cxgb4vf: fix some errors in Gather List to skb conversion
[deliverable/linux.git] / drivers / net / cxgb4vf / cxgb4vf_main.c
CommitLineData
be839e39
CL
1/*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36#include <linux/version.h>
37#include <linux/module.h>
38#include <linux/moduleparam.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/dma-mapping.h>
42#include <linux/netdevice.h>
43#include <linux/etherdevice.h>
44#include <linux/debugfs.h>
45#include <linux/ethtool.h>
46
47#include "t4vf_common.h"
48#include "t4vf_defs.h"
49
50#include "../cxgb4/t4_regs.h"
51#include "../cxgb4/t4_msg.h"
52
53/*
54 * Generic information about the driver.
55 */
56#define DRV_VERSION "1.0.0"
57#define DRV_DESC "Chelsio T4 Virtual Function (VF) Network Driver"
58
59/*
60 * Module Parameters.
61 * ==================
62 */
63
64/*
65 * Default ethtool "message level" for adapters.
66 */
67#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
68 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
69 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
70
71static int dflt_msg_enable = DFLT_MSG_ENABLE;
72
73module_param(dflt_msg_enable, int, 0644);
74MODULE_PARM_DESC(dflt_msg_enable,
75 "default adapter ethtool message level bitmap");
76
77/*
78 * The driver uses the best interrupt scheme available on a platform in the
79 * order MSI-X then MSI. This parameter determines which of these schemes the
80 * driver may consider as follows:
81 *
82 * msi = 2: choose from among MSI-X and MSI
83 * msi = 1: only consider MSI interrupts
84 *
85 * Note that unlike the Physical Function driver, this Virtual Function driver
86 * does _not_ support legacy INTx interrupts (this limitation is mandated by
87 * the PCI-E SR-IOV standard).
88 */
89#define MSI_MSIX 2
90#define MSI_MSI 1
91#define MSI_DEFAULT MSI_MSIX
92
93static int msi = MSI_DEFAULT;
94
95module_param(msi, int, 0644);
96MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
97
98/*
99 * Fundamental constants.
100 * ======================
101 */
102
103enum {
104 MAX_TXQ_ENTRIES = 16384,
105 MAX_RSPQ_ENTRIES = 16384,
106 MAX_RX_BUFFERS = 16384,
107
108 MIN_TXQ_ENTRIES = 32,
109 MIN_RSPQ_ENTRIES = 128,
110 MIN_FL_ENTRIES = 16,
111
112 /*
113 * For purposes of manipulating the Free List size we need to
114 * recognize that Free Lists are actually Egress Queues (the host
115 * produces free buffers which the hardware consumes), Egress Queues
116 * indices are all in units of Egress Context Units bytes, and free
117 * list entries are 64-bit PCI DMA addresses. And since the state of
118 * the Producer Index == the Consumer Index implies an EMPTY list, we
119 * always have at least one Egress Unit's worth of Free List entries
120 * unused. See sge.c for more details ...
121 */
122 EQ_UNIT = SGE_EQ_IDXSIZE,
123 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
124 MIN_FL_RESID = FL_PER_EQ_UNIT,
125};
126
127/*
128 * Global driver state.
129 * ====================
130 */
131
132static struct dentry *cxgb4vf_debugfs_root;
133
134/*
135 * OS "Callback" functions.
136 * ========================
137 */
138
139/*
140 * The link status has changed on the indicated "port" (Virtual Interface).
141 */
142void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
143{
144 struct net_device *dev = adapter->port[pidx];
145
146 /*
147 * If the port is disabled or the current recorded "link up"
148 * status matches the new status, just return.
149 */
150 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
151 return;
152
153 /*
154 * Tell the OS that the link status has changed and print a short
155 * informative message on the console about the event.
156 */
157 if (link_ok) {
158 const char *s;
159 const char *fc;
160 const struct port_info *pi = netdev_priv(dev);
161
162 netif_carrier_on(dev);
163
164 switch (pi->link_cfg.speed) {
165 case SPEED_10000:
166 s = "10Gbps";
167 break;
168
169 case SPEED_1000:
170 s = "1000Mbps";
171 break;
172
173 case SPEED_100:
174 s = "100Mbps";
175 break;
176
177 default:
178 s = "unknown";
179 break;
180 }
181
182 switch (pi->link_cfg.fc) {
183 case PAUSE_RX:
184 fc = "RX";
185 break;
186
187 case PAUSE_TX:
188 fc = "TX";
189 break;
190
191 case PAUSE_RX|PAUSE_TX:
192 fc = "RX/TX";
193 break;
194
195 default:
196 fc = "no";
197 break;
198 }
199
200 printk(KERN_INFO "%s: link up, %s, full-duplex, %s PAUSE\n",
201 dev->name, s, fc);
202 } else {
203 netif_carrier_off(dev);
204 printk(KERN_INFO "%s: link down\n", dev->name);
205 }
206}
207
208/*
209 * Net device operations.
210 * ======================
211 */
212
213/*
214 * Record our new VLAN Group and enable/disable hardware VLAN Tag extraction
215 * based on whether the specified VLAN Group pointer is NULL or not.
216 */
217static void cxgb4vf_vlan_rx_register(struct net_device *dev,
218 struct vlan_group *grp)
219{
220 struct port_info *pi = netdev_priv(dev);
221
222 pi->vlan_grp = grp;
223 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1, grp != NULL, 0);
224}
225
226/*
227 * Perform the MAC and PHY actions needed to enable a "port" (Virtual
228 * Interface).
229 */
230static int link_start(struct net_device *dev)
231{
232 int ret;
233 struct port_info *pi = netdev_priv(dev);
234
235 /*
236 * We do not set address filters and promiscuity here, the stack does
237 * that step explicitly.
238 */
239 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, -1,
240 true);
241 if (ret == 0) {
242 ret = t4vf_change_mac(pi->adapter, pi->viid,
243 pi->xact_addr_filt, dev->dev_addr, true);
244 if (ret >= 0) {
245 pi->xact_addr_filt = ret;
246 ret = 0;
247 }
248 }
249
250 /*
251 * We don't need to actually "start the link" itself since the
252 * firmware will do that for us when the first Virtual Interface
253 * is enabled on a port.
254 */
255 if (ret == 0)
256 ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true);
257 return ret;
258}
259
260/*
261 * Name the MSI-X interrupts.
262 */
263static void name_msix_vecs(struct adapter *adapter)
264{
265 int namelen = sizeof(adapter->msix_info[0].desc) - 1;
266 int pidx;
267
268 /*
269 * Firmware events.
270 */
271 snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
272 "%s-FWeventq", adapter->name);
273 adapter->msix_info[MSIX_FW].desc[namelen] = 0;
274
275 /*
276 * Ethernet queues.
277 */
278 for_each_port(adapter, pidx) {
279 struct net_device *dev = adapter->port[pidx];
280 const struct port_info *pi = netdev_priv(dev);
281 int qs, msi;
282
283 for (qs = 0, msi = MSIX_NIQFLINT;
284 qs < pi->nqsets;
285 qs++, msi++) {
286 snprintf(adapter->msix_info[msi].desc, namelen,
287 "%s-%d", dev->name, qs);
288 adapter->msix_info[msi].desc[namelen] = 0;
289 }
290 }
291}
292
293/*
294 * Request all of our MSI-X resources.
295 */
296static int request_msix_queue_irqs(struct adapter *adapter)
297{
298 struct sge *s = &adapter->sge;
299 int rxq, msi, err;
300
301 /*
302 * Firmware events.
303 */
304 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
305 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
306 if (err)
307 return err;
308
309 /*
310 * Ethernet queues.
311 */
312 msi = MSIX_NIQFLINT;
313 for_each_ethrxq(s, rxq) {
314 err = request_irq(adapter->msix_info[msi].vec,
315 t4vf_sge_intr_msix, 0,
316 adapter->msix_info[msi].desc,
317 &s->ethrxq[rxq].rspq);
318 if (err)
319 goto err_free_irqs;
320 msi++;
321 }
322 return 0;
323
324err_free_irqs:
325 while (--rxq >= 0)
326 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
327 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
328 return err;
329}
330
331/*
332 * Free our MSI-X resources.
333 */
334static void free_msix_queue_irqs(struct adapter *adapter)
335{
336 struct sge *s = &adapter->sge;
337 int rxq, msi;
338
339 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
340 msi = MSIX_NIQFLINT;
341 for_each_ethrxq(s, rxq)
342 free_irq(adapter->msix_info[msi++].vec,
343 &s->ethrxq[rxq].rspq);
344}
345
346/*
347 * Turn on NAPI and start up interrupts on a response queue.
348 */
349static void qenable(struct sge_rspq *rspq)
350{
351 napi_enable(&rspq->napi);
352
353 /*
354 * 0-increment the Going To Sleep register to start the timer and
355 * enable interrupts.
356 */
357 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
358 CIDXINC(0) |
359 SEINTARM(rspq->intr_params) |
360 INGRESSQID(rspq->cntxt_id));
361}
362
363/*
364 * Enable NAPI scheduling and interrupt generation for all Receive Queues.
365 */
366static void enable_rx(struct adapter *adapter)
367{
368 int rxq;
369 struct sge *s = &adapter->sge;
370
371 for_each_ethrxq(s, rxq)
372 qenable(&s->ethrxq[rxq].rspq);
373 qenable(&s->fw_evtq);
374
375 /*
376 * The interrupt queue doesn't use NAPI so we do the 0-increment of
377 * its Going To Sleep register here to get it started.
378 */
379 if (adapter->flags & USING_MSI)
380 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
381 CIDXINC(0) |
382 SEINTARM(s->intrq.intr_params) |
383 INGRESSQID(s->intrq.cntxt_id));
384
385}
386
387/*
388 * Wait until all NAPI handlers are descheduled.
389 */
390static void quiesce_rx(struct adapter *adapter)
391{
392 struct sge *s = &adapter->sge;
393 int rxq;
394
395 for_each_ethrxq(s, rxq)
396 napi_disable(&s->ethrxq[rxq].rspq.napi);
397 napi_disable(&s->fw_evtq.napi);
398}
399
400/*
401 * Response queue handler for the firmware event queue.
402 */
403static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
404 const struct pkt_gl *gl)
405{
406 /*
407 * Extract response opcode and get pointer to CPL message body.
408 */
409 struct adapter *adapter = rspq->adapter;
410 u8 opcode = ((const struct rss_header *)rsp)->opcode;
411 void *cpl = (void *)(rsp + 1);
412
413 switch (opcode) {
414 case CPL_FW6_MSG: {
415 /*
416 * We've received an asynchronous message from the firmware.
417 */
418 const struct cpl_fw6_msg *fw_msg = cpl;
419 if (fw_msg->type == FW6_TYPE_CMD_RPL)
420 t4vf_handle_fw_rpl(adapter, fw_msg->data);
421 break;
422 }
423
424 case CPL_SGE_EGR_UPDATE: {
425 /*
7f9dd2fa
CL
426 * We've received an Egress Queue Status Update message. We
427 * get these, if the SGE is configured to send these when the
428 * firmware passes certain points in processing our TX
429 * Ethernet Queue or if we make an explicit request for one.
