[PATCH] tty: trivial kzalloc opportunity
[deliverable/linux.git] / drivers / net / defxx.c
CommitLineData
1da177e4
LT
1/*
2 * File Name:
3 * defxx.c
4 *
5 * Copyright Information:
6 * Copyright Digital Equipment Corporation 1996.
7 *
8 * This software may be used and distributed according to the terms of
9 * the GNU General Public License, incorporated herein by reference.
10 *
11 * Abstract:
12 * A Linux device driver supporting the Digital Equipment Corporation
13 * FDDI EISA and PCI controller families. Supported adapters include:
14 *
15 * DEC FDDIcontroller/EISA (DEFEA)
16 * DEC FDDIcontroller/PCI (DEFPA)
17 *
18 * The original author:
19 * LVS Lawrence V. Stefani <lstefani@yahoo.com>
20 *
21 * Maintainers:
22 * macro Maciej W. Rozycki <macro@linux-mips.org>
23 *
24 * Credits:
25 * I'd like to thank Patricia Cross for helping me get started with
26 * Linux, David Davies for a lot of help upgrading and configuring
27 * my development system and for answering many OS and driver
28 * development questions, and Alan Cox for recommendations and
29 * integration help on getting FDDI support into Linux. LVS
30 *
31 * Driver Architecture:
32 * The driver architecture is largely based on previous driver work
33 * for other operating systems. The upper edge interface and
34 * functions were largely taken from existing Linux device drivers
35 * such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
36 * driver.
37 *
38 * Adapter Probe -
39 * The driver scans for supported EISA adapters by reading the
40 * SLOT ID register for each EISA slot and making a match
41 * against the expected value.
42 *
43 * Bus-Specific Initialization -
44 * This driver currently supports both EISA and PCI controller
45 * families. While the custom DMA chip and FDDI logic is similar
46 * or identical, the bus logic is very different. After
47 * initialization, the only bus-specific differences is in how the
48 * driver enables and disables interrupts. Other than that, the
49 * run-time critical code behaves the same on both families.
50 * It's important to note that both adapter families are configured
51 * to I/O map, rather than memory map, the adapter registers.
52 *
53 * Driver Open/Close -
54 * In the driver open routine, the driver ISR (interrupt service
55 * routine) is registered and the adapter is brought to an
56 * operational state. In the driver close routine, the opposite
57 * occurs; the driver ISR is deregistered and the adapter is
58 * brought to a safe, but closed state. Users may use consecutive
59 * commands to bring the adapter up and down as in the following
60 * example:
61 * ifconfig fddi0 up
62 * ifconfig fddi0 down
63 * ifconfig fddi0 up
64 *
65 * Driver Shutdown -
66 * Apparently, there is no shutdown or halt routine support under
67 * Linux. This routine would be called during "reboot" or
68 * "shutdown" to allow the driver to place the adapter in a safe
69 * state before a warm reboot occurs. To be really safe, the user
70 * should close the adapter before shutdown (eg. ifconfig fddi0 down)
71 * to ensure that the adapter DMA engine is taken off-line. However,
72 * the current driver code anticipates this problem and always issues
73 * a soft reset of the adapter at the beginning of driver initialization.
74 * A future driver enhancement in this area may occur in 2.1.X where
75 * Alan indicated that a shutdown handler may be implemented.
76 *
77 * Interrupt Service Routine -
78 * The driver supports shared interrupts, so the ISR is registered for
79 * each board with the appropriate flag and the pointer to that board's
80 * device structure. This provides the context during interrupt
81 * processing to support shared interrupts and multiple boards.
82 *
83 * Interrupt enabling/disabling can occur at many levels. At the host
84 * end, you can disable system interrupts, or disable interrupts at the
85 * PIC (on Intel systems). Across the bus, both EISA and PCI adapters
86 * have a bus-logic chip interrupt enable/disable as well as a DMA
87 * controller interrupt enable/disable.
88 *
89 * The driver currently enables and disables adapter interrupts at the
90 * bus-logic chip and assumes that Linux will take care of clearing or
91 * acknowledging any host-based interrupt chips.
92 *
93 * Control Functions -
94 * Control functions are those used to support functions such as adding
95 * or deleting multicast addresses, enabling or disabling packet
96 * reception filters, or other custom/proprietary commands. Presently,
97 * the driver supports the "get statistics", "set multicast list", and
98 * "set mac address" functions defined by Linux. A list of possible
99 * enhancements include:
100 *
101 * - Custom ioctl interface for executing port interface commands
102 * - Custom ioctl interface for adding unicast addresses to
103 * adapter CAM (to support bridge functions).
104 * - Custom ioctl interface for supporting firmware upgrades.
105 *
106 * Hardware (port interface) Support Routines -
107 * The driver function names that start with "dfx_hw_" represent
108 * low-level port interface routines that are called frequently. They
109 * include issuing a DMA or port control command to the adapter,
110 * resetting the adapter, or reading the adapter state. Since the
111 * driver initialization and run-time code must make calls into the
112 * port interface, these routines were written to be as generic and
113 * usable as possible.
114 *
115 * Receive Path -
116 * The adapter DMA engine supports a 256 entry receive descriptor block
117 * of which up to 255 entries can be used at any given time. The
118 * architecture is a standard producer, consumer, completion model in
119 * which the driver "produces" receive buffers to the adapter, the
120 * adapter "consumes" the receive buffers by DMAing incoming packet data,
121 * and the driver "completes" the receive buffers by servicing the
122 * incoming packet, then "produces" a new buffer and starts the cycle
123 * again. Receive buffers can be fragmented in up to 16 fragments
124 * (descriptor entries). For simplicity, this driver posts
125 * single-fragment receive buffers of 4608 bytes, then allocates a
126 * sk_buff, copies the data, then reposts the buffer. To reduce CPU
127 * utilization, a better approach would be to pass up the receive
128 * buffer (no extra copy) then allocate and post a replacement buffer.
129 * This is a performance enhancement that should be looked into at
130 * some point.
131 *
132 * Transmit Path -
133 * Like the receive path, the adapter DMA engine supports a 256 entry
134 * transmit descriptor block of which up to 255 entries can be used at
135 * any given time. Transmit buffers can be fragmented in up to 255
136 * fragments (descriptor entries). This driver always posts one
137 * fragment per transmit packet request.
138 *
139 * The fragment contains the entire packet from FC to end of data.
140 * Before posting the buffer to the adapter, the driver sets a three-byte
141 * packet request header (PRH) which is required by the Motorola MAC chip
142 * used on the adapters. The PRH tells the MAC the type of token to
143 * receive/send, whether or not to generate and append the CRC, whether
144 * synchronous or asynchronous framing is used, etc. Since the PRH
145 * definition is not necessarily consistent across all FDDI chipsets,
146 * the driver, rather than the common FDDI packet handler routines,
147 * sets these bytes.
148 *
149 * To reduce the amount of descriptor fetches needed per transmit request,
150 * the driver takes advantage of the fact that there are at least three
151 * bytes available before the skb->data field on the outgoing transmit
152 * request. This is guaranteed by having fddi_setup() in net_init.c set
153 * dev->hard_header_len to 24 bytes. 21 bytes accounts for the largest
154 * header in an 802.2 SNAP frame. The other 3 bytes are the extra "pad"
155 * bytes which we'll use to store the PRH.
156 *
157 * There's a subtle advantage to adding these pad bytes to the
158 * hard_header_len, it ensures that the data portion of the packet for
159 * an 802.2 SNAP frame is longword aligned. Other FDDI driver
160 * implementations may not need the extra padding and can start copying
161 * or DMAing directly from the FC byte which starts at skb->data. Should
162 * another driver implementation need ADDITIONAL padding, the net_init.c
163 * module should be updated and dev->hard_header_len should be increased.
164 * NOTE: To maintain the alignment on the data portion of the packet,
165 * dev->hard_header_len should always be evenly divisible by 4 and at
166 * least 24 bytes in size.
167 *
168 * Modification History:
169 * Date Name Description
170 * 16-Aug-96 LVS Created.
171 * 20-Aug-96 LVS Updated dfx_probe so that version information
172 * string is only displayed if 1 or more cards are
173 * found. Changed dfx_rcv_queue_process to copy
174 * 3 NULL bytes before FC to ensure that data is
175 * longword aligned in receive buffer.
176 * 09-Sep-96 LVS Updated dfx_ctl_set_multicast_list to enable
177 * LLC group promiscuous mode if multicast list
178 * is too large. LLC individual/group promiscuous
179 * mode is now disabled if IFF_PROMISC flag not set.
180 * dfx_xmt_queue_pkt no longer checks for NULL skb
181 * on Alan Cox recommendation. Added node address
182 * override support.
183 * 12-Sep-96 LVS Reset current address to factory address during
184 * device open. Updated transmit path to post a
185 * single fragment which includes PRH->end of data.
186 * Mar 2000 AC Did various cleanups for 2.3.x
187 * Jun 2000 jgarzik PCI and resource alloc cleanups
188 * Jul 2000 tjeerd Much cleanup and some bug fixes
189 * Sep 2000 tjeerd Fix leak on unload, cosmetic code cleanup
190 * Feb 2001 Skb allocation fixes
191 * Feb 2001 davej PCI enable cleanups.
192 * 04 Aug 2003 macro Converted to the DMA API.
193 * 14 Aug 2004 macro Fix device names reported.
feea1db2 194 * 14 Jun 2005 macro Use irqreturn_t.
1da177e4
LT
195 */
196
197/* Include files */
198
199#include <linux/module.h>
200#include <linux/kernel.h>
201#include <linux/string.h>
202#include <linux/errno.h>
203#include <linux/ioport.h>
204#include <linux/slab.h>
205#include <linux/interrupt.h>
206#include <linux/pci.h>
207#include <linux/delay.h>
208#include <linux/init.h>
209#include <linux/netdevice.h>
210#include <linux/fddidevice.h>
211#include <linux/skbuff.h>
212#include <linux/bitops.h>
213
214#include <asm/byteorder.h>
215#include <asm/io.h>
216
217#include "defxx.h"
218
219/* Version information string should be updated prior to each new release! */
220#define DRV_NAME "defxx"
feea1db2
MR
221#define DRV_VERSION "v1.08"
222#define DRV_RELDATE "2005/06/14"
1da177e4
LT
223
224static char version[] __devinitdata =
225 DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
226 " Lawrence V. Stefani and others\n";
227
228#define DYNAMIC_BUFFERS 1
229
230#define SKBUFF_RX_COPYBREAK 200
231/*
232 * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
233 * alignment for compatibility with old EISA boards.
234 */
235#define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
236
237/* Define module-wide (static) routines */
238
239static void dfx_bus_init(struct net_device *dev);
240static void dfx_bus_config_check(DFX_board_t *bp);
241
242static int dfx_driver_init(struct net_device *dev, const char *print_name);
243static int dfx_adap_init(DFX_board_t *bp, int get_buffers);
244
245static int dfx_open(struct net_device *dev);
246static int dfx_close(struct net_device *dev);
247
248static void dfx_int_pr_halt_id(DFX_board_t *bp);
249static void dfx_int_type_0_process(DFX_board_t *bp);
250static void dfx_int_common(struct net_device *dev);
feea1db2
MR
251static irqreturn_t dfx_interrupt(int irq, void *dev_id,
252 struct pt_regs *regs);
1da177e4
LT
253
254static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
255static void dfx_ctl_set_multicast_list(struct net_device *dev);
256static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
257static int dfx_ctl_update_cam(DFX_board_t *bp);
258static int dfx_ctl_update_filters(DFX_board_t *bp);
259
260static int dfx_hw_dma_cmd_req(DFX_board_t *bp);
261static int dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
262static void dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
263static int dfx_hw_adap_state_rd(DFX_board_t *bp);
264static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
265
266static int dfx_rcv_init(DFX_board_t *bp, int get_buffers);
267static void dfx_rcv_queue_process(DFX_board_t *bp);
268static void dfx_rcv_flush(DFX_board_t *bp);
269
270static int dfx_xmt_queue_pkt(struct sk_buff *skb, struct net_device *dev);
271static int dfx_xmt_done(DFX_board_t *bp);
272static void dfx_xmt_flush(DFX_board_t *bp);
273
274/* Define module-wide (static) variables */
275
276static struct net_device *root_dfx_eisa_dev;
277
6aa20a22 278
1da177e4
LT
279/*
280 * =======================
281 * = dfx_port_write_byte =
282 * = dfx_port_read_byte =
283 * = dfx_port_write_long =
284 * = dfx_port_read_long =
285 * =======================
6aa20a22 286 *
1da177e4
LT
287 * Overview:
288 * Routines for reading and writing values from/to adapter
6aa20a22 289 *
1da177e4
LT
290 * Returns:
291 * None
6aa20a22 292 *
1da177e4
LT
293 * Arguments:
294 * bp - pointer to board information
295 * offset - register offset from base I/O address
296 * data - for dfx_port_write_byte and dfx_port_write_long, this
297 * is a value to write.
298 * for dfx_port_read_byte and dfx_port_read_byte, this
299 * is a pointer to store the read value.
300 *
301 * Functional Description:
302 * These routines perform the correct operation to read or write
303 * the adapter register.
6aa20a22 304 *
1da177e4
LT
305 * EISA port block base addresses are based on the slot number in which the
306 * controller is installed. For example, if the EISA controller is installed
307 * in slot 4, the port block base address is 0x4000. If the controller is
308 * installed in slot 2, the port block base address is 0x2000, and so on.
309 * This port block can be used to access PDQ, ESIC, and DEFEA on-board
310 * registers using the register offsets defined in DEFXX.H.
311 *
312 * PCI port block base addresses are assigned by the PCI BIOS or system
313 * firmware. There is one 128 byte port block which can be accessed. It
314 * allows for I/O mapping of both PDQ and PFI registers using the register
315 * offsets defined in DEFXX.H.
316 *
317 * Return Codes:
318 * None
319 *
320 * Assumptions:
321 * bp->base_addr is a valid base I/O address for this adapter.
322 * offset is a valid register offset for this adapter.
323 *
324 * Side Effects:
325 * Rather than produce macros for these functions, these routines
326 * are defined using "inline" to ensure that the compiler will
327 * generate inline code and not waste a procedure call and return.
328 * This provides all the benefits of macros, but with the
329 * advantage of strict data type checking.
