[PATCH] Make PC300 WAN driver compile again
[deliverable/linux.git] / drivers / net / e100.c
CommitLineData
1da177e4
LT
1/*******************************************************************************
2
05479938 3
4e1dc97d 4 Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
05479938
JB
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
1da177e4 9 any later version.
05479938
JB
10
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
1da177e4 14 more details.
05479938 15
1da177e4 16 You should have received a copy of the GNU General Public License along with
05479938 17 this program; if not, write to the Free Software Foundation, Inc., 59
1da177e4 18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
05479938 19
1da177e4
LT
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
05479938 22
1da177e4
LT
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
30 * e100.c: Intel(R) PRO/100 ethernet driver
31 *
32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
33 * original e100 driver, but better described as a munging of
34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
35 *
36 * References:
37 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
38 * Open Source Software Developers Manual,
39 * http://sourceforge.net/projects/e1000
40 *
41 *
42 * Theory of Operation
43 *
44 * I. General
45 *
46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47 * controller family, which includes the 82557, 82558, 82559, 82550,
48 * 82551, and 82562 devices. 82558 and greater controllers
49 * integrate the Intel 82555 PHY. The controllers are used in
50 * server and client network interface cards, as well as in
51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52 * configurations. 8255x supports a 32-bit linear addressing
53 * mode and operates at 33Mhz PCI clock rate.
54 *
55 * II. Driver Operation
56 *
57 * Memory-mapped mode is used exclusively to access the device's
58 * shared-memory structure, the Control/Status Registers (CSR). All
59 * setup, configuration, and control of the device, including queuing
60 * of Tx, Rx, and configuration commands is through the CSR.
61 * cmd_lock serializes accesses to the CSR command register. cb_lock
62 * protects the shared Command Block List (CBL).
63 *
64 * 8255x is highly MII-compliant and all access to the PHY go
65 * through the Management Data Interface (MDI). Consequently, the
66 * driver leverages the mii.c library shared with other MII-compliant
67 * devices.
68 *
69 * Big- and Little-Endian byte order as well as 32- and 64-bit
70 * archs are supported. Weak-ordered memory and non-cache-coherent
71 * archs are supported.
72 *
73 * III. Transmit
74 *
75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
76 * together in a fixed-size ring (CBL) thus forming the flexible mode
77 * memory structure. A TCB marked with the suspend-bit indicates
78 * the end of the ring. The last TCB processed suspends the
79 * controller, and the controller can be restarted by issue a CU
80 * resume command to continue from the suspend point, or a CU start
81 * command to start at a given position in the ring.
82 *
83 * Non-Tx commands (config, multicast setup, etc) are linked
84 * into the CBL ring along with Tx commands. The common structure
85 * used for both Tx and non-Tx commands is the Command Block (CB).
86 *
87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
88 * is the next CB to check for completion; cb_to_send is the first
89 * CB to start on in case of a previous failure to resume. CB clean
90 * up happens in interrupt context in response to a CU interrupt.
91 * cbs_avail keeps track of number of free CB resources available.
92 *
93 * Hardware padding of short packets to minimum packet size is
94 * enabled. 82557 pads with 7Eh, while the later controllers pad
95 * with 00h.
96 *
97 * IV. Recieve
98 *
99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
100 * Descriptors (RFD) + data buffer, thus forming the simplified mode
101 * memory structure. Rx skbs are allocated to contain both the RFD
102 * and the data buffer, but the RFD is pulled off before the skb is
103 * indicated. The data buffer is aligned such that encapsulated
104 * protocol headers are u32-aligned. Since the RFD is part of the
105 * mapped shared memory, and completion status is contained within
106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
107 * view from software and hardware.
108 *
109 * Under typical operation, the receive unit (RU) is start once,
110 * and the controller happily fills RFDs as frames arrive. If
111 * replacement RFDs cannot be allocated, or the RU goes non-active,
112 * the RU must be restarted. Frame arrival generates an interrupt,
113 * and Rx indication and re-allocation happen in the same context,
114 * therefore no locking is required. A software-generated interrupt
115 * is generated from the watchdog to recover from a failed allocation
116 * senario where all Rx resources have been indicated and none re-
117 * placed.
118 *
119 * V. Miscellaneous
120 *
121 * VLAN offloading of tagging, stripping and filtering is not
122 * supported, but driver will accommodate the extra 4-byte VLAN tag
123 * for processing by upper layers. Tx/Rx Checksum offloading is not
124 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
125 * not supported (hardware limitation).
126 *
127 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
128 *
129 * Thanks to JC (jchapman@katalix.com) for helping with
130 * testing/troubleshooting the development driver.
131 *
132 * TODO:
133 * o several entry points race with dev->close
134 * o check for tx-no-resources/stop Q races with tx clean/wake Q
ac7c6669
OM
135 *
136 * FIXES:
137 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
138 * - Stratus87247: protect MDI control register manipulations
1da177e4
LT
139 */
140
1da177e4
LT
141#include <linux/module.h>
142#include <linux/moduleparam.h>
143#include <linux/kernel.h>
144#include <linux/types.h>
145#include <linux/slab.h>
146#include <linux/delay.h>
147#include <linux/init.h>
148#include <linux/pci.h>
1e7f0bd8 149#include <linux/dma-mapping.h>
1da177e4
LT
150#include <linux/netdevice.h>
151#include <linux/etherdevice.h>
152#include <linux/mii.h>
153#include <linux/if_vlan.h>
154#include <linux/skbuff.h>
155#include <linux/ethtool.h>
156#include <linux/string.h>
157#include <asm/unaligned.h>
158
159
160#define DRV_NAME "e100"
4e1dc97d 161#define DRV_EXT "-NAPI"
a535aa19 162#define DRV_VERSION "3.5.16-k2"DRV_EXT
1da177e4 163#define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
4e1dc97d 164#define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation"
1da177e4
LT
165#define PFX DRV_NAME ": "
166
167#define E100_WATCHDOG_PERIOD (2 * HZ)
168#define E100_NAPI_WEIGHT 16
169
170MODULE_DESCRIPTION(DRV_DESCRIPTION);
171MODULE_AUTHOR(DRV_COPYRIGHT);
172MODULE_LICENSE("GPL");
173MODULE_VERSION(DRV_VERSION);
174
175static int debug = 3;
8fb6f732 176static int eeprom_bad_csum_allow = 0;
1da177e4 177module_param(debug, int, 0);
8fb6f732 178module_param(eeprom_bad_csum_allow, int, 0);
1da177e4 179MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
8fb6f732 180MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
1da177e4
LT
181#define DPRINTK(nlevel, klevel, fmt, args...) \
182 (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \
183 printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \
184 __FUNCTION__ , ## args))
185
186#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
187 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
188 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
189static struct pci_device_id e100_id_table[] = {
190 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
191 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
192 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
193 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
194 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
195 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
196 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
197 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
198 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
199 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
200 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
201 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
202 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
203 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
204 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
205 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
206 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
207 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
208 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
209 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
210 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
211 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
212 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
213 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
214 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
215 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
216 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
217 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
218 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
219 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
042e2fb7
MC
220 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
221 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
222 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
223 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
224 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
1da177e4
LT
225 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
226 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
227 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
228 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
229 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
042e2fb7 230 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
1da177e4
LT
231 { 0, }
232};
233MODULE_DEVICE_TABLE(pci, e100_id_table);
234
235enum mac {
236 mac_82557_D100_A = 0,
237 mac_82557_D100_B = 1,
238 mac_82557_D100_C = 2,
239 mac_82558_D101_A4 = 4,
240 mac_82558_D101_B0 = 5,
241 mac_82559_D101M = 8,
242 mac_82559_D101S = 9,
243 mac_82550_D102 = 12,
244 mac_82550_D102_C = 13,
245 mac_82551_E = 14,
246 mac_82551_F = 15,
247 mac_82551_10 = 16,
248 mac_unknown = 0xFF,
249};
250
251enum phy {
252 phy_100a = 0x000003E0,
253 phy_100c = 0x035002A8,
254 phy_82555_tx = 0x015002A8,
255 phy_nsc_tx = 0x5C002000,
256 phy_82562_et = 0x033002A8,
257 phy_82562_em = 0x032002A8,
258 phy_82562_ek = 0x031002A8,
259 phy_82562_eh = 0x017002A8,