430 * We use these updates to determine when we may need to
431 * restart a TX Ethernet Queue which was stopped for lack of
432 * free TX Queue Descriptors ...
be839e39
CL
433 */
434 const struct cpl_sge_egr_update *p = (void *)cpl;
435 unsigned int qid = EGR_QID(be32_to_cpu(p->opcode_qid));
436 struct sge *s = &adapter->sge;
437 struct sge_txq *tq;
438 struct sge_eth_txq *txq;
439 unsigned int eq_idx;
be839e39
CL
440
441 /*
442 * Perform sanity checking on the Queue ID to make sure it
443 * really refers to one of our TX Ethernet Egress Queues which
444 * is active and matches the queue's ID. None of these error
445 * conditions should ever happen so we may want to either make
446 * them fatal and/or conditionalized under DEBUG.
447 */
448 eq_idx = EQ_IDX(s, qid);
449 if (unlikely(eq_idx >= MAX_EGRQ)) {
450 dev_err(adapter->pdev_dev,
451 "Egress Update QID %d out of range\n", qid);
452 break;
453 }
454 tq = s->egr_map[eq_idx];
455 if (unlikely(tq == NULL)) {
456 dev_err(adapter->pdev_dev,
457 "Egress Update QID %d TXQ=NULL\n", qid);
458 break;
459 }
460 txq = container_of(tq, struct sge_eth_txq, q);
461 if (unlikely(tq->abs_id != qid)) {
462 dev_err(adapter->pdev_dev,
463 "Egress Update QID %d refers to TXQ %d\n",
464 qid, tq->abs_id);
465 break;
466 }
467
be839e39
CL
468 /*
469 * Restart a stopped TX Queue which has less than half of its
470 * TX ring in use ...
471 */
472 txq->q.restarts++;
473 netif_tx_wake_queue(txq->txq);
474 break;
475 }
476
477 default:
478 dev_err(adapter->pdev_dev,
479 "unexpected CPL %#x on FW event queue\n", opcode);
480 }
481
482 return 0;
483}
484
485/*
486 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues
487 * to use and initializes them. We support multiple "Queue Sets" per port if
488 * we have MSI-X, otherwise just one queue set per port.
489 */
490static int setup_sge_queues(struct adapter *adapter)
491{
492 struct sge *s = &adapter->sge;
493 int err, pidx, msix;
494
495 /*
496 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
497 * state.
498 */
499 bitmap_zero(s->starving_fl, MAX_EGRQ);
500
501 /*
502 * If we're using MSI interrupt mode we need to set up a "forwarded
503 * interrupt" queue which we'll set up with our MSI vector. The rest
504 * of the ingress queues will be set up to forward their interrupts to
505 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses
506 * the intrq's queue ID as the interrupt forwarding queue for the
507 * subsequent calls ...
508 */
509 if (adapter->flags & USING_MSI) {
510 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
511 adapter->port[0], 0, NULL, NULL);
512 if (err)
513 goto err_free_queues;
514 }
515
516 /*
517 * Allocate our ingress queue for asynchronous firmware messages.
518 */
519 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
520 MSIX_FW, NULL, fwevtq_handler);
521 if (err)
522 goto err_free_queues;
523
524 /*
525 * Allocate each "port"'s initial Queue Sets. These can be changed
526 * later on ... up to the point where any interface on the adapter is
527 * brought up at which point lots of things get nailed down
528 * permanently ...
529 */
530 msix = MSIX_NIQFLINT;
531 for_each_port(adapter, pidx) {
532 struct net_device *dev = adapter->port[pidx];
533 struct port_info *pi = netdev_priv(dev);
534 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
535 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
be839e39
CL
536 int qs;
537
c8639a82 538 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
be839e39
CL
539 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
540 dev, msix++,
541 &rxq->fl, t4vf_ethrx_handler);
542 if (err)
543 goto err_free_queues;
544
545 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
546 netdev_get_tx_queue(dev, qs),
547 s->fw_evtq.cntxt_id);
548 if (err)
549 goto err_free_queues;
550
551 rxq->rspq.idx = qs;
552 memset(&rxq->stats, 0, sizeof(rxq->stats));
553 }
554 }
555
556 /*
557 * Create the reverse mappings for the queues.
558 */
559 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
560 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
561 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
562 for_each_port(adapter, pidx) {
563 struct net_device *dev = adapter->port[pidx];
564 struct port_info *pi = netdev_priv(dev);
565 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
566 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
be839e39
CL
567 int qs;
568
c8639a82 569 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
be839e39
CL
570 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
571 EQ_MAP(s, txq->q.abs_id) = &txq->q;
572
573 /*
574 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
575 * for Free Lists but since all of the Egress Queues
576 * (including Free Lists) have Relative Queue IDs
577 * which are computed as Absolute - Base Queue ID, we
578 * can synthesize the Absolute Queue IDs for the Free
579 * Lists. This is useful for debugging purposes when
580 * we want to dump Queue Contexts via the PF Driver.
581 */
582 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
583 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
584 }
585 }
586 return 0;
587
588err_free_queues:
589 t4vf_free_sge_resources(adapter);
590 return err;
591}
592
593/*
594 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
595 * queues. We configure the RSS CPU lookup table to distribute to the number
596 * of HW receive queues, and the response queue lookup table to narrow that
597 * down to the response queues actually configured for each "port" (Virtual
598 * Interface). We always configure the RSS mapping for all ports since the
599 * mapping table has plenty of entries.
600 */
601static int setup_rss(struct adapter *adapter)
602{
603 int pidx;
604
605 for_each_port(adapter, pidx) {
606 struct port_info *pi = adap2pinfo(adapter, pidx);
607 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
608 u16 rss[MAX_PORT_QSETS];
609 int qs, err;
610
611 for (qs = 0; qs < pi->nqsets; qs++)
612 rss[qs] = rxq[qs].rspq.abs_id;
613
614 err = t4vf_config_rss_range(adapter, pi->viid,
615 0, pi->rss_size, rss, pi->nqsets);
616 if (err)
617 return err;
618
619 /*
620 * Perform Global RSS Mode-specific initialization.
621 */
622 switch (adapter->params.rss.mode) {
623 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
624 /*
625 * If Tunnel All Lookup isn't specified in the global
626 * RSS Configuration, then we need to specify a
627 * default Ingress Queue for any ingress packets which
628 * aren't hashed. We'll use our first ingress queue
629 * ...
630 */
631 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
632 union rss_vi_config config;
633 err = t4vf_read_rss_vi_config(adapter,
634 pi->viid,
635 &config);
636 if (err)
637 return err;
638 config.basicvirtual.defaultq =
639 rxq[0].rspq.abs_id;
640 err = t4vf_write_rss_vi_config(adapter,
641 pi->viid,
642 &config);
643 if (err)
644 return err;
645 }
646 break;
647 }
648 }
649
650 return 0;
651}
652
653/*
654 * Bring the adapter up. Called whenever we go from no "ports" open to having
655 * one open. This function performs the actions necessary to make an adapter
656 * operational, such as completing the initialization of HW modules, and
657 * enabling interrupts. Must be called with the rtnl lock held. (Note that
658 * this is called "cxgb_up" in the PF Driver.)
659 */
660static int adapter_up(struct adapter *adapter)
661{
662 int err;
663
664 /*
665 * If this is the first time we've been called, perform basic
666 * adapter setup. Once we've done this, many of our adapter
667 * parameters can no longer be changed ...
668 */
669 if ((adapter->flags & FULL_INIT_DONE) == 0) {
670 err = setup_sge_queues(adapter);
671 if (err)
672 return err;
673 err = setup_rss(adapter);
674 if (err) {
675 t4vf_free_sge_resources(adapter);
676 return err;
677 }
678
679 if (adapter->flags & USING_MSIX)
680 name_msix_vecs(adapter);
681 adapter->flags |= FULL_INIT_DONE;
682 }
683
684 /*
685 * Acquire our interrupt resources. We only support MSI-X and MSI.
686 */
687 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
688 if (adapter->flags & USING_MSIX)
689 err = request_msix_queue_irqs(adapter);
690 else
691 err = request_irq(adapter->pdev->irq,
692 t4vf_intr_handler(adapter), 0,
693 adapter->name, adapter);
694 if (err) {
695 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
696 err);
697 return err;
698 }
699
700 /*
701 * Enable NAPI ingress processing and return success.
702 */
703 enable_rx(adapter);
704 t4vf_sge_start(adapter);
705 return 0;
706}
707
708/*
709 * Bring the adapter down. Called whenever the last "port" (Virtual
710 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF
711 * Driver.)
712 */
713static void adapter_down(struct adapter *adapter)
714{
715 /*
716 * Free interrupt resources.
717 */
718 if (adapter->flags & USING_MSIX)
719 free_msix_queue_irqs(adapter);
720 else
721 free_irq(adapter->pdev->irq, adapter);
722
723 /*
724 * Wait for NAPI handlers to finish.
725 */
726 quiesce_rx(adapter);
727}
728
729/*
730 * Start up a net device.
731 */
732static int cxgb4vf_open(struct net_device *dev)
733{
734 int err;
735 struct port_info *pi = netdev_priv(dev);
736 struct adapter *adapter = pi->adapter;
737
738 /*
739 * If this is the first interface that we're opening on the "adapter",
740 * bring the "adapter" up now.
741 */
742 if (adapter->open_device_map == 0) {
743 err = adapter_up(adapter);
744 if (err)
745 return err;
746 }
747
748 /*
749 * Note that this interface is up and start everything up ...
750 */
003ab674
BH
751 netif_set_real_num_tx_queues(dev, pi->nqsets);
752 err = netif_set_real_num_rx_queues(dev, pi->nqsets);
753 if (err)
754 return err;
be839e39
CL
755 set_bit(pi->port_id, &adapter->open_device_map);
756 link_start(dev);
757 netif_tx_start_all_queues(dev);
758 return 0;
759}
760
761/*
762 * Shut down a net device. This routine is called "cxgb_close" in the PF
763 * Driver ...
764 */
765static int cxgb4vf_stop(struct net_device *dev)
766{
767 int ret;
768 struct port_info *pi = netdev_priv(dev);
769 struct adapter *adapter = pi->adapter;
770
771 netif_tx_stop_all_queues(dev);
772 netif_carrier_off(dev);
773 ret = t4vf_enable_vi(adapter, pi->viid, false, false);
774 pi->link_cfg.link_ok = 0;
775
776 clear_bit(pi->port_id, &adapter->open_device_map);
777 if (adapter->open_device_map == 0)
778 adapter_down(adapter);
779 return 0;
780}
781
782/*
783 * Translate our basic statistics into the standard "ifconfig" statistics.
784 */
785static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
786{
787 struct t4vf_port_stats stats;
788 struct port_info *pi = netdev2pinfo(dev);
789 struct adapter *adapter = pi->adapter;
790 struct net_device_stats *ns = &dev->stats;
791 int err;
792
793 spin_lock(&adapter->stats_lock);
794 err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
795 spin_unlock(&adapter->stats_lock);
796
797 memset(ns, 0, sizeof(*ns));
798 if (err)
799 return ns;
800
801 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
802 stats.tx_ucast_bytes + stats.tx_offload_bytes);
803 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
804 stats.tx_ucast_frames + stats.tx_offload_frames);
805 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
806 stats.rx_ucast_bytes);
807 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
808 stats.rx_ucast_frames);
809 ns->multicast = stats.rx_mcast_frames;
810 ns->tx_errors = stats.tx_drop_frames;
811 ns->rx_errors = stats.rx_err_frames;
812
813 return ns;
814}
815
816/*
817 * Collect up to maxaddrs worth of a netdevice's unicast addresses into an
818 * array of addrss pointers and return the number collected.