330 */
331
332static inline void dfx_port_write_byte(
333 DFX_board_t *bp,
334 int offset,
335 u8 data
336 )
337
338 {
339 u16 port = bp->base_addr + offset;
340
341 outb(data, port);
342 }
343
344static inline void dfx_port_read_byte(
345 DFX_board_t *bp,
346 int offset,
347 u8 *data
348 )
349
350 {
351 u16 port = bp->base_addr + offset;
352
353 *data = inb(port);
354 }
355
356static inline void dfx_port_write_long(
357 DFX_board_t *bp,
358 int offset,
359 u32 data
360 )
361
362 {
363 u16 port = bp->base_addr + offset;
364
365 outl(data, port);
366 }
367
368static inline void dfx_port_read_long(
369 DFX_board_t *bp,
370 int offset,
371 u32 *data
372 )
373
374 {
375 u16 port = bp->base_addr + offset;
376
377 *data = inl(port);
378 }
379
6aa20a22 380
1da177e4
LT
381/*
382 * =============
383 * = dfx_init_one_pci_or_eisa =
384 * =============
6aa20a22 385 *
1da177e4
LT
386 * Overview:
387 * Initializes a supported FDDI EISA or PCI controller
6aa20a22 388 *
1da177e4
LT
389 * Returns:
390 * Condition code
6aa20a22 391 *
1da177e4
LT
392 * Arguments:
393 * pdev - pointer to pci device information (NULL for EISA)
394 * ioaddr - pointer to port (NULL for PCI)
395 *
396 * Functional Description:
397 *
398 * Return Codes:
399 * 0 - This device (fddi0, fddi1, etc) configured successfully
400 * -EBUSY - Failed to get resources, or dfx_driver_init failed.
401 *
402 * Assumptions:
403 * It compiles so it should work :-( (PCI cards do :-)
404 *
405 * Side Effects:
406 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
407 * initialized and the board resources are read and stored in
408 * the device structure.
409 */
410static int __devinit dfx_init_one_pci_or_eisa(struct pci_dev *pdev, long ioaddr)
411{
412 static int version_disp;
413 char *print_name = DRV_NAME;
414 struct net_device *dev;
415 DFX_board_t *bp; /* board pointer */
416 int alloc_size; /* total buffer size used */
417 int err;
418
419 if (!version_disp) { /* display version info if adapter is found */
420 version_disp = 1; /* set display flag to TRUE so that */
421 printk(version); /* we only display this string ONCE */
422 }
423
424 if (pdev != NULL)
425 print_name = pci_name(pdev);
426
427 dev = alloc_fddidev(sizeof(*bp));
428 if (!dev) {
429 printk(KERN_ERR "%s: unable to allocate fddidev, aborting\n",
430 print_name);
431 return -ENOMEM;
432 }
433
434 /* Enable PCI device. */
435 if (pdev != NULL) {
436 err = pci_enable_device (pdev);
437 if (err) goto err_out;
438 ioaddr = pci_resource_start (pdev, 1);
439 }
440
441 SET_MODULE_OWNER(dev);
feea1db2
MR
442 if (pdev != NULL)
443 SET_NETDEV_DEV(dev, &pdev->dev);
1da177e4
LT
444
445 bp = dev->priv;
446
447 if (!request_region(ioaddr,
448 pdev ? PFI_K_CSR_IO_LEN : PI_ESIC_K_CSR_IO_LEN,
449 print_name)) {
450 printk(KERN_ERR "%s: Cannot reserve I/O resource "
451 "0x%x @ 0x%lx, aborting\n", print_name,
452 pdev ? PFI_K_CSR_IO_LEN : PI_ESIC_K_CSR_IO_LEN, ioaddr);
453 err = -EBUSY;
454 goto err_out;
455 }
456
457 /* Initialize new device structure */
458
459 dev->base_addr = ioaddr; /* save port (I/O) base address */
460
461 dev->get_stats = dfx_ctl_get_stats;
462 dev->open = dfx_open;
463 dev->stop = dfx_close;
464 dev->hard_start_xmit = dfx_xmt_queue_pkt;
465 dev->set_multicast_list = dfx_ctl_set_multicast_list;
466 dev->set_mac_address = dfx_ctl_set_mac_address;
467
468 if (pdev == NULL) {
469 /* EISA board */
470 bp->bus_type = DFX_BUS_TYPE_EISA;
471 bp->next = root_dfx_eisa_dev;
472 root_dfx_eisa_dev = dev;
473 } else {
474 /* PCI board */
475 bp->bus_type = DFX_BUS_TYPE_PCI;
476 bp->pci_dev = pdev;
477 pci_set_drvdata (pdev, dev);
478 pci_set_master (pdev);
479 }
480
481 if (dfx_driver_init(dev, print_name) != DFX_K_SUCCESS) {
482 err = -ENODEV;
483 goto err_out_region;
484 }
485
486 err = register_netdev(dev);
487 if (err)
488 goto err_out_kfree;
489
490 printk("%s: registered as %s\n", print_name, dev->name);
491 return 0;
492
493err_out_kfree:
494 alloc_size = sizeof(PI_DESCR_BLOCK) +
495 PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
496#ifndef DYNAMIC_BUFFERS
497 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
498#endif
499 sizeof(PI_CONSUMER_BLOCK) +
500 (PI_ALIGN_K_DESC_BLK - 1);
501 if (bp->kmalloced)
502 pci_free_consistent(pdev, alloc_size,
503 bp->kmalloced, bp->kmalloced_dma);
504err_out_region:
505 release_region(ioaddr, pdev ? PFI_K_CSR_IO_LEN : PI_ESIC_K_CSR_IO_LEN);
506err_out:
507 free_netdev(dev);
508 return err;
509}
510
511static int __devinit dfx_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
512{
513 return dfx_init_one_pci_or_eisa(pdev, 0);
514}
515
516static int __init dfx_eisa_init(void)
517{
518 int rc = -ENODEV;
519 int i; /* used in for loops */
520 u16 port; /* temporary I/O (port) address */
521 u32 slot_id; /* EISA hardware (slot) ID read from adapter */
522
523 DBG_printk("In dfx_eisa_init...\n");
524
525 /* Scan for FDDI EISA controllers */
526
527 for (i=0; i < DFX_MAX_EISA_SLOTS; i++) /* only scan for up to 16 EISA slots */
528 {
529 port = (i << 12) + PI_ESIC_K_SLOT_ID; /* port = I/O address for reading slot ID */
530 slot_id = inl(port); /* read EISA HW (slot) ID */
531 if ((slot_id & 0xF0FFFFFF) == DEFEA_PRODUCT_ID)
532 {
533 port = (i << 12); /* recalc base addr */
534
535 if (dfx_init_one_pci_or_eisa(NULL, port) == 0) rc = 0;
536 }
537 }
538 return rc;
539}
6aa20a22 540
1da177e4
LT
541/*
542 * ================
543 * = dfx_bus_init =
544 * ================
6aa20a22 545 *
1da177e4
LT
546 * Overview:
547 * Initializes EISA and PCI controller bus-specific logic.
6aa20a22 548 *
1da177e4
LT
549 * Returns:
550 * None
6aa20a22 551 *
1da177e4
LT
552 * Arguments:
553 * dev - pointer to device information
554 *
555 * Functional Description:
556 * Determine and save adapter IRQ in device table,
557 * then perform bus-specific logic initialization.
558 *
559 * Return Codes:
560 * None
561 *
562 * Assumptions:
563 * dev->base_addr has already been set with the proper
564 * base I/O address for this device.
565 *
566 * Side Effects:
567 * Interrupts are enabled at the adapter bus-specific logic.
568 * Note: Interrupts at the DMA engine (PDQ chip) are not
569 * enabled yet.
570 */
571
572static void __devinit dfx_bus_init(struct net_device *dev)
573{
574 DFX_board_t *bp = dev->priv;
575 u8 val; /* used for I/O read/writes */
576
577 DBG_printk("In dfx_bus_init...\n");
578
579 /*
580 * Initialize base I/O address field in bp structure
581 *
582 * Note: bp->base_addr is the same as dev->base_addr.
583 * It's useful because often we'll need to read
584 * or write registers where we already have the
585 * bp pointer instead of the dev pointer. Having
586 * the base address in the bp structure will
587 * save a pointer dereference.
588 *
589 * IMPORTANT!! This field must be defined before
590 * any of the dfx_port_* inline functions are
591 * called.
592 */
593
594 bp->base_addr = dev->base_addr;
595
596 /* And a pointer back to the net_device struct */
597 bp->dev = dev;
598
599 /* Initialize adapter based on bus type */
600
601 if (bp->bus_type == DFX_BUS_TYPE_EISA)
602 {
603 /* Get the interrupt level from the ESIC chip */
604
605 dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &val);
606 switch ((val & PI_CONFIG_STAT_0_M_IRQ) >> PI_CONFIG_STAT_0_V_IRQ)
607 {
608 case PI_CONFIG_STAT_0_IRQ_K_9:
609 dev->irq = 9;
610 break;
611
612 case PI_CONFIG_STAT_0_IRQ_K_10:
613 dev->irq = 10;
614 break;
615
616 case PI_CONFIG_STAT_0_IRQ_K_11:
617 dev->irq = 11;
618 break;
619
620 case PI_CONFIG_STAT_0_IRQ_K_15:
621 dev->irq = 15;
622 break;
623 }
624
625 /* Enable access to I/O on the board by writing 0x03 to Function Control Register */
626
627 dfx_port_write_byte(bp, PI_ESIC_K_FUNCTION_CNTRL, PI_ESIC_K_FUNCTION_CNTRL_IO_ENB);
628
629 /* Set the I/O decode range of the board */
630
631 val = ((dev->base_addr >> 12) << PI_IO_CMP_V_SLOT);
632 dfx_port_write_byte(bp, PI_ESIC_K_IO_CMP_0_1, val);
633 dfx_port_write_byte(bp, PI_ESIC_K_IO_CMP_1_1, val);
634
635 /* Enable access to rest of module (including PDQ and packet memory) */
636
637 dfx_port_write_byte(bp, PI_ESIC_K_SLOT_CNTRL, PI_SLOT_CNTRL_M_ENB);
638
639 /*
640 * Map PDQ registers into I/O space. This is done by clearing a bit
641 * in Burst Holdoff register.
642 */
643
644 dfx_port_read_byte(bp, PI_ESIC_K_BURST_HOLDOFF, &val);
645 dfx_port_write_byte(bp, PI_ESIC_K_BURST_HOLDOFF, (val & ~PI_BURST_HOLDOFF_M_MEM_MAP));
646
647 /* Enable interrupts at EISA bus interface chip (ESIC) */
648
649 dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &val);
650 dfx_port_write_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, (val | PI_CONFIG_STAT_0_M_INT_ENB));
651 }
652 else
653 {
654 struct pci_dev *pdev = bp->pci_dev;
655
656 /* Get the interrupt level from the PCI Configuration Table */
657
658 dev->irq = pdev->irq;
659
660 /* Check Latency Timer and set if less than minimal */
661
662 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
663 if (val < PFI_K_LAT_TIMER_MIN) /* if less than min, override with default */
664 {
665 val = PFI_K_LAT_TIMER_DEF;
666 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
667 }
668
669 /* Enable interrupts at PCI bus interface chip (PFI) */
670
671 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, (PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB));
672 }
673 }
674
6aa20a22 675
1da177e4
LT
676/*
677 * ========================
678 * = dfx_bus_config_check =
679 * ========================
6aa20a22 680 *
1da177e4
LT
681 * Overview:
682 * Checks the configuration (burst size, full-duplex, etc.) If any parameters
683 * are illegal, then this routine will set new defaults.
6aa20a22 684 *
1da177e4
LT
685 * Returns:
686 * None
6aa20a22 687 *
1da177e4
LT
688 * Arguments:
689 * bp - pointer to board information
690 *
691 * Functional Description:
692 * For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
693 * PDQ, and all FDDI PCI controllers, all values are legal.
694 *
695 * Return Codes:
696 * None
697 *
698 * Assumptions:
699 * dfx_adap_init has NOT been called yet so burst size and other items have
700 * not been set.
701 *
702 * Side Effects:
703 * None
704 */
705
706static void __devinit dfx_bus_config_check(DFX_board_t *bp)
707{
708 int status; /* return code from adapter port control call */
709 u32 slot_id; /* EISA-bus hardware id (DEC3001, DEC3002,...) */
710 u32 host_data; /* LW data returned from port control call */
711
712 DBG_printk("In dfx_bus_config_check...\n");
713
714 /* Configuration check only valid for EISA adapter */
715
716 if (bp->bus_type == DFX_BUS_TYPE_EISA)
717 {
718 dfx_port_read_long(bp, PI_ESIC_K_SLOT_ID, &slot_id);
719
720 /*
721 * First check if revision 2 EISA controller. Rev. 1 cards used
722 * PDQ revision B, so no workaround needed in this case. Rev. 3
723 * cards used PDQ revision E, so no workaround needed in this
724 * case, either. Only Rev. 2 cards used either Rev. D or E
725 * chips, so we must verify the chip revision on Rev. 2 cards.
726 */
727
728 if (slot_id == DEFEA_PROD_ID_2)
729 {
730 /*
731 * Revision 2 FDDI EISA controller found, so let's check PDQ
732 * revision of adapter.
733 */
734
735 status = dfx_hw_port_ctrl_req(bp,
736 PI_PCTRL_M_SUB_CMD,
737 PI_SUB_CMD_K_PDQ_REV_GET,
738 0,
739 &host_data);
740 if ((status != DFX_K_SUCCESS) || (host_data == 2))
741 {
742 /*
743 * Either we couldn't determine the PDQ revision, or
744 * we determined that it is at revision D. In either case,
745 * we need to implement the workaround.
746 */
747
748 /* Ensure that the burst size is set to 8 longwords or less */
749
750 switch (bp->burst_size)
751 {
752 case PI_PDATA_B_DMA_BURST_SIZE_32:
753 case PI_PDATA_B_DMA_BURST_SIZE_16:
754 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
755 break;
756
757 default:
758 break;
759 }
760
761 /* Ensure that full-duplex mode is not enabled */
762
763 bp->full_duplex_enb = PI_SNMP_K_FALSE;
764 }
765 }
766 }
767 }
768
6aa20a22 769
1da177e4
LT
770/*
771 * ===================
772 * = dfx_driver_init =
773 * ===================
6aa20a22 774 *
1da177e4
LT
775 * Overview:
776 * Initializes remaining adapter board structure information
777 * and makes sure adapter is in a safe state prior to dfx_open().
6aa20a22 778 *
1da177e4
LT
779 * Returns:
780 * Condition code
6aa20a22 781 *
1da177e4
LT
782 * Arguments:
783 * dev - pointer to device information
784 * print_name - printable device name
785 *
786 * Functional Description:
787 * This function allocates additional resources such as the host memory
788 * blocks needed by the adapter (eg. descriptor and consumer blocks).
