Merge branch 'master' of git://1984.lsi.us.es/net-2.6
[deliverable/linux.git] / drivers / net / cxgb4vf / cxgb4vf_main.c
CommitLineData
be839e39
CL
1/*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36#include <linux/version.h>
37#include <linux/module.h>
38#include <linux/moduleparam.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/dma-mapping.h>
42#include <linux/netdevice.h>
43#include <linux/etherdevice.h>
44#include <linux/debugfs.h>
45#include <linux/ethtool.h>
46
47#include "t4vf_common.h"
48#include "t4vf_defs.h"
49
50#include "../cxgb4/t4_regs.h"
51#include "../cxgb4/t4_msg.h"
52
53/*
54 * Generic information about the driver.
55 */
56#define DRV_VERSION "1.0.0"
57#define DRV_DESC "Chelsio T4 Virtual Function (VF) Network Driver"
58
59/*
60 * Module Parameters.
61 * ==================
62 */
63
64/*
65 * Default ethtool "message level" for adapters.
66 */
67#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
68 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
69 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
70
71static int dflt_msg_enable = DFLT_MSG_ENABLE;
72
73module_param(dflt_msg_enable, int, 0644);
74MODULE_PARM_DESC(dflt_msg_enable,
75 "default adapter ethtool message level bitmap");
76
77/*
78 * The driver uses the best interrupt scheme available on a platform in the
79 * order MSI-X then MSI. This parameter determines which of these schemes the
80 * driver may consider as follows:
81 *
82 * msi = 2: choose from among MSI-X and MSI
83 * msi = 1: only consider MSI interrupts
84 *
85 * Note that unlike the Physical Function driver, this Virtual Function driver
86 * does _not_ support legacy INTx interrupts (this limitation is mandated by
87 * the PCI-E SR-IOV standard).
88 */
89#define MSI_MSIX 2
90#define MSI_MSI 1
91#define MSI_DEFAULT MSI_MSIX
92
93static int msi = MSI_DEFAULT;
94
95module_param(msi, int, 0644);
96MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
97
98/*
99 * Fundamental constants.
100 * ======================
101 */
102
103enum {
104 MAX_TXQ_ENTRIES = 16384,
105 MAX_RSPQ_ENTRIES = 16384,
106 MAX_RX_BUFFERS = 16384,
107
108 MIN_TXQ_ENTRIES = 32,
109 MIN_RSPQ_ENTRIES = 128,
110 MIN_FL_ENTRIES = 16,
111
112 /*
113 * For purposes of manipulating the Free List size we need to
114 * recognize that Free Lists are actually Egress Queues (the host
115 * produces free buffers which the hardware consumes), Egress Queues
116 * indices are all in units of Egress Context Units bytes, and free
117 * list entries are 64-bit PCI DMA addresses. And since the state of
118 * the Producer Index == the Consumer Index implies an EMPTY list, we
119 * always have at least one Egress Unit's worth of Free List entries
120 * unused. See sge.c for more details ...
121 */
122 EQ_UNIT = SGE_EQ_IDXSIZE,
123 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
124 MIN_FL_RESID = FL_PER_EQ_UNIT,
125};
126
127/*
128 * Global driver state.
129 * ====================
130 */
131
132static struct dentry *cxgb4vf_debugfs_root;
133
134/*
135 * OS "Callback" functions.
136 * ========================
137 */
138
139/*
140 * The link status has changed on the indicated "port" (Virtual Interface).
141 */
142void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
143{
144 struct net_device *dev = adapter->port[pidx];
145
146 /*
147 * If the port is disabled or the current recorded "link up"
148 * status matches the new status, just return.
149 */
150 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
151 return;
152
153 /*
154 * Tell the OS that the link status has changed and print a short
155 * informative message on the console about the event.
156 */
157 if (link_ok) {
158 const char *s;
159 const char *fc;
160 const struct port_info *pi = netdev_priv(dev);
161
162 netif_carrier_on(dev);
163
164 switch (pi->link_cfg.speed) {
165 case SPEED_10000:
166 s = "10Gbps";
167 break;
168
169 case SPEED_1000:
170 s = "1000Mbps";
171 break;
172
173 case SPEED_100:
174 s = "100Mbps";
175 break;
176
177 default:
178 s = "unknown";
179 break;
180 }
181
182 switch (pi->link_cfg.fc) {
183 case PAUSE_RX:
184 fc = "RX";
185 break;
186
187 case PAUSE_TX:
188 fc = "TX";
189 break;
190
191 case PAUSE_RX|PAUSE_TX:
192 fc = "RX/TX";
193 break;
194
195 default:
196 fc = "no";
197 break;
198 }
199
200 printk(KERN_INFO "%s: link up, %s, full-duplex, %s PAUSE\n",
201 dev->name, s, fc);
202 } else {
203 netif_carrier_off(dev);
204 printk(KERN_INFO "%s: link down\n", dev->name);
205 }
206}
207
208/*
209 * Net device operations.
210 * ======================
211 */
212
213/*
214 * Record our new VLAN Group and enable/disable hardware VLAN Tag extraction
215 * based on whether the specified VLAN Group pointer is NULL or not.
216 */
217static void cxgb4vf_vlan_rx_register(struct net_device *dev,
218 struct vlan_group *grp)
219{
220 struct port_info *pi = netdev_priv(dev);
221
222 pi->vlan_grp = grp;
223 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1, grp != NULL, 0);
224}
225
226/*
227 * Perform the MAC and PHY actions needed to enable a "port" (Virtual
228 * Interface).
229 */
230static int link_start(struct net_device *dev)
231{
232 int ret;
233 struct port_info *pi = netdev_priv(dev);
234
235 /*
236 * We do not set address filters and promiscuity here, the stack does
237 * that step explicitly.
238 */
239 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, -1,
240 true);
241 if (ret == 0) {
242 ret = t4vf_change_mac(pi->adapter, pi->viid,
243 pi->xact_addr_filt, dev->dev_addr, true);
244 if (ret >= 0) {
245 pi->xact_addr_filt = ret;
246 ret = 0;
247 }
248 }
249
250 /*
251 * We don't need to actually "start the link" itself since the
252 * firmware will do that for us when the first Virtual Interface
253 * is enabled on a port.
254 */
255 if (ret == 0)
256 ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true);
257 return ret;
258}
259
260/*
261 * Name the MSI-X interrupts.
262 */
263static void name_msix_vecs(struct adapter *adapter)
264{
265 int namelen = sizeof(adapter->msix_info[0].desc) - 1;
266 int pidx;
267
268 /*
269 * Firmware events.
270 */
271 snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
272 "%s-FWeventq", adapter->name);
273 adapter->msix_info[MSIX_FW].desc[namelen] = 0;
274
275 /*
276 * Ethernet queues.
277 */
278 for_each_port(adapter, pidx) {
279 struct net_device *dev = adapter->port[pidx];
280 const struct port_info *pi = netdev_priv(dev);
281 int qs, msi;
282
caedda35 283 for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) {
be839e39
CL
284 snprintf(adapter->msix_info[msi].desc, namelen,
285 "%s-%d", dev->name, qs);
286 adapter->msix_info[msi].desc[namelen] = 0;
287 }
288 }
289}
290
291/*
292 * Request all of our MSI-X resources.
293 */
294static int request_msix_queue_irqs(struct adapter *adapter)
295{
296 struct sge *s = &adapter->sge;
297 int rxq, msi, err;
298
299 /*
300 * Firmware events.
301 */
302 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
303 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
304 if (err)
305 return err;
306
307 /*
308 * Ethernet queues.
309 */
caedda35 310 msi = MSIX_IQFLINT;
be839e39
CL
311 for_each_ethrxq(s, rxq) {
312 err = request_irq(adapter->msix_info[msi].vec,
313 t4vf_sge_intr_msix, 0,
314 adapter->msix_info[msi].desc,
315 &s->ethrxq[rxq].rspq);
316 if (err)
317 goto err_free_irqs;
318 msi++;
319 }
320 return 0;
321
322err_free_irqs:
323 while (--rxq >= 0)
324 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
325 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
326 return err;
327}
328
329/*
330 * Free our MSI-X resources.
331 */
332static void free_msix_queue_irqs(struct adapter *adapter)
333{
334 struct sge *s = &adapter->sge;
335 int rxq, msi;
336
337 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
caedda35 338 msi = MSIX_IQFLINT;
be839e39
CL
339 for_each_ethrxq(s, rxq)
340 free_irq(adapter->msix_info[msi++].vec,
341 &s->ethrxq[rxq].rspq);
342}
343
344/*
345 * Turn on NAPI and start up interrupts on a response queue.
346 */
347static void qenable(struct sge_rspq *rspq)
348{
349 napi_enable(&rspq->napi);
350
351 /*
352 * 0-increment the Going To Sleep register to start the timer and
353 * enable interrupts.
354 */
355 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
356 CIDXINC(0) |
357 SEINTARM(rspq->intr_params) |
358 INGRESSQID(rspq->cntxt_id));
359}
360
361/*
362 * Enable NAPI scheduling and interrupt generation for all Receive Queues.
363 */
364static void enable_rx(struct adapter *adapter)
365{
366 int rxq;
367 struct sge *s = &adapter->sge;
368
369 for_each_ethrxq(s, rxq)
370 qenable(&s->ethrxq[rxq].rspq);
371 qenable(&s->fw_evtq);
372
373 /*
374 * The interrupt queue doesn't use NAPI so we do the 0-increment of
375 * its Going To Sleep register here to get it started.
376 */
377 if (adapter->flags & USING_MSI)
378 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
379 CIDXINC(0) |
380 SEINTARM(s->intrq.intr_params) |
381 INGRESSQID(s->intrq.cntxt_id));
382
383}
384
385/*
386 * Wait until all NAPI handlers are descheduled.
387 */
388static void quiesce_rx(struct adapter *adapter)
389{
390 struct sge *s = &adapter->sge;
391 int rxq;
392
393 for_each_ethrxq(s, rxq)
394 napi_disable(&s->ethrxq[rxq].rspq.napi);
395 napi_disable(&s->fw_evtq.napi);
396}
397
398/*
399 * Response queue handler for the firmware event queue.
400 */
401static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
402 const struct pkt_gl *gl)
403{
404 /*
405 * Extract response opcode and get pointer to CPL message body.
406 */
407 struct adapter *adapter = rspq->adapter;
408 u8 opcode = ((const struct rss_header *)rsp)->opcode;
409 void *cpl = (void *)(rsp + 1);
410
411 switch (opcode) {
412 case CPL_FW6_MSG: {
413 /*
414 * We've received an asynchronous message from the firmware.
415 */
416 const struct cpl_fw6_msg *fw_msg = cpl;
417 if (fw_msg->type == FW6_TYPE_CMD_RPL)
418 t4vf_handle_fw_rpl(adapter, fw_msg->data);
419 break;
420 }
421
422 case CPL_SGE_EGR_UPDATE: {
423 /*
7f9dd2fa
CL
424 * We've received an Egress Queue Status Update message. We
425 * get these, if the SGE is configured to send these when the
426 * firmware passes certain points in processing our TX
427 * Ethernet Queue or if we make an explicit request for one.
428 * We use these updates to determine when we may need to
429 * restart a TX Ethernet Queue which was stopped for lack of
430 * free TX Queue Descriptors ...
be839e39
CL
431 */
432 const struct cpl_sge_egr_update *p = (void *)cpl;
433 unsigned int qid = EGR_QID(be32_to_cpu(p->opcode_qid));
434 struct sge *s = &adapter->sge;
435 struct sge_txq *tq;
436 struct sge_eth_txq *txq;
437 unsigned int eq_idx;
be839e39
CL
438
439 /*
440 * Perform sanity checking on the Queue ID to make sure it
441 * really refers to one of our TX Ethernet Egress Queues which
442 * is active and matches the queue's ID. None of these error
443 * conditions should ever happen so we may want to either make
444 * them fatal and/or conditionalized under DEBUG.
