : -1));
1618 T("TxQ ID:", q.abs_id);
1619 T("TxQ size:", q.size);
1620 T("TxQ inuse:", q.in_use);
1621 T("TxQ PIdx:", q.pidx);
1622 T("TxQ CIdx:", q.cidx);
1623 R("RspQ ID:", rspq.abs_id);
1624 R("RspQ size:", rspq.size);
1625 R("RspQE size:", rspq.iqe_len);
1626 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
1627 S3("u", "Intr pktcnt:",
1628 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
1629 R("RspQ CIdx:", rspq.cidx);
1630 R("RspQ Gen:", rspq.gen);
1631 R("FL ID:", fl.abs_id);
1632 R("FL size:", fl.size - MIN_FL_RESID);
1633 R("FL avail:", fl.avail);
1634 R("FL PIdx:", fl.pidx);
1635 R("FL CIdx:", fl.cidx);
1636 return 0;
1637 }
1638
1639 r -= eth_entries;
1640 if (r == 0) {
1641 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1642
1643 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
1644 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
1645 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1646 qtimer_val(adapter, evtq));
1647 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1648 adapter->sge.counter_val[evtq->pktcnt_idx]);
1649 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
1650 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
1651 } else if (r == 1) {
1652 const struct sge_rspq *intrq = &adapter->sge.intrq;
1653
1654 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
1655 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
1656 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1657 qtimer_val(adapter, intrq));
1658 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1659 adapter->sge.counter_val[intrq->pktcnt_idx]);
1660 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
1661 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
1662 }
1663
1664 #undef R
1665 #undef T
1666 #undef S
1667 #undef S3
1668
1669 return 0;
1670}
1671
1672/*
1673 * Return the number of "entries" in our "file". We group the multi-Queue
1674 * sections with QPL Queue Sets per "entry". The sections of the output are:
1675 *
1676 * Ethernet RX/TX Queue Sets
1677 * Firmware Event Queue
1678 * Forwarded Interrupt Queue (if in MSI mode)
1679 */
1680static int sge_queue_entries(const struct adapter *adapter)
1681{
1682 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1683 ((adapter->flags & USING_MSI) != 0);
1684}
1685
1686static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
1687{
1688 int entries = sge_queue_entries(seq->private);
1689
1690 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1691}
1692
1693static void sge_queue_stop(struct seq_file *seq, void *v)
1694{
1695}
1696
1697static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
1698{
1699 int entries = sge_queue_entries(seq->private);
1700
1701 ++*pos;
1702 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1703}
1704
1705static const struct seq_operations sge_qinfo_seq_ops = {
1706 .start = sge_queue_start,
1707 .next = sge_queue_next,
1708 .stop = sge_queue_stop,
1709 .show = sge_qinfo_show
1710};
1711
1712static int sge_qinfo_open(struct inode *inode, struct file *file)
1713{
1714 int res = seq_open(file, &sge_qinfo_seq_ops);
1715
1716 if (!res) {
1717 struct seq_file *seq = file->private_data;
1718 seq->private = inode->i_private;
1719 }
1720 return res;
1721}
1722
1723static const struct file_operations sge_qinfo_debugfs_fops = {
1724 .owner = THIS_MODULE,
1725 .open = sge_qinfo_open,
1726 .read = seq_read,
1727 .llseek = seq_lseek,
1728 .release = seq_release,
1729};
1730
1731/*
1732 * Show SGE Queue Set statistics. We display QPL Queues Sets per line.
1733 */
1734#define QPL 4
1735
1736static int sge_qstats_show(struct seq_file *seq, void *v)
1737{
1738 struct adapter *adapter = seq->private;
1739 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1740 int qs, r = (uintptr_t)v - 1;
1741
1742 if (r)
1743 seq_putc(seq, '\n');
1744
1745 #define S3(fmt, s, v) \
1746 do { \
1747 seq_printf(seq, "%-16s", s); \
1748 for (qs = 0; qs < n; ++qs) \
1749 seq_printf(seq, " %8" fmt, v); \
1750 seq_putc(seq, '\n'); \
1751 } while (0)
1752 #define S(s, v) S3("s", s, v)
1753
1754 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v)
1755 #define T(s, v) T3("lu", s, v)
1756
1757 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v)
1758 #define R(s, v) R3("lu", s, v)
1759
1760 if (r < eth_entries) {
1761 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1762 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1763 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1764
1765 S("QType:", "Ethernet");
1766 S("Interface:",
1767 (rxq[qs].rspq.netdev
1768 ? rxq[qs].rspq.netdev->name
1769 : "N/A"));
68dc9d36 1770 R3("u", "RspQNullInts:", rspq.unhandled_irqs);
be839e39
CL
1771 R("RxPackets:", stats.pkts);
1772 R("RxCSO:", stats.rx_cso);
1773 R("VLANxtract:", stats.vlan_ex);
1774 R("LROmerged:", stats.lro_merged);
1775 R("LROpackets:", stats.lro_pkts);
1776 R("RxDrops:", stats.rx_drops);
1777 T("TSO:", tso);
1778 T("TxCSO:", tx_cso);
1779 T("VLANins:", vlan_ins);
1780 T("TxQFull:", q.stops);
1781 T("TxQRestarts:", q.restarts);
1782 T("TxMapErr:", mapping_err);
1783 R("FLAllocErr:", fl.alloc_failed);
1784 R("FLLrgAlcErr:", fl.large_alloc_failed);
1785 R("FLStarving:", fl.starving);
1786 return 0;
1787 }
1788
1789 r -= eth_entries;
1790 if (r == 0) {
1791 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1792
1793 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
68dc9d36
CL