260 phy_unknown = 0xFFFFFFFF,
261};
262
263/* CSR (Control/Status Registers) */
264struct csr {
265 struct {
266 u8 status;
267 u8 stat_ack;
268 u8 cmd_lo;
269 u8 cmd_hi;
270 u32 gen_ptr;
271 } scb;
272 u32 port;
273 u16 flash_ctrl;
274 u8 eeprom_ctrl_lo;
275 u8 eeprom_ctrl_hi;
276 u32 mdi_ctrl;
277 u32 rx_dma_count;
278};
279
280enum scb_status {
281 rus_ready = 0x10,
282 rus_mask = 0x3C,
283};
284
1f53367d
MC
285enum ru_state {
286 RU_SUSPENDED = 0,
287 RU_RUNNING = 1,
288 RU_UNINITIALIZED = -1,
289};
290
1da177e4
LT
291enum scb_stat_ack {
292 stat_ack_not_ours = 0x00,
293 stat_ack_sw_gen = 0x04,
294 stat_ack_rnr = 0x10,
295 stat_ack_cu_idle = 0x20,
296 stat_ack_frame_rx = 0x40,
297 stat_ack_cu_cmd_done = 0x80,
298 stat_ack_not_present = 0xFF,
299 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
300 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
301};
302
303enum scb_cmd_hi {
304 irq_mask_none = 0x00,
305 irq_mask_all = 0x01,
306 irq_sw_gen = 0x02,
307};
308
309enum scb_cmd_lo {
310 cuc_nop = 0x00,
311 ruc_start = 0x01,
312 ruc_load_base = 0x06,
313 cuc_start = 0x10,
314 cuc_resume = 0x20,
315 cuc_dump_addr = 0x40,
316 cuc_dump_stats = 0x50,
317 cuc_load_base = 0x60,
318 cuc_dump_reset = 0x70,
319};
320
321enum cuc_dump {
322 cuc_dump_complete = 0x0000A005,
323 cuc_dump_reset_complete = 0x0000A007,
324};
05479938 325
1da177e4
LT
326enum port {
327 software_reset = 0x0000,
328 selftest = 0x0001,
329 selective_reset = 0x0002,
330};
331
332enum eeprom_ctrl_lo {
333 eesk = 0x01,
334 eecs = 0x02,
335 eedi = 0x04,
336 eedo = 0x08,
337};
338
339enum mdi_ctrl {
340 mdi_write = 0x04000000,
341 mdi_read = 0x08000000,
342 mdi_ready = 0x10000000,
343};
344
345enum eeprom_op {
346 op_write = 0x05,
347 op_read = 0x06,
348 op_ewds = 0x10,
349 op_ewen = 0x13,
350};
351
352enum eeprom_offsets {
353 eeprom_cnfg_mdix = 0x03,
354 eeprom_id = 0x0A,
355 eeprom_config_asf = 0x0D,
356 eeprom_smbus_addr = 0x90,
357};
358
359enum eeprom_cnfg_mdix {
360 eeprom_mdix_enabled = 0x0080,
361};
362
363enum eeprom_id {
364 eeprom_id_wol = 0x0020,
365};
366
367enum eeprom_config_asf {
368 eeprom_asf = 0x8000,
369 eeprom_gcl = 0x4000,
370};
371
372enum cb_status {
373 cb_complete = 0x8000,
374 cb_ok = 0x2000,
375};
376
377enum cb_command {
378 cb_nop = 0x0000,
379 cb_iaaddr = 0x0001,
380 cb_config = 0x0002,
381 cb_multi = 0x0003,
382 cb_tx = 0x0004,
383 cb_ucode = 0x0005,
384 cb_dump = 0x0006,
385 cb_tx_sf = 0x0008,
386 cb_cid = 0x1f00,
387 cb_i = 0x2000,
388 cb_s = 0x4000,
389 cb_el = 0x8000,
390};
391
392struct rfd {
393 u16 status;
394 u16 command;
395 u32 link;
396 u32 rbd;
397 u16 actual_size;
398 u16 size;
399};
400
401struct rx {
402 struct rx *next, *prev;
403 struct sk_buff *skb;
404 dma_addr_t dma_addr;
405};
406
407#if defined(__BIG_ENDIAN_BITFIELD)
408#define X(a,b) b,a
409#else
410#define X(a,b) a,b
411#endif
412struct config {
413/*0*/ u8 X(byte_count:6, pad0:2);
414/*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
415/*2*/ u8 adaptive_ifs;
416/*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
417 term_write_cache_line:1), pad3:4);
418/*4*/ u8 X(rx_dma_max_count:7, pad4:1);
419/*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
420/*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
421 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
422 rx_discard_overruns:1), rx_save_bad_frames:1);
423/*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
424 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
425 tx_dynamic_tbd:1);
426/*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
427/*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
428 link_status_wake:1), arp_wake:1), mcmatch_wake:1);
429/*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
430 loopback:2);
431/*11*/ u8 X(linear_priority:3, pad11:5);
432/*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
433/*13*/ u8 ip_addr_lo;
434/*14*/ u8 ip_addr_hi;
435/*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
436 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
437 pad15_2:1), crs_or_cdt:1);
438/*16*/ u8 fc_delay_lo;
439/*17*/ u8 fc_delay_hi;
440/*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
441 rx_long_ok:1), fc_priority_threshold:3), pad18:1);
442/*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
443 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
444 full_duplex_force:1), full_duplex_pin:1);
445/*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
446/*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
447/*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
448 u8 pad_d102[9];
449};
450
451#define E100_MAX_MULTICAST_ADDRS 64
452struct multi {
453 u16 count;
454 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
455};
456
457/* Important: keep total struct u32-aligned */
458#define UCODE_SIZE 134
459struct cb {
460 u16 status;
461 u16 command;
462 u32 link;
463 union {
464 u8 iaaddr[ETH_ALEN];
465 u32 ucode[UCODE_SIZE];
466 struct config config;
467 struct multi multi;
468 struct {
469 u32 tbd_array;
470 u16 tcb_byte_count;
471 u8 threshold;
472 u8 tbd_count;
473 struct {
474 u32 buf_addr;
475 u16 size;
476 u16 eol;
477 } tbd;
478 } tcb;
479 u32 dump_buffer_addr;
480 } u;
481 struct cb *next, *prev;
482 dma_addr_t dma_addr;
483 struct sk_buff *skb;
484};
485
486enum loopback {
487 lb_none = 0, lb_mac = 1, lb_phy = 3,
488};
489
490struct stats {
491 u32 tx_good_frames, tx_max_collisions, tx_late_collisions,
492 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
493 tx_multiple_collisions, tx_total_collisions;
494 u32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
495 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
496 rx_short_frame_errors;
497 u32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
498 u16 xmt_tco_frames, rcv_tco_frames;
499 u32 complete;
500};
501
502struct mem {
503 struct {
504 u32 signature;
505 u32 result;
506 } selftest;
507 struct stats stats;
508 u8 dump_buf[596];
509};
510
511struct param_range {
512 u32 min;
513 u32 max;
514 u32 count;
515};
516
517struct params {
518 struct param_range rfds;
519 struct param_range cbs;
520};
521
522struct nic {
523 /* Begin: frequently used values: keep adjacent for cache effect */
524 u32 msg_enable ____cacheline_aligned;
525 struct net_device *netdev;
526 struct pci_dev *pdev;
527
528 struct rx *rxs ____cacheline_aligned;
529 struct rx *rx_to_use;
530 struct rx *rx_to_clean;
531 struct rfd blank_rfd;
1f53367d 532 enum ru_state ru_running;
1da177e4
LT
533
534 spinlock_t cb_lock ____cacheline_aligned;
535 spinlock_t cmd_lock;
536 struct csr __iomem *csr;
537 enum scb_cmd_lo cuc_cmd;
538 unsigned int cbs_avail;
539 struct cb *cbs;
540 struct cb *cb_to_use;
541 struct cb *cb_to_send;
542 struct cb *cb_to_clean;
543 u16 tx_command;
544 /* End: frequently used values: keep adjacent for cache effect */
545
546 enum {
547 ich = (1 << 0),
548 promiscuous = (1 << 1),
549 multicast_all = (1 << 2),
550 wol_magic = (1 << 3),
551 ich_10h_workaround = (1 << 4),
552 } flags ____cacheline_aligned;
553
554 enum mac mac;
555 enum phy phy;
556 struct params params;
557 struct net_device_stats net_stats;
558 struct timer_list watchdog;
559 struct timer_list blink_timer;
560 struct mii_if_info mii;
2acdb1e0 561 struct work_struct tx_timeout_task;
1da177e4
LT
562 enum loopback loopback;
563
564 struct mem *mem;
565 dma_addr_t dma_addr;
566
567 dma_addr_t cbs_dma_addr;
568 u8 adaptive_ifs;
569 u8 tx_threshold;
570 u32 tx_frames;
571 u32 tx_collisions;
572 u32 tx_deferred;
573 u32 tx_single_collisions;
574 u32 tx_multiple_collisions;
575 u32 tx_fc_pause;
576 u32 tx_tco_frames;
577
578 u32 rx_fc_pause;
579 u32 rx_fc_unsupported;
580 u32 rx_tco_frames;
581 u32 rx_over_length_errors;
582
583 u8 rev_id;
584 u16 leds;
585 u16 eeprom_wc;
586 u16 eeprom[256];
ac7c6669 587 spinlock_t mdio_lock;
1da177e4
LT
588};
589
590static inline void e100_write_flush(struct nic *nic)
591{
592 /* Flush previous PCI writes through intermediate bridges
593 * by doing a benign read */
594 (void)readb(&nic->csr->scb.status);
595}
596
858119e1 597static void e100_enable_irq(struct nic *nic)
1da177e4
LT
598{
599 unsigned long flags;
600
601 spin_lock_irqsave(&nic->cmd_lock, flags);
602 writeb(irq_mask_none, &nic->csr->scb.cmd_hi);
1da177e4 603 e100_write_flush(nic);
ad8c48ad 604 spin_unlock_irqrestore(&nic->cmd_lock, flags);
1da177e4
LT
605}
606
858119e1 607static void e100_disable_irq(struct nic *nic)
1da177e4
LT
608{
609 unsigned long flags;
610
611 spin_lock_irqsave(&nic->cmd_lock, flags);
612 writeb(irq_mask_all, &nic->csr->scb.cmd_hi);
1da177e4 613 e100_write_flush(nic);
ad8c48ad 614 spin_unlock_irqrestore(&nic->cmd_lock, flags);
1da177e4
LT
615}
616
617static void e100_hw_reset(struct nic *nic)
618{
619 /* Put CU and RU into idle with a selective reset to get
620 * device off of PCI bus */
621 writel(selective_reset, &nic->csr->port);
622 e100_write_flush(nic); udelay(20);
623
624 /* Now fully reset device */
625 writel(software_reset, &nic->csr->port);
626 e100_write_flush(nic); udelay(20);
627
628 /* Mask off our interrupt line - it's unmasked after reset */
629 e100_disable_irq(nic);
630}
631
632static int e100_self_test(struct nic *nic)
633{
634 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
635
636 /* Passing the self-test is a pretty good indication
637 * that the device can DMA to/from host memory */
638
639 nic->mem->selftest.signature = 0;
640 nic->mem->selftest.result = 0xFFFFFFFF;
641
642 writel(selftest | dma_addr, &nic->csr->port);
643 e100_write_flush(nic);
644 /* Wait 10 msec for self-test to complete */
645 msleep(10);
646
647 /* Interrupts are enabled after self-test */
648 e100_disable_irq(nic);
649
650 /* Check results of self-test */
651 if(nic->mem->selftest.result != 0) {
652 DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n",
653 nic->mem->selftest.result);
654 return -ETIMEDOUT;
655 }
656 if(nic->mem->selftest.signature == 0) {
657 DPRINTK(HW, ERR, "Self-test failed: timed out\n");
658 return -ETIMEDOUT;
659 }
660
661 return 0;
662}
663
664static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, u16 data)
665{
666 u32 cmd_addr_data[3];
667 u8 ctrl;
668 int i, j;
669
670 /* Three cmds: write/erase enable, write data, write/erase disable */
671 cmd_addr_data[0] = op_ewen << (addr_len - 2);
672 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
673 cpu_to_le16(data);
674 cmd_addr_data[2] = op_ewds << (addr_len - 2);
675
676 /* Bit-bang cmds to write word to eeprom */
677 for(j = 0; j < 3; j++) {
678
679 /* Chip select */
680 writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
681 e100_write_flush(nic); udelay(4);
682
683 for(i = 31; i >= 0; i--) {
684 ctrl = (cmd_addr_data[j] & (1 << i)) ?