445 */
446 eq_idx = EQ_IDX(s, qid);
447 if (unlikely(eq_idx >= MAX_EGRQ)) {
448 dev_err(adapter->pdev_dev,
449 "Egress Update QID %d out of range\n", qid);
450 break;
451 }
452 tq = s->egr_map[eq_idx];
453 if (unlikely(tq == NULL)) {
454 dev_err(adapter->pdev_dev,
455 "Egress Update QID %d TXQ=NULL\n", qid);
456 break;
457 }
458 txq = container_of(tq, struct sge_eth_txq, q);
459 if (unlikely(tq->abs_id != qid)) {
460 dev_err(adapter->pdev_dev,
461 "Egress Update QID %d refers to TXQ %d\n",
462 qid, tq->abs_id);
463 break;
464 }
465
be839e39
CL
466 /*
467 * Restart a stopped TX Queue which has less than half of its
468 * TX ring in use ...
469 */
470 txq->q.restarts++;
471 netif_tx_wake_queue(txq->txq);
472 break;
473 }
474
475 default:
476 dev_err(adapter->pdev_dev,
477 "unexpected CPL %#x on FW event queue\n", opcode);
478 }
479
480 return 0;
481}
482
483/*
484 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues
485 * to use and initializes them. We support multiple "Queue Sets" per port if
486 * we have MSI-X, otherwise just one queue set per port.
487 */
488static int setup_sge_queues(struct adapter *adapter)
489{
490 struct sge *s = &adapter->sge;
491 int err, pidx, msix;
492
493 /*
494 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
495 * state.
496 */
497 bitmap_zero(s->starving_fl, MAX_EGRQ);
498
499 /*
500 * If we're using MSI interrupt mode we need to set up a "forwarded
501 * interrupt" queue which we'll set up with our MSI vector. The rest
502 * of the ingress queues will be set up to forward their interrupts to
503 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses
504 * the intrq's queue ID as the interrupt forwarding queue for the
505 * subsequent calls ...
506 */
507 if (adapter->flags & USING_MSI) {
508 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
509 adapter->port[0], 0, NULL, NULL);
510 if (err)
511 goto err_free_queues;
512 }
513
514 /*
515 * Allocate our ingress queue for asynchronous firmware messages.
516 */
517 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
518 MSIX_FW, NULL, fwevtq_handler);
519 if (err)
520 goto err_free_queues;
521
522 /*
523 * Allocate each "port"'s initial Queue Sets. These can be changed
524 * later on ... up to the point where any interface on the adapter is
525 * brought up at which point lots of things get nailed down
526 * permanently ...
527 */
caedda35 528 msix = MSIX_IQFLINT;
be839e39
CL
529 for_each_port(adapter, pidx) {
530 struct net_device *dev = adapter->port[pidx];
531 struct port_info *pi = netdev_priv(dev);
532 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
533 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
be839e39
CL
534 int qs;
535
c8639a82 536 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
be839e39
CL
537 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
538 dev, msix++,
539 &rxq->fl, t4vf_ethrx_handler);
540 if (err)
541 goto err_free_queues;
542
543 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
544 netdev_get_tx_queue(dev, qs),
545 s->fw_evtq.cntxt_id);
546 if (err)
547 goto err_free_queues;
548
549 rxq->rspq.idx = qs;
550 memset(&rxq->stats, 0, sizeof(rxq->stats));
551 }
552 }
553
554 /*
555 * Create the reverse mappings for the queues.
556 */
557 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
558 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
559 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
560 for_each_port(adapter, pidx) {
561 struct net_device *dev = adapter->port[pidx];
562 struct port_info *pi = netdev_priv(dev);
563 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
564 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
be839e39
CL
565 int qs;
566
c8639a82 567 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
be839e39
CL
568 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
569 EQ_MAP(s, txq->q.abs_id) = &txq->q;
570
571 /*
572 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
573 * for Free Lists but since all of the Egress Queues
574 * (including Free Lists) have Relative Queue IDs
575 * which are computed as Absolute - Base Queue ID, we
576 * can synthesize the Absolute Queue IDs for the Free
577 * Lists. This is useful for debugging purposes when
578 * we want to dump Queue Contexts via the PF Driver.
579 */
580 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
581 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
582 }
583 }
584 return 0;
585
586err_free_queues:
587 t4vf_free_sge_resources(adapter);
588 return err;
589}
590
591/*
592 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
593 * queues. We configure the RSS CPU lookup table to distribute to the number
594 * of HW receive queues, and the response queue lookup table to narrow that
595 * down to the response queues actually configured for each "port" (Virtual
596 * Interface). We always configure the RSS mapping for all ports since the
597 * mapping table has plenty of entries.
598 */
599static int setup_rss(struct adapter *adapter)
600{
601 int pidx;
602
603 for_each_port(adapter, pidx) {
604 struct port_info *pi = adap2pinfo(adapter, pidx);
605 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
606 u16 rss[MAX_PORT_QSETS];
607 int qs, err;
608
609 for (qs = 0; qs < pi->nqsets; qs++)
610 rss[qs] = rxq[qs].rspq.abs_id;
611
612 err = t4vf_config_rss_range(adapter, pi->viid,
613 0, pi->rss_size, rss, pi->nqsets);
614 if (err)
615 return err;
616
617 /*
618 * Perform Global RSS Mode-specific initialization.
619 */
620 switch (adapter->params.rss.mode) {
621 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
622 /*
623 * If Tunnel All Lookup isn't specified in the global
624 * RSS Configuration, then we need to specify a
625 * default Ingress Queue for any ingress packets which
626 * aren't hashed. We'll use our first ingress queue
627 * ...
628 */
629 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
630 union rss_vi_config config;
631 err = t4vf_read_rss_vi_config(adapter,
632 pi->viid,
633 &config);
634 if (err)
635 return err;
636 config.basicvirtual.defaultq =
637 rxq[0].rspq.abs_id;
638 err = t4vf_write_rss_vi_config(adapter,
639 pi->viid,
640 &config);
641 if (err)
642 return err;
643 }
644 break;
645 }
646 }
647
648 return 0;
649}
650
651/*
652 * Bring the adapter up. Called whenever we go from no "ports" open to having
653 * one open. This function performs the actions necessary to make an adapter
654 * operational, such as completing the initialization of HW modules, and
655 * enabling interrupts. Must be called with the rtnl lock held. (Note that
656 * this is called "cxgb_up" in the PF Driver.)
657 */
658static int adapter_up(struct adapter *adapter)
659{
660 int err;
661
662 /*
663 * If this is the first time we've been called, perform basic
664 * adapter setup. Once we've done this, many of our adapter
665 * parameters can no longer be changed ...
666 */
667 if ((adapter->flags & FULL_INIT_DONE) == 0) {
668 err = setup_sge_queues(adapter);
669 if (err)
670 return err;
671 err = setup_rss(adapter);
672 if (err) {
673 t4vf_free_sge_resources(adapter);
674 return err;
675 }
676
677 if (adapter->flags & USING_MSIX)
678 name_msix_vecs(adapter);
679 adapter->flags |= FULL_INIT_DONE;
680 }
681
682 /*
683 * Acquire our interrupt resources. We only support MSI-X and MSI.
684 */
685 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
686 if (adapter->flags & USING_MSIX)
687 err = request_msix_queue_irqs(adapter);
688 else
689 err = request_irq(adapter->pdev->irq,
690 t4vf_intr_handler(adapter), 0,
691 adapter->name, adapter);
692 if (err) {
693 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
694 err);
695 return err;
696 }
697
698 /*
699 * Enable NAPI ingress processing and return success.
700 */
701 enable_rx(adapter);
702 t4vf_sge_start(adapter);
703 return 0;
704}
705
706/*
707 * Bring the adapter down. Called whenever the last "port" (Virtual
708 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF
709 * Driver.)
710 */
711static void adapter_down(struct adapter *adapter)
712{
713 /*
714 * Free interrupt resources.
715 */
716 if (adapter->flags & USING_MSIX)
717 free_msix_queue_irqs(adapter);
718 else
719 free_irq(adapter->pdev->irq, adapter);
720
721 /*
722 * Wait for NAPI handlers to finish.
723 */
724 quiesce_rx(adapter);
725}
726
727/*
728 * Start up a net device.
729 */
730static int cxgb4vf_open(struct net_device *dev)
731{
732 int err;
733 struct port_info *pi = netdev_priv(dev);
734 struct adapter *adapter = pi->adapter;
735
736 /*
737 * If this is the first interface that we're opening on the "adapter",
738 * bring the "adapter" up now.
739 */
740 if (adapter->open_device_map == 0) {
741 err = adapter_up(adapter);
742 if (err)
743 return err;
744 }
745
746 /*
747 * Note that this interface is up and start everything up ...
748 */
003ab674
BH
749 netif_set_real_num_tx_queues(dev, pi->nqsets);
750 err = netif_set_real_num_rx_queues(dev, pi->nqsets);
751 if (err)
752 return err;
be839e39 753 set_bit(pi->port_id, &adapter->open_device_map);
e7a3795f
CL
754 err = link_start(dev);
755 if (err)
756 return err;
be839e39
CL
757 netif_tx_start_all_queues(dev);
758 return 0;
759}
760
761/*
762 * Shut down a net device. This routine is called "cxgb_close" in the PF
763 * Driver ...
764 */
765static int cxgb4vf_stop(struct net_device *dev)
766{
767 int ret;
768 struct port_info *pi = netdev_priv(dev);
769 struct adapter *adapter = pi->adapter;
770
771 netif_tx_stop_all_queues(dev);
772 netif_carrier_off(dev);
773 ret = t4vf_enable_vi(adapter, pi->viid, false, false);
774 pi->link_cfg.link_ok = 0;
775
776 clear_bit(pi->port_id, &adapter->open_device_map);
777 if (adapter->open_device_map == 0)
778 adapter_down(adapter);
779 return 0;
780}
781
782/*
783 * Translate our basic statistics into the standard "ifconfig" statistics.
784 */
785static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
786{
787 struct t4vf_port_stats stats;
788 struct port_info *pi = netdev2pinfo(dev);
789 struct adapter *adapter = pi->adapter;
790 struct net_device_stats *ns = &dev->stats;
791 int err;
792
793 spin_lock(&adapter->stats_lock);
794 err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
795 spin_unlock(&adapter->stats_lock);
796
797 memset(ns, 0, sizeof(*ns));
798 if (err)
799 return ns;
800
801 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
802 stats.tx_ucast_bytes + stats.tx_offload_bytes);
803 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
804 stats.tx_ucast_frames + stats.tx_offload_frames);
805 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
806 stats.rx_ucast_bytes);
807 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
808 stats.rx_ucast_frames);
809 ns->multicast = stats.rx_mcast_frames;
810 ns->tx_errors = stats.tx_drop_frames;
811 ns->rx_errors = stats.rx_err_frames;
812
813 return ns;
814}
815
816/*
42eb59d3
CL
817 * Collect up to maxaddrs worth of a netdevice's unicast addresses, starting
818 * at a specified offset within the list, into an array of addrss pointers and
819 * return the number collected.
be839e39 820 */
42eb59d3
CL
821static inline unsigned int collect_netdev_uc_list_addrs(const struct net_device *dev,
822 const u8 **addr,
823 unsigned int offset,
824 unsigned int maxaddrs)
be839e39 825{
42eb59d3 826 unsigned int index = 0;
be839e39
CL
827 unsigned int naddr = 0;
828 const struct netdev_hw_addr *ha;
829
42eb59d3
CL
830 for_each_dev_addr(dev, ha)
831 if (index++ >= offset) {
832 addr[naddr++] = ha->addr;
833 if (naddr >= maxaddrs)
834 break;
835 }
be839e39
CL
836 return naddr;
837}
838
839/*
42eb59d3
CL
840 * Collect up to maxaddrs worth of a netdevice's multicast addresses, starting
841 * at a specified offset within the list, into an array of addrss pointers and
842 * return the number collected.
be839e39 843 */
42eb59d3
CL
844static inline unsigned int collect_netdev_mc_list_addrs(const struct net_device *dev,
845 const u8 **addr,
846 unsigned int offset,
847 unsigned int maxaddrs)
be839e39 848{
42eb59d3 849 unsigned int index = 0;
be839e39
CL
850 unsigned int naddr = 0;
851 const struct netdev_hw_addr *ha;
852
42eb59d3
CL
853 netdev_for_each_mc_addr(ha, dev)
854 if (index++ >= offset) {
855 addr[naddr++] = ha->addr;
856 if (naddr >= maxaddrs)
857 break;
858 }
be839e39
CL
859 return naddr;
860}
861
862/*
863 * Configure the exact and hash address filters to handle a port's multicast
864 * and secondary unicast MAC addresses.