789 * Remaining bus initialization steps are also completed. The adapter
790 * is also reset so that it is in the DMA_UNAVAILABLE state. The OS
791 * must call dfx_open() to open the adapter and bring it on-line.
792 *
793 * Return Codes:
794 * DFX_K_SUCCESS - initialization succeeded
795 * DFX_K_FAILURE - initialization failed - could not allocate memory
796 * or read adapter MAC address
797 *
798 * Assumptions:
799 * Memory allocated from pci_alloc_consistent() call is physically
800 * contiguous, locked memory.
801 *
802 * Side Effects:
803 * Adapter is reset and should be in DMA_UNAVAILABLE state before
804 * returning from this routine.
805 */
806
807static int __devinit dfx_driver_init(struct net_device *dev,
808 const char *print_name)
809{
810 DFX_board_t *bp = dev->priv;
811 int alloc_size; /* total buffer size needed */
812 char *top_v, *curr_v; /* virtual addrs into memory block */
813 dma_addr_t top_p, curr_p; /* physical addrs into memory block */
814 u32 data; /* host data register value */
815
816 DBG_printk("In dfx_driver_init...\n");
817
818 /* Initialize bus-specific hardware registers */
819
820 dfx_bus_init(dev);
821
822 /*
823 * Initialize default values for configurable parameters
824 *
825 * Note: All of these parameters are ones that a user may
826 * want to customize. It'd be nice to break these
827 * out into Space.c or someplace else that's more
828 * accessible/understandable than this file.
829 */
830
831 bp->full_duplex_enb = PI_SNMP_K_FALSE;
832 bp->req_ttrt = 8 * 12500; /* 8ms in 80 nanosec units */
833 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_DEF;
834 bp->rcv_bufs_to_post = RCV_BUFS_DEF;
835
836 /*
837 * Ensure that HW configuration is OK
838 *
839 * Note: Depending on the hardware revision, we may need to modify
840 * some of the configurable parameters to workaround hardware
841 * limitations. We'll perform this configuration check AFTER
842 * setting the parameters to their default values.
843 */
844
845 dfx_bus_config_check(bp);
846
847 /* Disable PDQ interrupts first */
848
849 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
850
851 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
852
853 (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
854
855 /* Read the factory MAC address from the adapter then save it */
856
857 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
858 &data) != DFX_K_SUCCESS) {
859 printk("%s: Could not read adapter factory MAC address!\n",
860 print_name);
861 return(DFX_K_FAILURE);
862 }
863 memcpy(&bp->factory_mac_addr[0], &data, sizeof(u32));
864
865 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
866 &data) != DFX_K_SUCCESS) {
867 printk("%s: Could not read adapter factory MAC address!\n",
868 print_name);
869 return(DFX_K_FAILURE);
870 }
871 memcpy(&bp->factory_mac_addr[4], &data, sizeof(u16));
872
873 /*
874 * Set current address to factory address
875 *
876 * Note: Node address override support is handled through
877 * dfx_ctl_set_mac_address.
878 */
879
880 memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
881 if (bp->bus_type == DFX_BUS_TYPE_EISA)
882 printk("%s: DEFEA at I/O addr = 0x%lX, IRQ = %d, "
883 "Hardware addr = %02X-%02X-%02X-%02X-%02X-%02X\n",
884 print_name, dev->base_addr, dev->irq,
885 dev->dev_addr[0], dev->dev_addr[1],
886 dev->dev_addr[2], dev->dev_addr[3],
887 dev->dev_addr[4], dev->dev_addr[5]);
888 else
889 printk("%s: DEFPA at I/O addr = 0x%lX, IRQ = %d, "
890 "Hardware addr = %02X-%02X-%02X-%02X-%02X-%02X\n",
891 print_name, dev->base_addr, dev->irq,
892 dev->dev_addr[0], dev->dev_addr[1],
893 dev->dev_addr[2], dev->dev_addr[3],
894 dev->dev_addr[4], dev->dev_addr[5]);
895
896 /*
897 * Get memory for descriptor block, consumer block, and other buffers
898 * that need to be DMA read or written to by the adapter.
899 */
900
901 alloc_size = sizeof(PI_DESCR_BLOCK) +
902 PI_CMD_REQ_K_SIZE_MAX +
903 PI_CMD_RSP_K_SIZE_MAX +
904#ifndef DYNAMIC_BUFFERS
905 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
906#endif
907 sizeof(PI_CONSUMER_BLOCK) +
908 (PI_ALIGN_K_DESC_BLK - 1);
909 bp->kmalloced = top_v = pci_alloc_consistent(bp->pci_dev, alloc_size,
910 &bp->kmalloced_dma);
911 if (top_v == NULL) {
912 printk("%s: Could not allocate memory for host buffers "
913 "and structures!\n", print_name);
914 return(DFX_K_FAILURE);
915 }
916 memset(top_v, 0, alloc_size); /* zero out memory before continuing */
917 top_p = bp->kmalloced_dma; /* get physical address of buffer */
918
919 /*
920 * To guarantee the 8K alignment required for the descriptor block, 8K - 1
921 * plus the amount of memory needed was allocated. The physical address
922 * is now 8K aligned. By carving up the memory in a specific order,
923 * we'll guarantee the alignment requirements for all other structures.
924 *
925 * Note: If the assumptions change regarding the non-paged, non-cached,
926 * physically contiguous nature of the memory block or the address
927 * alignments, then we'll need to implement a different algorithm
928 * for allocating the needed memory.
929 */
930
931 curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
932 curr_v = top_v + (curr_p - top_p);
933
934 /* Reserve space for descriptor block */
935
936 bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
937 bp->descr_block_phys = curr_p;
938 curr_v += sizeof(PI_DESCR_BLOCK);
939 curr_p += sizeof(PI_DESCR_BLOCK);
940
941 /* Reserve space for command request buffer */
942
943 bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
944 bp->cmd_req_phys = curr_p;
945 curr_v += PI_CMD_REQ_K_SIZE_MAX;
946 curr_p += PI_CMD_REQ_K_SIZE_MAX;
947
948 /* Reserve space for command response buffer */
949
950 bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
951 bp->cmd_rsp_phys = curr_p;
952 curr_v += PI_CMD_RSP_K_SIZE_MAX;
953 curr_p += PI_CMD_RSP_K_SIZE_MAX;
954
955 /* Reserve space for the LLC host receive queue buffers */
956
957 bp->rcv_block_virt = curr_v;
958 bp->rcv_block_phys = curr_p;
959
960#ifndef DYNAMIC_BUFFERS
961 curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
962 curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
963#endif
964
965 /* Reserve space for the consumer block */
966
967 bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
968 bp->cons_block_phys = curr_p;
969
970 /* Display virtual and physical addresses if debug driver */
971
972 DBG_printk("%s: Descriptor block virt = %0lX, phys = %0X\n",
973 print_name,
974 (long)bp->descr_block_virt, bp->descr_block_phys);
975 DBG_printk("%s: Command Request buffer virt = %0lX, phys = %0X\n",
976 print_name, (long)bp->cmd_req_virt, bp->cmd_req_phys);
977 DBG_printk("%s: Command Response buffer virt = %0lX, phys = %0X\n",
978 print_name, (long)bp->cmd_rsp_virt, bp->cmd_rsp_phys);
979 DBG_printk("%s: Receive buffer block virt = %0lX, phys = %0X\n",
980 print_name, (long)bp->rcv_block_virt, bp->rcv_block_phys);
981 DBG_printk("%s: Consumer block virt = %0lX, phys = %0X\n",
982 print_name, (long)bp->cons_block_virt, bp->cons_block_phys);
983
984 return(DFX_K_SUCCESS);
985}
986
6aa20a22 987
1da177e4
LT
988/*
989 * =================
990 * = dfx_adap_init =
991 * =================
6aa20a22 992 *
1da177e4
LT
993 * Overview:
994 * Brings the adapter to the link avail/link unavailable state.
6aa20a22 995 *
1da177e4
LT
996 * Returns:
997 * Condition code
6aa20a22 998 *
1da177e4
LT
999 * Arguments:
1000 * bp - pointer to board information
1001 * get_buffers - non-zero if buffers to be allocated
1002 *
1003 * Functional Description:
1004 * Issues the low-level firmware/hardware calls necessary to bring
1005 * the adapter up, or to properly reset and restore adapter during
1006 * run-time.
1007 *
1008 * Return Codes:
1009 * DFX_K_SUCCESS - Adapter brought up successfully
1010 * DFX_K_FAILURE - Adapter initialization failed
1011 *
1012 * Assumptions:
1013 * bp->reset_type should be set to a valid reset type value before
1014 * calling this routine.
1015 *
1016 * Side Effects:
1017 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1018 * upon a successful return of this routine.
1019 */
1020
1021static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
1022 {
1023 DBG_printk("In dfx_adap_init...\n");
1024
1025 /* Disable PDQ interrupts first */
1026
1027 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1028
1029 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1030
1031 if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1032 {
1033 printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
1034 return(DFX_K_FAILURE);
1035 }
1036
1037 /*
1038 * When the PDQ is reset, some false Type 0 interrupts may be pending,
1039 * so we'll acknowledge all Type 0 interrupts now before continuing.
1040 */
1041
1042 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1043
1044 /*
1045 * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1046 *
1047 * Note: We only need to clear host copies of these registers. The PDQ reset
1048 * takes care of the on-board register values.
1049 */
1050
1051 bp->cmd_req_reg.lword = 0;
1052 bp->cmd_rsp_reg.lword = 0;
1053 bp->rcv_xmt_reg.lword = 0;
1054
1055 /* Clear consumer block before going to DMA_AVAILABLE state */
1056
1057 memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1058
1059 /* Initialize the DMA Burst Size */
1060
1061 if (dfx_hw_port_ctrl_req(bp,
1062 PI_PCTRL_M_SUB_CMD,
1063 PI_SUB_CMD_K_BURST_SIZE_SET,
1064 bp->burst_size,
1065 NULL) != DFX_K_SUCCESS)
1066 {
1067 printk("%s: Could not set adapter burst size!\n", bp->dev->name);
1068 return(DFX_K_FAILURE);
1069 }
1070
1071 /*
1072 * Set base address of Consumer Block
1073 *
1074 * Assumption: 32-bit physical address of consumer block is 64 byte
1075 * aligned. That is, bits 0-5 of the address must be zero.
1076 */
1077
1078 if (dfx_hw_port_ctrl_req(bp,
1079 PI_PCTRL_M_CONS_BLOCK,
1080 bp->cons_block_phys,
1081 0,
1082 NULL) != DFX_K_SUCCESS)
1083 {
1084 printk("%s: Could not set consumer block address!\n", bp->dev->name);
1085 return(DFX_K_FAILURE);
1086 }
1087
1088 /*
1089 * Set base address of Descriptor Block and bring adapter to DMA_AVAILABLE state
1090 *
1091 * Note: We also set the literal and data swapping requirements in this
1092 * command. Since this driver presently runs on Intel platforms
1093 * which are Little Endian, we'll tell the adapter to byte swap
1094 * data only. This code will need to change when we support
1095 * Big Endian systems (eg. PowerPC).
1096 *
1097 * Assumption: 32-bit physical address of descriptor block is 8Kbyte
1098 * aligned. That is, bits 0-12 of the address must be zero.
1099 */
1100
1101 if (dfx_hw_port_ctrl_req(bp,
1102 PI_PCTRL_M_INIT,
1103 (u32) (bp->descr_block_phys | PI_PDATA_A_INIT_M_BSWAP_DATA),
1104 0,
1105 NULL) != DFX_K_SUCCESS)
1106 {
1107 printk("%s: Could not set descriptor block address!\n", bp->dev->name);
1108 return(DFX_K_FAILURE);
1109 }
1110
1111 /* Set transmit flush timeout value */
1112
1113 bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1114 bp->cmd_req_virt->char_set.item[0].item_code = PI_ITEM_K_FLUSH_TIME;
1115 bp->cmd_req_virt->char_set.item[0].value = 3; /* 3 seconds */
1116 bp->cmd_req_virt->char_set.item[0].item_index = 0;
1117 bp->cmd_req_virt->char_set.item[1].item_code = PI_ITEM_K_EOL;
1118 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1119 {
1120 printk("%s: DMA command request failed!\n", bp->dev->name);
1121 return(DFX_K_FAILURE);
1122 }
1123
1124 /* Set the initial values for eFDXEnable and MACTReq MIB objects */
1125
1126 bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1127 bp->cmd_req_virt->snmp_set.item[0].item_code = PI_ITEM_K_FDX_ENB_DIS;
1128 bp->cmd_req_virt->snmp_set.item[0].value = bp->full_duplex_enb;
1129 bp->cmd_req_virt->snmp_set.item[0].item_index = 0;
1130 bp->cmd_req_virt->snmp_set.item[1].item_code = PI_ITEM_K_MAC_T_REQ;
1131 bp->cmd_req_virt->snmp_set.item[1].value = bp->req_ttrt;
1132 bp->cmd_req_virt->snmp_set.item[1].item_index = 0;
1133 bp->cmd_req_virt->snmp_set.item[2].item_code = PI_ITEM_K_EOL;
1134 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1135 {
1136 printk("%s: DMA command request failed!\n", bp->dev->name);
1137 return(DFX_K_FAILURE);
1138 }
1139
1140 /* Initialize adapter CAM */
1141
1142 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1143 {
1144 printk("%s: Adapter CAM update failed!\n", bp->dev->name);
1145 return(DFX_K_FAILURE);
1146 }
1147
1148 /* Initialize adapter filters */
1149
1150 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1151 {
1152 printk("%s: Adapter filters update failed!\n", bp->dev->name);
1153 return(DFX_K_FAILURE);
1154 }
1155
1156 /*
1157 * Remove any existing dynamic buffers (i.e. if the adapter is being
1158 * reinitialized)
1159 */
1160
1161 if (get_buffers)
1162 dfx_rcv_flush(bp);
1163
1164 /* Initialize receive descriptor block and produce buffers */
1165
1166 if (dfx_rcv_init(bp, get_buffers))
1167 {
1168 printk("%s: Receive buffer allocation failed\n", bp->dev->name);
1169 if (get_buffers)
1170 dfx_rcv_flush(bp);
1171 return(DFX_K_FAILURE);
1172 }
1173
1174 /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1175
1176 bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1177 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1178 {
1179 printk("%s: Start command failed\n", bp->dev->name);
1180 if (get_buffers)
1181 dfx_rcv_flush(bp);
1182 return(DFX_K_FAILURE);
1183 }
1184
1185 /* Initialization succeeded, reenable PDQ interrupts */
1186
1187 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
1188 return(DFX_K_SUCCESS);
1189 }
1190
6aa20a22 1191
1da177e4
LT
1192/*
1193 * ============
1194 * = dfx_open =
1195 * ============
6aa20a22 1196 *
1da177e4
LT
1197 * Overview:
1198 * Opens the adapter
6aa20a22 1199 *
1da177e4
LT
1200 * Returns:
1201 * Condition code
6aa20a22 1202 *
1da177e4
LT
1203 * Arguments:
1204 * dev - pointer to device information
1205 *
1206 * Functional Description:
1207 * This function brings the adapter to an operational state.