685 eecs | eedi : eecs;
686 writeb(ctrl, &nic->csr->eeprom_ctrl_lo);
687 e100_write_flush(nic); udelay(4);
688
689 writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
690 e100_write_flush(nic); udelay(4);
691 }
692 /* Wait 10 msec for cmd to complete */
693 msleep(10);
694
695 /* Chip deselect */
696 writeb(0, &nic->csr->eeprom_ctrl_lo);
697 e100_write_flush(nic); udelay(4);
698 }
699};
700
701/* General technique stolen from the eepro100 driver - very clever */
702static u16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
703{
704 u32 cmd_addr_data;
705 u16 data = 0;
706 u8 ctrl;
707 int i;
708
709 cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
710
711 /* Chip select */
712 writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
713 e100_write_flush(nic); udelay(4);
714
715 /* Bit-bang to read word from eeprom */
716 for(i = 31; i >= 0; i--) {
717 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
718 writeb(ctrl, &nic->csr->eeprom_ctrl_lo);
719 e100_write_flush(nic); udelay(4);
05479938 720
1da177e4
LT
721 writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
722 e100_write_flush(nic); udelay(4);
05479938 723
1da177e4
LT
724 /* Eeprom drives a dummy zero to EEDO after receiving
725 * complete address. Use this to adjust addr_len. */
726 ctrl = readb(&nic->csr->eeprom_ctrl_lo);
727 if(!(ctrl & eedo) && i > 16) {
728 *addr_len -= (i - 16);
729 i = 17;
730 }
05479938 731
1da177e4
LT
732 data = (data << 1) | (ctrl & eedo ? 1 : 0);
733 }
734
735 /* Chip deselect */
736 writeb(0, &nic->csr->eeprom_ctrl_lo);
737 e100_write_flush(nic); udelay(4);
738
739 return le16_to_cpu(data);
740};
741
742/* Load entire EEPROM image into driver cache and validate checksum */
743static int e100_eeprom_load(struct nic *nic)
744{
745 u16 addr, addr_len = 8, checksum = 0;
746
747 /* Try reading with an 8-bit addr len to discover actual addr len */
748 e100_eeprom_read(nic, &addr_len, 0);
749 nic->eeprom_wc = 1 << addr_len;
750
751 for(addr = 0; addr < nic->eeprom_wc; addr++) {
752 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
753 if(addr < nic->eeprom_wc - 1)
754 checksum += cpu_to_le16(nic->eeprom[addr]);
755 }
756
757 /* The checksum, stored in the last word, is calculated such that
758 * the sum of words should be 0xBABA */
759 checksum = le16_to_cpu(0xBABA - checksum);
760 if(checksum != nic->eeprom[nic->eeprom_wc - 1]) {
761 DPRINTK(PROBE, ERR, "EEPROM corrupted\n");
8fb6f732
DM
762 if (!eeprom_bad_csum_allow)
763 return -EAGAIN;
1da177e4
LT
764 }
765
766 return 0;
767}
768
769/* Save (portion of) driver EEPROM cache to device and update checksum */
770static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
771{
772 u16 addr, addr_len = 8, checksum = 0;
773
774 /* Try reading with an 8-bit addr len to discover actual addr len */
775 e100_eeprom_read(nic, &addr_len, 0);
776 nic->eeprom_wc = 1 << addr_len;
777
778 if(start + count >= nic->eeprom_wc)
779 return -EINVAL;
780
781 for(addr = start; addr < start + count; addr++)
782 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
783
784 /* The checksum, stored in the last word, is calculated such that
785 * the sum of words should be 0xBABA */
786 for(addr = 0; addr < nic->eeprom_wc - 1; addr++)
787 checksum += cpu_to_le16(nic->eeprom[addr]);
788 nic->eeprom[nic->eeprom_wc - 1] = le16_to_cpu(0xBABA - checksum);
789 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
790 nic->eeprom[nic->eeprom_wc - 1]);
791
792 return 0;
793}
794
962082b6 795#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
e6280f26 796#define E100_WAIT_SCB_FAST 20 /* delay like the old code */
858119e1 797static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
1da177e4
LT
798{
799 unsigned long flags;
800 unsigned int i;
801 int err = 0;
802
803 spin_lock_irqsave(&nic->cmd_lock, flags);
804
805 /* Previous command is accepted when SCB clears */
806 for(i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
807 if(likely(!readb(&nic->csr->scb.cmd_lo)))
808 break;
809 cpu_relax();
e6280f26 810 if(unlikely(i > E100_WAIT_SCB_FAST))
1da177e4
LT
811 udelay(5);
812 }
813 if(unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
814 err = -EAGAIN;
815 goto err_unlock;
816 }
817
818 if(unlikely(cmd != cuc_resume))
819 writel(dma_addr, &nic->csr->scb.gen_ptr);
820 writeb(cmd, &nic->csr->scb.cmd_lo);
821
822err_unlock:
823 spin_unlock_irqrestore(&nic->cmd_lock, flags);
824
825 return err;
826}
827
858119e1 828static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
1da177e4
LT
829 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
830{
831 struct cb *cb;
832 unsigned long flags;
833 int err = 0;
834
835 spin_lock_irqsave(&nic->cb_lock, flags);
836
837 if(unlikely(!nic->cbs_avail)) {
838 err = -ENOMEM;
839 goto err_unlock;
840 }
841
842 cb = nic->cb_to_use;
843 nic->cb_to_use = cb->next;
844 nic->cbs_avail--;
845 cb->skb = skb;
846
847 if(unlikely(!nic->cbs_avail))
848 err = -ENOSPC;
849
850 cb_prepare(nic, cb, skb);
851
852 /* Order is important otherwise we'll be in a race with h/w:
853 * set S-bit in current first, then clear S-bit in previous. */
854 cb->command |= cpu_to_le16(cb_s);
855 wmb();
856 cb->prev->command &= cpu_to_le16(~cb_s);
857
858 while(nic->cb_to_send != nic->cb_to_use) {
859 if(unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
860 nic->cb_to_send->dma_addr))) {
861 /* Ok, here's where things get sticky. It's
862 * possible that we can't schedule the command
863 * because the controller is too busy, so
864 * let's just queue the command and try again
865 * when another command is scheduled. */
962082b6
MC
866 if(err == -ENOSPC) {
867 //request a reset
868 schedule_work(&nic->tx_timeout_task);
869 }
1da177e4
LT
870 break;
871 } else {
872 nic->cuc_cmd = cuc_resume;
873 nic->cb_to_send = nic->cb_to_send->next;
874 }
875 }
876
877err_unlock:
878 spin_unlock_irqrestore(&nic->cb_lock, flags);
879
880 return err;
881}
882
883static u16 mdio_ctrl(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
884{
885 u32 data_out = 0;
886 unsigned int i;
ac7c6669 887 unsigned long flags;
1da177e4 888
ac7c6669
OM
889
890 /*
891 * Stratus87247: we shouldn't be writing the MDI control
892 * register until the Ready bit shows True. Also, since
893 * manipulation of the MDI control registers is a multi-step
894 * procedure it should be done under lock.
895 */
896 spin_lock_irqsave(&nic->mdio_lock, flags);
897 for (i = 100; i; --i) {
898 if (readl(&nic->csr->mdi_ctrl) & mdi_ready)
899 break;
900 udelay(20);
901 }
902 if (unlikely(!i)) {
903 printk("e100.mdio_ctrl(%s) won't go Ready\n",
904 nic->netdev->name );
905 spin_unlock_irqrestore(&nic->mdio_lock, flags);
906 return 0; /* No way to indicate timeout error */
907 }
1da177e4
LT
908 writel((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
909
ac7c6669 910 for (i = 0; i < 100; i++) {
1da177e4 911 udelay(20);
ac7c6669 912 if ((data_out = readl(&nic->csr->mdi_ctrl)) & mdi_ready)
1da177e4
LT
913 break;
914 }
ac7c6669 915 spin_unlock_irqrestore(&nic->mdio_lock, flags);
1da177e4
LT
916 DPRINTK(HW, DEBUG,
917 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
918 dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out);
919 return (u16)data_out;
920}
921
922static int mdio_read(struct net_device *netdev, int addr, int reg)
923{
924 return mdio_ctrl(netdev_priv(netdev), addr, mdi_read, reg, 0);
925}
926
927static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
928{
929 mdio_ctrl(netdev_priv(netdev), addr, mdi_write, reg, data);
930}
931
932static void e100_get_defaults(struct nic *nic)
933{
2afecc04
JB
934 struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
935 struct param_range cbs = { .min = 64, .max = 256, .count = 128 };
1da177e4
LT
936
937 pci_read_config_byte(nic->pdev, PCI_REVISION_ID, &nic->rev_id);
938 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
939 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->rev_id;
940 if(nic->mac == mac_unknown)
941 nic->mac = mac_82557_D100_A;
942
943 nic->params.rfds = rfds;
944 nic->params.cbs = cbs;
945
946 /* Quadwords to DMA into FIFO before starting frame transmit */
947 nic->tx_threshold = 0xE0;
948
962082b6
MC
949 /* no interrupt for every tx completion, delay = 256us if not 557*/
950 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
951 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1da177e4
LT
952
953 /* Template for a freshly allocated RFD */
954 nic->blank_rfd.command = cpu_to_le16(cb_el);
955 nic->blank_rfd.rbd = 0xFFFFFFFF;
956 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
957
958 /* MII setup */
959 nic->mii.phy_id_mask = 0x1F;
960 nic->mii.reg_num_mask = 0x1F;
961 nic->mii.dev = nic->netdev;
962 nic->mii.mdio_read = mdio_read;
963 nic->mii.mdio_write = mdio_write;
964}
965
966static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
967{
968 struct config *config = &cb->u.config;
969 u8 *c = (u8 *)config;
970
971 cb->command = cpu_to_le16(cb_config);
972
973 memset(config, 0, sizeof(struct config));
974
975 config->byte_count = 0x16; /* bytes in this struct */
976 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */
977 config->direct_rx_dma = 0x1; /* reserved */
978 config->standard_tcb = 0x1; /* 1=standard, 0=extended */
979 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */
980 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */
981 config->tx_underrun_retry = 0x3; /* # of underrun retries */
982 config->mii_mode = 0x1; /* 1=MII mode, 0=503 mode */
983 config->pad10 = 0x6;
984 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
985 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
986 config->ifs = 0x6; /* x16 = inter frame spacing */
987 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */
988 config->pad15_1 = 0x1;
989 config->pad15_2 = 0x1;
990 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */
991 config->fc_delay_hi = 0x40; /* time delay for fc frame */
992 config->tx_padding = 0x1; /* 1=pad short frames */
993 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */
994 config->pad18 = 0x1;
995 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */
996 config->pad20_1 = 0x1F;
997 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */
998 config->pad21_1 = 0x5;
999
1000 config->adaptive_ifs = nic->adaptive_ifs;
1001 config->loopback = nic->loopback;
1002
1003 if(nic->mii.force_media && nic->mii.full_duplex)
1004 config->full_duplex_force = 0x1; /* 1=force, 0=auto */
1005
1006 if(nic->flags & promiscuous || nic->loopback) {
1007 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
1008 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
1009 config->promiscuous_mode = 0x1; /* 1=on, 0=off */
1010 }
1011
1012 if(nic->flags & multicast_all)
1013 config->multicast_all = 0x1; /* 1=accept, 0=no */
1014
6bdacb1a
MC
1015 /* disable WoL when up */
1016 if(netif_running(nic->netdev) || !(nic->flags & wol_magic))
1da177e4
LT
1017 config->magic_packet_disable = 0x1; /* 1=off, 0=on */
1018
1019 if(nic->mac >= mac_82558_D101_A4) {
1020 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */
1021 config->mwi_enable = 0x1; /* 1=enable, 0=disable */