865 */
866static int set_addr_filters(const struct net_device *dev, bool sleep)
867{
868 u64 mhash = 0;
869 u64 uhash = 0;
870 bool free = true;
42eb59d3 871 unsigned int offset, naddr;
be839e39 872 const u8 *addr[7];
42eb59d3 873 int ret;
be839e39
CL
874 const struct port_info *pi = netdev_priv(dev);
875
876 /* first do the secondary unicast addresses */
42eb59d3
CL
877 for (offset = 0; ; offset += naddr) {
878 naddr = collect_netdev_uc_list_addrs(dev, addr, offset,
879 ARRAY_SIZE(addr));
880 if (naddr == 0)
881 break;
882
be839e39 883 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
42eb59d3 884 naddr, addr, NULL, &uhash, sleep);
be839e39
CL
885 if (ret < 0)
886 return ret;
887
888 free = false;
889 }
890
891 /* next set up the multicast addresses */
42eb59d3
CL
892 for (offset = 0; ; offset += naddr) {
893 naddr = collect_netdev_mc_list_addrs(dev, addr, offset,
894 ARRAY_SIZE(addr));
895 if (naddr == 0)
896 break;
897
be839e39 898 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
42eb59d3 899 naddr, addr, NULL, &mhash, sleep);
be839e39
CL
900 if (ret < 0)
901 return ret;
42eb59d3 902 free = false;
be839e39
CL
903 }
904
905 return t4vf_set_addr_hash(pi->adapter, pi->viid, uhash != 0,
906 uhash | mhash, sleep);
907}
908
909/*
910 * Set RX properties of a port, such as promiscruity, address filters, and MTU.
911 * If @mtu is -1 it is left unchanged.
912 */
913static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
914{
915 int ret;
916 struct port_info *pi = netdev_priv(dev);
917
918 ret = set_addr_filters(dev, sleep_ok);
919 if (ret == 0)
920 ret = t4vf_set_rxmode(pi->adapter, pi->viid, -1,
921 (dev->flags & IFF_PROMISC) != 0,
922 (dev->flags & IFF_ALLMULTI) != 0,
923 1, -1, sleep_ok);
924 return ret;
925}
926
927/*
928 * Set the current receive modes on the device.
929 */
930static void cxgb4vf_set_rxmode(struct net_device *dev)
931{
932 /* unfortunately we can't return errors to the stack */
933 set_rxmode(dev, -1, false);
934}
935
936/*
937 * Find the entry in the interrupt holdoff timer value array which comes
938 * closest to the specified interrupt holdoff value.
939 */
940static int closest_timer(const struct sge *s, int us)
941{
942 int i, timer_idx = 0, min_delta = INT_MAX;
943
944 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
945 int delta = us - s->timer_val[i];
946 if (delta < 0)
947 delta = -delta;
948 if (delta < min_delta) {
949 min_delta = delta;
950 timer_idx = i;
951 }
952 }
953 return timer_idx;
954}
955
956static int closest_thres(const struct sge *s, int thres)
957{
958 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
959
960 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
961 delta = thres - s->counter_val[i];
962 if (delta < 0)
963 delta = -delta;
964 if (delta < min_delta) {
965 min_delta = delta;
966 pktcnt_idx = i;
967 }
968 }
969 return pktcnt_idx;
970}
971
972/*
973 * Return a queue's interrupt hold-off time in us. 0 means no timer.
974 */
975static unsigned int qtimer_val(const struct adapter *adapter,
976 const struct sge_rspq *rspq)
977{
978 unsigned int timer_idx = QINTR_TIMER_IDX_GET(rspq->intr_params);
979
980 return timer_idx < SGE_NTIMERS
981 ? adapter->sge.timer_val[timer_idx]
982 : 0;
983}
984
985/**
986 * set_rxq_intr_params - set a queue's interrupt holdoff parameters
987 * @adapter: the adapter
988 * @rspq: the RX response queue
989 * @us: the hold-off time in us, or 0 to disable timer
990 * @cnt: the hold-off packet count, or 0 to disable counter
991 *
992 * Sets an RX response queue's interrupt hold-off time and packet count.
993 * At least one of the two needs to be enabled for the queue to generate
994 * interrupts.
995 */
996static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
997 unsigned int us, unsigned int cnt)
998{
999 unsigned int timer_idx;
1000
1001 /*
1002 * If both the interrupt holdoff timer and count are specified as
1003 * zero, default to a holdoff count of 1 ...
1004 */
1005 if ((us | cnt) == 0)
1006 cnt = 1;
1007
1008 /*
1009 * If an interrupt holdoff count has been specified, then find the
1010 * closest configured holdoff count and use that. If the response
1011 * queue has already been created, then update its queue context
1012 * parameters ...
1013 */
1014 if (cnt) {
1015 int err;
1016 u32 v, pktcnt_idx;
1017
1018 pktcnt_idx = closest_thres(&adapter->sge, cnt);
1019 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1020 v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1021 FW_PARAMS_PARAM_X(
1022 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1023 FW_PARAMS_PARAM_YZ(rspq->cntxt_id);
1024 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1025 if (err)
1026 return err;
1027 }
1028 rspq->pktcnt_idx = pktcnt_idx;
1029 }
1030
1031 /*
1032 * Compute the closest holdoff timer index from the supplied holdoff
1033 * timer value.
1034 */
1035 timer_idx = (us == 0
1036 ? SGE_TIMER_RSTRT_CNTR
1037 : closest_timer(&adapter->sge, us));
1038
1039 /*
1040 * Update the response queue's interrupt coalescing parameters and
1041 * return success.
1042 */
1043 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
1044 (cnt > 0 ? QINTR_CNT_EN : 0));
1045 return 0;
1046}
1047
1048/*
1049 * Return a version number to identify the type of adapter. The scheme is:
1050 * - bits 0..9: chip version
1051 * - bits 10..15: chip revision
1052 */
1053static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1054{
1055 /*
1056 * Chip version 4, revision 0x3f (cxgb4vf).
1057 */
1058 return 4 | (0x3f << 10);
1059}
1060
1061/*
1062 * Execute the specified ioctl command.
1063 */
1064static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1065{
1066 int ret = 0;
1067
1068 switch (cmd) {
1069 /*
1070 * The VF Driver doesn't have access to any of the other
1071 * common Ethernet device ioctl()'s (like reading/writing
1072 * PHY registers, etc.
1073 */
1074
1075 default:
1076 ret = -EOPNOTSUPP;
1077 break;
1078 }
1079 return ret;
1080}
1081
1082/*
1083 * Change the device's MTU.
1084 */
1085static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1086{
1087 int ret;
1088 struct port_info *pi = netdev_priv(dev);
1089
1090 /* accommodate SACK */
1091 if (new_mtu < 81)
1092 return -EINVAL;
1093
1094 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1095 -1, -1, -1, -1, true);
1096 if (!ret)
1097 dev->mtu = new_mtu;
1098 return ret;
1099}
1100
1101/*
1102 * Change the devices MAC address.
1103 */
1104static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1105{
1106 int ret;
1107 struct sockaddr *addr = _addr;
1108 struct port_info *pi = netdev_priv(dev);
1109
1110 if (!is_valid_ether_addr(addr->sa_data))
1111 return -EINVAL;
1112
1113 ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt,
1114 addr->sa_data, true);
1115 if (ret < 0)
1116 return ret;
1117
1118 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1119 pi->xact_addr_filt = ret;
1120 return 0;
1121}
1122
be839e39
CL
1123#ifdef CONFIG_NET_POLL_CONTROLLER
1124/*
1125 * Poll all of our receive queues. This is called outside of normal interrupt
1126 * context.
1127 */
1128static void cxgb4vf_poll_controller(struct net_device *dev)
1129{
1130 struct port_info *pi = netdev_priv(dev);
1131 struct adapter *adapter = pi->adapter;
1132
1133 if (adapter->flags & USING_MSIX) {
1134 struct sge_eth_rxq *rxq;
1135 int nqsets;
1136
1137 rxq = &adapter->sge.ethrxq[pi->first_qset];
1138 for (nqsets = pi->nqsets; nqsets; nqsets--) {
1139 t4vf_sge_intr_msix(0, &rxq->rspq);
1140 rxq++;
1141 }
1142 } else
1143 t4vf_intr_handler(adapter)(0, adapter);
1144}
1145#endif
1146
1147/*
1148 * Ethtool operations.
1149 * ===================
1150 *
1151 * Note that we don't support any ethtool operations which change the physical
1152 * state of the port to which we're linked.
1153 */
1154
1155/*
1156 * Return current port link settings.
1157 */
1158static int cxgb4vf_get_settings(struct net_device *dev,
1159 struct ethtool_cmd *cmd)
1160{
1161 const struct port_info *pi = netdev_priv(dev);
1162
1163 cmd->supported = pi->link_cfg.supported;
1164 cmd->advertising = pi->link_cfg.advertising;
1165 cmd->speed = netif_carrier_ok(dev) ? pi->link_cfg.speed : -1;
1166 cmd->duplex = DUPLEX_FULL;
1167
1168 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1169 cmd->phy_address = pi->port_id;
1170 cmd->transceiver = XCVR_EXTERNAL;
1171 cmd->autoneg = pi->link_cfg.autoneg;
1172 cmd->maxtxpkt = 0;
1173 cmd->maxrxpkt = 0;
1174 return 0;
1175}
1176
1177/*
1178 * Return our driver information.
1179 */
1180static void cxgb4vf_get_drvinfo(struct net_device *dev,
1181 struct ethtool_drvinfo *drvinfo)
1182{
1183 struct adapter *adapter = netdev2adap(dev);
1184
1185 strcpy(drvinfo->driver, KBUILD_MODNAME);
1186 strcpy(drvinfo->version, DRV_VERSION);
1187 strcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)));
1188 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1189 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1190 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.fwrev),
1191 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.fwrev),
1192 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.fwrev),
1193 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.fwrev),
1194 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.tprev),
1195 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.tprev),
1196 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.tprev),
1197 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.tprev));
1198}
1199
1200/*
1201 * Return current adapter message level.
1202 */
1203static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1204{
1205 return netdev2adap(dev)->msg_enable;
1206}
1207
1208/*
1209 * Set current adapter message level.
1210 */
1211static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1212{
1213 netdev2adap(dev)->msg_enable = msglevel;
1214}
1215
1216/*
1217 * Return the device's current Queue Set ring size parameters along with the
1218 * allowed maximum values. Since ethtool doesn't understand the concept of
1219 * multi-queue devices, we just return the current values associated with the
1220 * first Queue Set.