1794 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1795 evtq->unhandled_irqs);
be839e39
CL
1796 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
1797 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
1798 } else if (r == 1) {
1799 const struct sge_rspq *intrq = &adapter->sge.intrq;
1800
1801 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
68dc9d36
CL
1802 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1803 intrq->unhandled_irqs);
be839e39
CL
1804 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
1805 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
1806 }
1807
1808 #undef R
1809 #undef T
1810 #undef S
1811 #undef R3
1812 #undef T3
1813 #undef S3
1814
1815 return 0;
1816}
1817
1818/*
1819 * Return the number of "entries" in our "file". We group the multi-Queue
1820 * sections with QPL Queue Sets per "entry". The sections of the output are:
1821 *
1822 * Ethernet RX/TX Queue Sets
1823 * Firmware Event Queue
1824 * Forwarded Interrupt Queue (if in MSI mode)
1825 */
1826static int sge_qstats_entries(const struct adapter *adapter)
1827{
1828 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1829 ((adapter->flags & USING_MSI) != 0);
1830}
1831
1832static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
1833{
1834 int entries = sge_qstats_entries(seq->private);
1835
1836 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1837}
1838
1839static void sge_qstats_stop(struct seq_file *seq, void *v)
1840{
1841}
1842
1843static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
1844{
1845 int entries = sge_qstats_entries(seq->private);
1846
1847 (*pos)++;
1848 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1849}
1850
1851static const struct seq_operations sge_qstats_seq_ops = {
1852 .start = sge_qstats_start,
1853 .next = sge_qstats_next,
1854 .stop = sge_qstats_stop,
1855 .show = sge_qstats_show
1856};
1857
1858static int sge_qstats_open(struct inode *inode, struct file *file)
1859{
1860 int res = seq_open(file, &sge_qstats_seq_ops);
1861
1862 if (res == 0) {
1863 struct seq_file *seq = file->private_data;
1864 seq->private = inode->i_private;
1865 }
1866 return res;
1867}
1868
1869static const struct file_operations sge_qstats_proc_fops = {
1870 .owner = THIS_MODULE,
1871 .open = sge_qstats_open,
1872 .read = seq_read,
1873 .llseek = seq_lseek,
1874 .release = seq_release,
1875};
1876
1877/*
1878 * Show PCI-E SR-IOV Virtual Function Resource Limits.
1879 */
1880static int resources_show(struct seq_file *seq, void *v)
1881{
1882 struct adapter *adapter = seq->private;
1883 struct vf_resources *vfres = &adapter->params.vfres;
1884
1885 #define S(desc, fmt, var) \
1886 seq_printf(seq, "%-60s " fmt "\n", \
1887 desc " (" #var "):", vfres->var)
1888
1889 S("Virtual Interfaces", "%d", nvi);
1890 S("Egress Queues", "%d", neq);
1891 S("Ethernet Control", "%d", nethctrl);
1892 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
1893 S("Ingress Queues", "%d", niq);
1894 S("Traffic Class", "%d", tc);
1895 S("Port Access Rights Mask", "%#x", pmask);
1896 S("MAC Address Filters", "%d", nexactf);
1897 S("Firmware Command Read Capabilities", "%#x", r_caps);
1898 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
1899
1900 #undef S
1901
1902 return 0;
1903}
1904
1905static int resources_open(struct inode *inode, struct file *file)
1906{
1907 return single_open(file, resources_show, inode->i_private);
1908}
1909
1910static const struct file_operations resources_proc_fops = {
1911 .owner = THIS_MODULE,
1912 .open = resources_open,
1913 .read = seq_read,
1914 .llseek = seq_lseek,
1915 .release = single_release,
1916};
1917
1918/*
1919 * Show Virtual Interfaces.
1920 */
1921static int interfaces_show(struct seq_file *seq, void *v)
1922{
1923 if (v == SEQ_START_TOKEN) {
1924 seq_puts(seq, "Interface Port VIID\n");
1925 } else {
1926 struct adapter *adapter = seq->private;
1927 int pidx = (uintptr_t)v - 2;
1928 struct net_device *dev = adapter->port[pidx];
1929 struct port_info *pi = netdev_priv(dev);
1930
1931 seq_printf(seq, "%9s %4d %#5x\n",
1932 dev->name, pi->port_id, pi->viid);
1933 }
1934 return 0;
1935}
1936
1937static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
1938{
1939 return pos <= adapter->params.nports
1940 ? (void *)(uintptr_t)(pos + 1)
1941 : NULL;
1942}
1943
1944static void *interfaces_start(struct seq_file *seq, loff_t *pos)
1945{
1946 return *pos
1947 ? interfaces_get_idx(seq->private, *pos)
1948 : SEQ_START_TOKEN;
1949}
1950
1951static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
1952{
1953 (*pos)++;
1954 return interfaces_get_idx(seq->private, *pos);
1955}
1956
1957static void interfaces_stop(struct seq_file *seq, void *v)
1958{
1959}
1960
1961static const struct seq_operations interfaces_seq_ops = {
1962 .start = interfaces_start,
1963 .next = interfaces_next,
1964 .stop = interfaces_stop,
1965 .show = interfaces_show
1966};
1967
1968static int interfaces_open(struct inode *inode, struct file *file)
1969{
1970 int res = seq_open(file, &interfaces_seq_ops);
1971
1972 if (res == 0) {
1973 struct seq_file *seq = file->private_data;
1974 seq->private = inode->i_private;
1975 }
1976 return res;
1977}
1978
1979static const struct file_operations interfaces_proc_fops = {
1980 .owner = THIS_MODULE,
1981 .open = interfaces_open,
1982 .read = seq_read,
1983 .llseek = seq_lseek,
1984 .release = seq_release,
1985};
1986
1987/*
1988 * /sys/kernel/debugfs/cxgb4vf/ files list.