819 */
820static inline int collect_netdev_uc_list_addrs(const struct net_device *dev,
821 const u8 **addr,
822 unsigned int maxaddrs)
823{
824 unsigned int naddr = 0;
825 const struct netdev_hw_addr *ha;
826
827 for_each_dev_addr(dev, ha) {
828 addr[naddr++] = ha->addr;
829 if (naddr >= maxaddrs)
830 break;
831 }
832 return naddr;
833}
834
835/*
836 * Collect up to maxaddrs worth of a netdevice's multicast addresses into an
837 * array of addrss pointers and return the number collected.
838 */
839static inline int collect_netdev_mc_list_addrs(const struct net_device *dev,
840 const u8 **addr,
841 unsigned int maxaddrs)
842{
843 unsigned int naddr = 0;
844 const struct netdev_hw_addr *ha;
845
846 netdev_for_each_mc_addr(ha, dev) {
847 addr[naddr++] = ha->addr;
848 if (naddr >= maxaddrs)
849 break;
850 }
851 return naddr;
852}
853
854/*
855 * Configure the exact and hash address filters to handle a port's multicast
856 * and secondary unicast MAC addresses.
857 */
858static int set_addr_filters(const struct net_device *dev, bool sleep)
859{
860 u64 mhash = 0;
861 u64 uhash = 0;
862 bool free = true;
863 u16 filt_idx[7];
864 const u8 *addr[7];
865 int ret, naddr = 0;
866 const struct port_info *pi = netdev_priv(dev);
867
868 /* first do the secondary unicast addresses */
869 naddr = collect_netdev_uc_list_addrs(dev, addr, ARRAY_SIZE(addr));
870 if (naddr > 0) {
871 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
872 naddr, addr, filt_idx, &uhash, sleep);
873 if (ret < 0)
874 return ret;
875
876 free = false;
877 }
878
879 /* next set up the multicast addresses */
880 naddr = collect_netdev_mc_list_addrs(dev, addr, ARRAY_SIZE(addr));
881 if (naddr > 0) {
882 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
883 naddr, addr, filt_idx, &mhash, sleep);
884 if (ret < 0)
885 return ret;
886 }
887
888 return t4vf_set_addr_hash(pi->adapter, pi->viid, uhash != 0,
889 uhash | mhash, sleep);
890}
891
892/*
893 * Set RX properties of a port, such as promiscruity, address filters, and MTU.
894 * If @mtu is -1 it is left unchanged.
895 */
896static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
897{
898 int ret;
899 struct port_info *pi = netdev_priv(dev);
900
901 ret = set_addr_filters(dev, sleep_ok);
902 if (ret == 0)
903 ret = t4vf_set_rxmode(pi->adapter, pi->viid, -1,
904 (dev->flags & IFF_PROMISC) != 0,
905 (dev->flags & IFF_ALLMULTI) != 0,
906 1, -1, sleep_ok);
907 return ret;
908}
909
910/*
911 * Set the current receive modes on the device.
912 */
913static void cxgb4vf_set_rxmode(struct net_device *dev)
914{
915 /* unfortunately we can't return errors to the stack */
916 set_rxmode(dev, -1, false);
917}
918
919/*
920 * Find the entry in the interrupt holdoff timer value array which comes
921 * closest to the specified interrupt holdoff value.
922 */
923static int closest_timer(const struct sge *s, int us)
924{
925 int i, timer_idx = 0, min_delta = INT_MAX;
926
927 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
928 int delta = us - s->timer_val[i];
929 if (delta < 0)
930 delta = -delta;
931 if (delta < min_delta) {
932 min_delta = delta;
933 timer_idx = i;
934 }
935 }
936 return timer_idx;
937}
938
939static int closest_thres(const struct sge *s, int thres)
940{
941 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
942
943 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
944 delta = thres - s->counter_val[i];
945 if (delta < 0)
946 delta = -delta;
947 if (delta < min_delta) {
948 min_delta = delta;
949 pktcnt_idx = i;
950 }
951 }
952 return pktcnt_idx;
953}
954
955/*
956 * Return a queue's interrupt hold-off time in us. 0 means no timer.
957 */
958static unsigned int qtimer_val(const struct adapter *adapter,
959 const struct sge_rspq *rspq)
960{
961 unsigned int timer_idx = QINTR_TIMER_IDX_GET(rspq->intr_params);
962
963 return timer_idx < SGE_NTIMERS
964 ? adapter->sge.timer_val[timer_idx]
965 : 0;
966}
967
968/**
969 * set_rxq_intr_params - set a queue's interrupt holdoff parameters
970 * @adapter: the adapter
971 * @rspq: the RX response queue
972 * @us: the hold-off time in us, or 0 to disable timer
973 * @cnt: the hold-off packet count, or 0 to disable counter
974 *
975 * Sets an RX response queue's interrupt hold-off time and packet count.
976 * At least one of the two needs to be enabled for the queue to generate
977 * interrupts.
978 */
979static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
980 unsigned int us, unsigned int cnt)
981{
982 unsigned int timer_idx;
983
984 /*
985 * If both the interrupt holdoff timer and count are specified as
986 * zero, default to a holdoff count of 1 ...
987 */
988 if ((us | cnt) == 0)
989 cnt = 1;
990
991 /*
992 * If an interrupt holdoff count has been specified, then find the
993 * closest configured holdoff count and use that. If the response
994 * queue has already been created, then update its queue context
995 * parameters ...
996 */
997 if (cnt) {
998 int err;
999 u32 v, pktcnt_idx;
1000
1001 pktcnt_idx = closest_thres(&adapter->sge, cnt);
1002 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1003 v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1004 FW_PARAMS_PARAM_X(
1005 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1006 FW_PARAMS_PARAM_YZ(rspq->cntxt_id);
1007 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1008 if (err)
1009 return err;
1010 }
1011 rspq->pktcnt_idx = pktcnt_idx;
1012 }
1013
1014 /*
1015 * Compute the closest holdoff timer index from the supplied holdoff
1016 * timer value.
1017 */
1018 timer_idx = (us == 0
1019 ? SGE_TIMER_RSTRT_CNTR
1020 : closest_timer(&adapter->sge, us));
1021
1022 /*
1023 * Update the response queue's interrupt coalescing parameters and
1024 * return success.
1025 */
1026 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
1027 (cnt > 0 ? QINTR_CNT_EN : 0));
1028 return 0;
1029}
1030
1031/*
1032 * Return a version number to identify the type of adapter. The scheme is:
1033 * - bits 0..9: chip version
1034 * - bits 10..15: chip revision
1035 */
1036static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1037{
1038 /*
1039 * Chip version 4, revision 0x3f (cxgb4vf).
1040 */
1041 return 4 | (0x3f << 10);
1042}
1043
1044/*
1045 * Execute the specified ioctl command.
1046 */
1047static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1048{
1049 int ret = 0;
1050
1051 switch (cmd) {
1052 /*
1053 * The VF Driver doesn't have access to any of the other
1054 * common Ethernet device ioctl()'s (like reading/writing
1055 * PHY registers, etc.
1056 */
1057
1058 default:
1059 ret = -EOPNOTSUPP;
1060 break;
1061 }
1062 return ret;
1063}
1064
1065/*
1066 * Change the device's MTU.
1067 */
1068static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1069{
1070 int ret;
1071 struct port_info *pi = netdev_priv(dev);
1072
1073 /* accommodate SACK */
1074 if (new_mtu < 81)
1075 return -EINVAL;
1076
1077 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1078 -1, -1, -1, -1, true);
1079 if (!ret)
1080 dev->mtu = new_mtu;
1081 return ret;
1082}
1083
1084/*
1085 * Change the devices MAC address.
1086 */
1087static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1088{
1089 int ret;
1090 struct sockaddr *addr = _addr;
1091 struct port_info *pi = netdev_priv(dev);
1092
1093 if (!is_valid_ether_addr(addr->sa_data))
1094 return -EINVAL;
1095
1096 ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt,
1097 addr->sa_data, true);
1098 if (ret < 0)
1099 return ret;
1100
1101 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1102 pi->xact_addr_filt = ret;
1103 return 0;
1104}
1105
be839e39
CL
1106#ifdef CONFIG_NET_POLL_CONTROLLER
1107/*
1108 * Poll all of our receive queues. This is called outside of normal interrupt
1109 * context.
1110 */
1111static void cxgb4vf_poll_controller(struct net_device *dev)
1112{
1113 struct port_info *pi = netdev_priv(dev);
1114 struct adapter *adapter = pi->adapter;
1115
1116 if (adapter->flags & USING_MSIX) {
1117 struct sge_eth_rxq *rxq;
1118 int nqsets;
1119
1120 rxq = &adapter->sge.ethrxq[pi->first_qset];
1121 for (nqsets = pi->nqsets; nqsets; nqsets--) {
1122 t4vf_sge_intr_msix(0, &rxq->rspq);
1123 rxq++;
1124 }
1125 } else
1126 t4vf_intr_handler(adapter)(0, adapter);
1127}
1128#endif
1129
1130/*
1131 * Ethtool operations.
1132 * ===================
1133 *
1134 * Note that we don't support any ethtool operations which change the physical
1135 * state of the port to which we're linked.
1136 */
1137
1138/*
1139 * Return current port link settings.
1140 */
1141static int cxgb4vf_get_settings(struct net_device *dev,
1142 struct ethtool_cmd *cmd)
1143{
1144 const struct port_info *pi = netdev_priv(dev);
1145
1146 cmd->supported = pi->link_cfg.supported;
1147 cmd->advertising = pi->link_cfg.advertising;
1148 cmd->speed = netif_carrier_ok(dev) ? pi->link_cfg.speed : -1;
1149 cmd->duplex = DUPLEX_FULL;
1150
1151 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1152 cmd->phy_address = pi->port_id;
1153 cmd->transceiver = XCVR_EXTERNAL;
1154 cmd->autoneg = pi->link_cfg.autoneg;
1155 cmd->maxtxpkt = 0;
1156 cmd->maxrxpkt = 0;
1157 return 0;
1158}
1159
1160/*
1161 * Return our driver information.
1162 */
1163static void cxgb4vf_get_drvinfo(struct net_device *dev,
1164 struct ethtool_drvinfo *drvinfo)
1165{
1166 struct adapter *adapter = netdev2adap(dev);
1167
1168 strcpy(drvinfo->driver, KBUILD_MODNAME);
1169 strcpy(drvinfo->version, DRV_VERSION);
1170 strcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)));
1171 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1172 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1173 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.fwrev),
1174 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.fwrev),
1175 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.fwrev),
1176 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.fwrev),
1177 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.tprev),
1178 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.tprev),
1179 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.tprev),
1180 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.tprev));
1181}
1182
1183/*
1184 * Return current adapter message level.
1185 */
1186static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1187{
1188 return netdev2adap(dev)->msg_enable;
1189}
1190
1191/*
1192 * Set current adapter message level.
1193 */
1194static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1195{
1196 netdev2adap(dev)->msg_enable = msglevel;
1197}
1198
1199/*
1200 * Return the device's current Queue Set ring size parameters along with the
1201 * allowed maximum values. Since ethtool doesn't understand the concept of
1202 * multi-queue devices, we just return the current values associated with the
1203 * first Queue Set.