1221 */
1222static void cxgb4vf_get_ringparam(struct net_device *dev,
1223 struct ethtool_ringparam *rp)
1224{
1225 const struct port_info *pi = netdev_priv(dev);
1226 const struct sge *s = &pi->adapter->sge;
1227
1228 rp->rx_max_pending = MAX_RX_BUFFERS;
1229 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1230 rp->rx_jumbo_max_pending = 0;
1231 rp->tx_max_pending = MAX_TXQ_ENTRIES;
1232
1233 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1234 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1235 rp->rx_jumbo_pending = 0;
1236 rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1237}
1238
1239/*
1240 * Set the Queue Set ring size parameters for the device. Again, since
1241 * ethtool doesn't allow for the concept of multiple queues per device, we'll
1242 * apply these new values across all of the Queue Sets associated with the
1243 * device -- after vetting them of course!
1244 */
1245static int cxgb4vf_set_ringparam(struct net_device *dev,
1246 struct ethtool_ringparam *rp)
1247{
1248 const struct port_info *pi = netdev_priv(dev);
1249 struct adapter *adapter = pi->adapter;
1250 struct sge *s = &adapter->sge;
1251 int qs;
1252
1253 if (rp->rx_pending > MAX_RX_BUFFERS ||
1254 rp->rx_jumbo_pending ||
1255 rp->tx_pending > MAX_TXQ_ENTRIES ||
1256 rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1257 rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1258 rp->rx_pending < MIN_FL_ENTRIES ||
1259 rp->tx_pending < MIN_TXQ_ENTRIES)
1260 return -EINVAL;
1261
1262 if (adapter->flags & FULL_INIT_DONE)
1263 return -EBUSY;
1264
1265 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1266 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1267 s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1268 s->ethtxq[qs].q.size = rp->tx_pending;
1269 }
1270 return 0;
1271}
1272
1273/*
1274 * Return the interrupt holdoff timer and count for the first Queue Set on the
1275 * device. Our extension ioctl() (the cxgbtool interface) allows the
1276 * interrupt holdoff timer to be read on all of the device's Queue Sets.
1277 */
1278static int cxgb4vf_get_coalesce(struct net_device *dev,
1279 struct ethtool_coalesce *coalesce)
1280{
1281 const struct port_info *pi = netdev_priv(dev);
1282 const struct adapter *adapter = pi->adapter;
1283 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1284
1285 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1286 coalesce->rx_max_coalesced_frames =
1287 ((rspq->intr_params & QINTR_CNT_EN)
1288 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1289 : 0);
1290 return 0;
1291}
1292
1293/*
1294 * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1295 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set
1296 * the interrupt holdoff timer on any of the device's Queue Sets.
1297 */
1298static int cxgb4vf_set_coalesce(struct net_device *dev,
1299 struct ethtool_coalesce *coalesce)
1300{
1301 const struct port_info *pi = netdev_priv(dev);
1302 struct adapter *adapter = pi->adapter;
1303
1304 return set_rxq_intr_params(adapter,
1305 &adapter->sge.ethrxq[pi->first_qset].rspq,
1306 coalesce->rx_coalesce_usecs,
1307 coalesce->rx_max_coalesced_frames);
1308}
1309
1310/*
1311 * Report current port link pause parameter settings.
1312 */
1313static void cxgb4vf_get_pauseparam(struct net_device *dev,
1314 struct ethtool_pauseparam *pauseparam)
1315{
1316 struct port_info *pi = netdev_priv(dev);
1317
1318 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1319 pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0;
1320 pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0;
1321}
1322
1323/*
1324 * Return whether RX Checksum Offloading is currently enabled for the device.
1325 */
1326static u32 cxgb4vf_get_rx_csum(struct net_device *dev)
1327{
1328 struct port_info *pi = netdev_priv(dev);
1329
1330 return (pi->rx_offload & RX_CSO) != 0;
1331}
1332
1333/*
1334 * Turn RX Checksum Offloading on or off for the device.
1335 */
1336static int cxgb4vf_set_rx_csum(struct net_device *dev, u32 csum)
1337{
1338 struct port_info *pi = netdev_priv(dev);
1339
1340 if (csum)
1341 pi->rx_offload |= RX_CSO;
1342 else
1343 pi->rx_offload &= ~RX_CSO;
1344 return 0;
1345}
1346
1347/*
1348 * Identify the port by blinking the port's LED.
1349 */
1350static int cxgb4vf_phys_id(struct net_device *dev, u32 id)
1351{
1352 struct port_info *pi = netdev_priv(dev);
1353
1354 return t4vf_identify_port(pi->adapter, pi->viid, 5);
1355}
1356
1357/*
1358 * Port stats maintained per queue of the port.
1359 */
1360struct queue_port_stats {
1361 u64 tso;
1362 u64 tx_csum;
1363 u64 rx_csum;
1364 u64 vlan_ex;
1365 u64 vlan_ins;
f12fe353
CL
1366 u64 lro_pkts;
1367 u64 lro_merged;
be839e39
CL
1368};
1369
1370/*
1371 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that
1372 * these need to match the order of statistics returned by
1373 * t4vf_get_port_stats().
1374 */
1375static const char stats_strings[][ETH_GSTRING_LEN] = {
1376 /*
1377 * These must match the layout of the t4vf_port_stats structure.
1378 */
1379 "TxBroadcastBytes ",
1380 "TxBroadcastFrames ",
1381 "TxMulticastBytes ",
1382 "TxMulticastFrames ",
1383 "TxUnicastBytes ",
1384 "TxUnicastFrames ",
1385 "TxDroppedFrames ",
1386 "TxOffloadBytes ",
1387 "TxOffloadFrames ",
1388 "RxBroadcastBytes ",
1389 "RxBroadcastFrames ",
1390 "RxMulticastBytes ",
1391 "RxMulticastFrames ",
1392 "RxUnicastBytes ",
1393 "RxUnicastFrames ",
1394 "RxErrorFrames ",
1395
1396 /*
1397 * These are accumulated per-queue statistics and must match the
1398 * order of the fields in the queue_port_stats structure.
1399 */
1400 "TSO ",
1401 "TxCsumOffload ",
1402 "RxCsumGood ",
1403 "VLANextractions ",
1404 "VLANinsertions ",
f12fe353
CL
1405 "GROPackets ",
1406 "GROMerged ",
be839e39
CL
1407};
1408
1409/*
1410 * Return the number of statistics in the specified statistics set.
1411 */
1412static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1413{
1414 switch (sset) {
1415 case ETH_SS_STATS:
1416 return ARRAY_SIZE(stats_strings);
1417 default:
1418 return -EOPNOTSUPP;
1419 }
1420 /*NOTREACHED*/
1421}
1422
1423/*
1424 * Return the strings for the specified statistics set.
1425 */
1426static void cxgb4vf_get_strings(struct net_device *dev,
1427 u32 sset,
1428 u8 *data)
1429{
1430 switch (sset) {
1431 case ETH_SS_STATS:
1432 memcpy(data, stats_strings, sizeof(stats_strings));
1433 break;
1434 }
1435}
1436
1437/*
1438 * Small utility routine to accumulate queue statistics across the queues of
1439 * a "port".
1440 */
1441static void collect_sge_port_stats(const struct adapter *adapter,
1442 const struct port_info *pi,
1443 struct queue_port_stats *stats)
1444{
1445 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1446 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1447 int qs;
1448
1449 memset(stats, 0, sizeof(*stats));
1450 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1451 stats->tso += txq->tso;
1452 stats->tx_csum += txq->tx_cso;
1453 stats->rx_csum += rxq->stats.rx_cso;
1454 stats->vlan_ex += rxq->stats.vlan_ex;
1455 stats->vlan_ins += txq->vlan_ins;
f12fe353
CL
1456 stats->lro_pkts += rxq->stats.lro_pkts;
1457 stats->lro_merged += rxq->stats.lro_merged;
be839e39
CL
1458 }
1459}
1460
1461/*
1462 * Return the ETH_SS_STATS statistics set.
1463 */
1464static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1465 struct ethtool_stats *stats,
1466 u64 *data)
1467{
1468 struct port_info *pi = netdev2pinfo(dev);
1469 struct adapter *adapter = pi->adapter;
1470 int err = t4vf_get_port_stats(adapter, pi->pidx,
1471 (struct t4vf_port_stats *)data);
1472 if (err)
1473 memset(data, 0, sizeof(struct t4vf_port_stats));
1474
1475 data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1476 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1477}
1478
1479/*
1480 * Return the size of our register map.
1481 */
1482static int cxgb4vf_get_regs_len(struct net_device *dev)
1483{
1484 return T4VF_REGMAP_SIZE;
1485}
1486
1487/*
1488 * Dump a block of registers, start to end inclusive, into a buffer.
1489 */
1490static void reg_block_dump(struct adapter *adapter, void *regbuf,
1491 unsigned int start, unsigned int end)
1492{
1493 u32 *bp = regbuf + start - T4VF_REGMAP_START;
1494
1495 for ( ; start <= end; start += sizeof(u32)) {
1496 /*
1497 * Avoid reading the Mailbox Control register since that
1498 * can trigger a Mailbox Ownership Arbitration cycle and
1499 * interfere with communication with the firmware.
1500 */
1501 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1502 *bp++ = 0xffff;
1503 else
1504 *bp++ = t4_read_reg(adapter, start);
1505 }
1506}
1507
1508/*
1509 * Copy our entire register map into the provided buffer.
1510 */
1511static void cxgb4vf_get_regs(struct net_device *dev,
1512 struct ethtool_regs *regs,
1513 void *regbuf)
1514{
1515 struct adapter *adapter = netdev2adap(dev);
1516
1517 regs->version = mk_adap_vers(adapter);
1518
1519 /*
1520 * Fill in register buffer with our register map.
1521 */
1522 memset(regbuf, 0, T4VF_REGMAP_SIZE);
1523
1524 reg_block_dump(adapter, regbuf,
1525 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1526 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1527 reg_block_dump(adapter, regbuf,
1528 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1529 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1530 reg_block_dump(adapter, regbuf,
1531 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1532 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_LAST);
1533 reg_block_dump(adapter, regbuf,
1534 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1535 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1536
1537 reg_block_dump(adapter, regbuf,
1538 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1539 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1540}
1541
1542/*
1543 * Report current Wake On LAN settings.
1544 */
1545static void cxgb4vf_get_wol(struct net_device *dev,
1546 struct ethtool_wolinfo *wol)
1547{
1548 wol->supported = 0;
1549 wol->wolopts = 0;
1550 memset(&wol->sopass, 0, sizeof(wol->sopass));
1551}
1552
410989f6
CL
1553/*
1554 * TCP Segmentation Offload flags which we support.
1555 */
1556#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1557
be839e39
CL
1558/*
1559 * Set TCP Segmentation Offloading feature capabilities.
1560 */
1561static int cxgb4vf_set_tso(struct net_device *dev, u32 tso)
1562{
1563 if (tso)
410989f6 1564 dev->features |= TSO_FLAGS;
be839e39 1565 else
410989f6 1566 dev->features &= ~TSO_FLAGS;
be839e39
CL
1567 return 0;
1568}
1569
1570static struct ethtool_ops cxgb4vf_ethtool_ops = {
1571 .get_settings = cxgb4vf_get_settings,
1572 .get_drvinfo = cxgb4vf_get_drvinfo,
1573 .get_msglevel = cxgb4vf_get_msglevel,
1574 .set_msglevel = cxgb4vf_set_msglevel,
1575 .get_ringparam = cxgb4vf_get_ringparam,
1576 .set_ringparam = cxgb4vf_set_ringparam,
1577 .get_coalesce = cxgb4vf_get_coalesce,
1578 .set_coalesce = cxgb4vf_set_coalesce,
1579 .get_pauseparam = cxgb4vf_get_pauseparam,
1580 .get_rx_csum = cxgb4vf_get_rx_csum,
1581 .set_rx_csum = cxgb4vf_set_rx_csum,
1582 .set_tx_csum = ethtool_op_set_tx_ipv6_csum,
1583 .set_sg = ethtool_op_set_sg,
1584 .get_link = ethtool_op_get_link,
1585 .get_strings = cxgb4vf_get_strings,
1586 .phys_id = cxgb4vf_phys_id,
1587 .get_sset_count = cxgb4vf_get_sset_count,
1588 .get_ethtool_stats = cxgb4vf_get_ethtool_stats,
1589 .get_regs_len = cxgb4vf_get_regs_len,
1590 .get_regs = cxgb4vf_get_regs,
1591 .get_wol = cxgb4vf_get_wol,
1592 .set_tso = cxgb4vf_set_tso,
1593};
1594
1595/*
1596 * /sys/kernel/debug/cxgb4vf support code and data.