1022 config->standard_tcb = 0x0; /* 1=standard, 0=extended */
1023 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */
1024 if(nic->mac >= mac_82559_D101M)
1025 config->tno_intr = 0x1; /* TCO stats enable */
1026 else
1027 config->standard_stat_counter = 0x0;
1028 }
1029
1030 DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1031 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
1032 DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1033 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
1034 DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1035 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
1036}
1037
2afecc04
JB
1038/********************************************************/
1039/* Micro code for 8086:1229 Rev 8 */
1040/********************************************************/
1041
1042/* Parameter values for the D101M B-step */
1043#define D101M_CPUSAVER_TIMER_DWORD 78
1044#define D101M_CPUSAVER_BUNDLE_DWORD 65
1045#define D101M_CPUSAVER_MIN_SIZE_DWORD 126
1046
1047#define D101M_B_RCVBUNDLE_UCODE \
1048{\
10490x00550215, 0xFFFF0437, 0xFFFFFFFF, 0x06A70789, 0xFFFFFFFF, 0x0558FFFF, \
10500x000C0001, 0x00101312, 0x000C0008, 0x00380216, \
10510x0010009C, 0x00204056, 0x002380CC, 0x00380056, \
10520x0010009C, 0x00244C0B, 0x00000800, 0x00124818, \
10530x00380438, 0x00000000, 0x00140000, 0x00380555, \
10540x00308000, 0x00100662, 0x00100561, 0x000E0408, \
10550x00134861, 0x000C0002, 0x00103093, 0x00308000, \
10560x00100624, 0x00100561, 0x000E0408, 0x00100861, \
10570x000C007E, 0x00222C21, 0x000C0002, 0x00103093, \
10580x00380C7A, 0x00080000, 0x00103090, 0x00380C7A, \
10590x00000000, 0x00000000, 0x00000000, 0x00000000, \
10600x0010009C, 0x00244C2D, 0x00010004, 0x00041000, \
10610x003A0437, 0x00044010, 0x0038078A, 0x00000000, \
10620x00100099, 0x00206C7A, 0x0010009C, 0x00244C48, \
10630x00130824, 0x000C0001, 0x00101213, 0x00260C75, \
10640x00041000, 0x00010004, 0x00130826, 0x000C0006, \
10650x002206A8, 0x0013C926, 0x00101313, 0x003806A8, \
10660x00000000, 0x00000000, 0x00000000, 0x00000000, \
10670x00000000, 0x00000000, 0x00000000, 0x00000000, \
10680x00080600, 0x00101B10, 0x00050004, 0x00100826, \
10690x00101210, 0x00380C34, 0x00000000, 0x00000000, \
10700x0021155B, 0x00100099, 0x00206559, 0x0010009C, \
10710x00244559, 0x00130836, 0x000C0000, 0x00220C62, \
10720x000C0001, 0x00101B13, 0x00229C0E, 0x00210C0E, \
10730x00226C0E, 0x00216C0E, 0x0022FC0E, 0x00215C0E, \
10740x00214C0E, 0x00380555, 0x00010004, 0x00041000, \
10750x00278C67, 0x00040800, 0x00018100, 0x003A0437, \
10760x00130826, 0x000C0001, 0x00220559, 0x00101313, \
10770x00380559, 0x00000000, 0x00000000, 0x00000000, \
10780x00000000, 0x00000000, 0x00000000, 0x00000000, \
10790x00000000, 0x00130831, 0x0010090B, 0x00124813, \
10800x000CFF80, 0x002606AB, 0x00041000, 0x00010004, \
10810x003806A8, 0x00000000, 0x00000000, 0x00000000, \
1082}
1083
1084/********************************************************/
1085/* Micro code for 8086:1229 Rev 9 */
1086/********************************************************/
1087
1088/* Parameter values for the D101S */
1089#define D101S_CPUSAVER_TIMER_DWORD 78
1090#define D101S_CPUSAVER_BUNDLE_DWORD 67
1091#define D101S_CPUSAVER_MIN_SIZE_DWORD 128
1092
1093#define D101S_RCVBUNDLE_UCODE \
1094{\
10950x00550242, 0xFFFF047E, 0xFFFFFFFF, 0x06FF0818, 0xFFFFFFFF, 0x05A6FFFF, \
10960x000C0001, 0x00101312, 0x000C0008, 0x00380243, \
10970x0010009C, 0x00204056, 0x002380D0, 0x00380056, \
10980x0010009C, 0x00244F8B, 0x00000800, 0x00124818, \
10990x0038047F, 0x00000000, 0x00140000, 0x003805A3, \
11000x00308000, 0x00100610, 0x00100561, 0x000E0408, \
11010x00134861, 0x000C0002, 0x00103093, 0x00308000, \
11020x00100624, 0x00100561, 0x000E0408, 0x00100861, \
11030x000C007E, 0x00222FA1, 0x000C0002, 0x00103093, \
11040x00380F90, 0x00080000, 0x00103090, 0x00380F90, \
11050x00000000, 0x00000000, 0x00000000, 0x00000000, \
11060x0010009C, 0x00244FAD, 0x00010004, 0x00041000, \
11070x003A047E, 0x00044010, 0x00380819, 0x00000000, \
11080x00100099, 0x00206FFD, 0x0010009A, 0x0020AFFD, \
11090x0010009C, 0x00244FC8, 0x00130824, 0x000C0001, \
11100x00101213, 0x00260FF7, 0x00041000, 0x00010004, \
11110x00130826, 0x000C0006, 0x00220700, 0x0013C926, \
11120x00101313, 0x00380700, 0x00000000, 0x00000000, \
11130x00000000, 0x00000000, 0x00000000, 0x00000000, \
11140x00080600, 0x00101B10, 0x00050004, 0x00100826, \
11150x00101210, 0x00380FB6, 0x00000000, 0x00000000, \
11160x002115A9, 0x00100099, 0x002065A7, 0x0010009A, \
11170x0020A5A7, 0x0010009C, 0x002445A7, 0x00130836, \
11180x000C0000, 0x00220FE4, 0x000C0001, 0x00101B13, \
11190x00229F8E, 0x00210F8E, 0x00226F8E, 0x00216F8E, \
11200x0022FF8E, 0x00215F8E, 0x00214F8E, 0x003805A3, \
11210x00010004, 0x00041000, 0x00278FE9, 0x00040800, \
11220x00018100, 0x003A047E, 0x00130826, 0x000C0001, \
11230x002205A7, 0x00101313, 0x003805A7, 0x00000000, \
11240x00000000, 0x00000000, 0x00000000, 0x00000000, \
11250x00000000, 0x00000000, 0x00000000, 0x00130831, \
11260x0010090B, 0x00124813, 0x000CFF80, 0x00260703, \
11270x00041000, 0x00010004, 0x00380700 \
1128}
1129
1130/********************************************************/
1131/* Micro code for the 8086:1229 Rev F/10 */
1132/********************************************************/
1133
1134/* Parameter values for the D102 E-step */
1135#define D102_E_CPUSAVER_TIMER_DWORD 42
1136#define D102_E_CPUSAVER_BUNDLE_DWORD 54
1137#define D102_E_CPUSAVER_MIN_SIZE_DWORD 46
1138
1139#define D102_E_RCVBUNDLE_UCODE \
1140{\
11410x007D028F, 0x0E4204F9, 0x14ED0C85, 0x14FA14E9, 0x0EF70E36, 0x1FFF1FFF, \
11420x00E014B9, 0x00000000, 0x00000000, 0x00000000, \
11430x00E014BD, 0x00000000, 0x00000000, 0x00000000, \
11440x00E014D5, 0x00000000, 0x00000000, 0x00000000, \
11450x00000000, 0x00000000, 0x00000000, 0x00000000, \
11460x00E014C1, 0x00000000, 0x00000000, 0x00000000, \
11470x00000000, 0x00000000, 0x00000000, 0x00000000, \
11480x00000000, 0x00000000, 0x00000000, 0x00000000, \
11490x00000000, 0x00000000, 0x00000000, 0x00000000, \
11500x00E014C8, 0x00000000, 0x00000000, 0x00000000, \
11510x00200600, 0x00E014EE, 0x00000000, 0x00000000, \
11520x0030FF80, 0x00940E46, 0x00038200, 0x00102000, \
11530x00E00E43, 0x00000000, 0x00000000, 0x00000000, \
11540x00300006, 0x00E014FB, 0x00000000, 0x00000000, \
11550x00000000, 0x00000000, 0x00000000, 0x00000000, \
11560x00000000, 0x00000000, 0x00000000, 0x00000000, \
11570x00000000, 0x00000000, 0x00000000, 0x00000000, \
11580x00906E41, 0x00800E3C, 0x00E00E39, 0x00000000, \
11590x00906EFD, 0x00900EFD, 0x00E00EF8, 0x00000000, \
11600x00000000, 0x00000000, 0x00000000, 0x00000000, \
11610x00000000, 0x00000000, 0x00000000, 0x00000000, \
11620x00000000, 0x00000000, 0x00000000, 0x00000000, \
11630x00000000, 0x00000000, 0x00000000, 0x00000000, \
11640x00000000, 0x00000000, 0x00000000, 0x00000000, \
11650x00000000, 0x00000000, 0x00000000, 0x00000000, \
11660x00000000, 0x00000000, 0x00000000, 0x00000000, \
11670x00000000, 0x00000000, 0x00000000, 0x00000000, \
11680x00000000, 0x00000000, 0x00000000, 0x00000000, \
11690x00000000, 0x00000000, 0x00000000, 0x00000000, \
11700x00000000, 0x00000000, 0x00000000, 0x00000000, \
11710x00000000, 0x00000000, 0x00000000, 0x00000000, \
11720x00000000, 0x00000000, 0x00000000, 0x00000000, \
11730x00000000, 0x00000000, 0x00000000, 0x00000000, \
1174}
1175
24180333 1176static void e100_setup_ucode(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1da177e4 1177{
2afecc04
JB
1178/* *INDENT-OFF* */
1179 static struct {
1180 u32 ucode[UCODE_SIZE + 1];
1181 u8 mac;
1182 u8 timer_dword;
1183 u8 bundle_dword;
1184 u8 min_size_dword;
1185 } ucode_opts[] = {
1186 { D101M_B_RCVBUNDLE_UCODE,
1187 mac_82559_D101M,
1188 D101M_CPUSAVER_TIMER_DWORD,
1189 D101M_CPUSAVER_BUNDLE_DWORD,
1190 D101M_CPUSAVER_MIN_SIZE_DWORD },
1191 { D101S_RCVBUNDLE_UCODE,
1192 mac_82559_D101S,
1193 D101S_CPUSAVER_TIMER_DWORD,
1194 D101S_CPUSAVER_BUNDLE_DWORD,
1195 D101S_CPUSAVER_MIN_SIZE_DWORD },
1196 { D102_E_RCVBUNDLE_UCODE,
1197 mac_82551_F,
1198 D102_E_CPUSAVER_TIMER_DWORD,
1199 D102_E_CPUSAVER_BUNDLE_DWORD,
1200 D102_E_CPUSAVER_MIN_SIZE_DWORD },
1201 { D102_E_RCVBUNDLE_UCODE,
1202 mac_82551_10,
1203 D102_E_CPUSAVER_TIMER_DWORD,
1204 D102_E_CPUSAVER_BUNDLE_DWORD,
1205 D102_E_CPUSAVER_MIN_SIZE_DWORD },
1206 { {0}, 0, 0, 0, 0}
1207 }, *opts;
1208/* *INDENT-ON* */
1209
1210/*************************************************************************
1211* CPUSaver parameters
1212*
1213* All CPUSaver parameters are 16-bit literals that are part of a
1214* "move immediate value" instruction. By changing the value of
1215* the literal in the instruction before the code is loaded, the
1216* driver can change the algorithm.
1217*
1218* INTDELAY - This loads the dead-man timer with its inital value.
05479938 1219* When this timer expires the interrupt is asserted, and the
2afecc04
JB
1220* timer is reset each time a new packet is received. (see
1221* BUNDLEMAX below to set the limit on number of chained packets)
1222* The current default is 0x600 or 1536. Experiments show that
1223* the value should probably stay within the 0x200 - 0x1000.
1224*
05479938 1225* BUNDLEMAX -
2afecc04
JB
1226* This sets the maximum number of frames that will be bundled. In
1227* some situations, such as the TCP windowing algorithm, it may be
1228* better to limit the growth of the bundle size than let it go as
1229* high as it can, because that could cause too much added latency.
1230* The default is six, because this is the number of packets in the
1231* default TCP window size. A value of 1 would make CPUSaver indicate
1232* an interrupt for every frame received. If you do not want to put
1233* a limit on the bundle size, set this value to xFFFF.
1234*
05479938 1235* BUNDLESMALL -
2afecc04
JB
1236* This contains a bit-mask describing the minimum size frame that
1237* will be bundled. The default masks the lower 7 bits, which means
1238* that any frame less than 128 bytes in length will not be bundled,
1239* but will instead immediately generate an interrupt. This does
1240* not affect the current bundle in any way. Any frame that is 128
1241* bytes or large will be bundled normally. This feature is meant
1242* to provide immediate indication of ACK frames in a TCP environment.
1243* Customers were seeing poor performance when a machine with CPUSaver
1244* enabled was sending but not receiving. The delay introduced when
1245* the ACKs were received was enough to reduce total throughput, because
1246* the sender would sit idle until the ACK was finally seen.
1247*
1248* The current default is 0xFF80, which masks out the lower 7 bits.
1249* This means that any frame which is x7F (127) bytes or smaller
05479938 1250* will cause an immediate interrupt. Because this value must be a
2afecc04
JB
1251* bit mask, there are only a few valid values that can be used. To
1252* turn this feature off, the driver can write the value xFFFF to the
1253* lower word of this instruction (in the same way that the other
1254* parameters are used). Likewise, a value of 0xF800 (2047) would
1255* cause an interrupt to be generated for every frame, because all
1256* standard Ethernet frames are <= 2047 bytes in length.