1204 */
1205static void cxgb4vf_get_ringparam(struct net_device *dev,
1206 struct ethtool_ringparam *rp)
1207{
1208 const struct port_info *pi = netdev_priv(dev);
1209 const struct sge *s = &pi->adapter->sge;
1210
1211 rp->rx_max_pending = MAX_RX_BUFFERS;
1212 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1213 rp->rx_jumbo_max_pending = 0;
1214 rp->tx_max_pending = MAX_TXQ_ENTRIES;
1215
1216 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1217 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1218 rp->rx_jumbo_pending = 0;
1219 rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1220}
1221
1222/*
1223 * Set the Queue Set ring size parameters for the device. Again, since
1224 * ethtool doesn't allow for the concept of multiple queues per device, we'll
1225 * apply these new values across all of the Queue Sets associated with the
1226 * device -- after vetting them of course!
1227 */
1228static int cxgb4vf_set_ringparam(struct net_device *dev,
1229 struct ethtool_ringparam *rp)
1230{
1231 const struct port_info *pi = netdev_priv(dev);
1232 struct adapter *adapter = pi->adapter;
1233 struct sge *s = &adapter->sge;
1234 int qs;
1235
1236 if (rp->rx_pending > MAX_RX_BUFFERS ||
1237 rp->rx_jumbo_pending ||
1238 rp->tx_pending > MAX_TXQ_ENTRIES ||
1239 rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1240 rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1241 rp->rx_pending < MIN_FL_ENTRIES ||
1242 rp->tx_pending < MIN_TXQ_ENTRIES)
1243 return -EINVAL;
1244
1245 if (adapter->flags & FULL_INIT_DONE)
1246 return -EBUSY;
1247
1248 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1249 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1250 s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1251 s->ethtxq[qs].q.size = rp->tx_pending;
1252 }
1253 return 0;
1254}
1255
1256/*
1257 * Return the interrupt holdoff timer and count for the first Queue Set on the
1258 * device. Our extension ioctl() (the cxgbtool interface) allows the
1259 * interrupt holdoff timer to be read on all of the device's Queue Sets.
1260 */
1261static int cxgb4vf_get_coalesce(struct net_device *dev,
1262 struct ethtool_coalesce *coalesce)
1263{
1264 const struct port_info *pi = netdev_priv(dev);
1265 const struct adapter *adapter = pi->adapter;
1266 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1267
1268 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1269 coalesce->rx_max_coalesced_frames =
1270 ((rspq->intr_params & QINTR_CNT_EN)
1271 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1272 : 0);
1273 return 0;
1274}
1275
1276/*
1277 * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1278 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set
1279 * the interrupt holdoff timer on any of the device's Queue Sets.
1280 */
1281static int cxgb4vf_set_coalesce(struct net_device *dev,
1282 struct ethtool_coalesce *coalesce)
1283{
1284 const struct port_info *pi = netdev_priv(dev);
1285 struct adapter *adapter = pi->adapter;
1286
1287 return set_rxq_intr_params(adapter,
1288 &adapter->sge.ethrxq[pi->first_qset].rspq,
1289 coalesce->rx_coalesce_usecs,
1290 coalesce->rx_max_coalesced_frames);
1291}
1292
1293/*
1294 * Report current port link pause parameter settings.
1295 */
1296static void cxgb4vf_get_pauseparam(struct net_device *dev,
1297 struct ethtool_pauseparam *pauseparam)
1298{
1299 struct port_info *pi = netdev_priv(dev);
1300
1301 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1302 pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0;
1303 pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0;
1304}
1305
1306/*
1307 * Return whether RX Checksum Offloading is currently enabled for the device.
1308 */
1309static u32 cxgb4vf_get_rx_csum(struct net_device *dev)
1310{
1311 struct port_info *pi = netdev_priv(dev);
1312
1313 return (pi->rx_offload & RX_CSO) != 0;
1314}
1315
1316/*
1317 * Turn RX Checksum Offloading on or off for the device.
1318 */
1319static int cxgb4vf_set_rx_csum(struct net_device *dev, u32 csum)
1320{
1321 struct port_info *pi = netdev_priv(dev);
1322
1323 if (csum)
1324 pi->rx_offload |= RX_CSO;
1325 else
1326 pi->rx_offload &= ~RX_CSO;
1327 return 0;
1328}
1329
1330/*
1331 * Identify the port by blinking the port's LED.
1332 */
1333static int cxgb4vf_phys_id(struct net_device *dev, u32 id)
1334{
1335 struct port_info *pi = netdev_priv(dev);
1336
1337 return t4vf_identify_port(pi->adapter, pi->viid, 5);
1338}
1339
1340/*
1341 * Port stats maintained per queue of the port.
1342 */
1343struct queue_port_stats {
1344 u64 tso;
1345 u64 tx_csum;
1346 u64 rx_csum;
1347 u64 vlan_ex;
1348 u64 vlan_ins;
1349};
1350
1351/*
1352 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that
1353 * these need to match the order of statistics returned by
1354 * t4vf_get_port_stats().
1355 */
1356static const char stats_strings[][ETH_GSTRING_LEN] = {
1357 /*
1358 * These must match the layout of the t4vf_port_stats structure.
1359 */
1360 "TxBroadcastBytes ",
1361 "TxBroadcastFrames ",
1362 "TxMulticastBytes ",
1363 "TxMulticastFrames ",
1364 "TxUnicastBytes ",
1365 "TxUnicastFrames ",
1366 "TxDroppedFrames ",
1367 "TxOffloadBytes ",
1368 "TxOffloadFrames ",
1369 "RxBroadcastBytes ",
1370 "RxBroadcastFrames ",
1371 "RxMulticastBytes ",
1372 "RxMulticastFrames ",
1373 "RxUnicastBytes ",
1374 "RxUnicastFrames ",
1375 "RxErrorFrames ",
1376
1377 /*
1378 * These are accumulated per-queue statistics and must match the
1379 * order of the fields in the queue_port_stats structure.
1380 */
1381 "TSO ",
1382 "TxCsumOffload ",
1383 "RxCsumGood ",
1384 "VLANextractions ",
1385 "VLANinsertions ",
1386};
1387
1388/*
1389 * Return the number of statistics in the specified statistics set.
1390 */
1391static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1392{
1393 switch (sset) {
1394 case ETH_SS_STATS:
1395 return ARRAY_SIZE(stats_strings);
1396 default:
1397 return -EOPNOTSUPP;
1398 }
1399 /*NOTREACHED*/
1400}
1401
1402/*
1403 * Return the strings for the specified statistics set.
1404 */
1405static void cxgb4vf_get_strings(struct net_device *dev,
1406 u32 sset,
1407 u8 *data)
1408{
1409 switch (sset) {
1410 case ETH_SS_STATS:
1411 memcpy(data, stats_strings, sizeof(stats_strings));
1412 break;
1413 }
1414}
1415
1416/*
1417 * Small utility routine to accumulate queue statistics across the queues of
1418 * a "port".
1419 */
1420static void collect_sge_port_stats(const struct adapter *adapter,
1421 const struct port_info *pi,
1422 struct queue_port_stats *stats)
1423{
1424 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1425 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1426 int qs;
1427
1428 memset(stats, 0, sizeof(*stats));
1429 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1430 stats->tso += txq->tso;
1431 stats->tx_csum += txq->tx_cso;
1432 stats->rx_csum += rxq->stats.rx_cso;
1433 stats->vlan_ex += rxq->stats.vlan_ex;
1434 stats->vlan_ins += txq->vlan_ins;
1435 }
1436}
1437
1438/*
1439 * Return the ETH_SS_STATS statistics set.
1440 */
1441static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1442 struct ethtool_stats *stats,
1443 u64 *data)
1444{
1445 struct port_info *pi = netdev2pinfo(dev);
1446 struct adapter *adapter = pi->adapter;
1447 int err = t4vf_get_port_stats(adapter, pi->pidx,
1448 (struct t4vf_port_stats *)data);
1449 if (err)
1450 memset(data, 0, sizeof(struct t4vf_port_stats));
1451
1452 data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1453 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1454}
1455
1456/*
1457 * Return the size of our register map.
1458 */
1459static int cxgb4vf_get_regs_len(struct net_device *dev)
1460{
1461 return T4VF_REGMAP_SIZE;
1462}
1463
1464/*
1465 * Dump a block of registers, start to end inclusive, into a buffer.
1466 */
1467static void reg_block_dump(struct adapter *adapter, void *regbuf,
1468 unsigned int start, unsigned int end)
1469{
1470 u32 *bp = regbuf + start - T4VF_REGMAP_START;
1471
1472 for ( ; start <= end; start += sizeof(u32)) {
1473 /*
1474 * Avoid reading the Mailbox Control register since that
1475 * can trigger a Mailbox Ownership Arbitration cycle and
1476 * interfere with communication with the firmware.
1477 */
1478 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1479 *bp++ = 0xffff;
1480 else
1481 *bp++ = t4_read_reg(adapter, start);
1482 }
1483}
1484
1485/*
1486 * Copy our entire register map into the provided buffer.
1487 */
1488static void cxgb4vf_get_regs(struct net_device *dev,
1489 struct ethtool_regs *regs,
1490 void *regbuf)
1491{
1492 struct adapter *adapter = netdev2adap(dev);
1493
1494 regs->version = mk_adap_vers(adapter);
1495
1496 /*
1497 * Fill in register buffer with our register map.
1498 */
1499 memset(regbuf, 0, T4VF_REGMAP_SIZE);
1500
1501 reg_block_dump(adapter, regbuf,
1502 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1503 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1504 reg_block_dump(adapter, regbuf,
1505 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1506 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1507 reg_block_dump(adapter, regbuf,
1508 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1509 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_LAST);
1510 reg_block_dump(adapter, regbuf,
1511 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1512 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1513
1514 reg_block_dump(adapter, regbuf,
1515 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1516 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1517}
1518
1519/*
1520 * Report current Wake On LAN settings.
1521 */
1522static void cxgb4vf_get_wol(struct net_device *dev,
1523 struct ethtool_wolinfo *wol)
1524{
1525 wol->supported = 0;
1526 wol->wolopts = 0;
1527 memset(&wol->sopass, 0, sizeof(wol->sopass));
1528}
1529
1530/*
1531 * Set TCP Segmentation Offloading feature capabilities.
1532 */
1533static int cxgb4vf_set_tso(struct net_device *dev, u32 tso)
1534{
1535 if (tso)
1536 dev->features |= NETIF_F_TSO | NETIF_F_TSO6;
1537 else
1538 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
1539 return 0;
1540}
1541
1542static struct ethtool_ops cxgb4vf_ethtool_ops = {
1543 .get_settings = cxgb4vf_get_settings,
1544 .get_drvinfo = cxgb4vf_get_drvinfo,
1545 .get_msglevel = cxgb4vf_get_msglevel,
1546 .set_msglevel = cxgb4vf_set_msglevel,
1547 .get_ringparam = cxgb4vf_get_ringparam,
1548 .set_ringparam = cxgb4vf_set_ringparam,
1549 .get_coalesce = cxgb4vf_get_coalesce,
1550 .set_coalesce = cxgb4vf_set_coalesce,
1551 .get_pauseparam = cxgb4vf_get_pauseparam,
1552 .get_rx_csum = cxgb4vf_get_rx_csum,
1553 .set_rx_csum = cxgb4vf_set_rx_csum,
1554 .set_tx_csum = ethtool_op_set_tx_ipv6_csum,
1555 .set_sg = ethtool_op_set_sg,
1556 .get_link = ethtool_op_get_link,
1557 .get_strings = cxgb4vf_get_strings,
1558 .phys_id = cxgb4vf_phys_id,
1559 .get_sset_count = cxgb4vf_get_sset_count,
1560 .get_ethtool_stats = cxgb4vf_get_ethtool_stats,
1561 .get_regs_len = cxgb4vf_get_regs_len,
1562 .get_regs = cxgb4vf_get_regs,
1563 .get_wol = cxgb4vf_get_wol,
1564 .set_tso = cxgb4vf_set_tso,
1565};
1566
1567/*
1568 * /sys/kernel/debug/cxgb4vf support code and data.