1208 *
1209 * Return Codes:
1210 * 0 - Adapter was successfully opened
1211 * -EAGAIN - Could not register IRQ or adapter initialization failed
1212 *
1213 * Assumptions:
1214 * This routine should only be called for a device that was
1215 * initialized successfully.
1216 *
1217 * Side Effects:
1218 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1219 * if the open is successful.
1220 */
1221
1222static int dfx_open(struct net_device *dev)
1223{
1224 int ret;
1225 DFX_board_t *bp = dev->priv;
1226
1227 DBG_printk("In dfx_open...\n");
6aa20a22 1228
1da177e4
LT
1229 /* Register IRQ - support shared interrupts by passing device ptr */
1230
1fb9df5d 1231 ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name, dev);
1da177e4
LT
1232 if (ret) {
1233 printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1234 return ret;
1235 }
1236
1237 /*
1238 * Set current address to factory MAC address
1239 *
1240 * Note: We've already done this step in dfx_driver_init.
1241 * However, it's possible that a user has set a node
1242 * address override, then closed and reopened the
1243 * adapter. Unless we reset the device address field
1244 * now, we'll continue to use the existing modified
1245 * address.
1246 */
1247
1248 memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1249
1250 /* Clear local unicast/multicast address tables and counts */
1251
1252 memset(bp->uc_table, 0, sizeof(bp->uc_table));
1253 memset(bp->mc_table, 0, sizeof(bp->mc_table));
1254 bp->uc_count = 0;
1255 bp->mc_count = 0;
1256
1257 /* Disable promiscuous filter settings */
1258
1259 bp->ind_group_prom = PI_FSTATE_K_BLOCK;
1260 bp->group_prom = PI_FSTATE_K_BLOCK;
1261
1262 spin_lock_init(&bp->lock);
1263
1264 /* Reset and initialize adapter */
1265
1266 bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST; /* skip self-test */
1267 if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
1268 {
1269 printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
1270 free_irq(dev->irq, dev);
1271 return -EAGAIN;
1272 }
1273
1274 /* Set device structure info */
1275 netif_start_queue(dev);
1276 return(0);
1277}
1278
6aa20a22 1279
1da177e4
LT
1280/*
1281 * =============
1282 * = dfx_close =
1283 * =============
6aa20a22 1284 *
1da177e4
LT
1285 * Overview:
1286 * Closes the device/module.
6aa20a22 1287 *
1da177e4
LT
1288 * Returns:
1289 * Condition code
6aa20a22 1290 *
1da177e4
LT
1291 * Arguments:
1292 * dev - pointer to device information
1293 *
1294 * Functional Description:
1295 * This routine closes the adapter and brings it to a safe state.
1296 * The interrupt service routine is deregistered with the OS.
1297 * The adapter can be opened again with another call to dfx_open().
1298 *
1299 * Return Codes:
1300 * Always return 0.
1301 *
1302 * Assumptions:
1303 * No further requests for this adapter are made after this routine is
1304 * called. dfx_open() can be called to reset and reinitialize the
1305 * adapter.
1306 *
1307 * Side Effects:
1308 * Adapter should be in DMA_UNAVAILABLE state upon completion of this
1309 * routine.
1310 */
1311
1312static int dfx_close(struct net_device *dev)
1313{
1314 DFX_board_t *bp = dev->priv;
1315
1316 DBG_printk("In dfx_close...\n");
1317
1318 /* Disable PDQ interrupts first */
1319
1320 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1321
1322 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1323
1324 (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1325
1326 /*
1327 * Flush any pending transmit buffers
1328 *
1329 * Note: It's important that we flush the transmit buffers
1330 * BEFORE we clear our copy of the Type 2 register.
1331 * Otherwise, we'll have no idea how many buffers
1332 * we need to free.
1333 */
1334
1335 dfx_xmt_flush(bp);
1336
1337 /*
1338 * Clear Type 1 and Type 2 registers after adapter reset
1339 *
1340 * Note: Even though we're closing the adapter, it's
1341 * possible that an interrupt will occur after
1342 * dfx_close is called. Without some assurance to
1343 * the contrary we want to make sure that we don't
1344 * process receive and transmit LLC frames and update
1345 * the Type 2 register with bad information.
1346 */
1347
1348 bp->cmd_req_reg.lword = 0;
1349 bp->cmd_rsp_reg.lword = 0;
1350 bp->rcv_xmt_reg.lword = 0;
1351
1352 /* Clear consumer block for the same reason given above */
1353
1354 memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1355
1356 /* Release all dynamically allocate skb in the receive ring. */
1357
1358 dfx_rcv_flush(bp);
1359
1360 /* Clear device structure flags */
1361
1362 netif_stop_queue(dev);
6aa20a22 1363
1da177e4
LT
1364 /* Deregister (free) IRQ */
1365
1366 free_irq(dev->irq, dev);
6aa20a22 1367
1da177e4
LT
1368 return(0);
1369}
1370
6aa20a22 1371
1da177e4
LT
1372/*
1373 * ======================
1374 * = dfx_int_pr_halt_id =
1375 * ======================
6aa20a22 1376 *
1da177e4
LT
1377 * Overview:
1378 * Displays halt id's in string form.
6aa20a22 1379 *
1da177e4
LT
1380 * Returns:
1381 * None
6aa20a22 1382 *
1da177e4
LT
1383 * Arguments:
1384 * bp - pointer to board information
1385 *
1386 * Functional Description:
1387 * Determine current halt id and display appropriate string.
1388 *
1389 * Return Codes:
1390 * None
1391 *
1392 * Assumptions:
1393 * None
1394 *
1395 * Side Effects:
1396 * None
1397 */
1398
1399static void dfx_int_pr_halt_id(DFX_board_t *bp)
1400 {
1401 PI_UINT32 port_status; /* PDQ port status register value */
1402 PI_UINT32 halt_id; /* PDQ port status halt ID */
1403
1404 /* Read the latest port status */
1405
1406 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1407
1408 /* Display halt state transition information */
1409
1410 halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1411 switch (halt_id)
1412 {
1413 case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1414 printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1415 break;
1416
1417 case PI_HALT_ID_K_PARITY_ERROR:
1418 printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1419 break;
1420
1421 case PI_HALT_ID_K_HOST_DIR_HALT:
1422 printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1423 break;
1424
1425 case PI_HALT_ID_K_SW_FAULT:
1426 printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1427 break;
1428
1429 case PI_HALT_ID_K_HW_FAULT:
1430 printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1431 break;
1432
1433 case PI_HALT_ID_K_PC_TRACE:
1434 printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1435 break;
1436
1437 case PI_HALT_ID_K_DMA_ERROR:
1438 printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1439 break;
1440
1441 case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1442 printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1443 break;
1444
1445 case PI_HALT_ID_K_BUS_EXCEPTION:
1446 printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1447 break;
1448
1449 default:
1450 printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1451 break;
1452 }
1453 }
1454
6aa20a22 1455
1da177e4
LT
1456/*
1457 * ==========================
1458 * = dfx_int_type_0_process =
1459 * ==========================
6aa20a22 1460 *
1da177e4
LT
1461 * Overview:
1462 * Processes Type 0 interrupts.
6aa20a22 1463 *
1da177e4
LT
1464 * Returns:
1465 * None
6aa20a22 1466 *
1da177e4
LT
1467 * Arguments:
1468 * bp - pointer to board information
1469 *
1470 * Functional Description:
1471 * Processes all enabled Type 0 interrupts. If the reason for the interrupt
1472 * is a serious fault on the adapter, then an error message is displayed
1473 * and the adapter is reset.
1474 *
1475 * One tricky potential timing window is the rapid succession of "link avail"
1476 * "link unavail" state change interrupts. The acknowledgement of the Type 0
1477 * interrupt must be done before reading the state from the Port Status
1478 * register. This is true because a state change could occur after reading
1479 * the data, but before acknowledging the interrupt. If this state change
1480 * does happen, it would be lost because the driver is using the old state,
1481 * and it will never know about the new state because it subsequently
1482 * acknowledges the state change interrupt.
1483 *
1484 * INCORRECT CORRECT
1485 * read type 0 int reasons read type 0 int reasons
1486 * read adapter state ack type 0 interrupts
1487 * ack type 0 interrupts read adapter state
1488 * ... process interrupt ... ... process interrupt ...
1489 *
1490 * Return Codes:
1491 * None
1492 *
1493 * Assumptions:
1494 * None
1495 *
1496 * Side Effects:
1497 * An adapter reset may occur if the adapter has any Type 0 error interrupts
1498 * or if the port status indicates that the adapter is halted. The driver
1499 * is responsible for reinitializing the adapter with the current CAM
1500 * contents and adapter filter settings.
1501 */
1502
1503static void dfx_int_type_0_process(DFX_board_t *bp)
1504
1505 {
1506 PI_UINT32 type_0_status; /* Host Interrupt Type 0 register */
1507 PI_UINT32 state; /* current adap state (from port status) */
1508
1509 /*
1510 * Read host interrupt Type 0 register to determine which Type 0
1511 * interrupts are pending. Immediately write it back out to clear
1512 * those interrupts.
1513 */
1514
1515 dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1516 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1517
1518 /* Check for Type 0 error interrupts */
1519
1520 if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1521 PI_TYPE_0_STAT_M_PM_PAR_ERR |
1522 PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1523 {
1524 /* Check for Non-Existent Memory error */
1525
1526 if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1527 printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1528
1529 /* Check for Packet Memory Parity error */
1530
1531 if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1532 printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1533
1534 /* Check for Host Bus Parity error */
1535
1536 if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1537 printk("%s: Host Bus Parity Error\n", bp->dev->name);
1538
1539 /* Reset adapter and bring it back on-line */
1540
1541 bp->link_available = PI_K_FALSE; /* link is no longer available */
1542 bp->reset_type = 0; /* rerun on-board diagnostics */
1543 printk("%s: Resetting adapter...\n", bp->dev->name);
1544 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1545 {
1546 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name);
1547 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1548 return;
1549 }
1550 printk("%s: Adapter reset successful!\n", bp->dev->name);
1551 return;
1552 }
1553
1554 /* Check for transmit flush interrupt */
1555
1556 if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1557 {
1558 /* Flush any pending xmt's and acknowledge the flush interrupt */
1559
1560 bp->link_available = PI_K_FALSE; /* link is no longer available */
1561 dfx_xmt_flush(bp); /* flush any outstanding packets */
1562 (void) dfx_hw_port_ctrl_req(bp,
1563 PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1564 0,
1565 0,
1566 NULL);
1567 }
1568
1569 /* Check for adapter state change */
1570
1571 if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
6aa20a22 1572 {
1da177e4
LT
1573 /* Get latest adapter state */
1574
1575 state = dfx_hw_adap_state_rd(bp); /* get adapter state */
1576 if (state == PI_STATE_K_HALTED)
1577 {
1578 /*
1579 * Adapter has transitioned to HALTED state, try to reset
1580 * adapter to bring it back on-line. If reset fails,
1581 * leave the adapter in the broken state.
1582 */
1583
1584 printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1585 dfx_int_pr_halt_id(bp); /* display halt id as string */
1586
1587 /* Reset adapter and bring it back on-line */
1588
1589 bp->link_available = PI_K_FALSE; /* link is no longer available */
1590 bp->reset_type = 0; /* rerun on-board diagnostics */
1591 printk("%s: Resetting adapter...\n", bp->dev->name);
1592 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1593 {
1594 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name);
1595 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1596 return;
1597 }
1598 printk("%s: Adapter reset successful!\n", bp->dev->name);
1599 }
1600 else if (state == PI_STATE_K_LINK_AVAIL)
1601 {
1602 bp->link_available = PI_K_TRUE; /* set link available flag */
1603 }
1604 }
1605 }
1606
6aa20a22 1607
1da177e4
LT
1608/*
1609 * ==================
1610 * = dfx_int_common =
1611 * ==================
6aa20a22 1612 *
1da177e4
LT
1613 * Overview:
1614 * Interrupt service routine (ISR)
6aa20a22 1615 *
1da177e4
LT
1616 * Returns:
1617 * None
6aa20a22 1618 *
1da177e4
LT
1619 * Arguments:
1620 * bp - pointer to board information
1621 *
1622 * Functional Description:
1623 * This is the ISR which processes incoming adapter interrupts.
1624 *
1625 * Return Codes:
1626 * None
1627 *
1628 * Assumptions:
1629 * This routine assumes PDQ interrupts have not been disabled.
1630 * When interrupts are disabled at the PDQ, the Port Status register
1631 * is automatically cleared. This routine uses the Port Status
1632 * register value to determine whether a Type 0 interrupt occurred,
1633 * so it's important that adapter interrupts are not normally
1634 * enabled/disabled at the PDQ.
1635 *
1636 * It's vital that this routine is NOT reentered for the
1637 * same board and that the OS is not in another section of
1638 * code (eg. dfx_xmt_queue_pkt) for the same board on a
1639 * different thread.
1640 *
1641 * Side Effects:
1642 * Pending interrupts are serviced. Depending on the type of
1643 * interrupt, acknowledging and clearing the interrupt at the
1644 * PDQ involves writing a register to clear the interrupt bit
1645 * or updating completion indices.
1646 */
1647
1648static void dfx_int_common(struct net_device *dev)
1649{
1650 DFX_board_t *bp = dev->priv;
1651 PI_UINT32 port_status; /* Port Status register */
1652
1653 /* Process xmt interrupts - frequent case, so always call this routine */
1654
1655 if(dfx_xmt_done(bp)) /* free consumed xmt packets */
1656 netif_wake_queue(dev);
1657
1658 /* Process rcv interrupts - frequent case, so always call this routine */
1659
1660 dfx_rcv_queue_process(bp); /* service received LLC frames */
1661
1662 /*
1663 * Transmit and receive producer and completion indices are updated on the
1664 * adapter by writing to the Type 2 Producer register. Since the frequent
1665 * case is that we'll be processing either LLC transmit or receive buffers,
1666 * we'll optimize I/O writes by doing a single register write here.