1597 * ================================================
1598 */
1599
1600/*
1601 * Show SGE Queue Set information. We display QPL Queues Sets per line.
1602 */
1603#define QPL 4
1604
1605static int sge_qinfo_show(struct seq_file *seq, void *v)
1606{
1607 struct adapter *adapter = seq->private;
1608 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1609 int qs, r = (uintptr_t)v - 1;
1610
1611 if (r)
1612 seq_putc(seq, '\n');
1613
1614 #define S3(fmt_spec, s, v) \
1615 do {\
1616 seq_printf(seq, "%-12s", s); \
1617 for (qs = 0; qs < n; ++qs) \
1618 seq_printf(seq, " %16" fmt_spec, v); \
1619 seq_putc(seq, '\n'); \
1620 } while (0)
1621 #define S(s, v) S3("s", s, v)
1622 #define T(s, v) S3("u", s, txq[qs].v)
1623 #define R(s, v) S3("u", s, rxq[qs].v)
1624
1625 if (r < eth_entries) {
1626 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1627 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1628 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1629
1630 S("QType:", "Ethernet");
1631 S("Interface:",
1632 (rxq[qs].rspq.netdev
1633 ? rxq[qs].rspq.netdev->name
1634 : "N/A"));
1635 S3("d", "Port:",
1636 (rxq[qs].rspq.netdev
1637 ? ((struct port_info *)
1638 netdev_priv(rxq[qs].rspq.netdev))->port_id
1639 : -1));
1640 T("TxQ ID:", q.abs_id);
1641 T("TxQ size:", q.size);
1642 T("TxQ inuse:", q.in_use);
1643 T("TxQ PIdx:", q.pidx);
1644 T("TxQ CIdx:", q.cidx);
1645 R("RspQ ID:", rspq.abs_id);
1646 R("RspQ size:", rspq.size);
1647 R("RspQE size:", rspq.iqe_len);
1648 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
1649 S3("u", "Intr pktcnt:",
1650 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
1651 R("RspQ CIdx:", rspq.cidx);
1652 R("RspQ Gen:", rspq.gen);
1653 R("FL ID:", fl.abs_id);
1654 R("FL size:", fl.size - MIN_FL_RESID);
1655 R("FL avail:", fl.avail);
1656 R("FL PIdx:", fl.pidx);
1657 R("FL CIdx:", fl.cidx);
1658 return 0;
1659 }
1660
1661 r -= eth_entries;
1662 if (r == 0) {
1663 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1664
1665 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
1666 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
1667 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1668 qtimer_val(adapter, evtq));
1669 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1670 adapter->sge.counter_val[evtq->pktcnt_idx]);
1671 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
1672 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
1673 } else if (r == 1) {
1674 const struct sge_rspq *intrq = &adapter->sge.intrq;
1675
1676 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
1677 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
1678 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1679 qtimer_val(adapter, intrq));
1680 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1681 adapter->sge.counter_val[intrq->pktcnt_idx]);
1682 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
1683 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
1684 }
1685
1686 #undef R
1687 #undef T
1688 #undef S
1689 #undef S3
1690
1691 return 0;
1692}
1693
1694/*
1695 * Return the number of "entries" in our "file". We group the multi-Queue
1696 * sections with QPL Queue Sets per "entry". The sections of the output are:
1697 *
1698 * Ethernet RX/TX Queue Sets
1699 * Firmware Event Queue
1700 * Forwarded Interrupt Queue (if in MSI mode)
1701 */
1702static int sge_queue_entries(const struct adapter *adapter)
1703{
1704 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1705 ((adapter->flags & USING_MSI) != 0);
1706}
1707
1708static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
1709{
1710 int entries = sge_queue_entries(seq->private);
1711
1712 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1713}
1714
1715static void sge_queue_stop(struct seq_file *seq, void *v)
1716{
1717}
1718
1719static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
1720{
1721 int entries = sge_queue_entries(seq->private);
1722
1723 ++*pos;
1724 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1725}
1726
1727static const struct seq_operations sge_qinfo_seq_ops = {
1728 .start = sge_queue_start,
1729 .next = sge_queue_next,
1730 .stop = sge_queue_stop,
1731 .show = sge_qinfo_show
1732};
1733
1734static int sge_qinfo_open(struct inode *inode, struct file *file)
1735{
1736 int res = seq_open(file, &sge_qinfo_seq_ops);
1737
1738 if (!res) {
1739 struct seq_file *seq = file->private_data;
1740 seq->private = inode->i_private;
1741 }
1742 return res;
1743}
1744
1745static const struct file_operations sge_qinfo_debugfs_fops = {
1746 .owner = THIS_MODULE,
1747 .open = sge_qinfo_open,
1748 .read = seq_read,
1749 .llseek = seq_lseek,
1750 .release = seq_release,
1751};
1752
1753/*
1754 * Show SGE Queue Set statistics. We display QPL Queues Sets per line.
1755 */
1756#define QPL 4
1757
1758static int sge_qstats_show(struct seq_file *seq, void *v)
1759{
1760 struct adapter *adapter = seq->private;
1761 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1762 int qs, r = (uintptr_t)v - 1;
1763
1764 if (r)
1765 seq_putc(seq, '\n');
1766
1767 #define S3(fmt, s, v) \
1768 do { \
1769 seq_printf(seq, "%-16s", s); \
1770 for (qs = 0; qs < n; ++qs) \
1771 seq_printf(seq, " %8" fmt, v); \
1772 seq_putc(seq, '\n'); \
1773 } while (0)
1774 #define S(s, v) S3("s", s, v)
1775
1776 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v)
1777 #define T(s, v) T3("lu", s, v)
1778
1779 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v)
1780 #define R(s, v) R3("lu", s, v)
1781
1782 if (r < eth_entries) {
1783 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1784 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1785 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1786
1787 S("QType:", "Ethernet");
1788 S("Interface:",
1789 (rxq[qs].rspq.netdev
1790 ? rxq[qs].rspq.netdev->name
1791 : "N/A"));
68dc9d36 1792 R3("u", "RspQNullInts:", rspq.unhandled_irqs);
be839e39
CL
1793 R("RxPackets:", stats.pkts);
1794 R("RxCSO:", stats.rx_cso);
1795 R("VLANxtract:", stats.vlan_ex);
1796 R("LROmerged:", stats.lro_merged);
1797 R("LROpackets:", stats.lro_pkts);
1798 R("RxDrops:", stats.rx_drops);
1799 T("TSO:", tso);
1800 T("TxCSO:", tx_cso);
1801 T("VLANins:", vlan_ins);
1802 T("TxQFull:", q.stops);
1803 T("TxQRestarts:", q.restarts);
1804 T("TxMapErr:", mapping_err);
1805 R("FLAllocErr:", fl.alloc_failed);
1806 R("FLLrgAlcErr:", fl.large_alloc_failed);
1807 R("FLStarving:", fl.starving);
1808 return 0;
1809 }
1810
1811 r -= eth_entries;
1812 if (r == 0) {
1813 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1814
1815 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
68dc9d36
CL
1816 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1817 evtq->unhandled_irqs);
be839e39
CL
1818 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
1819 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
1820 } else if (r == 1) {
1821 const struct sge_rspq *intrq = &adapter->sge.intrq;
1822
1823 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
68dc9d36
CL
1824 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1825 intrq->unhandled_irqs);
be839e39
CL
1826 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
1827 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
1828 }
1829
1830 #undef R
1831 #undef T
1832 #undef S
1833 #undef R3
1834 #undef T3
1835 #undef S3
1836
1837 return 0;
1838}
1839
1840/*
1841 * Return the number of "entries" in our "file". We group the multi-Queue
1842 * sections with QPL Queue Sets per "entry". The sections of the output are:
1843 *
1844 * Ethernet RX/TX Queue Sets
1845 * Firmware Event Queue
1846 * Forwarded Interrupt Queue (if in MSI mode)
1847 */
1848static int sge_qstats_entries(const struct adapter *adapter)
1849{
1850 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1851 ((adapter->flags & USING_MSI) != 0);
1852}
1853
1854static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
1855{
1856 int entries = sge_qstats_entries(seq->private);
1857
1858 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1859}
1860
1861static void sge_qstats_stop(struct seq_file *seq, void *v)
1862{
1863}
1864
1865static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
1866{
1867 int entries = sge_qstats_entries(seq->private);
1868
1869 (*pos)++;
1870 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1871}
1872
1873static const struct seq_operations sge_qstats_seq_ops = {
1874 .start = sge_qstats_start,
1875 .next = sge_qstats_next,
1876 .stop = sge_qstats_stop,
1877 .show = sge_qstats_show
1878};
1879
1880static int sge_qstats_open(struct inode *inode, struct file *file)
1881{
1882 int res = seq_open(file, &sge_qstats_seq_ops);
1883
1884 if (res == 0) {
1885 struct seq_file *seq = file->private_data;
1886 seq->private = inode->i_private;
1887 }
1888 return res;
1889}
1890
1891static const struct file_operations sge_qstats_proc_fops = {
1892 .owner = THIS_MODULE,
1893 .open = sge_qstats_open,
1894 .read = seq_read,
1895 .llseek = seq_lseek,
1896 .release = seq_release,
1897};
1898
1899/*
1900 * Show PCI-E SR-IOV Virtual Function Resource Limits.
1901 */
1902static int resources_show(struct seq_file *seq, void *v)
1903{
1904 struct adapter *adapter = seq->private;
1905 struct vf_resources *vfres = &adapter->params.vfres;
1906
1907 #define S(desc, fmt, var) \
1908 seq_printf(seq, "%-60s " fmt "\n", \
1909 desc " (" #var "):", vfres->var)
1910
1911 S("Virtual Interfaces", "%d", nvi);
1912 S("Egress Queues", "%d", neq);
1913 S("Ethernet Control", "%d", nethctrl);
1914 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
1915 S("Ingress Queues", "%d", niq);
1916 S("Traffic Class", "%d", tc);
1917 S("Port Access Rights Mask", "%#x", pmask);
1918 S("MAC Address Filters", "%d", nexactf);
1919 S("Firmware Command Read Capabilities", "%#x", r_caps);
1920 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
1921
1922 #undef S
1923
1924 return 0;
1925}
1926
1927static int resources_open(struct inode *inode, struct file *file)
1928{
1929 return single_open(file, resources_show, inode->i_private);
1930}
1931
1932static const struct file_operations resources_proc_fops = {
1933 .owner = THIS_MODULE,
1934 .open = resources_open,
1935 .read = seq_read,
1936 .llseek = seq_lseek,
1937 .release = single_release,
1938};
1939
1940/*
1941 * Show Virtual Interfaces.