1989 */
1990struct cxgb4vf_debugfs_entry {
1991 const char *name; /* name of debugfs node */
1992 mode_t mode; /* file system mode */
1993 const struct file_operations *fops;
1994};
1995
1996static struct cxgb4vf_debugfs_entry debugfs_files[] = {
1997 { "sge_qinfo", S_IRUGO, &sge_qinfo_debugfs_fops },
1998 { "sge_qstats", S_IRUGO, &sge_qstats_proc_fops },
1999 { "resources", S_IRUGO, &resources_proc_fops },
2000 { "interfaces", S_IRUGO, &interfaces_proc_fops },
2001};
2002
2003/*
2004 * Module and device initialization and cleanup code.
2005 * ==================================================
2006 */
2007
2008/*
2009 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the
2010 * directory (debugfs_root) has already been set up.
2011 */
2012static int __devinit setup_debugfs(struct adapter *adapter)
2013{
2014 int i;
2015
2016 BUG_ON(adapter->debugfs_root == NULL);
2017
2018 /*
2019 * Debugfs support is best effort.
2020 */
2021 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2022 (void)debugfs_create_file(debugfs_files[i].name,
2023 debugfs_files[i].mode,
2024 adapter->debugfs_root,
2025 (void *)adapter,
2026 debugfs_files[i].fops);
2027
2028 return 0;
2029}
2030
2031/*
2032 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave
2033 * it to our caller to tear down the directory (debugfs_root).
2034 */
4204875d 2035static void cleanup_debugfs(struct adapter *adapter)
be839e39
CL
2036{
2037 BUG_ON(adapter->debugfs_root == NULL);
2038
2039 /*
2040 * Unlike our sister routine cleanup_proc(), we don't need to remove
2041 * individual entries because a call will be made to
2042 * debugfs_remove_recursive(). We just need to clean up any ancillary
2043 * persistent state.
2044 */
2045 /* nothing to do */
2046}
2047
2048/*
2049 * Perform early "adapter" initialization. This is where we discover what
2050 * adapter parameters we're going to be using and initialize basic adapter
2051 * hardware support.
2052 */
4204875d 2053static int __devinit adap_init0(struct adapter *adapter)
be839e39
CL
2054{
2055 struct vf_resources *vfres = &adapter->params.vfres;
2056 struct sge_params *sge_params = &adapter->params.sge;
2057 struct sge *s = &adapter->sge;
2058 unsigned int ethqsets;
2059 int err;
2060
2061 /*
2062 * Wait for the device to become ready before proceeding ...
2063 */
2064 err = t4vf_wait_dev_ready(adapter);
2065 if (err) {
2066 dev_err(adapter->pdev_dev, "device didn't become ready:"
2067 " err=%d\n", err);
2068 return err;
2069 }
2070
e68e6133
CL
2071 /*
2072 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2073 * 2.6.31 and later we can't call pci_reset_function() in order to
2074 * issue an FLR because of a self- deadlock on the device semaphore.
2075 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2076 * cases where they're needed -- for instance, some versions of KVM
2077 * fail to reset "Assigned Devices" when the VM reboots. Therefore we
2078 * use the firmware based reset in order to reset any per function
2079 * state.
2080 */
2081 err = t4vf_fw_reset(adapter);
2082 if (err < 0) {
2083 dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2084 return err;
2085 }
2086
be839e39
CL
2087 /*
2088 * Grab basic operational parameters. These will predominantly have
2089 * been set up by the Physical Function Driver or will be hard coded
2090 * into the adapter. We just have to live with them ... Note that
2091 * we _must_ get our VPD parameters before our SGE parameters because
2092 * we need to know the adapter's core clock from the VPD in order to
2093 * properly decode the SGE Timer Values.
2094 */
2095 err = t4vf_get_dev_params(adapter);
2096 if (err) {
2097 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2098 " device parameters: err=%d\n", err);
2099 return err;
2100 }
2101 err = t4vf_get_vpd_params(adapter);
2102 if (err) {
2103 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2104 " VPD parameters: err=%d\n", err);
2105 return err;
2106 }
2107 err = t4vf_get_sge_params(adapter);
2108 if (err) {
2109 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2110 " SGE parameters: err=%d\n", err);
2111 return err;
2112 }
2113 err = t4vf_get_rss_glb_config(adapter);
2114 if (err) {
2115 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2116 " RSS parameters: err=%d\n", err);
2117 return err;
2118 }
2119 if (adapter->params.rss.mode !=
2120 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2121 dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2122 " mode %d\n", adapter->params.rss.mode);
2123 return -EINVAL;
2124 }
2125 err = t4vf_sge_init(adapter);
2126 if (err) {
2127 dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2128 " err=%d\n", err);
2129 return err;
2130 }
2131
2132 /*
2133 * Retrieve our RX interrupt holdoff timer values and counter
2134 * threshold values from the SGE parameters.
2135 */
2136 s->timer_val[0] = core_ticks_to_us(adapter,
2137 TIMERVALUE0_GET(sge_params->sge_timer_value_0_and_1));
2138 s->timer_val[1] = core_ticks_to_us(adapter,
2139 TIMERVALUE1_GET(sge_params->sge_timer_value_0_and_1));
2140 s->timer_val[2] = core_ticks_to_us(adapter,
2141 TIMERVALUE0_GET(sge_params->sge_timer_value_2_and_3));
2142 s->timer_val[3] = core_ticks_to_us(adapter,
2143 TIMERVALUE1_GET(sge_params->sge_timer_value_2_and_3));
2144 s->timer_val[4] = core_ticks_to_us(adapter,
2145 TIMERVALUE0_GET(sge_params->sge_timer_value_4_and_5));
2146 s->timer_val[5] = core_ticks_to_us(adapter,
2147 TIMERVALUE1_GET(sge_params->sge_timer_value_4_and_5));
2148
2149 s->counter_val[0] =
2150 THRESHOLD_0_GET(sge_params->sge_ingress_rx_threshold);
2151 s->counter_val[1] =
2152 THRESHOLD_1_GET(sge_params->sge_ingress_rx_threshold);
2153 s->counter_val[2] =
2154 THRESHOLD_2_GET(sge_params->sge_ingress_rx_threshold);
2155 s->counter_val[3] =
2156 THRESHOLD_3_GET(sge_params->sge_ingress_rx_threshold);
2157
2158 /*
2159 * Grab our Virtual Interface resource allocation, extract the
2160 * features that we're interested in and do a bit of sanity testing on
2161 * what we discover.