1667 */
1668
1669 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1670
1671 /* Read PDQ Port Status register to find out which interrupts need processing */
1672
1673 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1674
1675 /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1676
1677 if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1678 dfx_int_type_0_process(bp); /* process Type 0 interrupts */
1679 }
1680
6aa20a22 1681
1da177e4
LT
1682/*
1683 * =================
1684 * = dfx_interrupt =
1685 * =================
feea1db2 1686 *
1da177e4
LT
1687 * Overview:
1688 * Interrupt processing routine
feea1db2 1689 *
1da177e4 1690 * Returns:
feea1db2
MR
1691 * Whether a valid interrupt was seen.
1692 *
1da177e4
LT
1693 * Arguments:
1694 * irq - interrupt vector
1695 * dev_id - pointer to device information
1696 * regs - pointer to registers structure
1697 *
1698 * Functional Description:
1699 * This routine calls the interrupt processing routine for this adapter. It
1700 * disables and reenables adapter interrupts, as appropriate. We can support
1701 * shared interrupts since the incoming dev_id pointer provides our device
1702 * structure context.
1703 *
1704 * Return Codes:
feea1db2
MR
1705 * IRQ_HANDLED - an IRQ was handled.
1706 * IRQ_NONE - no IRQ was handled.
1da177e4
LT
1707 *
1708 * Assumptions:
1709 * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1710 * on Intel-based systems) is done by the operating system outside this
1711 * routine.
1712 *
1713 * System interrupts are enabled through this call.
1714 *
1715 * Side Effects:
1716 * Interrupts are disabled, then reenabled at the adapter.
1717 */
1718
feea1db2
MR
1719static irqreturn_t dfx_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1720{
1da177e4
LT
1721 struct net_device *dev = dev_id;
1722 DFX_board_t *bp; /* private board structure pointer */
1da177e4
LT
1723
1724 /* Get board pointer only if device structure is valid */
1725
1726 bp = dev->priv;
1727
1da177e4
LT
1728 /* See if we're already servicing an interrupt */
1729
1730 /* Service adapter interrupts */
1731
feea1db2
MR
1732 if (bp->bus_type == DFX_BUS_TYPE_PCI) {
1733 u32 status;
1da177e4 1734
feea1db2
MR
1735 dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
1736 if (!(status & PFI_STATUS_M_PDQ_INT))
1737 return IRQ_NONE;
1da177e4 1738
feea1db2
MR
1739 spin_lock(&bp->lock);
1740
1741 /* Disable PDQ-PFI interrupts at PFI */
1742 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1743 PFI_MODE_M_DMA_ENB);
1da177e4 1744
feea1db2 1745 /* Call interrupt service routine for this adapter */
1da177e4
LT
1746 dfx_int_common(dev);
1747
1748 /* Clear PDQ interrupt status bit and reenable interrupts */
feea1db2
MR
1749 dfx_port_write_long(bp, PFI_K_REG_STATUS,
1750 PFI_STATUS_M_PDQ_INT);
1da177e4 1751 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
feea1db2
MR
1752 (PFI_MODE_M_PDQ_INT_ENB |
1753 PFI_MODE_M_DMA_ENB));
1da177e4 1754
feea1db2
MR
1755 spin_unlock(&bp->lock);
1756 } else {
1757 u8 status;
1da177e4 1758
feea1db2
MR
1759 dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &status);
1760 if (!(status & PI_CONFIG_STAT_0_M_PEND))
1761 return IRQ_NONE;
1da177e4 1762
feea1db2
MR
1763 spin_lock(&bp->lock);
1764
1765 /* Disable interrupts at the ESIC */
1766 status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
1767 dfx_port_write_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, status);
1768
1769 /* Call interrupt service routine for this adapter */
1da177e4
LT
1770 dfx_int_common(dev);
1771
1772 /* Reenable interrupts at the ESIC */
feea1db2
MR
1773 dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &status);
1774 status |= PI_CONFIG_STAT_0_M_INT_ENB;
1775 dfx_port_write_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, status);
1da177e4 1776
feea1db2 1777 spin_unlock(&bp->lock);
1da177e4
LT
1778 }
1779
feea1db2
MR
1780 return IRQ_HANDLED;
1781}
1782
6aa20a22 1783
1da177e4
LT
1784/*
1785 * =====================
1786 * = dfx_ctl_get_stats =
1787 * =====================
6aa20a22 1788 *
1da177e4
LT
1789 * Overview:
1790 * Get statistics for FDDI adapter
6aa20a22 1791 *
1da177e4
LT
1792 * Returns:
1793 * Pointer to FDDI statistics structure
6aa20a22 1794 *
1da177e4
LT
1795 * Arguments:
1796 * dev - pointer to device information
1797 *
1798 * Functional Description:
1799 * Gets current MIB objects from adapter, then
1800 * returns FDDI statistics structure as defined
1801 * in if_fddi.h.
1802 *
1803 * Note: Since the FDDI statistics structure is
1804 * still new and the device structure doesn't
1805 * have an FDDI-specific get statistics handler,
1806 * we'll return the FDDI statistics structure as
1807 * a pointer to an Ethernet statistics structure.
1808 * That way, at least the first part of the statistics
1809 * structure can be decoded properly, and it allows
1810 * "smart" applications to perform a second cast to
1811 * decode the FDDI-specific statistics.
1812 *
1813 * We'll have to pay attention to this routine as the
1814 * device structure becomes more mature and LAN media
1815 * independent.
1816 *
1817 * Return Codes:
1818 * None
1819 *
1820 * Assumptions:
1821 * None
1822 *
1823 * Side Effects:
1824 * None
1825 */
1826
1827static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
1828 {
1829 DFX_board_t *bp = dev->priv;
1830
1831 /* Fill the bp->stats structure with driver-maintained counters */
1832
1833 bp->stats.gen.rx_packets = bp->rcv_total_frames;
1834 bp->stats.gen.tx_packets = bp->xmt_total_frames;
1835 bp->stats.gen.rx_bytes = bp->rcv_total_bytes;
1836 bp->stats.gen.tx_bytes = bp->xmt_total_bytes;
1837 bp->stats.gen.rx_errors = bp->rcv_crc_errors +
1838 bp->rcv_frame_status_errors +
1839 bp->rcv_length_errors;
1840 bp->stats.gen.tx_errors = bp->xmt_length_errors;
1841 bp->stats.gen.rx_dropped = bp->rcv_discards;
1842 bp->stats.gen.tx_dropped = bp->xmt_discards;
1843 bp->stats.gen.multicast = bp->rcv_multicast_frames;
1844 bp->stats.gen.collisions = 0; /* always zero (0) for FDDI */
1845
1846 /* Get FDDI SMT MIB objects */
1847
1848 bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
1849 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1850 return((struct net_device_stats *) &bp->stats);
1851
1852 /* Fill the bp->stats structure with the SMT MIB object values */
1853
1854 memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
1855 bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
1856 bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
1857 bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
1858 memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
1859 bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
1860 bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
1861 bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
1862 bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
1863 bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
1864 bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
1865 bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
1866 bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
1867 bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
1868 bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
1869 bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
1870 bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
1871 bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
1872 bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
1873 bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
1874 bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
1875 bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
1876 bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
1877 bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
1878 bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
1879 bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
1880 bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
1881 bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
1882 bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
1883 memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
1884 memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
1885 memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
1886 memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
1887 bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
1888 bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
1889 bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
1890 memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
1891 bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
1892 bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
1893 bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
1894 bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
1895 bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
1896 bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
1897 bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
1898 bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
1899 bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
1900 bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
1901 bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
1902 bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
1903 bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
1904 bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
1905 bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
1906 bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
1907 memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
1908 bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
1909 bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
1910 bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
1911 bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
1912 bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
1913 bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
1914 bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
1915 bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
1916 bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
1917 bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
1918 memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
1919 memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
1920 bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
1921 bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
1922 bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
1923 bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
1924 bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
1925 bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
1926 bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
1927 bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
1928 bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
1929 bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
1930 bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
1931 bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
1932 bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
1933 bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
1934 bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
1935 bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
1936 bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
1937 bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
1938 bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
1939 bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
1940 bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
1941 bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
1942 bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
1943 bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
1944 bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
1945 bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
1946
1947 /* Get FDDI counters */
1948
1949 bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
1950 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1951 return((struct net_device_stats *) &bp->stats);
1952
1953 /* Fill the bp->stats structure with the FDDI counter values */
1954
1955 bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
1956 bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
1957 bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
1958 bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
1959 bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
1960 bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
1961 bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
1962 bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
1963 bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
1964 bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
1965 bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
1966
1967 return((struct net_device_stats *) &bp->stats);
1968 }
1969
6aa20a22 1970
1da177e4
LT
1971/*
1972 * ==============================
1973 * = dfx_ctl_set_multicast_list =
1974 * ==============================
6aa20a22 1975 *
1da177e4
LT
1976 * Overview:
1977 * Enable/Disable LLC frame promiscuous mode reception
1978 * on the adapter and/or update multicast address table.
6aa20a22 1979 *
1da177e4
LT
1980 * Returns:
1981 * None
6aa20a22 1982 *
1da177e4
LT
1983 * Arguments:
1984 * dev - pointer to device information
1985 *
1986 * Functional Description:
1987 * This routine follows a fairly simple algorithm for setting the
1988 * adapter filters and CAM:
1989 *
1990 * if IFF_PROMISC flag is set
1991 * enable LLC individual/group promiscuous mode
1992 * else
1993 * disable LLC individual/group promiscuous mode
1994 * if number of incoming multicast addresses >
1995 * (CAM max size - number of unicast addresses in CAM)
1996 * enable LLC group promiscuous mode
1997 * set driver-maintained multicast address count to zero
1998 * else
1999 * disable LLC group promiscuous mode
2000 * set driver-maintained multicast address count to incoming count
2001 * update adapter CAM
2002 * update adapter filters
2003 *
2004 * Return Codes:
2005 * None
2006 *
2007 * Assumptions:
2008 * Multicast addresses are presented in canonical (LSB) format.
2009 *
2010 * Side Effects:
2011 * On-board adapter CAM and filters are updated.
2012 */
2013
2014static void dfx_ctl_set_multicast_list(struct net_device *dev)
2015 {
2016 DFX_board_t *bp = dev->priv;
2017 int i; /* used as index in for loop */
2018 struct dev_mc_list *dmi; /* ptr to multicast addr entry */
2019
2020 /* Enable LLC frame promiscuous mode, if necessary */
2021
2022 if (dev->flags & IFF_PROMISC)
2023 bp->ind_group_prom = PI_FSTATE_K_PASS; /* Enable LLC ind/group prom mode */
2024
2025 /* Else, update multicast address table */
2026
2027 else
2028 {
2029 bp->ind_group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC ind/group prom mode */
2030 /*
2031 * Check whether incoming multicast address count exceeds table size
2032 *
2033 * Note: The adapters utilize an on-board 64 entry CAM for
2034 * supporting perfect filtering of multicast packets
2035 * and bridge functions when adding unicast addresses.
2036 * There is no hash function available. To support
2037 * additional multicast addresses, the all multicast
2038 * filter (LLC group promiscuous mode) must be enabled.
2039 *
2040 * The firmware reserves two CAM entries for SMT-related
2041 * multicast addresses, which leaves 62 entries available.
2042 * The following code ensures that we're not being asked
2043 * to add more than 62 addresses to the CAM. If we are,
2044 * the driver will enable the all multicast filter.
2045 * Should the number of multicast addresses drop below
2046 * the high water mark, the filter will be disabled and
2047 * perfect filtering will be used.
2048 */
2049
2050 if (dev->mc_count > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
2051 {
2052 bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */
2053 bp->mc_count = 0; /* Don't add mc addrs to CAM */
2054 }
2055 else
2056 {
2057 bp->group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC group prom mode */
2058 bp->mc_count = dev->mc_count; /* Add mc addrs to CAM */
2059 }
2060
2061 /* Copy addresses to multicast address table, then update adapter CAM */
2062
2063 dmi = dev->mc_list; /* point to first multicast addr */
2064 for (i=0; i < bp->mc_count; i++)
2065 {
2066 memcpy(&bp->mc_table[i*FDDI_K_ALEN], dmi->dmi_addr, FDDI_K_ALEN);
2067 dmi = dmi->next; /* point to next multicast addr */
2068 }
2069 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2070 {
2071 DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2072 }
2073 else
2074 {
2075 DBG_printk("%s: Multicast address table updated! Added %d addresses.\n", dev->name, bp->mc_count);
2076 }
2077 }
2078
2079 /* Update adapter filters */
2080
2081 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2082 {
2083 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2084 }
2085 else
2086 {
2087 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2088 }
2089 }
2090
6aa20a22 2091
1da177e4
LT
2092/*
2093 * ===========================
2094 * = dfx_ctl_set_mac_address =
2095 * ===========================
6aa20a22 2096 *
1da177e4
LT
2097 * Overview:
2098 * Add node address override (unicast address) to adapter
2099 * CAM and update dev_addr field in device table.
6aa20a22 2100 *
1da177e4
LT
2101 * Returns:
2102 * None
6aa20a22 2103 *
1da177e4
LT
2104 * Arguments:
2105 * dev - pointer to device information
2106 * addr - pointer to sockaddr structure containing unicast address to add
2107 *
2108 * Functional Description:
2109 * The adapter supports node address overrides by adding one or more
2110 * unicast addresses to the adapter CAM. This is similar to adding
2111 * multicast addresses. In this routine we'll update the driver and
2112 * device structures with the new address, then update the adapter CAM
2113 * to ensure that the adapter will copy and strip frames destined and
2114 * sourced by that address.
2115 *
2116 * Return Codes:
2117 * Always returns zero.
2118 *
2119 * Assumptions:
2120 * The address pointed to by addr->sa_data is a valid unicast
2121 * address and is presented in canonical (LSB) format.
2122 *
2123 * Side Effects:
2124 * On-board adapter CAM is updated. On-board adapter filters
2125 * may be updated.
2126 */
2127
2128static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
2129 {
2130 DFX_board_t *bp = dev->priv;
2131 struct sockaddr *p_sockaddr = (struct sockaddr *)addr;
2132
2133 /* Copy unicast address to driver-maintained structs and update count */
2134
2135 memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN); /* update device struct */
2136 memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN); /* update driver struct */
2137 bp->uc_count = 1;
2138
2139 /*
2140 * Verify we're not exceeding the CAM size by adding unicast address
2141 *
2142 * Note: It's possible that before entering this routine we've
2143 * already filled the CAM with 62 multicast addresses.