1569 * ================================================
1570 */
1571
1572/*
1573 * Show SGE Queue Set information. We display QPL Queues Sets per line.
1574 */
1575#define QPL 4
1576
1577static int sge_qinfo_show(struct seq_file *seq, void *v)
1578{
1579 struct adapter *adapter = seq->private;
1580 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1581 int qs, r = (uintptr_t)v - 1;
1582
1583 if (r)
1584 seq_putc(seq, '\n');
1585
1586 #define S3(fmt_spec, s, v) \
1587 do {\
1588 seq_printf(seq, "%-12s", s); \
1589 for (qs = 0; qs < n; ++qs) \
1590 seq_printf(seq, " %16" fmt_spec, v); \
1591 seq_putc(seq, '\n'); \
1592 } while (0)
1593 #define S(s, v) S3("s", s, v)
1594 #define T(s, v) S3("u", s, txq[qs].v)
1595 #define R(s, v) S3("u", s, rxq[qs].v)
1596
1597 if (r < eth_entries) {
1598 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1599 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1600 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1601
1602 S("QType:", "Ethernet");
1603 S("Interface:",
1604 (rxq[qs].rspq.netdev
1605 ? rxq[qs].rspq.netdev->name
1606 : "N/A"));
1607 S3("d", "Port:",
1608 (rxq[qs].rspq.netdev
1609 ? ((struct port_info *)
1610 netdev_priv(rxq[qs].rspq.netdev))->port_id
1611 : -1));
1612 T("TxQ ID:", q.abs_id);
1613 T("TxQ size:", q.size);
1614 T("TxQ inuse:", q.in_use);
1615 T("TxQ PIdx:", q.pidx);
1616 T("TxQ CIdx:", q.cidx);
1617 R("RspQ ID:", rspq.abs_id);
1618 R("RspQ size:", rspq.size);
1619 R("RspQE size:", rspq.iqe_len);
1620 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
1621 S3("u", "Intr pktcnt:",
1622 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
1623 R("RspQ CIdx:", rspq.cidx);
1624 R("RspQ Gen:", rspq.gen);
1625 R("FL ID:", fl.abs_id);
1626 R("FL size:", fl.size - MIN_FL_RESID);
1627 R("FL avail:", fl.avail);
1628 R("FL PIdx:", fl.pidx);
1629 R("FL CIdx:", fl.cidx);
1630 return 0;
1631 }
1632
1633 r -= eth_entries;
1634 if (r == 0) {
1635 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1636
1637 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
1638 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
1639 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1640 qtimer_val(adapter, evtq));
1641 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1642 adapter->sge.counter_val[evtq->pktcnt_idx]);
1643 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
1644 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
1645 } else if (r == 1) {
1646 const struct sge_rspq *intrq = &adapter->sge.intrq;
1647
1648 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
1649 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
1650 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1651 qtimer_val(adapter, intrq));
1652 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1653 adapter->sge.counter_val[intrq->pktcnt_idx]);
1654 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
1655 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
1656 }
1657
1658 #undef R
1659 #undef T
1660 #undef S
1661 #undef S3
1662
1663 return 0;
1664}
1665
1666/*
1667 * Return the number of "entries" in our "file". We group the multi-Queue
1668 * sections with QPL Queue Sets per "entry". The sections of the output are:
1669 *
1670 * Ethernet RX/TX Queue Sets
1671 * Firmware Event Queue
1672 * Forwarded Interrupt Queue (if in MSI mode)
1673 */
1674static int sge_queue_entries(const struct adapter *adapter)
1675{
1676 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1677 ((adapter->flags & USING_MSI) != 0);
1678}
1679
1680static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
1681{
1682 int entries = sge_queue_entries(seq->private);
1683
1684 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1685}
1686
1687static void sge_queue_stop(struct seq_file *seq, void *v)
1688{
1689}
1690
1691static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
1692{
1693 int entries = sge_queue_entries(seq->private);
1694
1695 ++*pos;
1696 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1697}
1698
1699static const struct seq_operations sge_qinfo_seq_ops = {
1700 .start = sge_queue_start,
1701 .next = sge_queue_next,
1702 .stop = sge_queue_stop,
1703 .show = sge_qinfo_show
1704};
1705
1706static int sge_qinfo_open(struct inode *inode, struct file *file)
1707{
1708 int res = seq_open(file, &sge_qinfo_seq_ops);
1709
1710 if (!res) {
1711 struct seq_file *seq = file->private_data;
1712 seq->private = inode->i_private;
1713 }
1714 return res;
1715}
1716
1717static const struct file_operations sge_qinfo_debugfs_fops = {
1718 .owner = THIS_MODULE,
1719 .open = sge_qinfo_open,
1720 .read = seq_read,
1721 .llseek = seq_lseek,
1722 .release = seq_release,
1723};
1724
1725/*
1726 * Show SGE Queue Set statistics. We display QPL Queues Sets per line.
1727 */
1728#define QPL 4
1729
1730static int sge_qstats_show(struct seq_file *seq, void *v)
1731{
1732 struct adapter *adapter = seq->private;
1733 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1734 int qs, r = (uintptr_t)v - 1;
1735
1736 if (r)
1737 seq_putc(seq, '\n');
1738
1739 #define S3(fmt, s, v) \
1740 do { \
1741 seq_printf(seq, "%-16s", s); \
1742 for (qs = 0; qs < n; ++qs) \
1743 seq_printf(seq, " %8" fmt, v); \
1744 seq_putc(seq, '\n'); \
1745 } while (0)
1746 #define S(s, v) S3("s", s, v)
1747
1748 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v)
1749 #define T(s, v) T3("lu", s, v)
1750
1751 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v)
1752 #define R(s, v) R3("lu", s, v)
1753
1754 if (r < eth_entries) {
1755 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1756 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1757 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1758
1759 S("QType:", "Ethernet");
1760 S("Interface:",
1761 (rxq[qs].rspq.netdev
1762 ? rxq[qs].rspq.netdev->name
1763 : "N/A"));
68dc9d36 1764 R3("u", "RspQNullInts:", rspq.unhandled_irqs);
be839e39
CL
1765 R("RxPackets:", stats.pkts);
1766 R("RxCSO:", stats.rx_cso);
1767 R("VLANxtract:", stats.vlan_ex);
1768 R("LROmerged:", stats.lro_merged);
1769 R("LROpackets:", stats.lro_pkts);
1770 R("RxDrops:", stats.rx_drops);
1771 T("TSO:", tso);
1772 T("TxCSO:", tx_cso);
1773 T("VLANins:", vlan_ins);
1774 T("TxQFull:", q.stops);
1775 T("TxQRestarts:", q.restarts);
1776 T("TxMapErr:", mapping_err);
1777 R("FLAllocErr:", fl.alloc_failed);
1778 R("FLLrgAlcErr:", fl.large_alloc_failed);
1779 R("FLStarving:", fl.starving);
1780 return 0;
1781 }
1782
1783 r -= eth_entries;
1784 if (r == 0) {
1785 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1786
1787 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
68dc9d36
CL
1788 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1789 evtq->unhandled_irqs);
be839e39
CL
1790 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
1791 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
1792 } else if (r == 1) {
1793 const struct sge_rspq *intrq = &adapter->sge.intrq;
1794
1795 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
68dc9d36
CL
1796 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1797 intrq->unhandled_irqs);
be839e39
CL
1798 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
1799 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
1800 }
1801
1802 #undef R
1803 #undef T
1804 #undef S
1805 #undef R3
1806 #undef T3
1807 #undef S3
1808
1809 return 0;
1810}
1811
1812/*
1813 * Return the number of "entries" in our "file". We group the multi-Queue
1814 * sections with QPL Queue Sets per "entry". The sections of the output are:
1815 *
1816 * Ethernet RX/TX Queue Sets
1817 * Firmware Event Queue
1818 * Forwarded Interrupt Queue (if in MSI mode)
1819 */
1820static int sge_qstats_entries(const struct adapter *adapter)
1821{
1822 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1823 ((adapter->flags & USING_MSI) != 0);
1824}
1825
1826static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
1827{
1828 int entries = sge_qstats_entries(seq->private);
1829
1830 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1831}
1832
1833static void sge_qstats_stop(struct seq_file *seq, void *v)
1834{
1835}
1836
1837static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
1838{
1839 int entries = sge_qstats_entries(seq->private);
1840
1841 (*pos)++;
1842 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1843}
1844
1845static const struct seq_operations sge_qstats_seq_ops = {
1846 .start = sge_qstats_start,
1847 .next = sge_qstats_next,
1848 .stop = sge_qstats_stop,
1849 .show = sge_qstats_show
1850};
1851
1852static int sge_qstats_open(struct inode *inode, struct file *file)
1853{
1854 int res = seq_open(file, &sge_qstats_seq_ops);
1855
1856 if (res == 0) {
1857 struct seq_file *seq = file->private_data;
1858 seq->private = inode->i_private;
1859 }
1860 return res;
1861}
1862
1863static const struct file_operations sge_qstats_proc_fops = {
1864 .owner = THIS_MODULE,
1865 .open = sge_qstats_open,
1866 .read = seq_read,
1867 .llseek = seq_lseek,
1868 .release = seq_release,
1869};
1870
1871/*
1872 * Show PCI-E SR-IOV Virtual Function Resource Limits.
1873 */
1874static int resources_show(struct seq_file *seq, void *v)
1875{
1876 struct adapter *adapter = seq->private;
1877 struct vf_resources *vfres = &adapter->params.vfres;
1878
1879 #define S(desc, fmt, var) \
1880 seq_printf(seq, "%-60s " fmt "\n", \
1881 desc " (" #var "):", vfres->var)
1882
1883 S("Virtual Interfaces", "%d", nvi);
1884 S("Egress Queues", "%d", neq);
1885 S("Ethernet Control", "%d", nethctrl);
1886 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
1887 S("Ingress Queues", "%d", niq);
1888 S("Traffic Class", "%d", tc);
1889 S("Port Access Rights Mask", "%#x", pmask);
1890 S("MAC Address Filters", "%d", nexactf);
1891 S("Firmware Command Read Capabilities", "%#x", r_caps);
1892 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
1893
1894 #undef S
1895
1896 return 0;
1897}
1898
1899static int resources_open(struct inode *inode, struct file *file)
1900{
1901 return single_open(file, resources_show, inode->i_private);
1902}
1903
1904static const struct file_operations resources_proc_fops = {
1905 .owner = THIS_MODULE,
1906 .open = resources_open,
1907 .read = seq_read,
1908 .llseek = seq_lseek,
1909 .release = single_release,
1910};
1911
1912/*
1913 * Show Virtual Interfaces.