1257*************************************************************************/
1258
05479938 1259/* if you wish to disable the ucode functionality, while maintaining the
2afecc04
JB
1260 * workarounds it provides, set the following defines to:
1261 * BUNDLESMALL 0
1262 * BUNDLEMAX 1
1263 * INTDELAY 1
1264 */
1265#define BUNDLESMALL 1
1266#define BUNDLEMAX (u16)6
1267#define INTDELAY (u16)1536 /* 0x600 */
1268
1269 /* do not load u-code for ICH devices */
1270 if (nic->flags & ich)
1271 goto noloaducode;
1272
1273 /* Search for ucode match against h/w rev_id */
1274 for (opts = ucode_opts; opts->mac; opts++) {
1275 int i;
1276 u32 *ucode = opts->ucode;
1277 if (nic->mac != opts->mac)
1278 continue;
1279
1280 /* Insert user-tunable settings */
1281 ucode[opts->timer_dword] &= 0xFFFF0000;
1282 ucode[opts->timer_dword] |= INTDELAY;
1283 ucode[opts->bundle_dword] &= 0xFFFF0000;
1284 ucode[opts->bundle_dword] |= BUNDLEMAX;
1285 ucode[opts->min_size_dword] &= 0xFFFF0000;
1286 ucode[opts->min_size_dword] |= (BUNDLESMALL) ? 0xFFFF : 0xFF80;
1287
1288 for (i = 0; i < UCODE_SIZE; i++)
875521dd 1289 cb->u.ucode[i] = cpu_to_le32(ucode[i]);
24180333 1290 cb->command = cpu_to_le16(cb_ucode | cb_el);
2afecc04
JB
1291 return;
1292 }
1293
1294noloaducode:
24180333
JB
1295 cb->command = cpu_to_le16(cb_nop | cb_el);
1296}
1297
1298static inline int e100_exec_cb_wait(struct nic *nic, struct sk_buff *skb,
1299 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
1300{
1301 int err = 0, counter = 50;
1302 struct cb *cb = nic->cb_to_clean;
1303
1304 if ((err = e100_exec_cb(nic, NULL, e100_setup_ucode)))
1305 DPRINTK(PROBE,ERR, "ucode cmd failed with error %d\n", err);
05479938 1306
24180333
JB
1307 /* must restart cuc */
1308 nic->cuc_cmd = cuc_start;
1309
1310 /* wait for completion */
1311 e100_write_flush(nic);
1312 udelay(10);
1313
1314 /* wait for possibly (ouch) 500ms */
1315 while (!(cb->status & cpu_to_le16(cb_complete))) {
1316 msleep(10);
1317 if (!--counter) break;
1318 }
05479938 1319
24180333
JB
1320 /* ack any interupts, something could have been set */
1321 writeb(~0, &nic->csr->scb.stat_ack);
1322
1323 /* if the command failed, or is not OK, notify and return */
1324 if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1325 DPRINTK(PROBE,ERR, "ucode load failed\n");
1326 err = -EPERM;
1327 }
05479938 1328
24180333 1329 return err;
1da177e4
LT
1330}
1331
1332static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1333 struct sk_buff *skb)
1334{
1335 cb->command = cpu_to_le16(cb_iaaddr);
1336 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1337}
1338
1339static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1340{
1341 cb->command = cpu_to_le16(cb_dump);
1342 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1343 offsetof(struct mem, dump_buf));
1344}
1345
1346#define NCONFIG_AUTO_SWITCH 0x0080
1347#define MII_NSC_CONG MII_RESV1
1348#define NSC_CONG_ENABLE 0x0100
1349#define NSC_CONG_TXREADY 0x0400
1350#define ADVERTISE_FC_SUPPORTED 0x0400
1351static int e100_phy_init(struct nic *nic)
1352{
1353 struct net_device *netdev = nic->netdev;
1354 u32 addr;
1355 u16 bmcr, stat, id_lo, id_hi, cong;
1356
1357 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1358 for(addr = 0; addr < 32; addr++) {
1359 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1360 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1361 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1362 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1363 if(!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1364 break;
1365 }
1366 DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id);
1367 if(addr == 32)
1368 return -EAGAIN;
1369
1370 /* Selected the phy and isolate the rest */
1371 for(addr = 0; addr < 32; addr++) {
1372 if(addr != nic->mii.phy_id) {
1373 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1374 } else {
1375 bmcr = mdio_read(netdev, addr, MII_BMCR);
1376 mdio_write(netdev, addr, MII_BMCR,
1377 bmcr & ~BMCR_ISOLATE);
1378 }
1379 }
1380
1381 /* Get phy ID */
1382 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1383 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1384 nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1385 DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy);
1386
1387 /* Handle National tx phys */
1388#define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1389 if((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1390 /* Disable congestion control */
1391 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1392 cong |= NSC_CONG_TXREADY;
1393 cong &= ~NSC_CONG_ENABLE;
1394 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1395 }
1396
05479938 1397 if((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
60ffa478
JK
1398 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1399 !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
1400 /* enable/disable MDI/MDI-X auto-switching. */
1401 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1402 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
64895145 1403 }
1da177e4
LT
1404
1405 return 0;
1406}
1407
1408static int e100_hw_init(struct nic *nic)
1409{
1410 int err;
1411
1412 e100_hw_reset(nic);
1413
1414 DPRINTK(HW, ERR, "e100_hw_init\n");
1415 if(!in_interrupt() && (err = e100_self_test(nic)))
1416 return err;
1417
1418 if((err = e100_phy_init(nic)))
1419 return err;
1420 if((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1421 return err;
1422 if((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1423 return err;
24180333 1424 if ((err = e100_exec_cb_wait(nic, NULL, e100_setup_ucode)))
1da177e4
LT
1425 return err;
1426 if((err = e100_exec_cb(nic, NULL, e100_configure)))
1427 return err;
1428 if((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1429 return err;
1430 if((err = e100_exec_cmd(nic, cuc_dump_addr,
1431 nic->dma_addr + offsetof(struct mem, stats))))
1432 return err;
1433 if((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1434 return err;
1435
1436 e100_disable_irq(nic);
1437
1438 return 0;
1439}
1440
1441static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1442{
1443 struct net_device *netdev = nic->netdev;
1444 struct dev_mc_list *list = netdev->mc_list;
1445 u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS);
1446
1447 cb->command = cpu_to_le16(cb_multi);
1448 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1449 for(i = 0; list && i < count; i++, list = list->next)
1450 memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr,
1451 ETH_ALEN);
1452}
1453
1454static void e100_set_multicast_list(struct net_device *netdev)
1455{
1456 struct nic *nic = netdev_priv(netdev);
1457
1458 DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n",
1459 netdev->mc_count, netdev->flags);
1460
1461 if(netdev->flags & IFF_PROMISC)
1462 nic->flags |= promiscuous;
1463 else
1464 nic->flags &= ~promiscuous;
1465
1466 if(netdev->flags & IFF_ALLMULTI ||
1467 netdev->mc_count > E100_MAX_MULTICAST_ADDRS)
1468 nic->flags |= multicast_all;
1469 else
1470 nic->flags &= ~multicast_all;
1471
1472 e100_exec_cb(nic, NULL, e100_configure);
1473 e100_exec_cb(nic, NULL, e100_multi);
1474}
1475
1476static void e100_update_stats(struct nic *nic)
1477{
1478 struct net_device_stats *ns = &nic->net_stats;
1479 struct stats *s = &nic->mem->stats;
1480 u32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1481 (nic->mac < mac_82559_D101M) ? (u32 *)&s->xmt_tco_frames :
1482 &s->complete;
1483
1484 /* Device's stats reporting may take several microseconds to
1485 * complete, so where always waiting for results of the
1486 * previous command. */
1487
1488 if(*complete == le32_to_cpu(cuc_dump_reset_complete)) {
1489 *complete = 0;
1490 nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1491 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1492 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1493 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1494 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1495 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1496 ns->collisions += nic->tx_collisions;
1497 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1498 le32_to_cpu(s->tx_lost_crs);
1da177e4
LT
1499 ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) +
1500 nic->rx_over_length_errors;
1501 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1502 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1503 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1504 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
ecf7130b 1505 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1da177e4
LT
1506 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1507 le32_to_cpu(s->rx_alignment_errors) +
1508 le32_to_cpu(s->rx_short_frame_errors) +
1509 le32_to_cpu(s->rx_cdt_errors);
1510 nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1511 nic->tx_single_collisions +=
1512 le32_to_cpu(s->tx_single_collisions);
1513 nic->tx_multiple_collisions +=
1514 le32_to_cpu(s->tx_multiple_collisions);
1515 if(nic->mac >= mac_82558_D101_A4) {
1516 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1517 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1518 nic->rx_fc_unsupported +=
1519 le32_to_cpu(s->fc_rcv_unsupported);
1520 if(nic->mac >= mac_82559_D101M) {
1521 nic->tx_tco_frames +=
1522 le16_to_cpu(s->xmt_tco_frames);
1523 nic->rx_tco_frames +=
1524 le16_to_cpu(s->rcv_tco_frames);
1525 }
1526 }
1527 }
1528
05479938 1529
1f53367d
MC
1530 if(e100_exec_cmd(nic, cuc_dump_reset, 0))
1531 DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n");
1da177e4
LT
1532}
1533
1534static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1535{
1536 /* Adjust inter-frame-spacing (IFS) between two transmits if
1537 * we're getting collisions on a half-duplex connection. */
1538
1539 if(duplex == DUPLEX_HALF) {
1540 u32 prev = nic->adaptive_ifs;
1541 u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1542
1543 if((nic->tx_frames / 32 < nic->tx_collisions) &&
1544 (nic->tx_frames > min_frames)) {
1545 if(nic->adaptive_ifs < 60)
1546 nic->adaptive_ifs += 5;
1547 } else if (nic->tx_frames < min_frames) {
1548 if(nic->adaptive_ifs >= 5)
1549 nic->adaptive_ifs -= 5;
1550 }
1551 if(nic->adaptive_ifs != prev)
1552 e100_exec_cb(nic, NULL, e100_configure);
1553 }
1554}
1555
1556static void e100_watchdog(unsigned long data)
1557{
1558 struct nic *nic = (struct nic *)data;
1559 struct ethtool_cmd cmd;
1560
1561 DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies);
1562
1563 /* mii library handles link maintenance tasks */
1564
1565 mii_ethtool_gset(&nic->mii, &cmd);
1566
1567 if(mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1568 DPRINTK(LINK, INFO, "link up, %sMbps, %s-duplex\n",
1569 cmd.speed == SPEED_100 ? "100" : "10",
1570 cmd.duplex == DUPLEX_FULL ? "full" : "half");
1571 } else if(!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1572 DPRINTK(LINK, INFO, "link down\n");
1573 }
1574
1575 mii_check_link(&nic->mii);
1576
1577 /* Software generated interrupt to recover from (rare) Rx
05479938
JB
1578 * allocation failure.