2144 * Since we need to place the node address override into
2145 * the CAM, we have to check to see that we're not
2146 * exceeding the CAM size. If we are, we have to enable
2147 * the LLC group (multicast) promiscuous mode filter as
2148 * in dfx_ctl_set_multicast_list.
2149 */
2150
2151 if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2152 {
2153 bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */
2154 bp->mc_count = 0; /* Don't add mc addrs to CAM */
2155
2156 /* Update adapter filters */
2157
2158 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2159 {
2160 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2161 }
2162 else
2163 {
2164 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2165 }
2166 }
2167
2168 /* Update adapter CAM with new unicast address */
2169
2170 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2171 {
2172 DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2173 }
2174 else
2175 {
2176 DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2177 }
2178 return(0); /* always return zero */
2179 }
2180
6aa20a22 2181
1da177e4
LT
2182/*
2183 * ======================
2184 * = dfx_ctl_update_cam =
2185 * ======================
2186 *
2187 * Overview:
2188 * Procedure to update adapter CAM (Content Addressable Memory)
2189 * with desired unicast and multicast address entries.
2190 *
2191 * Returns:
2192 * Condition code
2193 *
2194 * Arguments:
2195 * bp - pointer to board information
2196 *
2197 * Functional Description:
2198 * Updates adapter CAM with current contents of board structure
2199 * unicast and multicast address tables. Since there are only 62
2200 * free entries in CAM, this routine ensures that the command
2201 * request buffer is not overrun.
2202 *
2203 * Return Codes:
2204 * DFX_K_SUCCESS - Request succeeded
2205 * DFX_K_FAILURE - Request failed
2206 *
2207 * Assumptions:
2208 * All addresses being added (unicast and multicast) are in canonical
2209 * order.
2210 *
2211 * Side Effects:
2212 * On-board adapter CAM is updated.
2213 */
2214
2215static int dfx_ctl_update_cam(DFX_board_t *bp)
2216 {
2217 int i; /* used as index */
2218 PI_LAN_ADDR *p_addr; /* pointer to CAM entry */
2219
2220 /*
2221 * Fill in command request information
2222 *
2223 * Note: Even though both the unicast and multicast address
2224 * table entries are stored as contiguous 6 byte entries,
2225 * the firmware address filter set command expects each
2226 * entry to be two longwords (8 bytes total). We must be
2227 * careful to only copy the six bytes of each unicast and
2228 * multicast table entry into each command entry. This
2229 * is also why we must first clear the entire command
2230 * request buffer.
2231 */
2232
2233 memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX); /* first clear buffer */
2234 bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2235 p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2236
2237 /* Now add unicast addresses to command request buffer, if any */
2238
2239 for (i=0; i < (int)bp->uc_count; i++)
2240 {
2241 if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2242 {
2243 memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2244 p_addr++; /* point to next command entry */
2245 }
2246 }
2247
2248 /* Now add multicast addresses to command request buffer, if any */
2249
2250 for (i=0; i < (int)bp->mc_count; i++)
2251 {
2252 if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2253 {
2254 memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2255 p_addr++; /* point to next command entry */
2256 }
2257 }
2258
2259 /* Issue command to update adapter CAM, then return */
2260
2261 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2262 return(DFX_K_FAILURE);
2263 return(DFX_K_SUCCESS);
2264 }
2265
6aa20a22 2266
1da177e4
LT
2267/*
2268 * ==========================
2269 * = dfx_ctl_update_filters =
2270 * ==========================
2271 *
2272 * Overview:
2273 * Procedure to update adapter filters with desired
2274 * filter settings.
6aa20a22 2275 *
1da177e4
LT
2276 * Returns:
2277 * Condition code
6aa20a22 2278 *
1da177e4
LT
2279 * Arguments:
2280 * bp - pointer to board information
2281 *
2282 * Functional Description:
2283 * Enables or disables filter using current filter settings.
2284 *
2285 * Return Codes:
2286 * DFX_K_SUCCESS - Request succeeded.
2287 * DFX_K_FAILURE - Request failed.
2288 *
2289 * Assumptions:
2290 * We must always pass up packets destined to the broadcast
2291 * address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2292 * broadcast filter enabled.
2293 *
2294 * Side Effects:
2295 * On-board adapter filters are updated.
2296 */
2297
2298static int dfx_ctl_update_filters(DFX_board_t *bp)
2299 {
2300 int i = 0; /* used as index */
2301
2302 /* Fill in command request information */
2303
2304 bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2305
2306 /* Initialize Broadcast filter - * ALWAYS ENABLED * */
2307
2308 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_BROADCAST;
2309 bp->cmd_req_virt->filter_set.item[i++].value = PI_FSTATE_K_PASS;
2310
2311 /* Initialize LLC Individual/Group Promiscuous filter */
2312
2313 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_IND_GROUP_PROM;
2314 bp->cmd_req_virt->filter_set.item[i++].value = bp->ind_group_prom;
2315
2316 /* Initialize LLC Group Promiscuous filter */
2317
2318 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_GROUP_PROM;
2319 bp->cmd_req_virt->filter_set.item[i++].value = bp->group_prom;
2320
2321 /* Terminate the item code list */
2322
2323 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_EOL;
2324
2325 /* Issue command to update adapter filters, then return */
2326
2327 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2328 return(DFX_K_FAILURE);
2329 return(DFX_K_SUCCESS);
2330 }
2331
6aa20a22 2332
1da177e4
LT
2333/*
2334 * ======================
2335 * = dfx_hw_dma_cmd_req =
2336 * ======================
6aa20a22 2337 *
1da177e4
LT
2338 * Overview:
2339 * Sends PDQ DMA command to adapter firmware
6aa20a22 2340 *
1da177e4
LT
2341 * Returns:
2342 * Condition code
6aa20a22 2343 *
1da177e4
LT
2344 * Arguments:
2345 * bp - pointer to board information
2346 *
2347 * Functional Description:
2348 * The command request and response buffers are posted to the adapter in the manner
2349 * described in the PDQ Port Specification:
2350 *
2351 * 1. Command Response Buffer is posted to adapter.
2352 * 2. Command Request Buffer is posted to adapter.
2353 * 3. Command Request consumer index is polled until it indicates that request
2354 * buffer has been DMA'd to adapter.
2355 * 4. Command Response consumer index is polled until it indicates that response
2356 * buffer has been DMA'd from adapter.
2357 *
2358 * This ordering ensures that a response buffer is already available for the firmware
2359 * to use once it's done processing the request buffer.
2360 *
2361 * Return Codes:
2362 * DFX_K_SUCCESS - DMA command succeeded
2363 * DFX_K_OUTSTATE - Adapter is NOT in proper state
2364 * DFX_K_HW_TIMEOUT - DMA command timed out
2365 *
2366 * Assumptions:
2367 * Command request buffer has already been filled with desired DMA command.
2368 *
2369 * Side Effects:
2370 * None
2371 */
2372
2373static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
2374 {
2375 int status; /* adapter status */
2376 int timeout_cnt; /* used in for loops */
6aa20a22 2377
1da177e4 2378 /* Make sure the adapter is in a state that we can issue the DMA command in */
6aa20a22 2379
1da177e4
LT
2380 status = dfx_hw_adap_state_rd(bp);
2381 if ((status == PI_STATE_K_RESET) ||
2382 (status == PI_STATE_K_HALTED) ||
2383 (status == PI_STATE_K_DMA_UNAVAIL) ||
2384 (status == PI_STATE_K_UPGRADE))
2385 return(DFX_K_OUTSTATE);
2386
2387 /* Put response buffer on the command response queue */
2388
2389 bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2390 ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2391 bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2392
2393 /* Bump (and wrap) the producer index and write out to register */
2394
2395 bp->cmd_rsp_reg.index.prod += 1;
2396 bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2397 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2398
2399 /* Put request buffer on the command request queue */
6aa20a22 2400
1da177e4
LT
2401 bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2402 PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2403 bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2404
2405 /* Bump (and wrap) the producer index and write out to register */
2406
2407 bp->cmd_req_reg.index.prod += 1;
2408 bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2409 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2410
2411 /*
2412 * Here we wait for the command request consumer index to be equal
2413 * to the producer, indicating that the adapter has DMAed the request.
2414 */
2415
2416 for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2417 {
2418 if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2419 break;
2420 udelay(100); /* wait for 100 microseconds */
2421 }
6aa20a22 2422 if (timeout_cnt == 0)
1da177e4
LT
2423 return(DFX_K_HW_TIMEOUT);
2424
2425 /* Bump (and wrap) the completion index and write out to register */
2426
2427 bp->cmd_req_reg.index.comp += 1;
2428 bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2429 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2430
2431 /*
2432 * Here we wait for the command response consumer index to be equal
2433 * to the producer, indicating that the adapter has DMAed the response.
2434 */
2435
2436 for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2437 {
2438 if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2439 break;
2440 udelay(100); /* wait for 100 microseconds */
2441 }
6aa20a22 2442 if (timeout_cnt == 0)
1da177e4
LT
2443 return(DFX_K_HW_TIMEOUT);
2444
2445 /* Bump (and wrap) the completion index and write out to register */
2446
2447 bp->cmd_rsp_reg.index.comp += 1;
2448 bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2449 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2450 return(DFX_K_SUCCESS);
2451 }
2452
6aa20a22 2453
1da177e4
LT
2454/*
2455 * ========================
2456 * = dfx_hw_port_ctrl_req =
2457 * ========================
6aa20a22 2458 *
1da177e4
LT
2459 * Overview:
2460 * Sends PDQ port control command to adapter firmware
6aa20a22 2461 *
1da177e4
LT
2462 * Returns:
2463 * Host data register value in host_data if ptr is not NULL
6aa20a22 2464 *
1da177e4
LT
2465 * Arguments:
2466 * bp - pointer to board information
2467 * command - port control command
2468 * data_a - port data A register value
2469 * data_b - port data B register value
2470 * host_data - ptr to host data register value
2471 *
2472 * Functional Description:
2473 * Send generic port control command to adapter by writing
2474 * to various PDQ port registers, then polling for completion.
2475 *
2476 * Return Codes:
2477 * DFX_K_SUCCESS - port control command succeeded
2478 * DFX_K_HW_TIMEOUT - port control command timed out
2479 *
2480 * Assumptions:
2481 * None
2482 *
2483 * Side Effects:
2484 * None
2485 */
2486
2487static int dfx_hw_port_ctrl_req(
2488 DFX_board_t *bp,
2489 PI_UINT32 command,
2490 PI_UINT32 data_a,
2491 PI_UINT32 data_b,
2492 PI_UINT32 *host_data
2493 )
2494
2495 {
2496 PI_UINT32 port_cmd; /* Port Control command register value */
2497 int timeout_cnt; /* used in for loops */
2498
2499 /* Set Command Error bit in command longword */
6aa20a22 2500
1da177e4
LT
2501 port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2502
2503 /* Issue port command to the adapter */
2504
2505 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2506 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2507 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2508
2509 /* Now wait for command to complete */
2510
2511 if (command == PI_PCTRL_M_BLAST_FLASH)
2512 timeout_cnt = 600000; /* set command timeout count to 60 seconds */
2513 else
2514 timeout_cnt = 20000; /* set command timeout count to 2 seconds */
2515
2516 for (; timeout_cnt > 0; timeout_cnt--)
2517 {
2518 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2519 if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2520 break;
2521 udelay(100); /* wait for 100 microseconds */
2522 }
6aa20a22 2523 if (timeout_cnt == 0)
1da177e4
LT
2524 return(DFX_K_HW_TIMEOUT);
2525
2526 /*
6aa20a22
JG
2527 * If the address of host_data is non-zero, assume caller has supplied a
2528 * non NULL pointer, and return the contents of the HOST_DATA register in
1da177e4
LT
2529 * it.
2530 */
2531
2532 if (host_data != NULL)
2533 dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
2534 return(DFX_K_SUCCESS);
2535 }
2536
6aa20a22 2537
1da177e4
LT
2538/*
2539 * =====================
2540 * = dfx_hw_adap_reset =
2541 * =====================
6aa20a22 2542 *
1da177e4
LT
2543 * Overview:
2544 * Resets adapter
6aa20a22 2545 *
1da177e4
LT
2546 * Returns:
2547 * None
6aa20a22 2548 *
1da177e4
LT
2549 * Arguments:
2550 * bp - pointer to board information
2551 * type - type of reset to perform
2552 *
2553 * Functional Description:
2554 * Issue soft reset to adapter by writing to PDQ Port Reset
2555 * register. Use incoming reset type to tell adapter what
2556 * kind of reset operation to perform.
2557 *
2558 * Return Codes:
2559 * None
2560 *
2561 * Assumptions:
2562 * This routine merely issues a soft reset to the adapter.
2563 * It is expected that after this routine returns, the caller
2564 * will appropriately poll the Port Status register for the
2565 * adapter to enter the proper state.
2566 *
2567 * Side Effects:
2568 * Internal adapter registers are cleared.
2569 */
2570
2571static void dfx_hw_adap_reset(
2572 DFX_board_t *bp,
2573 PI_UINT32 type
2574 )
2575
2576 {
2577 /* Set Reset type and assert reset */
2578
2579 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type); /* tell adapter type of reset */
2580 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2581
2582 /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2583
2584 udelay(20);
2585
2586 /* Deassert reset */
2587
2588 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2589 }
2590
6aa20a22 2591
1da177e4
LT
2592/*
2593 * ========================
2594 * = dfx_hw_adap_state_rd =
2595 * ========================
6aa20a22 2596 *
1da177e4
LT
2597 * Overview:
2598 * Returns current adapter state
6aa20a22 2599 *
1da177e4
LT
2600 * Returns:
2601 * Adapter state per PDQ Port Specification
6aa20a22 2602 *
1da177e4
LT
2603 * Arguments:
2604 * bp - pointer to board information
2605 *
2606 * Functional Description:
2607 * Reads PDQ Port Status register and returns adapter state.
2608 *
2609 * Return Codes:
2610 * None
2611 *
2612 * Assumptions:
2613 * None
2614 *
2615 * Side Effects:
2616 * None
2617 */
2618
2619static int dfx_hw_adap_state_rd(DFX_board_t *bp)
2620 {
2621 PI_UINT32 port_status; /* Port Status register value */
2622
2623 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
2624 return((port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE);
2625 }
2626
6aa20a22 2627
1da177e4
LT
2628/*
2629 * =====================
2630 * = dfx_hw_dma_uninit =
2631 * =====================
6aa20a22 2632 *
1da177e4
LT
2633 * Overview:
2634 * Brings adapter to DMA_UNAVAILABLE state
6aa20a22 2635 *
1da177e4
LT
2636 * Returns:
2637 * Condition code
6aa20a22 2638 *
1da177e4
LT
2639 * Arguments:
2640 * bp - pointer to board information
2641 * type - type of reset to perform
2642 *
2643 * Functional Description:
2644 * Bring adapter to DMA_UNAVAILABLE state by performing the following:
2645 * 1. Set reset type bit in Port Data A Register then reset adapter.