1914 */
1915static int interfaces_show(struct seq_file *seq, void *v)
1916{
1917 if (v == SEQ_START_TOKEN) {
1918 seq_puts(seq, "Interface Port VIID\n");
1919 } else {
1920 struct adapter *adapter = seq->private;
1921 int pidx = (uintptr_t)v - 2;
1922 struct net_device *dev = adapter->port[pidx];
1923 struct port_info *pi = netdev_priv(dev);
1924
1925 seq_printf(seq, "%9s %4d %#5x\n",
1926 dev->name, pi->port_id, pi->viid);
1927 }
1928 return 0;
1929}
1930
1931static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
1932{
1933 return pos <= adapter->params.nports
1934 ? (void *)(uintptr_t)(pos + 1)
1935 : NULL;
1936}
1937
1938static void *interfaces_start(struct seq_file *seq, loff_t *pos)
1939{
1940 return *pos
1941 ? interfaces_get_idx(seq->private, *pos)
1942 : SEQ_START_TOKEN;
1943}
1944
1945static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
1946{
1947 (*pos)++;
1948 return interfaces_get_idx(seq->private, *pos);
1949}
1950
1951static void interfaces_stop(struct seq_file *seq, void *v)
1952{
1953}
1954
1955static const struct seq_operations interfaces_seq_ops = {
1956 .start = interfaces_start,
1957 .next = interfaces_next,
1958 .stop = interfaces_stop,
1959 .show = interfaces_show
1960};
1961
1962static int interfaces_open(struct inode *inode, struct file *file)
1963{
1964 int res = seq_open(file, &interfaces_seq_ops);
1965
1966 if (res == 0) {
1967 struct seq_file *seq = file->private_data;
1968 seq->private = inode->i_private;
1969 }
1970 return res;
1971}
1972
1973static const struct file_operations interfaces_proc_fops = {
1974 .owner = THIS_MODULE,
1975 .open = interfaces_open,
1976 .read = seq_read,
1977 .llseek = seq_lseek,
1978 .release = seq_release,
1979};
1980
1981/*
1982 * /sys/kernel/debugfs/cxgb4vf/ files list.
1983 */
1984struct cxgb4vf_debugfs_entry {
1985 const char *name; /* name of debugfs node */
1986 mode_t mode; /* file system mode */
1987 const struct file_operations *fops;
1988};
1989
1990static struct cxgb4vf_debugfs_entry debugfs_files[] = {
1991 { "sge_qinfo", S_IRUGO, &sge_qinfo_debugfs_fops },
1992 { "sge_qstats", S_IRUGO, &sge_qstats_proc_fops },
1993 { "resources", S_IRUGO, &resources_proc_fops },
1994 { "interfaces", S_IRUGO, &interfaces_proc_fops },
1995};
1996
1997/*
1998 * Module and device initialization and cleanup code.
1999 * ==================================================
2000 */
2001
2002/*
2003 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the
2004 * directory (debugfs_root) has already been set up.
2005 */
2006static int __devinit setup_debugfs(struct adapter *adapter)
2007{
2008 int i;
2009
2010 BUG_ON(adapter->debugfs_root == NULL);
2011
2012 /*
2013 * Debugfs support is best effort.
2014 */
2015 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2016 (void)debugfs_create_file(debugfs_files[i].name,
2017 debugfs_files[i].mode,
2018 adapter->debugfs_root,
2019 (void *)adapter,
2020 debugfs_files[i].fops);
2021
2022 return 0;
2023}
2024
2025/*
2026 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave
2027 * it to our caller to tear down the directory (debugfs_root).
2028 */
2029static void __devexit cleanup_debugfs(struct adapter *adapter)
2030{
2031 BUG_ON(adapter->debugfs_root == NULL);
2032
2033 /*
2034 * Unlike our sister routine cleanup_proc(), we don't need to remove
2035 * individual entries because a call will be made to
2036 * debugfs_remove_recursive(). We just need to clean up any ancillary
2037 * persistent state.
2038 */
2039 /* nothing to do */
2040}
2041
2042/*
2043 * Perform early "adapter" initialization. This is where we discover what
2044 * adapter parameters we're going to be using and initialize basic adapter
2045 * hardware support.
2046 */
2047static int adap_init0(struct adapter *adapter)
2048{
2049 struct vf_resources *vfres = &adapter->params.vfres;
2050 struct sge_params *sge_params = &adapter->params.sge;
2051 struct sge *s = &adapter->sge;
2052 unsigned int ethqsets;
2053 int err;
2054
2055 /*
2056 * Wait for the device to become ready before proceeding ...
2057 */
2058 err = t4vf_wait_dev_ready(adapter);
2059 if (err) {
2060 dev_err(adapter->pdev_dev, "device didn't become ready:"
2061 " err=%d\n", err);
2062 return err;
2063 }
2064
2065 /*
2066 * Grab basic operational parameters. These will predominantly have
2067 * been set up by the Physical Function Driver or will be hard coded
2068 * into the adapter. We just have to live with them ... Note that
2069 * we _must_ get our VPD parameters before our SGE parameters because
2070 * we need to know the adapter's core clock from the VPD in order to
2071 * properly decode the SGE Timer Values.
2072 */
2073 err = t4vf_get_dev_params(adapter);
2074 if (err) {
2075 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2076 " device parameters: err=%d\n", err);
2077 return err;
2078 }
2079 err = t4vf_get_vpd_params(adapter);
2080 if (err) {
2081 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2082 " VPD parameters: err=%d\n", err);
2083 return err;
2084 }
2085 err = t4vf_get_sge_params(adapter);
2086 if (err) {
2087 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2088 " SGE parameters: err=%d\n", err);
2089 return err;
2090 }
2091 err = t4vf_get_rss_glb_config(adapter);
2092 if (err) {
2093 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2094 " RSS parameters: err=%d\n", err);
2095 return err;
2096 }
2097 if (adapter->params.rss.mode !=
2098 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2099 dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2100 " mode %d\n", adapter->params.rss.mode);
2101 return -EINVAL;
2102 }
2103 err = t4vf_sge_init(adapter);
2104 if (err) {
2105 dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2106 " err=%d\n", err);
2107 return err;
2108 }
2109
2110 /*
2111 * Retrieve our RX interrupt holdoff timer values and counter
2112 * threshold values from the SGE parameters.
2113 */
2114 s->timer_val[0] = core_ticks_to_us(adapter,
2115 TIMERVALUE0_GET(sge_params->sge_timer_value_0_and_1));
2116 s->timer_val[1] = core_ticks_to_us(adapter,
2117 TIMERVALUE1_GET(sge_params->sge_timer_value_0_and_1));
2118 s->timer_val[2] = core_ticks_to_us(adapter,
2119 TIMERVALUE0_GET(sge_params->sge_timer_value_2_and_3));
2120 s->timer_val[3] = core_ticks_to_us(adapter,
2121 TIMERVALUE1_GET(sge_params->sge_timer_value_2_and_3));
2122 s->timer_val[4] = core_ticks_to_us(adapter,
2123 TIMERVALUE0_GET(sge_params->sge_timer_value_4_and_5));
2124 s->timer_val[5] = core_ticks_to_us(adapter,
2125 TIMERVALUE1_GET(sge_params->sge_timer_value_4_and_5));
2126
2127 s->counter_val[0] =
2128 THRESHOLD_0_GET(sge_params->sge_ingress_rx_threshold);
2129 s->counter_val[1] =
2130 THRESHOLD_1_GET(sge_params->sge_ingress_rx_threshold);
2131 s->counter_val[2] =
2132 THRESHOLD_2_GET(sge_params->sge_ingress_rx_threshold);
2133 s->counter_val[3] =
2134 THRESHOLD_3_GET(sge_params->sge_ingress_rx_threshold);
2135
2136 /*
2137 * Grab our Virtual Interface resource allocation, extract the
2138 * features that we're interested in and do a bit of sanity testing on
2139 * what we discover.
2140 */
2141 err = t4vf_get_vfres(adapter);
2142 if (err) {
2143 dev_err(adapter->pdev_dev, "unable to get virtual interface"
2144 " resources: err=%d\n", err);
2145 return err;
2146 }
2147
2148 /*
2149 * The number of "ports" which we support is equal to the number of
2150 * Virtual Interfaces with which we've been provisioned.
2151 */
2152 adapter->params.nports = vfres->nvi;
2153 if (adapter->params.nports > MAX_NPORTS) {
2154 dev_warn(adapter->pdev_dev, "only using %d of %d allowed"
2155 " virtual interfaces\n", MAX_NPORTS,
2156 adapter->params.nports);
2157 adapter->params.nports = MAX_NPORTS;
2158 }
2159
2160 /*
2161 * We need to reserve a number of the ingress queues with Free List
2162 * and Interrupt capabilities for special interrupt purposes (like
2163 * asynchronous firmware messages, or forwarded interrupts if we're
2164 * using MSI). The rest of the FL/Intr-capable ingress queues will be
2165 * matched up one-for-one with Ethernet/Control egress queues in order
2166 * to form "Queue Sets" which will be aportioned between the "ports".
2167 * For each Queue Set, we'll need the ability to allocate two Egress
2168 * Contexts -- one for the Ingress Queue Free List and one for the TX
2169 * Ethernet Queue.
2170 */
2171 ethqsets = vfres->niqflint - INGQ_EXTRAS;
2172 if (vfres->nethctrl != ethqsets) {
2173 dev_warn(adapter->pdev_dev, "unequal number of [available]"
2174 " ingress/egress queues (%d/%d); using minimum for"
2175 " number of Queue Sets\n", ethqsets, vfres->nethctrl);
2176 ethqsets = min(vfres->nethctrl, ethqsets);
2177 }
2178 if (vfres->neq < ethqsets*2) {
2179 dev_warn(adapter->pdev_dev, "Not enough Egress Contexts (%d)"
2180 " to support Queue Sets (%d); reducing allowed Queue"
2181 " Sets\n", vfres->neq, ethqsets);
2182 ethqsets = vfres->neq/2;
2183 }
2184 if (ethqsets > MAX_ETH_QSETS) {
2185 dev_warn(adapter->pdev_dev, "only using %d of %d allowed Queue"
2186 " Sets\n", MAX_ETH_QSETS, adapter->sge.max_ethqsets);
2187 ethqsets = MAX_ETH_QSETS;
2188 }
2189 if (vfres->niq != 0 || vfres->neq > ethqsets*2) {
2190 dev_warn(adapter->pdev_dev, "unused resources niq/neq (%d/%d)"
2191 " ignored\n", vfres->niq, vfres->neq - ethqsets*2);
2192 }
2193 adapter->sge.max_ethqsets = ethqsets;
2194
2195 /*
2196 * Check for various parameter sanity issues. Most checks simply
2197 * result in us using fewer resources than our provissioning but we
2198 * do need at least one "port" with which to work ...
2199 */
2200 if (adapter->sge.max_ethqsets < adapter->params.nports) {
2201 dev_warn(adapter->pdev_dev, "only using %d of %d available"
2202 " virtual interfaces (too few Queue Sets)\n",
2203 adapter->sge.max_ethqsets, adapter->params.nports);
2204 adapter->params.nports = adapter->sge.max_ethqsets;
2205 }
2206 if (adapter->params.nports == 0) {
2207 dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2208 "usable!\n");
2209 return -EINVAL;
2210 }
2211 return 0;
2212}
2213
2214static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2215 u8 pkt_cnt_idx, unsigned int size,
2216 unsigned int iqe_size)
2217{
2218 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
2219 (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0));
2220 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2221 ? pkt_cnt_idx
2222 : 0);
2223 rspq->iqe_len = iqe_size;
2224 rspq->size = size;
2225}
2226
2227/*
2228 * Perform default configuration of DMA queues depending on the number and
2229 * type of ports we found and the number of available CPUs. Most settings can
2230 * be modified by the admin via ethtool and cxgbtool prior to the adapter
2231 * being brought up for the first time.