1579 * Unfortunately have to use a spinlock to not re-enable interrupts
1580 * accidentally, due to hardware that shares a register between the
1581 * interrupt mask bit and the SW Interrupt generation bit */
1da177e4
LT
1582 spin_lock_irq(&nic->cmd_lock);
1583 writeb(readb(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1da177e4 1584 e100_write_flush(nic);
ad8c48ad 1585 spin_unlock_irq(&nic->cmd_lock);
1da177e4
LT
1586
1587 e100_update_stats(nic);
1588 e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex);
1589
1590 if(nic->mac <= mac_82557_D100_C)
1591 /* Issue a multicast command to workaround a 557 lock up */
1592 e100_set_multicast_list(nic->netdev);
1593
1594 if(nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF)
1595 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1596 nic->flags |= ich_10h_workaround;
1597 else
1598 nic->flags &= ~ich_10h_workaround;
1599
1600 mod_timer(&nic->watchdog, jiffies + E100_WATCHDOG_PERIOD);
1601}
1602
858119e1 1603static void e100_xmit_prepare(struct nic *nic, struct cb *cb,
1da177e4
LT
1604 struct sk_buff *skb)
1605{
1606 cb->command = nic->tx_command;
962082b6 1607 /* interrupt every 16 packets regardless of delay */
996ec353
MC
1608 if((nic->cbs_avail & ~15) == nic->cbs_avail)
1609 cb->command |= cpu_to_le16(cb_i);
1da177e4
LT
1610 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1611 cb->u.tcb.tcb_byte_count = 0;
1612 cb->u.tcb.threshold = nic->tx_threshold;
1613 cb->u.tcb.tbd_count = 1;
1614 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
1615 skb->data, skb->len, PCI_DMA_TODEVICE));
611494dc 1616 /* check for mapping failure? */
1da177e4
LT
1617 cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1618}
1619
1620static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1621{
1622 struct nic *nic = netdev_priv(netdev);
1623 int err;
1624
1625 if(nic->flags & ich_10h_workaround) {
1626 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1627 Issue a NOP command followed by a 1us delay before
1628 issuing the Tx command. */
1f53367d
MC
1629 if(e100_exec_cmd(nic, cuc_nop, 0))
1630 DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n");
1da177e4
LT
1631 udelay(1);
1632 }
1633
1634 err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1635
1636 switch(err) {
1637 case -ENOSPC:
1638 /* We queued the skb, but now we're out of space. */
1639 DPRINTK(TX_ERR, DEBUG, "No space for CB\n");
1640 netif_stop_queue(netdev);
1641 break;
1642 case -ENOMEM:
1643 /* This is a hard error - log it. */
1644 DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n");
1645 netif_stop_queue(netdev);
1646 return 1;
1647 }
1648
1649 netdev->trans_start = jiffies;
1650 return 0;
1651}
1652
858119e1 1653static int e100_tx_clean(struct nic *nic)
1da177e4
LT
1654{
1655 struct cb *cb;
1656 int tx_cleaned = 0;
1657
1658 spin_lock(&nic->cb_lock);
1659
1660 DPRINTK(TX_DONE, DEBUG, "cb->status = 0x%04X\n",
1661 nic->cb_to_clean->status);
1662
1663 /* Clean CBs marked complete */
1664 for(cb = nic->cb_to_clean;
1665 cb->status & cpu_to_le16(cb_complete);
1666 cb = nic->cb_to_clean = cb->next) {
1667 if(likely(cb->skb != NULL)) {
1668 nic->net_stats.tx_packets++;
1669 nic->net_stats.tx_bytes += cb->skb->len;
1670
1671 pci_unmap_single(nic->pdev,
1672 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1673 le16_to_cpu(cb->u.tcb.tbd.size),
1674 PCI_DMA_TODEVICE);
1675 dev_kfree_skb_any(cb->skb);
1676 cb->skb = NULL;
1677 tx_cleaned = 1;
1678 }
1679 cb->status = 0;
1680 nic->cbs_avail++;
1681 }
1682
1683 spin_unlock(&nic->cb_lock);
1684
1685 /* Recover from running out of Tx resources in xmit_frame */
1686 if(unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1687 netif_wake_queue(nic->netdev);
1688
1689 return tx_cleaned;
1690}
1691
1692static void e100_clean_cbs(struct nic *nic)
1693{
1694 if(nic->cbs) {
1695 while(nic->cbs_avail != nic->params.cbs.count) {
1696 struct cb *cb = nic->cb_to_clean;
1697 if(cb->skb) {
1698 pci_unmap_single(nic->pdev,
1699 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1700 le16_to_cpu(cb->u.tcb.tbd.size),
1701 PCI_DMA_TODEVICE);
1702 dev_kfree_skb(cb->skb);
1703 }
1704 nic->cb_to_clean = nic->cb_to_clean->next;
1705 nic->cbs_avail++;
1706 }
1707 pci_free_consistent(nic->pdev,
1708 sizeof(struct cb) * nic->params.cbs.count,
1709 nic->cbs, nic->cbs_dma_addr);
1710 nic->cbs = NULL;
1711 nic->cbs_avail = 0;
1712 }
1713 nic->cuc_cmd = cuc_start;
1714 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1715 nic->cbs;
1716}
1717
1718static int e100_alloc_cbs(struct nic *nic)
1719{
1720 struct cb *cb;
1721 unsigned int i, count = nic->params.cbs.count;
1722
1723 nic->cuc_cmd = cuc_start;
1724 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1725 nic->cbs_avail = 0;
1726
1727 nic->cbs = pci_alloc_consistent(nic->pdev,
1728 sizeof(struct cb) * count, &nic->cbs_dma_addr);
1729 if(!nic->cbs)
1730 return -ENOMEM;
1731
1732 for(cb = nic->cbs, i = 0; i < count; cb++, i++) {
1733 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1734 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1735
1736 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1737 cb->link = cpu_to_le32(nic->cbs_dma_addr +
1738 ((i+1) % count) * sizeof(struct cb));
1739 cb->skb = NULL;
1740 }
1741
1742 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1743 nic->cbs_avail = count;
1744
1745 return 0;
1746}
1747
1f53367d 1748static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1da177e4 1749{
1f53367d
MC
1750 if(!nic->rxs) return;
1751 if(RU_SUSPENDED != nic->ru_running) return;
1752
1753 /* handle init time starts */
1754 if(!rx) rx = nic->rxs;
1755
1da177e4 1756 /* (Re)start RU if suspended or idle and RFA is non-NULL */
1f53367d
MC
1757 if(rx->skb) {
1758 e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1759 nic->ru_running = RU_RUNNING;
1da177e4
LT
1760 }
1761}
1762
1763#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
858119e1 1764static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1da177e4 1765{
4187592b 1766 if(!(rx->skb = netdev_alloc_skb(nic->netdev, RFD_BUF_LEN + NET_IP_ALIGN)))
1da177e4
LT
1767 return -ENOMEM;
1768
1769 /* Align, init, and map the RFD. */
1da177e4
LT
1770 skb_reserve(rx->skb, NET_IP_ALIGN);
1771 memcpy(rx->skb->data, &nic->blank_rfd, sizeof(struct rfd));
1772 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1773 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1774
1f53367d
MC
1775 if(pci_dma_mapping_error(rx->dma_addr)) {
1776 dev_kfree_skb_any(rx->skb);
097688ef 1777 rx->skb = NULL;
1f53367d
MC
1778 rx->dma_addr = 0;
1779 return -ENOMEM;
1780 }
1781
1da177e4
LT
1782 /* Link the RFD to end of RFA by linking previous RFD to
1783 * this one, and clearing EL bit of previous. */
1784 if(rx->prev->skb) {
1785 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1786 put_unaligned(cpu_to_le32(rx->dma_addr),
1787 (u32 *)&prev_rfd->link);
1788 wmb();
1789 prev_rfd->command &= ~cpu_to_le16(cb_el);
1790 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1791 sizeof(struct rfd), PCI_DMA_TODEVICE);
1792 }
1793
1794 return 0;
1795}
1796
858119e1 1797static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1da177e4
LT
1798 unsigned int *work_done, unsigned int work_to_do)
1799{
1800 struct sk_buff *skb = rx->skb;
1801 struct rfd *rfd = (struct rfd *)skb->data;
1802 u16 rfd_status, actual_size;
1803
1804 if(unlikely(work_done && *work_done >= work_to_do))
1805 return -EAGAIN;
1806
1807 /* Need to sync before taking a peek at cb_complete bit */
1808 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1809 sizeof(struct rfd), PCI_DMA_FROMDEVICE);
1810 rfd_status = le16_to_cpu(rfd->status);
1811
1812 DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status);
1813
1814 /* If data isn't ready, nothing to indicate */
1815 if(unlikely(!(rfd_status & cb_complete)))
1f53367d 1816 return -ENODATA;
1da177e4
LT
1817
1818 /* Get actual data size */
1819 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1820 if(unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1821 actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1822
1823 /* Get data */
1824 pci_unmap_single(nic->pdev, rx->dma_addr,
1825 RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
1826
1f53367d
MC
1827 /* this allows for a fast restart without re-enabling interrupts */
1828 if(le16_to_cpu(rfd->command) & cb_el)
1829 nic->ru_running = RU_SUSPENDED;
1830
1da177e4
LT
1831 /* Pull off the RFD and put the actual data (minus eth hdr) */
1832 skb_reserve(skb, sizeof(struct rfd));
1833 skb_put(skb, actual_size);
1834 skb->protocol = eth_type_trans(skb, nic->netdev);
1835
1836 if(unlikely(!(rfd_status & cb_ok))) {
1837 /* Don't indicate if hardware indicates errors */
1da177e4 1838 dev_kfree_skb_any(skb);
136df52d 1839 } else if(actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) {
1da177e4
LT
1840 /* Don't indicate oversized frames */
1841 nic->rx_over_length_errors++;
1da177e4
LT
1842 dev_kfree_skb_any(skb);
1843 } else {
1844 nic->net_stats.rx_packets++;
1845 nic->net_stats.rx_bytes += actual_size;
1846 nic->netdev->last_rx = jiffies;
1847 netif_receive_skb(skb);
1848 if(work_done)
1849 (*work_done)++;
1850 }
1851
1852 rx->skb = NULL;
1853
1854 return 0;
1855}
1856
858119e1 1857static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
1da177e4
LT
1858 unsigned int work_to_do)
1859{
1860 struct rx *rx;
1f53367d
MC
1861 int restart_required = 0;
1862 struct rx *rx_to_start = NULL;
1863
1864 /* are we already rnr? then pay attention!!! this ensures that
05479938 1865 * the state machine progression never allows a start with a
1f53367d
MC
1866 * partially cleaned list, avoiding a race between hardware
1867 * and rx_to_clean when in NAPI mode */
1868 if(RU_SUSPENDED == nic->ru_running)
1869 restart_required = 1;
1da177e4
LT
1870
1871 /* Indicate newly arrived packets */
1872 for(rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
1f53367d
MC
1873 int err = e100_rx_indicate(nic, rx, work_done, work_to_do);
1874 if(-EAGAIN == err) {
1875 /* hit quota so have more work to do, restart once
1876 * cleanup is complete */
1877 restart_required = 0;
1878 break;
1879 } else if(-ENODATA == err)
1da177e4
LT
1880 break; /* No more to clean */
1881 }
1882
1f53367d
MC
1883 /* save our starting point as the place we'll restart the receiver */
1884 if(restart_required)
1885 rx_to_start = nic->rx_to_clean;
1886
1da177e4
LT
1887 /* Alloc new skbs to refill list */
1888 for(rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
1889 if(unlikely(e100_rx_alloc_skb(nic, rx)))
1890 break; /* Better luck next time (see watchdog) */
1891 }
1892
1f53367d
MC
1893 if(restart_required) {
1894 // ack the rnr?