2646 * 2. Check that adapter is in DMA_UNAVAILABLE state.
2647 *
2648 * Return Codes:
2649 * DFX_K_SUCCESS - adapter is in DMA_UNAVAILABLE state
2650 * DFX_K_HW_TIMEOUT - adapter did not reset properly
2651 *
2652 * Assumptions:
2653 * None
2654 *
2655 * Side Effects:
2656 * Internal adapter registers are cleared.
2657 */
2658
2659static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
2660 {
2661 int timeout_cnt; /* used in for loops */
2662
2663 /* Set reset type bit and reset adapter */
2664
2665 dfx_hw_adap_reset(bp, type);
2666
2667 /* Now wait for adapter to enter DMA_UNAVAILABLE state */
2668
2669 for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2670 {
2671 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2672 break;
2673 udelay(100); /* wait for 100 microseconds */
2674 }
6aa20a22 2675 if (timeout_cnt == 0)
1da177e4
LT
2676 return(DFX_K_HW_TIMEOUT);
2677 return(DFX_K_SUCCESS);
2678 }
6aa20a22 2679
1da177e4
LT
2680/*
2681 * Align an sk_buff to a boundary power of 2
2682 *
2683 */
6aa20a22 2684
1da177e4
LT
2685static void my_skb_align(struct sk_buff *skb, int n)
2686{
2687 unsigned long x = (unsigned long)skb->data;
2688 unsigned long v;
6aa20a22 2689
1da177e4 2690 v = ALIGN(x, n); /* Where we want to be */
6aa20a22 2691
1da177e4
LT
2692 skb_reserve(skb, v - x);
2693}
2694
6aa20a22 2695
1da177e4
LT
2696/*
2697 * ================
2698 * = dfx_rcv_init =
2699 * ================
6aa20a22 2700 *
1da177e4
LT
2701 * Overview:
2702 * Produces buffers to adapter LLC Host receive descriptor block
6aa20a22 2703 *
1da177e4
LT
2704 * Returns:
2705 * None
6aa20a22 2706 *
1da177e4
LT
2707 * Arguments:
2708 * bp - pointer to board information
2709 * get_buffers - non-zero if buffers to be allocated
2710 *
2711 * Functional Description:
2712 * This routine can be called during dfx_adap_init() or during an adapter
2713 * reset. It initializes the descriptor block and produces all allocated
2714 * LLC Host queue receive buffers.
2715 *
2716 * Return Codes:
2717 * Return 0 on success or -ENOMEM if buffer allocation failed (when using
2718 * dynamic buffer allocation). If the buffer allocation failed, the
2719 * already allocated buffers will not be released and the caller should do
2720 * this.
2721 *
2722 * Assumptions:
2723 * The PDQ has been reset and the adapter and driver maintained Type 2
2724 * register indices are cleared.
2725 *
2726 * Side Effects:
2727 * Receive buffers are posted to the adapter LLC queue and the adapter
2728 * is notified.
2729 */
2730
2731static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
2732 {
2733 int i, j; /* used in for loop */
2734
2735 /*
2736 * Since each receive buffer is a single fragment of same length, initialize
2737 * first longword in each receive descriptor for entire LLC Host descriptor
2738 * block. Also initialize second longword in each receive descriptor with
2739 * physical address of receive buffer. We'll always allocate receive
2740 * buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2741 * block and produce new receive buffers by simply updating the receive
2742 * producer index.
2743 *
2744 * Assumptions:
2745 * To support all shipping versions of PDQ, the receive buffer size
2746 * must be mod 128 in length and the physical address must be 128 byte
2747 * aligned. In other words, bits 0-6 of the length and address must
2748 * be zero for the following descriptor field entries to be correct on
2749 * all PDQ-based boards. We guaranteed both requirements during
2750 * driver initialization when we allocated memory for the receive buffers.
2751 */
2752
2753 if (get_buffers) {
2754#ifdef DYNAMIC_BUFFERS
2755 for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
2756 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2757 {
2758 struct sk_buff *newskb = __dev_alloc_skb(NEW_SKB_SIZE, GFP_NOIO);
2759 if (!newskb)
2760 return -ENOMEM;
2761 bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2762 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2763 /*
2764 * align to 128 bytes for compatibility with
2765 * the old EISA boards.
2766 */
6aa20a22 2767
1da177e4
LT
2768 my_skb_align(newskb, 128);
2769 bp->descr_block_virt->rcv_data[i + j].long_1 =
2770 (u32)pci_map_single(bp->pci_dev, newskb->data,
2771 NEW_SKB_SIZE,
2772 PCI_DMA_FROMDEVICE);
2773 /*
2774 * p_rcv_buff_va is only used inside the
2775 * kernel so we put the skb pointer here.
2776 */
2777 bp->p_rcv_buff_va[i+j] = (char *) newskb;
2778 }
2779#else
2780 for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
2781 for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2782 {
2783 bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2784 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2785 bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
2786 bp->p_rcv_buff_va[i+j] = (char *) (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
2787 }
2788#endif
2789 }
2790
2791 /* Update receive producer and Type 2 register */
2792
2793 bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
2794 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
2795 return 0;
2796 }
2797
6aa20a22 2798
1da177e4
LT
2799/*
2800 * =========================
2801 * = dfx_rcv_queue_process =
2802 * =========================
6aa20a22 2803 *
1da177e4
LT
2804 * Overview:
2805 * Process received LLC frames.
6aa20a22 2806 *
1da177e4
LT
2807 * Returns:
2808 * None
6aa20a22 2809 *
1da177e4
LT
2810 * Arguments:
2811 * bp - pointer to board information
2812 *
2813 * Functional Description:
2814 * Received LLC frames are processed until there are no more consumed frames.
2815 * Once all frames are processed, the receive buffers are returned to the
2816 * adapter. Note that this algorithm fixes the length of time that can be spent
2817 * in this routine, because there are a fixed number of receive buffers to
2818 * process and buffers are not produced until this routine exits and returns
2819 * to the ISR.
2820 *
2821 * Return Codes:
2822 * None
2823 *
2824 * Assumptions:
2825 * None
2826 *
2827 * Side Effects:
2828 * None
2829 */
2830
2831static void dfx_rcv_queue_process(
2832 DFX_board_t *bp
2833 )
2834
2835 {
2836 PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */
2837 char *p_buff; /* ptr to start of packet receive buffer (FMC descriptor) */
2838 u32 descr, pkt_len; /* FMC descriptor field and packet length */
2839 struct sk_buff *skb; /* pointer to a sk_buff to hold incoming packet data */
2840
2841 /* Service all consumed LLC receive frames */
2842
2843 p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
2844 while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
2845 {
2846 /* Process any errors */
2847
2848 int entry;
2849
2850 entry = bp->rcv_xmt_reg.index.rcv_comp;
2851#ifdef DYNAMIC_BUFFERS
2852 p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
2853#else
2854 p_buff = (char *) bp->p_rcv_buff_va[entry];
2855#endif
2856 memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
2857
2858 if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
2859 {
2860 if (descr & PI_FMC_DESCR_M_RCC_CRC)
2861 bp->rcv_crc_errors++;
2862 else
2863 bp->rcv_frame_status_errors++;
2864 }
2865 else
2866 {
2867 int rx_in_place = 0;
2868
2869 /* The frame was received without errors - verify packet length */
2870
2871 pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
2872 pkt_len -= 4; /* subtract 4 byte CRC */
2873 if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
2874 bp->rcv_length_errors++;
2875 else{
2876#ifdef DYNAMIC_BUFFERS
2877 if (pkt_len > SKBUFF_RX_COPYBREAK) {
2878 struct sk_buff *newskb;
2879
2880 newskb = dev_alloc_skb(NEW_SKB_SIZE);
2881 if (newskb){
2882 rx_in_place = 1;
6aa20a22 2883
1da177e4
LT
2884 my_skb_align(newskb, 128);
2885 skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
2886 pci_unmap_single(bp->pci_dev,
2887 bp->descr_block_virt->rcv_data[entry].long_1,
2888 NEW_SKB_SIZE,
2889 PCI_DMA_FROMDEVICE);
2890 skb_reserve(skb, RCV_BUFF_K_PADDING);
2891 bp->p_rcv_buff_va[entry] = (char *)newskb;
2892 bp->descr_block_virt->rcv_data[entry].long_1 =
2893 (u32)pci_map_single(bp->pci_dev,
2894 newskb->data,
2895 NEW_SKB_SIZE,
2896 PCI_DMA_FROMDEVICE);
2897 } else
2898 skb = NULL;
2899 } else
2900#endif
2901 skb = dev_alloc_skb(pkt_len+3); /* alloc new buffer to pass up, add room for PRH */
2902 if (skb == NULL)
2903 {
2904 printk("%s: Could not allocate receive buffer. Dropping packet.\n", bp->dev->name);
2905 bp->rcv_discards++;
2906 break;
2907 }
2908 else {
2909#ifndef DYNAMIC_BUFFERS
2910 if (! rx_in_place)
2911#endif
2912 {
2913 /* Receive buffer allocated, pass receive packet up */
2914
2915 memcpy(skb->data, p_buff + RCV_BUFF_K_PADDING, pkt_len+3);
2916 }
6aa20a22 2917
1da177e4
LT
2918 skb_reserve(skb,3); /* adjust data field so that it points to FC byte */
2919 skb_put(skb, pkt_len); /* pass up packet length, NOT including CRC */
2920 skb->dev = bp->dev; /* pass up device pointer */
2921
2922 skb->protocol = fddi_type_trans(skb, bp->dev);
2923 bp->rcv_total_bytes += skb->len;
2924 netif_rx(skb);
2925
2926 /* Update the rcv counters */
2927 bp->dev->last_rx = jiffies;
2928 bp->rcv_total_frames++;
2929 if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
2930 bp->rcv_multicast_frames++;
2931 }
2932 }
2933 }
2934
2935 /*
2936 * Advance the producer (for recycling) and advance the completion
2937 * (for servicing received frames). Note that it is okay to
2938 * advance the producer without checking that it passes the
2939 * completion index because they are both advanced at the same
2940 * rate.
2941 */
2942
2943 bp->rcv_xmt_reg.index.rcv_prod += 1;
2944 bp->rcv_xmt_reg.index.rcv_comp += 1;
2945 }
2946 }
2947
6aa20a22 2948
1da177e4
LT
2949/*
2950 * =====================
2951 * = dfx_xmt_queue_pkt =
2952 * =====================
6aa20a22 2953 *
1da177e4
LT
2954 * Overview:
2955 * Queues packets for transmission
6aa20a22 2956 *
1da177e4
LT
2957 * Returns:
2958 * Condition code
6aa20a22 2959 *
1da177e4
LT
2960 * Arguments:
2961 * skb - pointer to sk_buff to queue for transmission
2962 * dev - pointer to device information
2963 *
2964 * Functional Description:
2965 * Here we assume that an incoming skb transmit request
2966 * is contained in a single physically contiguous buffer
2967 * in which the virtual address of the start of packet
2968 * (skb->data) can be converted to a physical address
2969 * by using pci_map_single().
2970 *
2971 * Since the adapter architecture requires a three byte
2972 * packet request header to prepend the start of packet,
2973 * we'll write the three byte field immediately prior to
2974 * the FC byte. This assumption is valid because we've
2975 * ensured that dev->hard_header_len includes three pad
2976 * bytes. By posting a single fragment to the adapter,
2977 * we'll reduce the number of descriptor fetches and
2978 * bus traffic needed to send the request.
2979 *
2980 * Also, we can't free the skb until after it's been DMA'd
2981 * out by the adapter, so we'll queue it in the driver and
2982 * return it in dfx_xmt_done.
2983 *
2984 * Return Codes:
2985 * 0 - driver queued packet, link is unavailable, or skbuff was bad
2986 * 1 - caller should requeue the sk_buff for later transmission
2987 *
2988 * Assumptions:
2989 * First and foremost, we assume the incoming skb pointer
2990 * is NOT NULL and is pointing to a valid sk_buff structure.
2991 *
2992 * The outgoing packet is complete, starting with the
2993 * frame control byte including the last byte of data,
2994 * but NOT including the 4 byte CRC. We'll let the
2995 * adapter hardware generate and append the CRC.
2996 *
2997 * The entire packet is stored in one physically
2998 * contiguous buffer which is not cached and whose
2999 * 32-bit physical address can be determined.
3000 *
3001 * It's vital that this routine is NOT reentered for the
3002 * same board and that the OS is not in another section of
3003 * code (eg. dfx_int_common) for the same board on a
3004 * different thread.
3005 *
3006 * Side Effects:
3007 * None
3008 */
3009
3010static int dfx_xmt_queue_pkt(
3011 struct sk_buff *skb,
3012 struct net_device *dev
3013 )
3014
3015 {
3016 DFX_board_t *bp = dev->priv;
3017 u8 prod; /* local transmit producer index */
3018 PI_XMT_DESCR *p_xmt_descr; /* ptr to transmit descriptor block entry */
3019 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3020 unsigned long flags;
3021
3022 netif_stop_queue(dev);
6aa20a22 3023
1da177e4
LT
3024 /*
3025 * Verify that incoming transmit request is OK
3026 *
3027 * Note: The packet size check is consistent with other
3028 * Linux device drivers, although the correct packet
3029 * size should be verified before calling the
3030 * transmit routine.
3031 */
3032
3033 if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3034 {
6aa20a22 3035 printk("%s: Invalid packet length - %u bytes\n",
1da177e4
LT
3036 dev->name, skb->len);
3037 bp->xmt_length_errors++; /* bump error counter */
3038 netif_wake_queue(dev);
3039 dev_kfree_skb(skb);
3040 return(0); /* return "success" */
3041 }
3042 /*
3043 * See if adapter link is available, if not, free buffer
3044 *
3045 * Note: If the link isn't available, free buffer and return 0
3046 * rather than tell the upper layer to requeue the packet.
3047 * The methodology here is that by the time the link
3048 * becomes available, the packet to be sent will be
3049 * fairly stale. By simply dropping the packet, the
3050 * higher layer protocols will eventually time out
3051 * waiting for response packets which it won't receive.