2162 */
2163 err = t4vf_get_vfres(adapter);
2164 if (err) {
2165 dev_err(adapter->pdev_dev, "unable to get virtual interface"
2166 " resources: err=%d\n", err);
2167 return err;
2168 }
2169
2170 /*
2171 * The number of "ports" which we support is equal to the number of
2172 * Virtual Interfaces with which we've been provisioned.
2173 */
2174 adapter->params.nports = vfres->nvi;
2175 if (adapter->params.nports > MAX_NPORTS) {
2176 dev_warn(adapter->pdev_dev, "only using %d of %d allowed"
2177 " virtual interfaces\n", MAX_NPORTS,
2178 adapter->params.nports);
2179 adapter->params.nports = MAX_NPORTS;
2180 }
2181
2182 /*
2183 * We need to reserve a number of the ingress queues with Free List
2184 * and Interrupt capabilities for special interrupt purposes (like
2185 * asynchronous firmware messages, or forwarded interrupts if we're
2186 * using MSI). The rest of the FL/Intr-capable ingress queues will be
2187 * matched up one-for-one with Ethernet/Control egress queues in order
2188 * to form "Queue Sets" which will be aportioned between the "ports".
2189 * For each Queue Set, we'll need the ability to allocate two Egress
2190 * Contexts -- one for the Ingress Queue Free List and one for the TX
2191 * Ethernet Queue.
2192 */
2193 ethqsets = vfres->niqflint - INGQ_EXTRAS;
2194 if (vfres->nethctrl != ethqsets) {
2195 dev_warn(adapter->pdev_dev, "unequal number of [available]"
2196 " ingress/egress queues (%d/%d); using minimum for"
2197 " number of Queue Sets\n", ethqsets, vfres->nethctrl);
2198 ethqsets = min(vfres->nethctrl, ethqsets);
2199 }
2200 if (vfres->neq < ethqsets*2) {
2201 dev_warn(adapter->pdev_dev, "Not enough Egress Contexts (%d)"
2202 " to support Queue Sets (%d); reducing allowed Queue"
2203 " Sets\n", vfres->neq, ethqsets);
2204 ethqsets = vfres->neq/2;
2205 }
2206 if (ethqsets > MAX_ETH_QSETS) {
2207 dev_warn(adapter->pdev_dev, "only using %d of %d allowed Queue"
2208 " Sets\n", MAX_ETH_QSETS, adapter->sge.max_ethqsets);
2209 ethqsets = MAX_ETH_QSETS;
2210 }
2211 if (vfres->niq != 0 || vfres->neq > ethqsets*2) {
2212 dev_warn(adapter->pdev_dev, "unused resources niq/neq (%d/%d)"
2213 " ignored\n", vfres->niq, vfres->neq - ethqsets*2);
2214 }
2215 adapter->sge.max_ethqsets = ethqsets;
2216
2217 /*
2218 * Check for various parameter sanity issues. Most checks simply
2219 * result in us using fewer resources than our provissioning but we
2220 * do need at least one "port" with which to work ...
2221 */
2222 if (adapter->sge.max_ethqsets < adapter->params.nports) {
2223 dev_warn(adapter->pdev_dev, "only using %d of %d available"
2224 " virtual interfaces (too few Queue Sets)\n",
2225 adapter->sge.max_ethqsets, adapter->params.nports);
2226 adapter->params.nports = adapter->sge.max_ethqsets;
2227 }
2228 if (adapter->params.nports == 0) {
2229 dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2230 "usable!\n");
2231 return -EINVAL;
2232 }
2233 return 0;
2234}
2235
2236static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2237 u8 pkt_cnt_idx, unsigned int size,
2238 unsigned int iqe_size)
2239{
2240 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
2241 (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0));
2242 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2243 ? pkt_cnt_idx
2244 : 0);
2245 rspq->iqe_len = iqe_size;
2246 rspq->size = size;
2247}
2248
2249/*
2250 * Perform default configuration of DMA queues depending on the number and
2251 * type of ports we found and the number of available CPUs. Most settings can
2252 * be modified by the admin via ethtool and cxgbtool prior to the adapter
2253 * being brought up for the first time.
2254 */
2255static void __devinit cfg_queues(struct adapter *adapter)
2256{
2257 struct sge *s = &adapter->sge;
2258 int q10g, n10g, qidx, pidx, qs;
2259
2260 /*
2261 * We should not be called till we know how many Queue Sets we can
2262 * support. In particular, this means that we need to know what kind
2263 * of interrupts we'll be using ...
2264 */
2265 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2266
2267 /*
2268 * Count the number of 10GbE Virtual Interfaces that we have.
2269 */
2270 n10g = 0;
2271 for_each_port(adapter, pidx)
2272 n10g += is_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2273
2274 /*
2275 * We default to 1 queue per non-10G port and up to # of cores queues
2276 * per 10G port.