2232 */
2233static void __devinit cfg_queues(struct adapter *adapter)
2234{
2235 struct sge *s = &adapter->sge;
2236 int q10g, n10g, qidx, pidx, qs;
2237
2238 /*
2239 * We should not be called till we know how many Queue Sets we can
2240 * support. In particular, this means that we need to know what kind
2241 * of interrupts we'll be using ...
2242 */
2243 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2244
2245 /*
2246 * Count the number of 10GbE Virtual Interfaces that we have.
2247 */
2248 n10g = 0;
2249 for_each_port(adapter, pidx)
2250 n10g += is_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2251
2252 /*
2253 * We default to 1 queue per non-10G port and up to # of cores queues
2254 * per 10G port.
2255 */
2256 if (n10g == 0)
2257 q10g = 0;
2258 else {
2259 int n1g = (adapter->params.nports - n10g);
2260 q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2261 if (q10g > num_online_cpus())
2262 q10g = num_online_cpus();
2263 }
2264
2265 /*
2266 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2267 * The layout will be established in setup_sge_queues() when the
2268 * adapter is brough up for the first time.
2269 */
2270 qidx = 0;
2271 for_each_port(adapter, pidx) {
2272 struct port_info *pi = adap2pinfo(adapter, pidx);
2273
2274 pi->first_qset = qidx;
2275 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1;
2276 qidx += pi->nqsets;
2277 }
2278 s->ethqsets = qidx;
2279
2280 /*
2281 * Set up default Queue Set parameters ... Start off with the
2282 * shortest interrupt holdoff timer.
2283 */
2284 for (qs = 0; qs < s->max_ethqsets; qs++) {
2285 struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2286 struct sge_eth_txq *txq = &s->ethtxq[qs];
2287
2288 init_rspq(&rxq->rspq, 0, 0, 1024, L1_CACHE_BYTES);
2289 rxq->fl.size = 72;
2290 txq->q.size = 1024;
2291 }
2292
2293 /*
2294 * The firmware event queue is used for link state changes and
2295 * notifications of TX DMA completions.
2296 */
2297 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512,
2298 L1_CACHE_BYTES);
2299
2300 /*
2301 * The forwarded interrupt queue is used when we're in MSI interrupt
2302 * mode. In this mode all interrupts associated with RX queues will
2303 * be forwarded to a single queue which we'll associate with our MSI
2304 * interrupt vector. The messages dropped in the forwarded interrupt
2305 * queue will indicate which ingress queue needs servicing ... This
2306 * queue needs to be large enough to accommodate all of the ingress
2307 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2308 * from equalling the CIDX if every ingress queue has an outstanding
2309 * interrupt). The queue doesn't need to be any larger because no
2310 * ingress queue will ever have more than one outstanding interrupt at
2311 * any time ...
2312 */
2313 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
2314 L1_CACHE_BYTES);
2315}
2316
2317/*
2318 * Reduce the number of Ethernet queues across all ports to at most n.
2319 * n provides at least one queue per port.
2320 */
2321static void __devinit reduce_ethqs(struct adapter *adapter, int n)
2322{
2323 int i;
2324 struct port_info *pi;
2325
2326 /*
2327 * While we have too many active Ether Queue Sets, interate across the
2328 * "ports" and reduce their individual Queue Set allocations.
2329 */
2330 BUG_ON(n < adapter->params.nports);
2331 while (n < adapter->sge.ethqsets)
2332 for_each_port(adapter, i) {
2333 pi = adap2pinfo(adapter, i);
2334 if (pi->nqsets > 1) {
2335 pi->nqsets--;
2336 adapter->sge.ethqsets--;
2337 if (adapter->sge.ethqsets <= n)
2338 break;
2339 }
2340 }
2341
2342 /*
2343 * Reassign the starting Queue Sets for each of the "ports" ...
2344 */
2345 n = 0;
2346 for_each_port(adapter, i) {
2347 pi = adap2pinfo(adapter, i);
2348 pi->first_qset = n;
2349 n += pi->nqsets;
2350 }
2351}
2352
2353/*
2354 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally
2355 * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2356 * need. Minimally we need one for every Virtual Interface plus those needed
2357 * for our "extras". Note that this process may lower the maximum number of
2358 * allowed Queue Sets ...
2359 */
2360static int __devinit enable_msix(struct adapter *adapter)
2361{
2362 int i, err, want, need;
2363 struct msix_entry entries[MSIX_ENTRIES];
2364 struct sge *s = &adapter->sge;
2365
2366 for (i = 0; i < MSIX_ENTRIES; ++i)
2367 entries[i].entry = i;
2368
2369 /*
2370 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2371 * plus those needed for our "extras" (for example, the firmware
2372 * message queue). We _need_ at least one "Queue Set" per Virtual
2373 * Interface plus those needed for our "extras". So now we get to see
2374 * if the song is right ...
2375 */
2376 want = s->max_ethqsets + MSIX_EXTRAS;
2377 need = adapter->params.nports + MSIX_EXTRAS;
2378 while ((err = pci_enable_msix(adapter->pdev, entries, want)) >= need)
2379 want = err;
2380
2381 if (err == 0) {
2382 int nqsets = want - MSIX_EXTRAS;
2383 if (nqsets < s->max_ethqsets) {
2384 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2385 " for %d Queue Sets\n", nqsets);
2386 s->max_ethqsets = nqsets;
2387 if (nqsets < s->ethqsets)
2388 reduce_ethqs(adapter, nqsets);
2389 }
2390 for (i = 0; i < want; ++i)
2391 adapter->msix_info[i].vec = entries[i].vector;
2392 } else if (err > 0) {
2393 pci_disable_msix(adapter->pdev);
2394 dev_info(adapter->pdev_dev, "only %d MSI-X vectors left,"
2395 " not using MSI-X\n", err);
2396 }
2397 return err;
2398}
2399
2400#ifdef HAVE_NET_DEVICE_OPS
2401static const struct net_device_ops cxgb4vf_netdev_ops = {
2402 .ndo_open = cxgb4vf_open,
2403 .ndo_stop = cxgb4vf_stop,
2404 .ndo_start_xmit = t4vf_eth_xmit,
2405 .ndo_get_stats = cxgb4vf_get_stats,
2406 .ndo_set_rx_mode = cxgb4vf_set_rxmode,
2407 .ndo_set_mac_address = cxgb4vf_set_mac_addr,
be839e39
CL
2408 .ndo_validate_addr = eth_validate_addr,
2409 .ndo_do_ioctl = cxgb4vf_do_ioctl,
2410 .ndo_change_mtu = cxgb4vf_change_mtu,
2411 .ndo_vlan_rx_register = cxgb4vf_vlan_rx_register,
2412#ifdef CONFIG_NET_POLL_CONTROLLER
2413 .ndo_poll_controller = cxgb4vf_poll_controller,
2414#endif
2415};
2416#endif
2417
2418/*
2419 * "Probe" a device: initialize a device and construct all kernel and driver
2420 * state needed to manage the device. This routine is called "init_one" in
2421 * the PF Driver ...
2422 */
2423static int __devinit cxgb4vf_pci_probe(struct pci_dev *pdev,
2424 const struct pci_device_id *ent)
2425{
2426 static int version_printed;
2427
2428 int pci_using_dac;
2429 int err, pidx;
2430 unsigned int pmask;
2431 struct adapter *adapter;
2432 struct port_info *pi;
2433 struct net_device *netdev;
2434
2435 /*
2436 * Vet our module parameters.
2437 */
2438 if (msi != MSI_MSIX && msi != MSI_MSI) {
2439 dev_err(&pdev->dev, "bad module parameter msi=%d; must be %d"
2440 " (MSI-X or MSI) or %d (MSI)\n", msi, MSI_MSIX,
2441 MSI_MSI);
2442 err = -EINVAL;
2443 goto err_out;
2444 }
2445
2446 /*
2447 * Print our driver banner the first time we're called to initialize a
2448 * device.
2449 */
2450 if (version_printed == 0) {
2451 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
2452 version_printed = 1;
2453 }
2454
7a0c2029 2455
be839e39 2456 /*
7a0c2029 2457 * Initialize generic PCI device state.
be839e39 2458 */
7a0c2029 2459 err = pci_enable_device(pdev);
be839e39 2460 if (err) {
7a0c2029 2461 dev_err(&pdev->dev, "cannot enable PCI device\n");
be839e39
CL
2462 return err;
2463 }
2464
2465 /*
7a0c2029
KV
2466 * Reserve PCI resources for the device. If we can't get them some
2467 * other driver may have already claimed the device ...
be839e39 2468 */
7a0c2029 2469 err = pci_request_regions(pdev, KBUILD_MODNAME);
be839e39 2470 if (err) {
7a0c2029
KV
2471 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2472 goto err_disable_device;
be839e39
CL
2473 }
2474
2475 /*
2476 * Set up our DMA mask: try for 64-bit address masking first and
2477 * fall back to 32-bit if we can't get 64 bits ...
2478 */
2479 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2480 if (err == 0) {
2481 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2482 if (err) {
2483 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2484 " coherent allocations\n");
7a0c2029 2485 goto err_release_regions;
be839e39
CL
2486 }
2487 pci_using_dac = 1;
2488 } else {
2489 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2490 if (err != 0) {
2491 dev_err(&pdev->dev, "no usable DMA configuration\n");
7a0c2029 2492 goto err_release_regions;
be839e39
CL
2493 }
2494 pci_using_dac = 0;
2495 }
2496
2497 /*
2498 * Enable bus mastering for the device ...
2499 */
2500 pci_set_master(pdev);
2501
2502 /*
2503 * Allocate our adapter data structure and attach it to the device.
2504 */
2505 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2506 if (!adapter) {
2507 err = -ENOMEM;
7a0c2029 2508 goto err_release_regions;
be839e39
CL
2509 }
2510 pci_set_drvdata(pdev, adapter);
2511 adapter->pdev = pdev;
2512 adapter->pdev_dev = &pdev->dev;
2513
2514 /*
2515 * Initialize SMP data synchronization resources.
2516 */
2517 spin_lock_init(&adapter->stats_lock);
2518
2519 /*
2520 * Map our I/O registers in BAR0.
2521 */
2522 adapter->regs = pci_ioremap_bar(pdev, 0);
2523 if (!adapter->regs) {
2524 dev_err(&pdev->dev, "cannot map device registers\n");
2525 err = -ENOMEM;
2526 goto err_free_adapter;
2527 }
2528
2529 /*
2530 * Initialize adapter level features.
2531 */
2532 adapter->name = pci_name(pdev);
2533 adapter->msg_enable = dflt_msg_enable;
2534 err = adap_init0(adapter);
2535 if (err)
2536 goto err_unmap_bar;
2537
2538 /*
2539 * Allocate our "adapter ports" and stitch everything together.
2540 */
2541 pmask = adapter->params.vfres.pmask;
2542 for_each_port(adapter, pidx) {
2543 int port_id, viid;
2544
2545 /*
2546 * We simplistically allocate our virtual interfaces
2547 * sequentially across the port numbers to which we have
2548 * access rights. This should be configurable in some manner
2549 * ...