1942 */
1943static int interfaces_show(struct seq_file *seq, void *v)
1944{
1945 if (v == SEQ_START_TOKEN) {
1946 seq_puts(seq, "Interface Port VIID\n");
1947 } else {
1948 struct adapter *adapter = seq->private;
1949 int pidx = (uintptr_t)v - 2;
1950 struct net_device *dev = adapter->port[pidx];
1951 struct port_info *pi = netdev_priv(dev);
1952
1953 seq_printf(seq, "%9s %4d %#5x\n",
1954 dev->name, pi->port_id, pi->viid);
1955 }
1956 return 0;
1957}
1958
1959static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
1960{
1961 return pos <= adapter->params.nports
1962 ? (void *)(uintptr_t)(pos + 1)
1963 : NULL;
1964}
1965
1966static void *interfaces_start(struct seq_file *seq, loff_t *pos)
1967{
1968 return *pos
1969 ? interfaces_get_idx(seq->private, *pos)
1970 : SEQ_START_TOKEN;
1971}
1972
1973static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
1974{
1975 (*pos)++;
1976 return interfaces_get_idx(seq->private, *pos);
1977}
1978
1979static void interfaces_stop(struct seq_file *seq, void *v)
1980{
1981}
1982
1983static const struct seq_operations interfaces_seq_ops = {
1984 .start = interfaces_start,
1985 .next = interfaces_next,
1986 .stop = interfaces_stop,
1987 .show = interfaces_show
1988};
1989
1990static int interfaces_open(struct inode *inode, struct file *file)
1991{
1992 int res = seq_open(file, &interfaces_seq_ops);
1993
1994 if (res == 0) {
1995 struct seq_file *seq = file->private_data;
1996 seq->private = inode->i_private;
1997 }
1998 return res;
1999}
2000
2001static const struct file_operations interfaces_proc_fops = {
2002 .owner = THIS_MODULE,
2003 .open = interfaces_open,
2004 .read = seq_read,
2005 .llseek = seq_lseek,
2006 .release = seq_release,
2007};
2008
2009/*
2010 * /sys/kernel/debugfs/cxgb4vf/ files list.
2011 */
2012struct cxgb4vf_debugfs_entry {
2013 const char *name; /* name of debugfs node */
2014 mode_t mode; /* file system mode */
2015 const struct file_operations *fops;
2016};
2017
2018static struct cxgb4vf_debugfs_entry debugfs_files[] = {
2019 { "sge_qinfo", S_IRUGO, &sge_qinfo_debugfs_fops },
2020 { "sge_qstats", S_IRUGO, &sge_qstats_proc_fops },
2021 { "resources", S_IRUGO, &resources_proc_fops },
2022 { "interfaces", S_IRUGO, &interfaces_proc_fops },
2023};
2024
2025/*
2026 * Module and device initialization and cleanup code.
2027 * ==================================================
2028 */
2029
2030/*
2031 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the
2032 * directory (debugfs_root) has already been set up.
2033 */
2034static int __devinit setup_debugfs(struct adapter *adapter)
2035{
2036 int i;
2037
2038 BUG_ON(adapter->debugfs_root == NULL);
2039
2040 /*
2041 * Debugfs support is best effort.
2042 */
2043 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2044 (void)debugfs_create_file(debugfs_files[i].name,
2045 debugfs_files[i].mode,
2046 adapter->debugfs_root,
2047 (void *)adapter,
2048 debugfs_files[i].fops);
2049
2050 return 0;
2051}
2052
2053/*
2054 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave
2055 * it to our caller to tear down the directory (debugfs_root).
2056 */
4204875d 2057static void cleanup_debugfs(struct adapter *adapter)
be839e39
CL
2058{
2059 BUG_ON(adapter->debugfs_root == NULL);
2060
2061 /*
2062 * Unlike our sister routine cleanup_proc(), we don't need to remove
2063 * individual entries because a call will be made to
2064 * debugfs_remove_recursive(). We just need to clean up any ancillary
2065 * persistent state.
2066 */
2067 /* nothing to do */
2068}
2069
2070/*
2071 * Perform early "adapter" initialization. This is where we discover what
2072 * adapter parameters we're going to be using and initialize basic adapter
2073 * hardware support.
2074 */
4204875d 2075static int __devinit adap_init0(struct adapter *adapter)
be839e39
CL
2076{
2077 struct vf_resources *vfres = &adapter->params.vfres;
2078 struct sge_params *sge_params = &adapter->params.sge;
2079 struct sge *s = &adapter->sge;
2080 unsigned int ethqsets;
2081 int err;
2082
2083 /*
2084 * Wait for the device to become ready before proceeding ...
2085 */
2086 err = t4vf_wait_dev_ready(adapter);
2087 if (err) {
2088 dev_err(adapter->pdev_dev, "device didn't become ready:"
2089 " err=%d\n", err);
2090 return err;
2091 }
2092
e68e6133
CL
2093 /*
2094 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2095 * 2.6.31 and later we can't call pci_reset_function() in order to
2096 * issue an FLR because of a self- deadlock on the device semaphore.
2097 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2098 * cases where they're needed -- for instance, some versions of KVM
2099 * fail to reset "Assigned Devices" when the VM reboots. Therefore we
2100 * use the firmware based reset in order to reset any per function
2101 * state.
2102 */
2103 err = t4vf_fw_reset(adapter);
2104 if (err < 0) {
2105 dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2106 return err;
2107 }
2108
be839e39
CL
2109 /*
2110 * Grab basic operational parameters. These will predominantly have
2111 * been set up by the Physical Function Driver or will be hard coded
2112 * into the adapter. We just have to live with them ... Note that
2113 * we _must_ get our VPD parameters before our SGE parameters because
2114 * we need to know the adapter's core clock from the VPD in order to
2115 * properly decode the SGE Timer Values.
2116 */
2117 err = t4vf_get_dev_params(adapter);
2118 if (err) {
2119 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2120 " device parameters: err=%d\n", err);
2121 return err;
2122 }
2123 err = t4vf_get_vpd_params(adapter);
2124 if (err) {
2125 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2126 " VPD parameters: err=%d\n", err);
2127 return err;
2128 }
2129 err = t4vf_get_sge_params(adapter);
2130 if (err) {
2131 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2132 " SGE parameters: err=%d\n", err);
2133 return err;
2134 }
2135 err = t4vf_get_rss_glb_config(adapter);
2136 if (err) {
2137 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2138 " RSS parameters: err=%d\n", err);
2139 return err;
2140 }
2141 if (adapter->params.rss.mode !=
2142 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2143 dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2144 " mode %d\n", adapter->params.rss.mode);
2145 return -EINVAL;
2146 }
2147 err = t4vf_sge_init(adapter);
2148 if (err) {
2149 dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2150 " err=%d\n", err);
2151 return err;
2152 }
2153
2154 /*
2155 * Retrieve our RX interrupt holdoff timer values and counter
2156 * threshold values from the SGE parameters.
2157 */
2158 s->timer_val[0] = core_ticks_to_us(adapter,
2159 TIMERVALUE0_GET(sge_params->sge_timer_value_0_and_1));
2160 s->timer_val[1] = core_ticks_to_us(adapter,
2161 TIMERVALUE1_GET(sge_params->sge_timer_value_0_and_1));
2162 s->timer_val[2] = core_ticks_to_us(adapter,
2163 TIMERVALUE0_GET(sge_params->sge_timer_value_2_and_3));
2164 s->timer_val[3] = core_ticks_to_us(adapter,
2165 TIMERVALUE1_GET(sge_params->sge_timer_value_2_and_3));
2166 s->timer_val[4] = core_ticks_to_us(adapter,
2167 TIMERVALUE0_GET(sge_params->sge_timer_value_4_and_5));
2168 s->timer_val[5] = core_ticks_to_us(adapter,
2169 TIMERVALUE1_GET(sge_params->sge_timer_value_4_and_5));
2170
2171 s->counter_val[0] =
2172 THRESHOLD_0_GET(sge_params->sge_ingress_rx_threshold);
2173 s->counter_val[1] =
2174 THRESHOLD_1_GET(sge_params->sge_ingress_rx_threshold);
2175 s->counter_val[2] =
2176 THRESHOLD_2_GET(sge_params->sge_ingress_rx_threshold);
2177 s->counter_val[3] =
2178 THRESHOLD_3_GET(sge_params->sge_ingress_rx_threshold);
2179
2180 /*
2181 * Grab our Virtual Interface resource allocation, extract the
2182 * features that we're interested in and do a bit of sanity testing on
2183 * what we discover.
2184 */
2185 err = t4vf_get_vfres(adapter);
2186 if (err) {
2187 dev_err(adapter->pdev_dev, "unable to get virtual interface"
2188 " resources: err=%d\n", err);
2189 return err;
2190 }
2191
2192 /*
2193 * The number of "ports" which we support is equal to the number of
2194 * Virtual Interfaces with which we've been provisioned.
2195 */
2196 adapter->params.nports = vfres->nvi;
2197 if (adapter->params.nports > MAX_NPORTS) {
2198 dev_warn(adapter->pdev_dev, "only using %d of %d allowed"
2199 " virtual interfaces\n", MAX_NPORTS,
2200 adapter->params.nports);
2201 adapter->params.nports = MAX_NPORTS;
2202 }
2203
2204 /*
2205 * We need to reserve a number of the ingress queues with Free List
2206 * and Interrupt capabilities for special interrupt purposes (like
2207 * asynchronous firmware messages, or forwarded interrupts if we're
2208 * using MSI). The rest of the FL/Intr-capable ingress queues will be
2209 * matched up one-for-one with Ethernet/Control egress queues in order
2210 * to form "Queue Sets" which will be aportioned between the "ports".
2211 * For each Queue Set, we'll need the ability to allocate two Egress
2212 * Contexts -- one for the Ingress Queue Free List and one for the TX
2213 * Ethernet Queue.
2214 */
2215 ethqsets = vfres->niqflint - INGQ_EXTRAS;
2216 if (vfres->nethctrl != ethqsets) {
2217 dev_warn(adapter->pdev_dev, "unequal number of [available]"
2218 " ingress/egress queues (%d/%d); using minimum for"
2219 " number of Queue Sets\n", ethqsets, vfres->nethctrl);
2220 ethqsets = min(vfres->nethctrl, ethqsets);
2221 }
2222 if (vfres->neq < ethqsets*2) {
2223 dev_warn(adapter->pdev_dev, "Not enough Egress Contexts (%d)"
2224 " to support Queue Sets (%d); reducing allowed Queue"
2225 " Sets\n", vfres->neq, ethqsets);
2226 ethqsets = vfres->neq/2;
2227 }
2228 if (ethqsets > MAX_ETH_QSETS) {
2229 dev_warn(adapter->pdev_dev, "only using %d of %d allowed Queue"
2230 " Sets\n", MAX_ETH_QSETS, adapter->sge.max_ethqsets);
2231 ethqsets = MAX_ETH_QSETS;
2232 }
2233 if (vfres->niq != 0 || vfres->neq > ethqsets*2) {
2234 dev_warn(adapter->pdev_dev, "unused resources niq/neq (%d/%d)"
2235 " ignored\n", vfres->niq, vfres->neq - ethqsets*2);
2236 }
2237 adapter->sge.max_ethqsets = ethqsets;
2238
2239 /*
2240 * Check for various parameter sanity issues. Most checks simply
2241 * result in us using fewer resources than our provissioning but we
2242 * do need at least one "port" with which to work ...
2243 */
2244 if (adapter->sge.max_ethqsets < adapter->params.nports) {
2245 dev_warn(adapter->pdev_dev, "only using %d of %d available"
2246 " virtual interfaces (too few Queue Sets)\n",
2247 adapter->sge.max_ethqsets, adapter->params.nports);
2248 adapter->params.nports = adapter->sge.max_ethqsets;
2249 }
2250 if (adapter->params.nports == 0) {
2251 dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2252 "usable!\n");
2253 return -EINVAL;
2254 }
2255 return 0;
2256}
2257
2258static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2259 u8 pkt_cnt_idx, unsigned int size,
2260 unsigned int iqe_size)
2261{
2262 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
2263 (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0));
2264 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2265 ? pkt_cnt_idx
2266 : 0);
2267 rspq->iqe_len = iqe_size;
2268 rspq->size = size;
2269}
2270
2271/*
2272 * Perform default configuration of DMA queues depending on the number and
2273 * type of ports we found and the number of available CPUs. Most settings can
2274 * be modified by the admin via ethtool and cxgbtool prior to the adapter
2275 * being brought up for the first time.