2277 */
2278 if (n10g == 0)
2279 q10g = 0;
2280 else {
2281 int n1g = (adapter->params.nports - n10g);
2282 q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2283 if (q10g > num_online_cpus())
2284 q10g = num_online_cpus();
2285 }
2286
2287 /*
2288 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2289 * The layout will be established in setup_sge_queues() when the
2290 * adapter is brough up for the first time.
2291 */
2292 qidx = 0;
2293 for_each_port(adapter, pidx) {
2294 struct port_info *pi = adap2pinfo(adapter, pidx);
2295
2296 pi->first_qset = qidx;
2297 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1;
2298 qidx += pi->nqsets;
2299 }
2300 s->ethqsets = qidx;
2301
2302 /*
2303 * Set up default Queue Set parameters ... Start off with the
2304 * shortest interrupt holdoff timer.
2305 */
2306 for (qs = 0; qs < s->max_ethqsets; qs++) {
2307 struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2308 struct sge_eth_txq *txq = &s->ethtxq[qs];
2309
2310 init_rspq(&rxq->rspq, 0, 0, 1024, L1_CACHE_BYTES);
2311 rxq->fl.size = 72;
2312 txq->q.size = 1024;
2313 }
2314
2315 /*
2316 * The firmware event queue is used for link state changes and
2317 * notifications of TX DMA completions.
2318 */
2319 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512,
2320 L1_CACHE_BYTES);
2321
2322 /*
2323 * The forwarded interrupt queue is used when we're in MSI interrupt
2324 * mode. In this mode all interrupts associated with RX queues will
2325 * be forwarded to a single queue which we'll associate with our MSI
2326 * interrupt vector. The messages dropped in the forwarded interrupt
2327 * queue will indicate which ingress queue needs servicing ... This
2328 * queue needs to be large enough to accommodate all of the ingress
2329 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2330 * from equalling the CIDX if every ingress queue has an outstanding
2331 * interrupt). The queue doesn't need to be any larger because no
2332 * ingress queue will ever have more than one outstanding interrupt at
2333 * any time ...
2334 */
2335 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
2336 L1_CACHE_BYTES);
2337}
2338
2339/*
2340 * Reduce the number of Ethernet queues across all ports to at most n.
2341 * n provides at least one queue per port.
2342 */
2343static void __devinit reduce_ethqs(struct adapter *adapter, int n)
2344{
2345 int i;
2346 struct port_info *pi;
2347
2348 /*
2349 * While we have too many active Ether Queue Sets, interate across the
2350 * "ports" and reduce their individual Queue Set allocations.
2351 */
2352 BUG_ON(n < adapter->params.nports);
2353 while (n < adapter->sge.ethqsets)
2354 for_each_port(adapter, i) {
2355 pi = adap2pinfo(adapter, i);
2356 if (pi->nqsets > 1) {
2357 pi->nqsets--;
2358 adapter->sge.ethqsets--;
2359 if (adapter->sge.ethqsets <= n)
2360 break;
2361 }
2362 }
2363
2364 /*
2365 * Reassign the starting Queue Sets for each of the "ports" ...
2366 */
2367 n = 0;
2368 for_each_port(adapter, i) {
2369 pi = adap2pinfo(adapter, i);
2370 pi->first_qset = n;
2371 n += pi->nqsets;
2372 }
2373}
2374
2375/*
2376 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally
2377 * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2378 * need. Minimally we need one for every Virtual Interface plus those needed
2379 * for our "extras". Note that this process may lower the maximum number of
2380 * allowed Queue Sets ...
2381 */
2382static int __devinit enable_msix(struct adapter *adapter)
2383{
2384 int i, err, want, need;
2385 struct msix_entry entries[MSIX_ENTRIES];
2386 struct sge *s = &adapter->sge;
2387
2388 for (i = 0; i < MSIX_ENTRIES; ++i)
2389 entries[i].entry = i;
2390
2391 /*
2392 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2393 * plus those needed for our "extras" (for example, the firmware
2394 * message queue). We _need_ at least one "Queue Set" per Virtual
2395 * Interface plus those needed for our "extras". So now we get to see
2396 * if the song is right ...
2397 */
2398 want = s->max_ethqsets + MSIX_EXTRAS;
2399 need = adapter->params.nports + MSIX_EXTRAS;
2400 while ((err = pci_enable_msix(adapter->pdev, entries, want)) >= need)
2401 want = err;
2402
2403 if (err == 0) {
2404 int nqsets = want - MSIX_EXTRAS;
2405 if (nqsets < s->max_ethqsets) {
2406 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2407 " for %d Queue Sets\n", nqsets);
2408 s->max_ethqsets = nqsets;
2409 if (nqsets < s->ethqsets)
2410 reduce_ethqs(adapter, nqsets);
2411 }
2412 for (i = 0; i < want; ++i)
2413 adapter->msix_info[i].vec = entries[i].vector;
2414 } else if (err > 0) {
2415 pci_disable_msix(adapter->pdev);
2416 dev_info(adapter->pdev_dev, "only %d MSI-X vectors left,"
2417 " not using MSI-X\n", err);
2418 }
2419 return err;
2420}
2421
2422#ifdef HAVE_NET_DEVICE_OPS
2423static const struct net_device_ops cxgb4vf_netdev_ops = {
2424 .ndo_open = cxgb4vf_open,
2425 .ndo_stop = cxgb4vf_stop,
2426 .ndo_start_xmit = t4vf_eth_xmit,
2427 .ndo_get_stats = cxgb4vf_get_stats,
2428 .ndo_set_rx_mode = cxgb4vf_set_rxmode,
2429 .ndo_set_mac_address = cxgb4vf_set_mac_addr,
be839e39
CL
2430 .ndo_validate_addr = eth_validate_addr,
2431 .ndo_do_ioctl = cxgb4vf_do_ioctl,
2432 .ndo_change_mtu = cxgb4vf_change_mtu,
2433 .ndo_vlan_rx_register = cxgb4vf_vlan_rx_register,
2434#ifdef CONFIG_NET_POLL_CONTROLLER
2435 .ndo_poll_controller = cxgb4vf_poll_controller,
2436#endif
2437};
2438#endif
2439
2440/*
2441 * "Probe" a device: initialize a device and construct all kernel and driver
2442 * state needed to manage the device. This routine is called "init_one" in
2443 * the PF Driver ...