2550 */
2551 if (pmask == 0)
2552 break;
2553 port_id = ffs(pmask) - 1;
2554 pmask &= ~(1 << port_id);
2555 viid = t4vf_alloc_vi(adapter, port_id);
2556 if (viid < 0) {
2557 dev_err(&pdev->dev, "cannot allocate VI for port %d:"
2558 " err=%d\n", port_id, viid);
2559 err = viid;
2560 goto err_free_dev;
2561 }
2562
2563 /*
2564 * Allocate our network device and stitch things together.
2565 */
2566 netdev = alloc_etherdev_mq(sizeof(struct port_info),
2567 MAX_PORT_QSETS);
2568 if (netdev == NULL) {
2569 dev_err(&pdev->dev, "cannot allocate netdev for"
2570 " port %d\n", port_id);
2571 t4vf_free_vi(adapter, viid);
2572 err = -ENOMEM;
2573 goto err_free_dev;
2574 }
2575 adapter->port[pidx] = netdev;
2576 SET_NETDEV_DEV(netdev, &pdev->dev);
2577 pi = netdev_priv(netdev);
2578 pi->adapter = adapter;
2579 pi->pidx = pidx;
2580 pi->port_id = port_id;
2581 pi->viid = viid;
2582
2583 /*
2584 * Initialize the starting state of our "port" and register
2585 * it.
2586 */
2587 pi->xact_addr_filt = -1;
2588 pi->rx_offload = RX_CSO;
2589 netif_carrier_off(netdev);
be839e39
CL
2590 netdev->irq = pdev->irq;
2591
2592 netdev->features = (NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO6 |
2593 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2594 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
2595 NETIF_F_GRO);
2596 if (pci_using_dac)
2597 netdev->features |= NETIF_F_HIGHDMA;
2598 netdev->vlan_features =
2599 (netdev->features &
2600 ~(NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX));
2601
2602#ifdef HAVE_NET_DEVICE_OPS
2603 netdev->netdev_ops = &cxgb4vf_netdev_ops;
2604#else
2605 netdev->vlan_rx_register = cxgb4vf_vlan_rx_register;
2606 netdev->open = cxgb4vf_open;
2607 netdev->stop = cxgb4vf_stop;
2608 netdev->hard_start_xmit = t4vf_eth_xmit;
2609 netdev->get_stats = cxgb4vf_get_stats;
2610 netdev->set_rx_mode = cxgb4vf_set_rxmode;
2611 netdev->do_ioctl = cxgb4vf_do_ioctl;
2612 netdev->change_mtu = cxgb4vf_change_mtu;
2613 netdev->set_mac_address = cxgb4vf_set_mac_addr;
be839e39
CL
2614#ifdef CONFIG_NET_POLL_CONTROLLER
2615 netdev->poll_controller = cxgb4vf_poll_controller;
2616#endif
2617#endif
2618 SET_ETHTOOL_OPS(netdev, &cxgb4vf_ethtool_ops);
2619
2620 /*
2621 * Initialize the hardware/software state for the port.
2622 */
2623 err = t4vf_port_init(adapter, pidx);
2624 if (err) {
2625 dev_err(&pdev->dev, "cannot initialize port %d\n",
2626 pidx);
2627 goto err_free_dev;
2628 }
2629 }
2630
2631 /*
2632 * The "card" is now ready to go. If any errors occur during device
2633 * registration we do not fail the whole "card" but rather proceed
2634 * only with the ports we manage to register successfully. However we
2635 * must register at least one net device.
2636 */
2637 for_each_port(adapter, pidx) {
2638 netdev = adapter->port[pidx];
2639 if (netdev == NULL)
2640 continue;
2641
2642 err = register_netdev(netdev);
2643 if (err) {
2644 dev_warn(&pdev->dev, "cannot register net device %s,"
2645 " skipping\n", netdev->name);
2646 continue;
2647 }
2648
2649 set_bit(pidx, &adapter->registered_device_map);
2650 }
2651 if (adapter->registered_device_map == 0) {
2652 dev_err(&pdev->dev, "could not register any net devices\n");
2653 goto err_free_dev;
2654 }
2655
2656 /*
2657 * Set up our debugfs entries.
2658 */
2659 if (cxgb4vf_debugfs_root) {
2660 adapter->debugfs_root =
2661 debugfs_create_dir(pci_name(pdev),
2662 cxgb4vf_debugfs_root);
2663 if (adapter->debugfs_root == NULL)
2664 dev_warn(&pdev->dev, "could not create debugfs"
2665 " directory");
2666 else
2667 setup_debugfs(adapter);
2668 }
2669
2670 /*
2671 * See what interrupts we'll be using. If we've been configured to
2672 * use MSI-X interrupts, try to enable them but fall back to using
2673 * MSI interrupts if we can't enable MSI-X interrupts. If we can't
2674 * get MSI interrupts we bail with the error.
2675 */
2676 if (msi == MSI_MSIX && enable_msix(adapter) == 0)
2677 adapter->flags |= USING_MSIX;
2678 else {
2679 err = pci_enable_msi(pdev);
2680 if (err) {
2681 dev_err(&pdev->dev, "Unable to allocate %s interrupts;"
2682 " err=%d\n",
2683 msi == MSI_MSIX ? "MSI-X or MSI" : "MSI", err);
2684 goto err_free_debugfs;
2685 }
2686 adapter->flags |= USING_MSI;
2687 }
2688
2689 /*
2690 * Now that we know how many "ports" we have and what their types are,
2691 * and how many Queue Sets we can support, we can configure our queue
2692 * resources.
2693 */
2694 cfg_queues(adapter);
2695
2696 /*
2697 * Print a short notice on the existance and configuration of the new
2698 * VF network device ...
2699 */
2700 for_each_port(adapter, pidx) {
2701 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
2702 adapter->port[pidx]->name,
2703 (adapter->flags & USING_MSIX) ? "MSI-X" :
2704 (adapter->flags & USING_MSI) ? "MSI" : "");
2705 }
2706
2707 /*
2708 * Return success!
2709 */
2710 return 0;
2711
2712 /*
2713 * Error recovery and exit code. Unwind state that's been created
2714 * so far and return the error.
2715 */
2716
2717err_free_debugfs:
2718 if (adapter->debugfs_root) {
2719 cleanup_debugfs(adapter);
2720 debugfs_remove_recursive(adapter->debugfs_root);
2721 }
2722
2723err_free_dev:
2724 for_each_port(adapter, pidx) {
2725 netdev = adapter->port[pidx];
2726 if (netdev == NULL)
2727 continue;
2728 pi = netdev_priv(netdev);
2729 t4vf_free_vi(adapter, pi->viid);
2730 if (test_bit(pidx, &adapter->registered_device_map))
2731 unregister_netdev(netdev);
2732 free_netdev(netdev);
2733 }
2734
2735err_unmap_bar:
2736 iounmap(adapter->regs);
2737
2738err_free_adapter:
2739 kfree(adapter);
2740 pci_set_drvdata(pdev, NULL);
2741
be839e39
CL
2742err_release_regions:
2743 pci_release_regions(pdev);
2744 pci_set_drvdata(pdev, NULL);
7a0c2029
KV
2745 pci_clear_master(pdev);
2746
2747err_disable_device:
2748 pci_disable_device(pdev);
be839e39
CL
2749
2750err_out:
2751 return err;
2752}
2753
2754/*
2755 * "Remove" a device: tear down all kernel and driver state created in the
2756 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note
2757 * that this is called "remove_one" in the PF Driver.)
2758 */
2759static void __devexit cxgb4vf_pci_remove(struct pci_dev *pdev)
2760{
2761 struct adapter *adapter = pci_get_drvdata(pdev);
2762
2763 /*
2764 * Tear down driver state associated with device.
2765 */
2766 if (adapter) {
2767 int pidx;
2768
2769 /*
2770 * Stop all of our activity. Unregister network port,
2771 * disable interrupts, etc.
2772 */
2773 for_each_port(adapter, pidx)
2774 if (test_bit(pidx, &adapter->registered_device_map))
2775 unregister_netdev(adapter->port[pidx]);
2776 t4vf_sge_stop(adapter);
2777 if (adapter->flags & USING_MSIX) {
2778 pci_disable_msix(adapter->pdev);
2779 adapter->flags &= ~USING_MSIX;
2780 } else if (adapter->flags & USING_MSI) {
2781 pci_disable_msi(adapter->pdev);
2782 adapter->flags &= ~USING_MSI;
2783 }
2784
2785 /*
2786 * Tear down our debugfs entries.
2787 */
2788 if (adapter->debugfs_root) {
2789 cleanup_debugfs(adapter);
2790 debugfs_remove_recursive(adapter->debugfs_root);
2791 }
2792
2793 /*
2794 * Free all of the various resources which we've acquired ...
2795 */
2796 t4vf_free_sge_resources(adapter);
2797 for_each_port(adapter, pidx) {
2798 struct net_device *netdev = adapter->port[pidx];
2799 struct port_info *pi;
2800
2801 if (netdev == NULL)
2802 continue;
2803
2804 pi = netdev_priv(netdev);
2805 t4vf_free_vi(adapter, pi->viid);
2806 free_netdev(netdev);
2807 }
2808 iounmap(adapter->regs);
2809 kfree(adapter);
2810 pci_set_drvdata(pdev, NULL);
2811 }
2812
2813 /*
2814 * Disable the device and release its PCI resources.
2815 */
2816 pci_disable_device(pdev);
2817 pci_clear_master(pdev);
2818 pci_release_regions(pdev);
2819}
2820
2821/*
2822 * PCI Device registration data structures.
2823 */
2824#define CH_DEVICE(devid, idx) \
2825 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
2826
2827static struct pci_device_id cxgb4vf_pci_tbl[] = {
2828 CH_DEVICE(0xb000, 0), /* PE10K FPGA */
2829 CH_DEVICE(0x4800, 0), /* T440-dbg */
2830 CH_DEVICE(0x4801, 0), /* T420-cr */
2831 CH_DEVICE(0x4802, 0), /* T422-cr */
2832 { 0, }
2833};
2834
2835MODULE_DESCRIPTION(DRV_DESC);
2836MODULE_AUTHOR("Chelsio Communications");
2837MODULE_LICENSE("Dual BSD/GPL");
2838MODULE_VERSION(DRV_VERSION);
2839MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
2840
2841static struct pci_driver cxgb4vf_driver = {
2842 .name = KBUILD_MODNAME,
2843 .id_table = cxgb4vf_pci_tbl,
2844 .probe = cxgb4vf_pci_probe,
2845 .remove = __devexit_p(cxgb4vf_pci_remove),
2846};
2847
2848/*
2849 * Initialize global driver state.
2850 */
2851static int __init cxgb4vf_module_init(void)
2852{
2853 int ret;
2854
2855 /* Debugfs support is optional, just warn if this fails */
2856 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
2857 if (!cxgb4vf_debugfs_root)
2858 printk(KERN_WARNING KBUILD_MODNAME ": could not create"
2859 " debugfs entry, continuing\n");
2860
2861 ret = pci_register_driver(&cxgb4vf_driver);
2862 if (ret < 0)
2863 debugfs_remove(cxgb4vf_debugfs_root);
2864 return ret;
2865}
2866
2867/*
2868 * Tear down global driver state.
2869 */
2870static void __exit cxgb4vf_module_exit(void)
2871{
2872 pci_unregister_driver(&cxgb4vf_driver);
2873 debugfs_remove(cxgb4vf_debugfs_root);
2874}
2875
2876module_init(cxgb4vf_module_init);
2877module_exit(cxgb4vf_module_exit);
This page took 0.181881 seconds and 5 git commands to generate.