2276 */
2277static void __devinit cfg_queues(struct adapter *adapter)
2278{
2279 struct sge *s = &adapter->sge;
2280 int q10g, n10g, qidx, pidx, qs;
c710245c 2281 size_t iqe_size;
be839e39
CL
2282
2283 /*
2284 * We should not be called till we know how many Queue Sets we can
2285 * support. In particular, this means that we need to know what kind
2286 * of interrupts we'll be using ...
2287 */
2288 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2289
2290 /*
2291 * Count the number of 10GbE Virtual Interfaces that we have.
2292 */
2293 n10g = 0;
2294 for_each_port(adapter, pidx)
2295 n10g += is_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2296
2297 /*
2298 * We default to 1 queue per non-10G port and up to # of cores queues
2299 * per 10G port.
2300 */
2301 if (n10g == 0)
2302 q10g = 0;
2303 else {
2304 int n1g = (adapter->params.nports - n10g);
2305 q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2306 if (q10g > num_online_cpus())
2307 q10g = num_online_cpus();
2308 }
2309
2310 /*
2311 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2312 * The layout will be established in setup_sge_queues() when the
2313 * adapter is brough up for the first time.
2314 */
2315 qidx = 0;
2316 for_each_port(adapter, pidx) {
2317 struct port_info *pi = adap2pinfo(adapter, pidx);
2318
2319 pi->first_qset = qidx;
2320 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1;
2321 qidx += pi->nqsets;
2322 }
2323 s->ethqsets = qidx;
2324
c710245c
CL
2325 /*
2326 * The Ingress Queue Entry Size for our various Response Queues needs
2327 * to be big enough to accommodate the largest message we can receive
2328 * from the chip/firmware; which is 64 bytes ...
2329 */
2330 iqe_size = 64;
2331
be839e39
CL
2332 /*
2333 * Set up default Queue Set parameters ... Start off with the
2334 * shortest interrupt holdoff timer.
2335 */
2336 for (qs = 0; qs < s->max_ethqsets; qs++) {
2337 struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2338 struct sge_eth_txq *txq = &s->ethtxq[qs];
2339
c710245c 2340 init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size);
be839e39
CL
2341 rxq->fl.size = 72;
2342 txq->q.size = 1024;
2343 }
2344
2345 /*
2346 * The firmware event queue is used for link state changes and
2347 * notifications of TX DMA completions.
2348 */
c710245c 2349 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size);
be839e39
CL
2350
2351 /*
2352 * The forwarded interrupt queue is used when we're in MSI interrupt
2353 * mode. In this mode all interrupts associated with RX queues will
2354 * be forwarded to a single queue which we'll associate with our MSI
2355 * interrupt vector. The messages dropped in the forwarded interrupt
2356 * queue will indicate which ingress queue needs servicing ... This
2357 * queue needs to be large enough to accommodate all of the ingress
2358 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2359 * from equalling the CIDX if every ingress queue has an outstanding
2360 * interrupt). The queue doesn't need to be any larger because no
2361 * ingress queue will ever have more than one outstanding interrupt at
2362 * any time ...
2363 */
2364 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
c710245c 2365 iqe_size);
be839e39
CL
2366}
2367
2368/*
2369 * Reduce the number of Ethernet queues across all ports to at most n.
2370 * n provides at least one queue per port.
2371 */
2372static void __devinit reduce_ethqs(struct adapter *adapter, int n)
2373{
2374 int i;
2375 struct port_info *pi;
2376
2377 /*
2378 * While we have too many active Ether Queue Sets, interate across the
2379 * "ports" and reduce their individual Queue Set allocations.
2380 */
2381 BUG_ON(n < adapter->params.nports);
2382 while (n < adapter->sge.ethqsets)
2383 for_each_port(adapter, i) {
2384 pi = adap2pinfo(adapter, i);
2385 if (pi->nqsets > 1) {
2386 pi->nqsets--;
2387 adapter->sge.ethqsets--;
2388 if (adapter->sge.ethqsets <= n)
2389 break;
2390 }
2391 }
2392
2393 /*
2394 * Reassign the starting Queue Sets for each of the "ports" ...
2395 */
2396 n = 0;
2397 for_each_port(adapter, i) {
2398 pi = adap2pinfo(adapter, i);
2399 pi->first_qset = n;
2400 n += pi->nqsets;
2401 }
2402}
2403
2404/*
2405 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally
2406 * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2407 * need. Minimally we need one for every Virtual Interface plus those needed
2408 * for our "extras". Note that this process may lower the maximum number of
2409 * allowed Queue Sets ...
2410 */
2411static int __devinit enable_msix(struct adapter *adapter)
2412{
2413 int i, err, want, need;
2414 struct msix_entry entries[MSIX_ENTRIES];
2415 struct sge *s = &adapter->sge;
2416
2417 for (i = 0; i < MSIX_ENTRIES; ++i)
2418 entries[i].entry = i;
2419
2420 /*
2421 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2422 * plus those needed for our "extras" (for example, the firmware
2423 * message queue). We _need_ at least one "Queue Set" per Virtual
2424 * Interface plus those needed for our "extras". So now we get to see
2425 * if the song is right ...
2426 */
2427 want = s->max_ethqsets + MSIX_EXTRAS;
2428 need = adapter->params.nports + MSIX_EXTRAS;
2429 while ((err = pci_enable_msix(adapter->pdev, entries, want)) >= need)
2430 want = err;
2431
2432 if (err == 0) {
2433 int nqsets = want - MSIX_EXTRAS;
2434 if (nqsets < s->max_ethqsets) {
2435 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2436 " for %d Queue Sets\n", nqsets);
2437 s->max_ethqsets = nqsets;
2438 if (nqsets < s->ethqsets)
2439 reduce_ethqs(adapter, nqsets);
2440 }
2441 for (i = 0; i < want; ++i)
2442 adapter->msix_info[i].vec = entries[i].vector;
2443 } else if (err > 0) {
2444 pci_disable_msix(adapter->pdev);
2445 dev_info(adapter->pdev_dev, "only %d MSI-X vectors left,"
2446 " not using MSI-X\n", err);
2447 }
2448 return err;
2449}
2450
2451#ifdef HAVE_NET_DEVICE_OPS
2452static const struct net_device_ops cxgb4vf_netdev_ops = {
2453 .ndo_open = cxgb4vf_open,
2454 .ndo_stop = cxgb4vf_stop,
2455 .ndo_start_xmit = t4vf_eth_xmit,
2456 .ndo_get_stats = cxgb4vf_get_stats,
2457 .ndo_set_rx_mode = cxgb4vf_set_rxmode,
2458 .ndo_set_mac_address = cxgb4vf_set_mac_addr,
be839e39
CL
2459 .ndo_validate_addr = eth_validate_addr,
2460 .ndo_do_ioctl = cxgb4vf_do_ioctl,
2461 .ndo_change_mtu = cxgb4vf_change_mtu,
2462 .ndo_vlan_rx_register = cxgb4vf_vlan_rx_register,
2463#ifdef CONFIG_NET_POLL_CONTROLLER
2464 .ndo_poll_controller = cxgb4vf_poll_controller,
2465#endif
2466};
2467#endif
2468
2469/*
2470 * "Probe" a device: initialize a device and construct all kernel and driver
2471 * state needed to manage the device. This routine is called "init_one" in
2472 * the PF Driver ...
2473 */
2474static int __devinit cxgb4vf_pci_probe(struct pci_dev *pdev,
2475 const struct pci_device_id *ent)
2476{
2477 static int version_printed;
2478
2479 int pci_using_dac;
2480 int err, pidx;
2481 unsigned int pmask;
2482 struct adapter *adapter;
2483 struct port_info *pi;
2484 struct net_device *netdev;
2485
2486 /*
2487 * Vet our module parameters.
2488 */
2489 if (msi != MSI_MSIX && msi != MSI_MSI) {
2490 dev_err(&pdev->dev, "bad module parameter msi=%d; must be %d"
2491 " (MSI-X or MSI) or %d (MSI)\n", msi, MSI_MSIX,
2492 MSI_MSI);
2493 err = -EINVAL;
2494 goto err_out;
2495 }
2496
2497 /*
2498 * Print our driver banner the first time we're called to initialize a
2499 * device.
2500 */
2501 if (version_printed == 0) {
2502 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
2503 version_printed = 1;
2504 }
2505
2506 /*
7a0c2029 2507 * Initialize generic PCI device state.
be839e39 2508 */
7a0c2029 2509 err = pci_enable_device(pdev);
be839e39 2510 if (err) {
7a0c2029 2511 dev_err(&pdev->dev, "cannot enable PCI device\n");
be839e39
CL
2512 return err;
2513 }
2514
2515 /*
7a0c2029
KV
2516 * Reserve PCI resources for the device. If we can't get them some
2517 * other driver may have already claimed the device ...
be839e39 2518 */
7a0c2029 2519 err = pci_request_regions(pdev, KBUILD_MODNAME);
be839e39 2520 if (err) {
7a0c2029
KV
2521 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2522 goto err_disable_device;
be839e39
CL
2523 }
2524
2525 /*
2526 * Set up our DMA mask: try for 64-bit address masking first and
2527 * fall back to 32-bit if we can't get 64 bits ...
2528 */
2529 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2530 if (err == 0) {
2531 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2532 if (err) {
2533 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2534 " coherent allocations\n");
7a0c2029 2535 goto err_release_regions;
be839e39
CL
2536 }
2537 pci_using_dac = 1;
2538 } else {
2539 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2540 if (err != 0) {
2541 dev_err(&pdev->dev, "no usable DMA configuration\n");
7a0c2029 2542 goto err_release_regions;
be839e39
CL
2543 }
2544 pci_using_dac = 0;
2545 }
2546
2547 /*
2548 * Enable bus mastering for the device ...
2549 */
2550 pci_set_master(pdev);
2551
2552 /*
2553 * Allocate our adapter data structure and attach it to the device.
2554 */
2555 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2556 if (!adapter) {
2557 err = -ENOMEM;
7a0c2029 2558 goto err_release_regions;
be839e39
CL
2559 }
2560 pci_set_drvdata(pdev, adapter);
2561 adapter->pdev = pdev;
2562 adapter->pdev_dev = &pdev->dev;
2563
2564 /*
2565 * Initialize SMP data synchronization resources.
2566 */
2567 spin_lock_init(&adapter->stats_lock);
2568
2569 /*
2570 * Map our I/O registers in BAR0.
2571 */
2572 adapter->regs = pci_ioremap_bar(pdev, 0);
2573 if (!adapter->regs) {
2574 dev_err(&pdev->dev, "cannot map device registers\n");
2575 err = -ENOMEM;
2576 goto err_free_adapter;
2577 }
2578
2579 /*
2580 * Initialize adapter level features.
2581 */
2582 adapter->name = pci_name(pdev);
2583 adapter->msg_enable = dflt_msg_enable;
2584 err = adap_init0(adapter);
2585 if (err)
2586 goto err_unmap_bar;
2587
2588 /*
2589 * Allocate our "adapter ports" and stitch everything together.
2590 */
2591 pmask = adapter->params.vfres.pmask;
2592 for_each_port(adapter, pidx) {
2593 int port_id, viid;
2594
2595 /*
2596 * We simplistically allocate our virtual interfaces
2597 * sequentially across the port numbers to which we have
2598 * access rights. This should be configurable in some manner
2599 * ...
2600 */
2601 if (pmask == 0)
2602 break;
2603 port_id = ffs(pmask) - 1;
2604 pmask &= ~(1 << port_id);
2605 viid = t4vf_alloc_vi(adapter, port_id);
2606 if (viid < 0) {
2607 dev_err(&pdev->dev, "cannot allocate VI for port %d:"
2608 " err=%d\n", port_id, viid);
2609 err = viid;
2610 goto err_free_dev;
2611 }
2612
2613 /*
2614 * Allocate our network device and stitch things together.