1895 writeb(stat_ack_rnr, &nic->csr->scb.stat_ack);
1896 e100_start_receiver(nic, rx_to_start);
1897 if(work_done)
1898 (*work_done)++;
1899 }
1da177e4
LT
1900}
1901
1902static void e100_rx_clean_list(struct nic *nic)
1903{
1904 struct rx *rx;
1905 unsigned int i, count = nic->params.rfds.count;
1906
1f53367d
MC
1907 nic->ru_running = RU_UNINITIALIZED;
1908
1da177e4
LT
1909 if(nic->rxs) {
1910 for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
1911 if(rx->skb) {
1912 pci_unmap_single(nic->pdev, rx->dma_addr,
1913 RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
1914 dev_kfree_skb(rx->skb);
1915 }
1916 }
1917 kfree(nic->rxs);
1918 nic->rxs = NULL;
1919 }
1920
1921 nic->rx_to_use = nic->rx_to_clean = NULL;
1da177e4
LT
1922}
1923
1924static int e100_rx_alloc_list(struct nic *nic)
1925{
1926 struct rx *rx;
1927 unsigned int i, count = nic->params.rfds.count;
1928
1929 nic->rx_to_use = nic->rx_to_clean = NULL;
1f53367d 1930 nic->ru_running = RU_UNINITIALIZED;
1da177e4
LT
1931
1932 if(!(nic->rxs = kmalloc(sizeof(struct rx) * count, GFP_ATOMIC)))
1933 return -ENOMEM;
1934 memset(nic->rxs, 0, sizeof(struct rx) * count);
1935
1936 for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
1937 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
1938 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
1939 if(e100_rx_alloc_skb(nic, rx)) {
1940 e100_rx_clean_list(nic);
1941 return -ENOMEM;
1942 }
1943 }
1944
1945 nic->rx_to_use = nic->rx_to_clean = nic->rxs;
1f53367d 1946 nic->ru_running = RU_SUSPENDED;
1da177e4
LT
1947
1948 return 0;
1949}
1950
1951static irqreturn_t e100_intr(int irq, void *dev_id, struct pt_regs *regs)
1952{
1953 struct net_device *netdev = dev_id;
1954 struct nic *nic = netdev_priv(netdev);
1955 u8 stat_ack = readb(&nic->csr->scb.stat_ack);
1956
1957 DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack);
1958
1959 if(stat_ack == stat_ack_not_ours || /* Not our interrupt */
1960 stat_ack == stat_ack_not_present) /* Hardware is ejected */
1961 return IRQ_NONE;
1962
1963 /* Ack interrupt(s) */
1964 writeb(stat_ack, &nic->csr->scb.stat_ack);
1965
1966 /* We hit Receive No Resource (RNR); restart RU after cleaning */
1967 if(stat_ack & stat_ack_rnr)
1f53367d 1968 nic->ru_running = RU_SUSPENDED;
1da177e4 1969
0685c31b
MC
1970 if(likely(netif_rx_schedule_prep(netdev))) {
1971 e100_disable_irq(nic);
1972 __netif_rx_schedule(netdev);
1973 }
1da177e4
LT
1974
1975 return IRQ_HANDLED;
1976}
1977
1978static int e100_poll(struct net_device *netdev, int *budget)
1979{
1980 struct nic *nic = netdev_priv(netdev);
1981 unsigned int work_to_do = min(netdev->quota, *budget);
1982 unsigned int work_done = 0;
1983 int tx_cleaned;
1984
1985 e100_rx_clean(nic, &work_done, work_to_do);
1986 tx_cleaned = e100_tx_clean(nic);
1987
1988 /* If no Rx and Tx cleanup work was done, exit polling mode. */
1989 if((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) {
1990 netif_rx_complete(netdev);
1991 e100_enable_irq(nic);
1992 return 0;
1993 }
1994
1995 *budget -= work_done;
1996 netdev->quota -= work_done;
1997
1998 return 1;
1999}
2000
2001#ifdef CONFIG_NET_POLL_CONTROLLER
2002static void e100_netpoll(struct net_device *netdev)
2003{
2004 struct nic *nic = netdev_priv(netdev);
611494dc 2005
1da177e4
LT
2006 e100_disable_irq(nic);
2007 e100_intr(nic->pdev->irq, netdev, NULL);
2008 e100_tx_clean(nic);
2009 e100_enable_irq(nic);
2010}
2011#endif
2012
2013static struct net_device_stats *e100_get_stats(struct net_device *netdev)
2014{
2015 struct nic *nic = netdev_priv(netdev);
2016 return &nic->net_stats;
2017}
2018
2019static int e100_set_mac_address(struct net_device *netdev, void *p)
2020{
2021 struct nic *nic = netdev_priv(netdev);
2022 struct sockaddr *addr = p;
2023
2024 if (!is_valid_ether_addr(addr->sa_data))
2025 return -EADDRNOTAVAIL;
2026
2027 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2028 e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2029
2030 return 0;
2031}
2032
2033static int e100_change_mtu(struct net_device *netdev, int new_mtu)
2034{
2035 if(new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
2036 return -EINVAL;
2037 netdev->mtu = new_mtu;
2038 return 0;
2039}
2040
6bdacb1a 2041#ifdef CONFIG_PM
1da177e4
LT
2042static int e100_asf(struct nic *nic)
2043{
2044 /* ASF can be enabled from eeprom */
2045 return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2046 (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
2047 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
2048 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE));
2049}
6bdacb1a 2050#endif
1da177e4
LT
2051
2052static int e100_up(struct nic *nic)
2053{
2054 int err;
2055
2056 if((err = e100_rx_alloc_list(nic)))
2057 return err;
2058 if((err = e100_alloc_cbs(nic)))
2059 goto err_rx_clean_list;
2060 if((err = e100_hw_init(nic)))
2061 goto err_clean_cbs;
2062 e100_set_multicast_list(nic->netdev);
097688ef 2063 e100_start_receiver(nic, NULL);
1da177e4 2064 mod_timer(&nic->watchdog, jiffies);
1fb9df5d 2065 if((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
1da177e4
LT
2066 nic->netdev->name, nic->netdev)))
2067 goto err_no_irq;
1da177e4 2068 netif_wake_queue(nic->netdev);
0236ebb7
MC
2069 netif_poll_enable(nic->netdev);
2070 /* enable ints _after_ enabling poll, preventing a race between
2071 * disable ints+schedule */
2072 e100_enable_irq(nic);
1da177e4
LT
2073 return 0;
2074
2075err_no_irq:
2076 del_timer_sync(&nic->watchdog);
2077err_clean_cbs:
2078 e100_clean_cbs(nic);
2079err_rx_clean_list:
2080 e100_rx_clean_list(nic);
2081 return err;
2082}
2083
2084static void e100_down(struct nic *nic)
2085{
0236ebb7
MC
2086 /* wait here for poll to complete */
2087 netif_poll_disable(nic->netdev);
2088 netif_stop_queue(nic->netdev);
1da177e4
LT
2089 e100_hw_reset(nic);
2090 free_irq(nic->pdev->irq, nic->netdev);
2091 del_timer_sync(&nic->watchdog);
2092 netif_carrier_off(nic->netdev);
1da177e4
LT
2093 e100_clean_cbs(nic);
2094 e100_rx_clean_list(nic);
2095}
2096
2097static void e100_tx_timeout(struct net_device *netdev)
2098{
2099 struct nic *nic = netdev_priv(netdev);
2100
05479938 2101 /* Reset outside of interrupt context, to avoid request_irq
2acdb1e0
MC
2102 * in interrupt context */
2103 schedule_work(&nic->tx_timeout_task);
2104}
2105
2106static void e100_tx_timeout_task(struct net_device *netdev)
2107{
2108 struct nic *nic = netdev_priv(netdev);
2109
1da177e4
LT
2110 DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n",
2111 readb(&nic->csr->scb.status));
2112 e100_down(netdev_priv(netdev));
2113 e100_up(netdev_priv(netdev));
2114}
2115
2116static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2117{
2118 int err;
2119 struct sk_buff *skb;
2120
2121 /* Use driver resources to perform internal MAC or PHY
2122 * loopback test. A single packet is prepared and transmitted
2123 * in loopback mode, and the test passes if the received
2124 * packet compares byte-for-byte to the transmitted packet. */
2125
2126 if((err = e100_rx_alloc_list(nic)))
2127 return err;
2128 if((err = e100_alloc_cbs(nic)))
2129 goto err_clean_rx;
2130
2131 /* ICH PHY loopback is broken so do MAC loopback instead */
2132 if(nic->flags & ich && loopback_mode == lb_phy)
2133 loopback_mode = lb_mac;
2134
2135 nic->loopback = loopback_mode;
2136 if((err = e100_hw_init(nic)))
2137 goto err_loopback_none;
2138
2139 if(loopback_mode == lb_phy)
2140 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2141 BMCR_LOOPBACK);
2142
097688ef 2143 e100_start_receiver(nic, NULL);
1da177e4 2144
4187592b 2145 if(!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
1da177e4
LT
2146 err = -ENOMEM;
2147 goto err_loopback_none;
2148 }
2149 skb_put(skb, ETH_DATA_LEN);
2150 memset(skb->data, 0xFF, ETH_DATA_LEN);
2151 e100_xmit_frame(skb, nic->netdev);
2152
2153 msleep(10);
2154
aa49cdd9
JB
2155 pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
2156 RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
2157
1da177e4
LT
2158 if(memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2159 skb->data, ETH_DATA_LEN))
2160 err = -EAGAIN;
2161
2162err_loopback_none:
2163 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2164 nic->loopback = lb_none;
1da177e4 2165 e100_clean_cbs(nic);
aa49cdd9 2166 e100_hw_reset(nic);
1da177e4
LT
2167err_clean_rx:
2168 e100_rx_clean_list(nic);
2169 return err;
2170}
2171
2172#define MII_LED_CONTROL 0x1B
2173static void e100_blink_led(unsigned long data)
2174{
2175 struct nic *nic = (struct nic *)data;
2176 enum led_state {
2177 led_on = 0x01,
2178 led_off = 0x04,
2179 led_on_559 = 0x05,
2180 led_on_557 = 0x07,
2181 };
2182
2183 nic->leds = (nic->leds & led_on) ? led_off :
2184 (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2185 mdio_write(nic->netdev, nic->mii.phy_id, MII_LED_CONTROL, nic->leds);
2186 mod_timer(&nic->blink_timer, jiffies + HZ / 4);
2187}
2188
2189static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2190{
2191 struct nic *nic = netdev_priv(netdev);
2192 return mii_ethtool_gset(&nic->mii, cmd);
2193}
2194
2195static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2196{
2197 struct nic *nic = netdev_priv(netdev);
2198 int err;
2199
2200 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2201 err = mii_ethtool_sset(&nic->mii, cmd);
2202 e100_exec_cb(nic, NULL, e100_configure);
2203
2204 return err;
2205}
2206
2207static void e100_get_drvinfo(struct net_device *netdev,
2208 struct ethtool_drvinfo *info)
2209{
2210 struct nic *nic = netdev_priv(netdev);
2211 strcpy(info->driver, DRV_NAME);
2212 strcpy(info->version, DRV_VERSION);
2213 strcpy(info->fw_version, "N/A");
2214 strcpy(info->bus_info, pci_name(nic->pdev));
2215}
2216
2217static int e100_get_regs_len(struct net_device *netdev)
2218{
2219 struct nic *nic = netdev_priv(netdev);
2220#define E100_PHY_REGS 0x1C
2221#define E100_REGS_LEN 1 + E100_PHY_REGS + \
2222 sizeof(nic->mem->dump_buf) / sizeof(u32)
2223 return E100_REGS_LEN * sizeof(u32);
2224}
2225
2226static void e100_get_regs(struct net_device *netdev,
2227 struct ethtool_regs *regs, void *p)
2228{
2229 struct nic *nic = netdev_priv(netdev);
2230 u32 *buff = p;
2231 int i;
2232
2233 regs->version = (1 << 24) | nic->rev_id;
2234 buff[0] = readb(&nic->csr->scb.cmd_hi) << 24 |
2235 readb(&nic->csr->scb.cmd_lo) << 16 |
2236 readw(&nic->csr->scb.status);
2237 for(i = E100_PHY_REGS; i >= 0; i--)
2238 buff[1 + E100_PHY_REGS - i] =
2239 mdio_read(netdev, nic->mii.phy_id, i);
2240 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2241 e100_exec_cb(nic, NULL, e100_dump);
2242 msleep(10);
2243 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
2244 sizeof(nic->mem->dump_buf));
2245}
2246
2247static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2248{
2249 struct nic *nic = netdev_priv(netdev);
2250 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0;
2251 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2252}
2253
2254static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2255{
2256 struct nic *nic = netdev_priv(netdev);
2257
2258 if(wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
2259 return -EOPNOTSUPP;
2260
2261 if(wol->wolopts)
2262 nic->flags |= wol_magic;
2263 else
2264 nic->flags &= ~wol_magic;
2265
1da177e4
LT