3052 */
3053
3054 if (bp->link_available == PI_K_FALSE)
3055 {
3056 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL) /* is link really available? */
3057 bp->link_available = PI_K_TRUE; /* if so, set flag and continue */
3058 else
3059 {
3060 bp->xmt_discards++; /* bump error counter */
3061 dev_kfree_skb(skb); /* free sk_buff now */
3062 netif_wake_queue(dev);
3063 return(0); /* return "success" */
3064 }
3065 }
3066
3067 spin_lock_irqsave(&bp->lock, flags);
6aa20a22 3068
1da177e4
LT
3069 /* Get the current producer and the next free xmt data descriptor */
3070
3071 prod = bp->rcv_xmt_reg.index.xmt_prod;
3072 p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3073
3074 /*
3075 * Get pointer to auxiliary queue entry to contain information
3076 * for this packet.
3077 *
3078 * Note: The current xmt producer index will become the
3079 * current xmt completion index when we complete this
3080 * packet later on. So, we'll get the pointer to the
3081 * next auxiliary queue entry now before we bump the
3082 * producer index.
3083 */
3084
3085 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]); /* also bump producer index */
3086
3087 /* Write the three PRH bytes immediately before the FC byte */
3088
3089 skb_push(skb,3);
3090 skb->data[0] = DFX_PRH0_BYTE; /* these byte values are defined */
3091 skb->data[1] = DFX_PRH1_BYTE; /* in the Motorola FDDI MAC chip */
3092 skb->data[2] = DFX_PRH2_BYTE; /* specification */
3093
3094 /*
3095 * Write the descriptor with buffer info and bump producer
3096 *
3097 * Note: Since we need to start DMA from the packet request
3098 * header, we'll add 3 bytes to the DMA buffer length,
3099 * and we'll determine the physical address of the
3100 * buffer from the PRH, not skb->data.
3101 *
3102 * Assumptions:
3103 * 1. Packet starts with the frame control (FC) byte
3104 * at skb->data.
3105 * 2. The 4-byte CRC is not appended to the buffer or
3106 * included in the length.
3107 * 3. Packet length (skb->len) is from FC to end of
3108 * data, inclusive.
3109 * 4. The packet length does not exceed the maximum
3110 * FDDI LLC frame length of 4491 bytes.
3111 * 5. The entire packet is contained in a physically
3112 * contiguous, non-cached, locked memory space
3113 * comprised of a single buffer pointed to by
3114 * skb->data.
3115 * 6. The physical address of the start of packet
3116 * can be determined from the virtual address
3117 * by using pci_map_single() and is only 32-bits
3118 * wide.
3119 */
3120
3121 p_xmt_descr->long_0 = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
3122 p_xmt_descr->long_1 = (u32)pci_map_single(bp->pci_dev, skb->data,
3123 skb->len, PCI_DMA_TODEVICE);
3124
3125 /*
3126 * Verify that descriptor is actually available
3127 *
3128 * Note: If descriptor isn't available, return 1 which tells
3129 * the upper layer to requeue the packet for later
3130 * transmission.
3131 *
3132 * We need to ensure that the producer never reaches the
3133 * completion, except to indicate that the queue is empty.
3134 */
3135
3136 if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3137 {
3138 skb_pull(skb,3);
3139 spin_unlock_irqrestore(&bp->lock, flags);
3140 return(1); /* requeue packet for later */
3141 }
3142
3143 /*
3144 * Save info for this packet for xmt done indication routine
3145 *
3146 * Normally, we'd save the producer index in the p_xmt_drv_descr
3147 * structure so that we'd have it handy when we complete this
3148 * packet later (in dfx_xmt_done). However, since the current
3149 * transmit architecture guarantees a single fragment for the
3150 * entire packet, we can simply bump the completion index by
3151 * one (1) for each completed packet.
3152 *
3153 * Note: If this assumption changes and we're presented with
3154 * an inconsistent number of transmit fragments for packet
3155 * data, we'll need to modify this code to save the current
3156 * transmit producer index.
3157 */
3158
3159 p_xmt_drv_descr->p_skb = skb;
3160
3161 /* Update Type 2 register */
3162
3163 bp->rcv_xmt_reg.index.xmt_prod = prod;
3164 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3165 spin_unlock_irqrestore(&bp->lock, flags);
3166 netif_wake_queue(dev);
3167 return(0); /* packet queued to adapter */
3168 }
3169
6aa20a22 3170
1da177e4
LT
3171/*
3172 * ================
3173 * = dfx_xmt_done =
3174 * ================
6aa20a22 3175 *
1da177e4
LT
3176 * Overview:
3177 * Processes all frames that have been transmitted.
6aa20a22 3178 *
1da177e4
LT
3179 * Returns:
3180 * None
6aa20a22 3181 *
1da177e4
LT
3182 * Arguments:
3183 * bp - pointer to board information
3184 *
3185 * Functional Description:
3186 * For all consumed transmit descriptors that have not
3187 * yet been completed, we'll free the skb we were holding
3188 * onto using dev_kfree_skb and bump the appropriate
3189 * counters.
3190 *
3191 * Return Codes:
3192 * None
3193 *
3194 * Assumptions:
3195 * The Type 2 register is not updated in this routine. It is
3196 * assumed that it will be updated in the ISR when dfx_xmt_done
3197 * returns.
3198 *
3199 * Side Effects:
3200 * None
3201 */
3202
3203static int dfx_xmt_done(DFX_board_t *bp)
3204 {
3205 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3206 PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */
3207 u8 comp; /* local transmit completion index */
3208 int freed = 0; /* buffers freed */
3209
3210 /* Service all consumed transmit frames */
3211
3212 p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3213 while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3214 {
3215 /* Get pointer to the transmit driver descriptor block information */
3216
3217 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3218
3219 /* Increment transmit counters */
3220
3221 bp->xmt_total_frames++;
3222 bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3223
3224 /* Return skb to operating system */
3225 comp = bp->rcv_xmt_reg.index.xmt_comp;
3226 pci_unmap_single(bp->pci_dev,
3227 bp->descr_block_virt->xmt_data[comp].long_1,
3228 p_xmt_drv_descr->p_skb->len,
3229 PCI_DMA_TODEVICE);
3230 dev_kfree_skb_irq(p_xmt_drv_descr->p_skb);
3231
3232 /*
3233 * Move to start of next packet by updating completion index
3234 *
3235 * Here we assume that a transmit packet request is always
3236 * serviced by posting one fragment. We can therefore
3237 * simplify the completion code by incrementing the
3238 * completion index by one. This code will need to be
3239 * modified if this assumption changes. See comments
3240 * in dfx_xmt_queue_pkt for more details.
3241 */
3242
3243 bp->rcv_xmt_reg.index.xmt_comp += 1;
3244 freed++;
3245 }
3246 return freed;
3247 }
3248
6aa20a22 3249
1da177e4
LT
3250/*
3251 * =================
3252 * = dfx_rcv_flush =
3253 * =================
6aa20a22 3254 *
1da177e4
LT
3255 * Overview:
3256 * Remove all skb's in the receive ring.
6aa20a22 3257 *
1da177e4
LT
3258 * Returns:
3259 * None
6aa20a22 3260 *
1da177e4
LT
3261 * Arguments:
3262 * bp - pointer to board information
3263 *
3264 * Functional Description:
3265 * Free's all the dynamically allocated skb's that are
3266 * currently attached to the device receive ring. This
3267 * function is typically only used when the device is
3268 * initialized or reinitialized.
3269 *
3270 * Return Codes:
3271 * None
3272 *
3273 * Side Effects:
3274 * None
3275 */
3276#ifdef DYNAMIC_BUFFERS
3277static void dfx_rcv_flush( DFX_board_t *bp )
3278 {
3279 int i, j;
3280
3281 for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3282 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3283 {
3284 struct sk_buff *skb;
3285 skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
3286 if (skb)
3287 dev_kfree_skb(skb);
3288 bp->p_rcv_buff_va[i+j] = NULL;
3289 }
3290
3291 }
3292#else
3293static inline void dfx_rcv_flush( DFX_board_t *bp )
3294{
3295}
3296#endif /* DYNAMIC_BUFFERS */
3297
3298/*
3299 * =================
3300 * = dfx_xmt_flush =
3301 * =================
6aa20a22 3302 *
1da177e4
LT
3303 * Overview:
3304 * Processes all frames whether they've been transmitted
3305 * or not.
6aa20a22 3306 *
1da177e4
LT
3307 * Returns:
3308 * None
6aa20a22 3309 *
1da177e4
LT
3310 * Arguments:
3311 * bp - pointer to board information
3312 *
3313 * Functional Description:
3314 * For all produced transmit descriptors that have not
3315 * yet been completed, we'll free the skb we were holding
3316 * onto using dev_kfree_skb and bump the appropriate
3317 * counters. Of course, it's possible that some of
3318 * these transmit requests actually did go out, but we
3319 * won't make that distinction here. Finally, we'll
3320 * update the consumer index to match the producer.
3321 *
3322 * Return Codes:
3323 * None
3324 *
3325 * Assumptions:
3326 * This routine does NOT update the Type 2 register. It
3327 * is assumed that this routine is being called during a
3328 * transmit flush interrupt, or a shutdown or close routine.
3329 *
3330 * Side Effects:
3331 * None
3332 */
3333
3334static void dfx_xmt_flush( DFX_board_t *bp )
3335 {
3336 u32 prod_cons; /* rcv/xmt consumer block longword */
3337 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3338 u8 comp; /* local transmit completion index */
3339
3340 /* Flush all outstanding transmit frames */
3341
3342 while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3343 {
3344 /* Get pointer to the transmit driver descriptor block information */
3345
3346 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3347
3348 /* Return skb to operating system */
3349 comp = bp->rcv_xmt_reg.index.xmt_comp;
3350 pci_unmap_single(bp->pci_dev,
3351 bp->descr_block_virt->xmt_data[comp].long_1,
3352 p_xmt_drv_descr->p_skb->len,
3353 PCI_DMA_TODEVICE);
3354 dev_kfree_skb(p_xmt_drv_descr->p_skb);
3355
3356 /* Increment transmit error counter */
3357
3358 bp->xmt_discards++;
3359
3360 /*
3361 * Move to start of next packet by updating completion index
3362 *
3363 * Here we assume that a transmit packet request is always
3364 * serviced by posting one fragment. We can therefore
3365 * simplify the completion code by incrementing the
3366 * completion index by one. This code will need to be
3367 * modified if this assumption changes. See comments
3368 * in dfx_xmt_queue_pkt for more details.
3369 */
3370
3371 bp->rcv_xmt_reg.index.xmt_comp += 1;
3372 }
3373
3374 /* Update the transmit consumer index in the consumer block */
3375
3376 prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3377 prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3378 bp->cons_block_virt->xmt_rcv_data = prod_cons;
3379 }
3380
3381static void __devexit dfx_remove_one_pci_or_eisa(struct pci_dev *pdev, struct net_device *dev)
3382{
3383 DFX_board_t *bp = dev->priv;
3384 int alloc_size; /* total buffer size used */
3385
3386 unregister_netdev(dev);
3387 release_region(dev->base_addr, pdev ? PFI_K_CSR_IO_LEN : PI_ESIC_K_CSR_IO_LEN );
3388
3389 alloc_size = sizeof(PI_DESCR_BLOCK) +
3390 PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
3391#ifndef DYNAMIC_BUFFERS
3392 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
3393#endif
3394 sizeof(PI_CONSUMER_BLOCK) +
3395 (PI_ALIGN_K_DESC_BLK - 1);
3396 if (bp->kmalloced)
3397 pci_free_consistent(pdev, alloc_size, bp->kmalloced,
3398 bp->kmalloced_dma);
3399 free_netdev(dev);
3400}
3401
3402static void __devexit dfx_remove_one (struct pci_dev *pdev)
3403{
3404 struct net_device *dev = pci_get_drvdata(pdev);
3405
3406 dfx_remove_one_pci_or_eisa(pdev, dev);
3407 pci_set_drvdata(pdev, NULL);
3408}
3409
3410static struct pci_device_id dfx_pci_tbl[] = {
3411 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI, PCI_ANY_ID, PCI_ANY_ID, },
3412 { 0, }
3413};
3414MODULE_DEVICE_TABLE(pci, dfx_pci_tbl);
3415
3416static struct pci_driver dfx_driver = {
3417 .name = "defxx",
3418 .probe = dfx_init_one,
3419 .remove = __devexit_p(dfx_remove_one),
3420 .id_table = dfx_pci_tbl,
3421};
3422
3423static int dfx_have_pci;
3424static int dfx_have_eisa;
3425
3426
3427static void __exit dfx_eisa_cleanup(void)
3428{
3429 struct net_device *dev = root_dfx_eisa_dev;
3430
3431 while (dev)
3432 {
3433 struct net_device *tmp;
3434 DFX_board_t *bp;
3435
3436 bp = (DFX_board_t*)dev->priv;
3437 tmp = bp->next;
3438 dfx_remove_one_pci_or_eisa(NULL, dev);
3439 dev = tmp;
3440 }
3441}
3442
3443static int __init dfx_init(void)
3444{
3445 int rc_pci, rc_eisa;
3446
29917620 3447 rc_pci = pci_register_driver(&dfx_driver);
1da177e4 3448 if (rc_pci >= 0) dfx_have_pci = 1;
6aa20a22 3449
1da177e4
LT
3450 rc_eisa = dfx_eisa_init();
3451 if (rc_eisa >= 0) dfx_have_eisa = 1;
3452
6aa20a22 3453 return ((rc_eisa < 0) ? 0 : rc_eisa) + ((rc_pci < 0) ? 0 : rc_pci);
1da177e4
LT
3454}
3455
3456static void __exit dfx_cleanup(void)
3457{
3458 if (dfx_have_pci)
3459 pci_unregister_driver(&dfx_driver);
3460 if (dfx_have_eisa)
3461 dfx_eisa_cleanup();
6aa20a22
JG
3462
3463}
1da177e4
LT
3464
3465module_init(dfx_init);
3466module_exit(dfx_cleanup);
3467MODULE_AUTHOR("Lawrence V. Stefani");
3468MODULE_DESCRIPTION("DEC FDDIcontroller EISA/PCI (DEFEA/DEFPA) driver "
3469 DRV_VERSION " " DRV_RELDATE);
3470MODULE_LICENSE("GPL");
3471
6aa20a22 3472
1da177e4
LT
3473/*
3474 * Local variables:
3475 * kernel-compile-command: "gcc -D__KERNEL__ -I/root/linux/include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -c defxx.c"
3476 * End:
3477 */
This page took 0.296485 seconds and 5 git commands to generate.