2444 */
2445static int __devinit cxgb4vf_pci_probe(struct pci_dev *pdev,
2446 const struct pci_device_id *ent)
2447{
2448 static int version_printed;
2449
2450 int pci_using_dac;
2451 int err, pidx;
2452 unsigned int pmask;
2453 struct adapter *adapter;
2454 struct port_info *pi;
2455 struct net_device *netdev;
2456
2457 /*
2458 * Vet our module parameters.
2459 */
2460 if (msi != MSI_MSIX && msi != MSI_MSI) {
2461 dev_err(&pdev->dev, "bad module parameter msi=%d; must be %d"
2462 " (MSI-X or MSI) or %d (MSI)\n", msi, MSI_MSIX,
2463 MSI_MSI);
2464 err = -EINVAL;
2465 goto err_out;
2466 }
2467
2468 /*
2469 * Print our driver banner the first time we're called to initialize a
2470 * device.
2471 */
2472 if (version_printed == 0) {
2473 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
2474 version_printed = 1;
2475 }
2476
2477 /*
7a0c2029 2478 * Initialize generic PCI device state.
be839e39 2479 */
7a0c2029 2480 err = pci_enable_device(pdev);
be839e39 2481 if (err) {
7a0c2029 2482 dev_err(&pdev->dev, "cannot enable PCI device\n");
be839e39
CL
2483 return err;
2484 }
2485
2486 /*
7a0c2029
KV
2487 * Reserve PCI resources for the device. If we can't get them some
2488 * other driver may have already claimed the device ...
be839e39 2489 */
7a0c2029 2490 err = pci_request_regions(pdev, KBUILD_MODNAME);
be839e39 2491 if (err) {
7a0c2029
KV
2492 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2493 goto err_disable_device;
be839e39
CL
2494 }
2495
2496 /*
2497 * Set up our DMA mask: try for 64-bit address masking first and
2498 * fall back to 32-bit if we can't get 64 bits ...
2499 */
2500 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2501 if (err == 0) {
2502 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2503 if (err) {
2504 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2505 " coherent allocations\n");
7a0c2029 2506 goto err_release_regions;
be839e39
CL
2507 }
2508 pci_using_dac = 1;
2509 } else {
2510 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2511 if (err != 0) {
2512 dev_err(&pdev->dev, "no usable DMA configuration\n");
7a0c2029 2513 goto err_release_regions;
be839e39
CL
2514 }
2515 pci_using_dac = 0;
2516 }
2517
2518 /*
2519 * Enable bus mastering for the device ...
2520 */
2521 pci_set_master(pdev);
2522
2523 /*
2524 * Allocate our adapter data structure and attach it to the device.
2525 */
2526 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2527 if (!adapter) {
2528 err = -ENOMEM;
7a0c2029 2529 goto err_release_regions;
be839e39
CL
2530 }
2531 pci_set_drvdata(pdev, adapter);
2532 adapter->pdev = pdev;
2533 adapter->pdev_dev = &pdev->dev;
2534
2535 /*
2536 * Initialize SMP data synchronization resources.
2537 */
2538 spin_lock_init(&adapter->stats_lock);
2539
2540 /*
2541 * Map our I/O registers in BAR0.
2542 */
2543 adapter->regs = pci_ioremap_bar(pdev, 0);
2544 if (!adapter->regs) {
2545 dev_err(&pdev->dev, "cannot map device registers\n");
2546 err = -ENOMEM;
2547 goto err_free_adapter;
2548 }
2549
2550 /*
2551 * Initialize adapter level features.
2552 */
2553 adapter->name = pci_name(pdev);
2554 adapter->msg_enable = dflt_msg_enable;
2555 err = adap_init0(adapter);
2556 if (err)
2557 goto err_unmap_bar;
2558
2559 /*
2560 * Allocate our "adapter ports" and stitch everything together.
2561 */
2562 pmask = adapter->params.vfres.pmask;
2563 for_each_port(adapter, pidx) {
2564 int port_id, viid;
2565
2566 /*
2567 * We simplistically allocate our virtual interfaces
2568 * sequentially across the port numbers to which we have
2569 * access rights. This should be configurable in some manner
2570 * ...
2571 */
2572 if (pmask == 0)
2573 break;
2574 port_id = ffs(pmask) - 1;
2575 pmask &= ~(1 << port_id);
2576 viid = t4vf_alloc_vi(adapter, port_id);
2577 if (viid < 0) {
2578 dev_err(&pdev->dev, "cannot allocate VI for port %d:"
2579 " err=%d\n", port_id, viid);
2580 err = viid;
2581 goto err_free_dev;
2582 }
2583
2584 /*
2585 * Allocate our network device and stitch things together.
2586 */
2587 netdev = alloc_etherdev_mq(sizeof(struct port_info),
2588 MAX_PORT_QSETS);
2589 if (netdev == NULL) {
2590 dev_err(&pdev->dev, "cannot allocate netdev for"
2591 " port %d\n", port_id);
2592 t4vf_free_vi(adapter, viid);
2593 err = -ENOMEM;
2594 goto err_free_dev;
2595 }
2596 adapter->port[pidx] = netdev;
2597 SET_NETDEV_DEV(netdev, &pdev->dev);
2598 pi = netdev_priv(netdev);
2599 pi->adapter = adapter;
2600 pi->pidx = pidx;
2601 pi->port_id = port_id;
2602 pi->viid = viid;
2603
2604 /*
2605 * Initialize the starting state of our "port" and register
2606 * it.