2615 */
2616 netdev = alloc_etherdev_mq(sizeof(struct port_info),
2617 MAX_PORT_QSETS);
2618 if (netdev == NULL) {
2619 dev_err(&pdev->dev, "cannot allocate netdev for"
2620 " port %d\n", port_id);
2621 t4vf_free_vi(adapter, viid);
2622 err = -ENOMEM;
2623 goto err_free_dev;
2624 }
2625 adapter->port[pidx] = netdev;
2626 SET_NETDEV_DEV(netdev, &pdev->dev);
2627 pi = netdev_priv(netdev);
2628 pi->adapter = adapter;
2629 pi->pidx = pidx;
2630 pi->port_id = port_id;
2631 pi->viid = viid;
2632
2633 /*
2634 * Initialize the starting state of our "port" and register
2635 * it.
2636 */
2637 pi->xact_addr_filt = -1;
2638 pi->rx_offload = RX_CSO;
2639 netif_carrier_off(netdev);
be839e39
CL
2640 netdev->irq = pdev->irq;
2641
410989f6 2642 netdev->features = (NETIF_F_SG | TSO_FLAGS |
be839e39
CL
2643 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2644 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
2645 NETIF_F_GRO);
2646 if (pci_using_dac)
2647 netdev->features |= NETIF_F_HIGHDMA;
2648 netdev->vlan_features =
2649 (netdev->features &
2650 ~(NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX));
2651
2652#ifdef HAVE_NET_DEVICE_OPS
2653 netdev->netdev_ops = &cxgb4vf_netdev_ops;
2654#else
2655 netdev->vlan_rx_register = cxgb4vf_vlan_rx_register;
2656 netdev->open = cxgb4vf_open;
2657 netdev->stop = cxgb4vf_stop;
2658 netdev->hard_start_xmit = t4vf_eth_xmit;
2659 netdev->get_stats = cxgb4vf_get_stats;
2660 netdev->set_rx_mode = cxgb4vf_set_rxmode;
2661 netdev->do_ioctl = cxgb4vf_do_ioctl;
2662 netdev->change_mtu = cxgb4vf_change_mtu;
2663 netdev->set_mac_address = cxgb4vf_set_mac_addr;
be839e39
CL
2664#ifdef CONFIG_NET_POLL_CONTROLLER
2665 netdev->poll_controller = cxgb4vf_poll_controller;
2666#endif
2667#endif
2668 SET_ETHTOOL_OPS(netdev, &cxgb4vf_ethtool_ops);
2669
2670 /*
2671 * Initialize the hardware/software state for the port.
2672 */
2673 err = t4vf_port_init(adapter, pidx);
2674 if (err) {
2675 dev_err(&pdev->dev, "cannot initialize port %d\n",
2676 pidx);
2677 goto err_free_dev;
2678 }
2679 }
2680
2681 /*
2682 * The "card" is now ready to go. If any errors occur during device
2683 * registration we do not fail the whole "card" but rather proceed
2684 * only with the ports we manage to register successfully. However we
2685 * must register at least one net device.
2686 */
2687 for_each_port(adapter, pidx) {
2688 netdev = adapter->port[pidx];
2689 if (netdev == NULL)
2690 continue;
2691
2692 err = register_netdev(netdev);
2693 if (err) {
2694 dev_warn(&pdev->dev, "cannot register net device %s,"
2695 " skipping\n", netdev->name);
2696 continue;
2697 }
2698
2699 set_bit(pidx, &adapter->registered_device_map);
2700 }
2701 if (adapter->registered_device_map == 0) {
2702 dev_err(&pdev->dev, "could not register any net devices\n");
2703 goto err_free_dev;
2704 }
2705
2706 /*
2707 * Set up our debugfs entries.
2708 */
2709 if (cxgb4vf_debugfs_root) {
2710 adapter->debugfs_root =
2711 debugfs_create_dir(pci_name(pdev),
2712 cxgb4vf_debugfs_root);
2713 if (adapter->debugfs_root == NULL)
2714 dev_warn(&pdev->dev, "could not create debugfs"
2715 " directory");
2716 else
2717 setup_debugfs(adapter);
2718 }
2719
2720 /*
2721 * See what interrupts we'll be using. If we've been configured to
2722 * use MSI-X interrupts, try to enable them but fall back to using
2723 * MSI interrupts if we can't enable MSI-X interrupts. If we can't
2724 * get MSI interrupts we bail with the error.
2725 */
2726 if (msi == MSI_MSIX && enable_msix(adapter) == 0)
2727 adapter->flags |= USING_MSIX;
2728 else {
2729 err = pci_enable_msi(pdev);
2730 if (err) {
2731 dev_err(&pdev->dev, "Unable to allocate %s interrupts;"
2732 " err=%d\n",
2733 msi == MSI_MSIX ? "MSI-X or MSI" : "MSI", err);
2734 goto err_free_debugfs;
2735 }
2736 adapter->flags |= USING_MSI;
2737 }
2738
2739 /*
2740 * Now that we know how many "ports" we have and what their types are,
2741 * and how many Queue Sets we can support, we can configure our queue
2742 * resources.
2743 */
2744 cfg_queues(adapter);
2745
2746 /*
2747 * Print a short notice on the existance and configuration of the new
2748 * VF network device ...
2749 */
2750 for_each_port(adapter, pidx) {
2751 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
2752 adapter->port[pidx]->name,
2753 (adapter->flags & USING_MSIX) ? "MSI-X" :
2754 (adapter->flags & USING_MSI) ? "MSI" : "");
2755 }
2756
2757 /*
2758 * Return success!
2759 */
2760 return 0;
2761
2762 /*
2763 * Error recovery and exit code. Unwind state that's been created
2764 * so far and return the error.
2765 */
2766
2767err_free_debugfs:
2768 if (adapter->debugfs_root) {
2769 cleanup_debugfs(adapter);
2770 debugfs_remove_recursive(adapter->debugfs_root);
2771 }
2772
2773err_free_dev:
2774 for_each_port(adapter, pidx) {
2775 netdev = adapter->port[pidx];
2776 if (netdev == NULL)
2777 continue;
2778 pi = netdev_priv(netdev);
2779 t4vf_free_vi(adapter, pi->viid);
2780 if (test_bit(pidx, &adapter->registered_device_map))
2781 unregister_netdev(netdev);
2782 free_netdev(netdev);
2783 }
2784
2785err_unmap_bar:
2786 iounmap(adapter->regs);
2787
2788err_free_adapter:
2789 kfree(adapter);
2790 pci_set_drvdata(pdev, NULL);
2791
be839e39
CL
2792err_release_regions:
2793 pci_release_regions(pdev);
2794 pci_set_drvdata(pdev, NULL);
7a0c2029
KV
2795 pci_clear_master(pdev);
2796
2797err_disable_device:
2798 pci_disable_device(pdev);
be839e39
CL
2799
2800err_out:
2801 return err;
2802}
2803
2804/*
2805 * "Remove" a device: tear down all kernel and driver state created in the
2806 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note
2807 * that this is called "remove_one" in the PF Driver.)
2808 */
2809static void __devexit cxgb4vf_pci_remove(struct pci_dev *pdev)
2810{
2811 struct adapter *adapter = pci_get_drvdata(pdev);
2812
2813 /*
2814 * Tear down driver state associated with device.
2815 */
2816 if (adapter) {
2817 int pidx;
2818
2819 /*
2820 * Stop all of our activity. Unregister network port,
2821 * disable interrupts, etc.
2822 */
2823 for_each_port(adapter, pidx)
2824 if (test_bit(pidx, &adapter->registered_device_map))
2825 unregister_netdev(adapter->port[pidx]);
2826 t4vf_sge_stop(adapter);
2827 if (adapter->flags & USING_MSIX) {
2828 pci_disable_msix(adapter->pdev);
2829 adapter->flags &= ~USING_MSIX;
2830 } else if (adapter->flags & USING_MSI) {
2831 pci_disable_msi(adapter->pdev);
2832 adapter->flags &= ~USING_MSI;
2833 }
2834
2835 /*
2836 * Tear down our debugfs entries.
2837 */
2838 if (adapter->debugfs_root) {
2839 cleanup_debugfs(adapter);
2840 debugfs_remove_recursive(adapter->debugfs_root);
2841 }
2842
2843 /*
2844 * Free all of the various resources which we've acquired ...
2845 */
2846 t4vf_free_sge_resources(adapter);
2847 for_each_port(adapter, pidx) {
2848 struct net_device *netdev = adapter->port[pidx];
2849 struct port_info *pi;
2850
2851 if (netdev == NULL)
2852 continue;
2853
2854 pi = netdev_priv(netdev);
2855 t4vf_free_vi(adapter, pi->viid);
2856 free_netdev(netdev);
2857 }
2858 iounmap(adapter->regs);
2859 kfree(adapter);
2860 pci_set_drvdata(pdev, NULL);
2861 }
2862
2863 /*
2864 * Disable the device and release its PCI resources.
2865 */
2866 pci_disable_device(pdev);
2867 pci_clear_master(pdev);
2868 pci_release_regions(pdev);
2869}
2870
2871/*
2872 * PCI Device registration data structures.
2873 */
2874#define CH_DEVICE(devid, idx) \
2875 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
2876
2877static struct pci_device_id cxgb4vf_pci_tbl[] = {
2878 CH_DEVICE(0xb000, 0), /* PE10K FPGA */
2879 CH_DEVICE(0x4800, 0), /* T440-dbg */
2880 CH_DEVICE(0x4801, 0), /* T420-cr */
2881 CH_DEVICE(0x4802, 0), /* T422-cr */
8b6edf87
CL
2882 CH_DEVICE(0x4803, 0), /* T440-cr */
2883 CH_DEVICE(0x4804, 0), /* T420-bch */
2884 CH_DEVICE(0x4805, 0), /* T440-bch */
2885 CH_DEVICE(0x4806, 0), /* T460-ch */
2886 CH_DEVICE(0x4807, 0), /* T420-so */
2887 CH_DEVICE(0x4808, 0), /* T420-cx */
2888 CH_DEVICE(0x4809, 0), /* T420-bt */
2889 CH_DEVICE(0x480a, 0), /* T404-bt */
be839e39
CL
2890 { 0, }
2891};
2892
2893MODULE_DESCRIPTION(DRV_DESC);
2894MODULE_AUTHOR("Chelsio Communications");
2895MODULE_LICENSE("Dual BSD/GPL");
2896MODULE_VERSION(DRV_VERSION);
2897MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
2898
2899static struct pci_driver cxgb4vf_driver = {
2900 .name = KBUILD_MODNAME,
2901 .id_table = cxgb4vf_pci_tbl,
2902 .probe = cxgb4vf_pci_probe,
2903 .remove = __devexit_p(cxgb4vf_pci_remove),
2904};
2905
2906/*
2907 * Initialize global driver state.
2908 */
2909static int __init cxgb4vf_module_init(void)
2910{
2911 int ret;
2912
2913 /* Debugfs support is optional, just warn if this fails */
2914 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
2915 if (!cxgb4vf_debugfs_root)
2916 printk(KERN_WARNING KBUILD_MODNAME ": could not create"
2917 " debugfs entry, continuing\n");
2918
2919 ret = pci_register_driver(&cxgb4vf_driver);
2920 if (ret < 0)
2921 debugfs_remove(cxgb4vf_debugfs_root);
2922 return ret;
2923}
2924
2925/*
2926 * Tear down global driver state.
2927 */
2928static void __exit cxgb4vf_module_exit(void)
2929{
2930 pci_unregister_driver(&cxgb4vf_driver);
2931 debugfs_remove(cxgb4vf_debugfs_root);
2932}
2933
2934module_init(cxgb4vf_module_init);
2935module_exit(cxgb4vf_module_exit);
This page took 0.212045 seconds and 5 git commands to generate.