2607 */
2608 pi->xact_addr_filt = -1;
2609 pi->rx_offload = RX_CSO;
2610 netif_carrier_off(netdev);
be839e39
CL
2611 netdev->irq = pdev->irq;
2612
2613 netdev->features = (NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO6 |
2614 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2615 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
2616 NETIF_F_GRO);
2617 if (pci_using_dac)
2618 netdev->features |= NETIF_F_HIGHDMA;
2619 netdev->vlan_features =
2620 (netdev->features &
2621 ~(NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX));
2622
2623#ifdef HAVE_NET_DEVICE_OPS
2624 netdev->netdev_ops = &cxgb4vf_netdev_ops;
2625#else
2626 netdev->vlan_rx_register = cxgb4vf_vlan_rx_register;
2627 netdev->open = cxgb4vf_open;
2628 netdev->stop = cxgb4vf_stop;
2629 netdev->hard_start_xmit = t4vf_eth_xmit;
2630 netdev->get_stats = cxgb4vf_get_stats;
2631 netdev->set_rx_mode = cxgb4vf_set_rxmode;
2632 netdev->do_ioctl = cxgb4vf_do_ioctl;
2633 netdev->change_mtu = cxgb4vf_change_mtu;
2634 netdev->set_mac_address = cxgb4vf_set_mac_addr;
be839e39
CL
2635#ifdef CONFIG_NET_POLL_CONTROLLER
2636 netdev->poll_controller = cxgb4vf_poll_controller;
2637#endif
2638#endif
2639 SET_ETHTOOL_OPS(netdev, &cxgb4vf_ethtool_ops);
2640
2641 /*
2642 * Initialize the hardware/software state for the port.
2643 */
2644 err = t4vf_port_init(adapter, pidx);
2645 if (err) {
2646 dev_err(&pdev->dev, "cannot initialize port %d\n",
2647 pidx);
2648 goto err_free_dev;
2649 }
2650 }
2651
2652 /*
2653 * The "card" is now ready to go. If any errors occur during device
2654 * registration we do not fail the whole "card" but rather proceed
2655 * only with the ports we manage to register successfully. However we
2656 * must register at least one net device.
2657 */
2658 for_each_port(adapter, pidx) {
2659 netdev = adapter->port[pidx];
2660 if (netdev == NULL)
2661 continue;
2662
2663 err = register_netdev(netdev);
2664 if (err) {
2665 dev_warn(&pdev->dev, "cannot register net device %s,"
2666 " skipping\n", netdev->name);
2667 continue;
2668 }
2669
2670 set_bit(pidx, &adapter->registered_device_map);
2671 }
2672 if (adapter->registered_device_map == 0) {
2673 dev_err(&pdev->dev, "could not register any net devices\n");
2674 goto err_free_dev;
2675 }
2676
2677 /*
2678 * Set up our debugfs entries.
2679 */
2680 if (cxgb4vf_debugfs_root) {
2681 adapter->debugfs_root =
2682 debugfs_create_dir(pci_name(pdev),
2683 cxgb4vf_debugfs_root);
2684 if (adapter->debugfs_root == NULL)
2685 dev_warn(&pdev->dev, "could not create debugfs"
2686 " directory");
2687 else
2688 setup_debugfs(adapter);
2689 }
2690
2691 /*
2692 * See what interrupts we'll be using. If we've been configured to
2693 * use MSI-X interrupts, try to enable them but fall back to using
2694 * MSI interrupts if we can't enable MSI-X interrupts. If we can't
2695 * get MSI interrupts we bail with the error.
2696 */
2697 if (msi == MSI_MSIX && enable_msix(adapter) == 0)
2698 adapter->flags |= USING_MSIX;
2699 else {
2700 err = pci_enable_msi(pdev);
2701 if (err) {
2702 dev_err(&pdev->dev, "Unable to allocate %s interrupts;"
2703 " err=%d\n",
2704 msi == MSI_MSIX ? "MSI-X or MSI" : "MSI", err);
2705 goto err_free_debugfs;
2706 }
2707 adapter->flags |= USING_MSI;
2708 }
2709
2710 /*
2711 * Now that we know how many "ports" we have and what their types are,
2712 * and how many Queue Sets we can support, we can configure our queue
2713 * resources.
2714 */
2715 cfg_queues(adapter);
2716
2717 /*
2718 * Print a short notice on the existance and configuration of the new
2719 * VF network device ...
2720 */
2721 for_each_port(adapter, pidx) {
2722 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
2723 adapter->port[pidx]->name,
2724 (adapter->flags & USING_MSIX) ? "MSI-X" :
2725 (adapter->flags & USING_MSI) ? "MSI" : "");
2726 }
2727
2728 /*
2729 * Return success!
2730 */
2731 return 0;
2732
2733 /*
2734 * Error recovery and exit code. Unwind state that's been created
2735 * so far and return the error.
2736 */
2737
2738err_free_debugfs:
2739 if (adapter->debugfs_root) {
2740 cleanup_debugfs(adapter);
2741 debugfs_remove_recursive(adapter->debugfs_root);
2742 }
2743
2744err_free_dev:
2745 for_each_port(adapter, pidx) {
2746 netdev = adapter->port[pidx];
2747 if (netdev == NULL)
2748 continue;
2749 pi = netdev_priv(netdev);
2750 t4vf_free_vi(adapter, pi->viid);
2751 if (test_bit(pidx, &adapter->registered_device_map))
2752 unregister_netdev(netdev);
2753 free_netdev(netdev);
2754 }
2755
2756err_unmap_bar:
2757 iounmap(adapter->regs);
2758
2759err_free_adapter:
2760 kfree(adapter);
2761 pci_set_drvdata(pdev, NULL);
2762
be839e39
CL
2763err_release_regions:
2764 pci_release_regions(pdev);
2765 pci_set_drvdata(pdev, NULL);
7a0c2029
KV
2766 pci_clear_master(pdev);
2767
2768err_disable_device:
2769 pci_disable_device(pdev);
be839e39
CL
2770
2771err_out:
2772 return err;
2773}
2774
2775/*
2776 * "Remove" a device: tear down all kernel and driver state created in the
2777 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note
2778 * that this is called "remove_one" in the PF Driver.)
2779 */
2780static void __devexit cxgb4vf_pci_remove(struct pci_dev *pdev)
2781{
2782 struct adapter *adapter = pci_get_drvdata(pdev);
2783
2784 /*
2785 * Tear down driver state associated with device.
2786 */
2787 if (adapter) {
2788 int pidx;
2789
2790 /*
2791 * Stop all of our activity. Unregister network port,
2792 * disable interrupts, etc.
2793 */
2794 for_each_port(adapter, pidx)
2795 if (test_bit(pidx, &adapter->registered_device_map))
2796 unregister_netdev(adapter->port[pidx]);
2797 t4vf_sge_stop(adapter);
2798 if (adapter->flags & USING_MSIX) {
2799 pci_disable_msix(adapter->pdev);
2800 adapter->flags &= ~USING_MSIX;
2801 } else if (adapter->flags & USING_MSI) {
2802 pci_disable_msi(adapter->pdev);
2803 adapter->flags &= ~USING_MSI;
2804 }
2805
2806 /*
2807 * Tear down our debugfs entries.
2808 */
2809 if (adapter->debugfs_root) {
2810 cleanup_debugfs(adapter);
2811 debugfs_remove_recursive(adapter->debugfs_root);
2812 }
2813
2814 /*
2815 * Free all of the various resources which we've acquired ...
2816 */
2817 t4vf_free_sge_resources(adapter);
2818 for_each_port(adapter, pidx) {
2819 struct net_device *netdev = adapter->port[pidx];
2820 struct port_info *pi;
2821
2822 if (netdev == NULL)
2823 continue;
2824
2825 pi = netdev_priv(netdev);
2826 t4vf_free_vi(adapter, pi->viid);
2827 free_netdev(netdev);
2828 }
2829 iounmap(adapter->regs);
2830 kfree(adapter);
2831 pci_set_drvdata(pdev, NULL);
2832 }
2833
2834 /*
2835 * Disable the device and release its PCI resources.
2836 */
2837 pci_disable_device(pdev);
2838 pci_clear_master(pdev);
2839 pci_release_regions(pdev);
2840}
2841
2842/*
2843 * PCI Device registration data structures.
2844 */
2845#define CH_DEVICE(devid, idx) \
2846 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
2847
2848static struct pci_device_id cxgb4vf_pci_tbl[] = {
2849 CH_DEVICE(0xb000, 0), /* PE10K FPGA */
2850 CH_DEVICE(0x4800, 0), /* T440-dbg */
2851 CH_DEVICE(0x4801, 0), /* T420-cr */
2852 CH_DEVICE(0x4802, 0), /* T422-cr */
8b6edf87
CL
2853 CH_DEVICE(0x4803, 0), /* T440-cr */
2854 CH_DEVICE(0x4804, 0), /* T420-bch */
2855 CH_DEVICE(0x4805, 0), /* T440-bch */
2856 CH_DEVICE(0x4806, 0), /* T460-ch */
2857 CH_DEVICE(0x4807, 0), /* T420-so */
2858 CH_DEVICE(0x4808, 0), /* T420-cx */
2859 CH_DEVICE(0x4809, 0), /* T420-bt */
2860 CH_DEVICE(0x480a, 0), /* T404-bt */
be839e39
CL
2861 { 0, }
2862};
2863
2864MODULE_DESCRIPTION(DRV_DESC);
2865MODULE_AUTHOR("Chelsio Communications");
2866MODULE_LICENSE("Dual BSD/GPL");
2867MODULE_VERSION(DRV_VERSION);
2868MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
2869
2870static struct pci_driver cxgb4vf_driver = {
2871 .name = KBUILD_MODNAME,
2872 .id_table = cxgb4vf_pci_tbl,
2873 .probe = cxgb4vf_pci_probe,
2874 .remove = __devexit_p(cxgb4vf_pci_remove),
2875};
2876
2877/*
2878 * Initialize global driver state.
2879 */
2880static int __init cxgb4vf_module_init(void)
2881{
2882 int ret;
2883
2884 /* Debugfs support is optional, just warn if this fails */
2885 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
2886 if (!cxgb4vf_debugfs_root)
2887 printk(KERN_WARNING KBUILD_MODNAME ": could not create"
2888 " debugfs entry, continuing\n");
2889
2890 ret = pci_register_driver(&cxgb4vf_driver);
2891 if (ret < 0)
2892 debugfs_remove(cxgb4vf_debugfs_root);
2893 return ret;
2894}
2895
2896/*
2897 * Tear down global driver state.
2898 */
2899static void __exit cxgb4vf_module_exit(void)
2900{
2901 pci_unregister_driver(&cxgb4vf_driver);
2902 debugfs_remove(cxgb4vf_debugfs_root);
2903}
2904
2905module_init(cxgb4vf_module_init);
2906module_exit(cxgb4vf_module_exit);
This page took 0.175369 seconds and 5 git commands to generate.