2266 e100_exec_cb(nic, NULL, e100_configure);
2267
2268 return 0;
2269}
2270
2271static u32 e100_get_msglevel(struct net_device *netdev)
2272{
2273 struct nic *nic = netdev_priv(netdev);
2274 return nic->msg_enable;
2275}
2276
2277static void e100_set_msglevel(struct net_device *netdev, u32 value)
2278{
2279 struct nic *nic = netdev_priv(netdev);
2280 nic->msg_enable = value;
2281}
2282
2283static int e100_nway_reset(struct net_device *netdev)
2284{
2285 struct nic *nic = netdev_priv(netdev);
2286 return mii_nway_restart(&nic->mii);
2287}
2288
2289static u32 e100_get_link(struct net_device *netdev)
2290{
2291 struct nic *nic = netdev_priv(netdev);
2292 return mii_link_ok(&nic->mii);
2293}
2294
2295static int e100_get_eeprom_len(struct net_device *netdev)
2296{
2297 struct nic *nic = netdev_priv(netdev);
2298 return nic->eeprom_wc << 1;
2299}
2300
2301#define E100_EEPROM_MAGIC 0x1234
2302static int e100_get_eeprom(struct net_device *netdev,
2303 struct ethtool_eeprom *eeprom, u8 *bytes)
2304{
2305 struct nic *nic = netdev_priv(netdev);
2306
2307 eeprom->magic = E100_EEPROM_MAGIC;
2308 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2309
2310 return 0;
2311}
2312
2313static int e100_set_eeprom(struct net_device *netdev,
2314 struct ethtool_eeprom *eeprom, u8 *bytes)
2315{
2316 struct nic *nic = netdev_priv(netdev);
2317
2318 if(eeprom->magic != E100_EEPROM_MAGIC)
2319 return -EINVAL;
2320
2321 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2322
2323 return e100_eeprom_save(nic, eeprom->offset >> 1,
2324 (eeprom->len >> 1) + 1);
2325}
2326
2327static void e100_get_ringparam(struct net_device *netdev,
2328 struct ethtool_ringparam *ring)
2329{
2330 struct nic *nic = netdev_priv(netdev);
2331 struct param_range *rfds = &nic->params.rfds;
2332 struct param_range *cbs = &nic->params.cbs;
2333
2334 ring->rx_max_pending = rfds->max;
2335 ring->tx_max_pending = cbs->max;
2336 ring->rx_mini_max_pending = 0;
2337 ring->rx_jumbo_max_pending = 0;
2338 ring->rx_pending = rfds->count;
2339 ring->tx_pending = cbs->count;
2340 ring->rx_mini_pending = 0;
2341 ring->rx_jumbo_pending = 0;
2342}
2343
2344static int e100_set_ringparam(struct net_device *netdev,
2345 struct ethtool_ringparam *ring)
2346{
2347 struct nic *nic = netdev_priv(netdev);
2348 struct param_range *rfds = &nic->params.rfds;
2349 struct param_range *cbs = &nic->params.cbs;
2350
05479938 2351 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
1da177e4
LT
2352 return -EINVAL;
2353
2354 if(netif_running(netdev))
2355 e100_down(nic);
2356 rfds->count = max(ring->rx_pending, rfds->min);
2357 rfds->count = min(rfds->count, rfds->max);
2358 cbs->count = max(ring->tx_pending, cbs->min);
2359 cbs->count = min(cbs->count, cbs->max);
2360 DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n",
2361 rfds->count, cbs->count);
2362 if(netif_running(netdev))
2363 e100_up(nic);
2364
2365 return 0;
2366}
2367
2368static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2369 "Link test (on/offline)",
2370 "Eeprom test (on/offline)",
2371 "Self test (offline)",
2372 "Mac loopback (offline)",
2373 "Phy loopback (offline)",
2374};
2375#define E100_TEST_LEN sizeof(e100_gstrings_test) / ETH_GSTRING_LEN
2376
2377static int e100_diag_test_count(struct net_device *netdev)
2378{
2379 return E100_TEST_LEN;
2380}
2381
2382static void e100_diag_test(struct net_device *netdev,
2383 struct ethtool_test *test, u64 *data)
2384{
2385 struct ethtool_cmd cmd;
2386 struct nic *nic = netdev_priv(netdev);
2387 int i, err;
2388
2389 memset(data, 0, E100_TEST_LEN * sizeof(u64));
2390 data[0] = !mii_link_ok(&nic->mii);
2391 data[1] = e100_eeprom_load(nic);
2392 if(test->flags & ETH_TEST_FL_OFFLINE) {
2393
2394 /* save speed, duplex & autoneg settings */
2395 err = mii_ethtool_gset(&nic->mii, &cmd);
2396
2397 if(netif_running(netdev))
2398 e100_down(nic);
2399 data[2] = e100_self_test(nic);
2400 data[3] = e100_loopback_test(nic, lb_mac);
2401 data[4] = e100_loopback_test(nic, lb_phy);
2402
2403 /* restore speed, duplex & autoneg settings */
2404 err = mii_ethtool_sset(&nic->mii, &cmd);
2405
2406 if(netif_running(netdev))
2407 e100_up(nic);
2408 }
2409 for(i = 0; i < E100_TEST_LEN; i++)
2410 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
a074fb86
MC
2411
2412 msleep_interruptible(4 * 1000);
1da177e4
LT
2413}
2414
2415static int e100_phys_id(struct net_device *netdev, u32 data)
2416{
2417 struct nic *nic = netdev_priv(netdev);
2418
2419 if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
2420 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
2421 mod_timer(&nic->blink_timer, jiffies);
2422 msleep_interruptible(data * 1000);
2423 del_timer_sync(&nic->blink_timer);
2424 mdio_write(netdev, nic->mii.phy_id, MII_LED_CONTROL, 0);
2425
2426 return 0;
2427}
2428
2429static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2430 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2431 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2432 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2433 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2434 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2435 "tx_heartbeat_errors", "tx_window_errors",
2436 /* device-specific stats */
2437 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2438 "tx_flow_control_pause", "rx_flow_control_pause",
2439 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2440};
2441#define E100_NET_STATS_LEN 21
2442#define E100_STATS_LEN sizeof(e100_gstrings_stats) / ETH_GSTRING_LEN
2443
2444static int e100_get_stats_count(struct net_device *netdev)
2445{
2446 return E100_STATS_LEN;
2447}
2448
2449static void e100_get_ethtool_stats(struct net_device *netdev,
2450 struct ethtool_stats *stats, u64 *data)
2451{
2452 struct nic *nic = netdev_priv(netdev);
2453 int i;
2454
2455 for(i = 0; i < E100_NET_STATS_LEN; i++)
2456 data[i] = ((unsigned long *)&nic->net_stats)[i];
2457
2458 data[i++] = nic->tx_deferred;
2459 data[i++] = nic->tx_single_collisions;
2460 data[i++] = nic->tx_multiple_collisions;
2461 data[i++] = nic->tx_fc_pause;
2462 data[i++] = nic->rx_fc_pause;
2463 data[i++] = nic->rx_fc_unsupported;
2464 data[i++] = nic->tx_tco_frames;
2465 data[i++] = nic->rx_tco_frames;
2466}
2467
2468static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2469{
2470 switch(stringset) {
2471 case ETH_SS_TEST:
2472 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2473 break;
2474 case ETH_SS_STATS:
2475 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2476 break;
2477 }
2478}
2479
7282d491 2480static const struct ethtool_ops e100_ethtool_ops = {
1da177e4
LT
2481 .get_settings = e100_get_settings,
2482 .set_settings = e100_set_settings,
2483 .get_drvinfo = e100_get_drvinfo,
2484 .get_regs_len = e100_get_regs_len,
2485 .get_regs = e100_get_regs,
2486 .get_wol = e100_get_wol,
2487 .set_wol = e100_set_wol,
2488 .get_msglevel = e100_get_msglevel,
2489 .set_msglevel = e100_set_msglevel,
2490 .nway_reset = e100_nway_reset,
2491 .get_link = e100_get_link,
2492 .get_eeprom_len = e100_get_eeprom_len,
2493 .get_eeprom = e100_get_eeprom,
2494 .set_eeprom = e100_set_eeprom,
2495 .get_ringparam = e100_get_ringparam,
2496 .set_ringparam = e100_set_ringparam,
2497 .self_test_count = e100_diag_test_count,
2498 .self_test = e100_diag_test,
2499 .get_strings = e100_get_strings,
2500 .phys_id = e100_phys_id,
2501 .get_stats_count = e100_get_stats_count,
2502 .get_ethtool_stats = e100_get_ethtool_stats,
a92dd923 2503 .get_perm_addr = ethtool_op_get_perm_addr,
1da177e4
LT
2504};
2505
2506static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2507{
2508 struct nic *nic = netdev_priv(netdev);
2509
2510 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2511}
2512
2513static int e100_alloc(struct nic *nic)
2514{
2515 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2516 &nic->dma_addr);
2517 return nic->mem ? 0 : -ENOMEM;
2518}
2519
2520static void e100_free(struct nic *nic)
2521{
2522 if(nic->mem) {
2523 pci_free_consistent(nic->pdev, sizeof(struct mem),
2524 nic->mem, nic->dma_addr);
2525 nic->mem = NULL;
2526 }
2527}
2528
2529static int e100_open(struct net_device *netdev)
2530{
2531 struct nic *nic = netdev_priv(netdev);
2532 int err = 0;
2533
2534 netif_carrier_off(netdev);
2535 if((err = e100_up(nic)))
2536 DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n");
2537 return err;
2538}
2539
2540static int e100_close(struct net_device *netdev)
2541{
2542 e100_down(netdev_priv(netdev));
2543 return 0;
2544}
2545
2546static int __devinit e100_probe(struct pci_dev *pdev,
2547 const struct pci_device_id *ent)
2548{
2549 struct net_device *netdev;
2550 struct nic *nic;
2551 int err;
2552
2553 if(!(netdev = alloc_etherdev(sizeof(struct nic)))) {
2554 if(((1 << debug) - 1) & NETIF_MSG_PROBE)
2555 printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n");
2556 return -ENOMEM;
2557 }
2558
2559 netdev->open = e100_open;
2560 netdev->stop = e100_close;
2561 netdev->hard_start_xmit = e100_xmit_frame;
2562 netdev->get_stats = e100_get_stats;
2563 netdev->set_multicast_list = e100_set_multicast_list;
2564 netdev->set_mac_address = e100_set_mac_address;
2565 netdev->change_mtu = e100_change_mtu;
2566 netdev->do_ioctl = e100_do_ioctl;
2567 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
2568 netdev->tx_timeout = e100_tx_timeout;
2569 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2570 netdev->poll = e100_poll;
2571 netdev->weight = E100_NAPI_WEIGHT;
2572#ifdef CONFIG_NET_POLL_CONTROLLER
2573 netdev->poll_controller = e100_netpoll;
2574#endif
2575 strcpy(netdev->name, pci_name(pdev));
2576
2577 nic = netdev_priv(netdev);
2578 nic->netdev = netdev;
2579 nic->pdev = pdev;
2580 nic->msg_enable = (1 << debug) - 1;
2581 pci_set_drvdata(pdev, netdev);
2582
2583 if((err = pci_enable_device(pdev))) {
2584 DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n");
2585 goto err_out_free_dev;
2586 }
2587
2588 if(!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2589 DPRINTK(PROBE, ERR, "Cannot find proper PCI device "
2590 "base address, aborting.\n");
2591 err = -ENODEV;
2592 goto err_out_disable_pdev;
2593 }
2594
2595 if((err = pci_request_regions(pdev, DRV_NAME))) {
2596 DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n");
2597 goto err_out_disable_pdev;
2598 }
2599
1e7f0bd8 2600 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
1da177e4
LT
2601 DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n");
2602 goto err_out_free_res;
2603 }
2604
2605 SET_MODULE_OWNER(netdev);
2606 SET_NETDEV_DEV(netdev, &pdev->dev);
2607
2608 nic->csr = ioremap(pci_resource_start(pdev, 0), sizeof(struct csr));
2609 if(!nic->csr) {
2610 DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n");
2611 err = -ENOMEM;
2612 goto err_out_free_res;
2613 }
2614
2615 if(ent->driver_data)
2616 nic->flags |= ich;
2617 else
2618 nic->flags &= ~ich;
2619
2620 e100_get_defaults(nic);
2621
1f53367d 2622 /* locks must be initialized before calling hw_reset */
1da177e4
LT
2623 spin_lock_init(&nic->cb_lock);
2624 spin_lock_init(&nic->cmd_lock);
ac7c6669 2625 spin_lock_init(&nic->mdio_lock);
1da177e4
LT
2626
2627 /* Reset the device before pci_set_master() in case device is in some
2628 * funky state and has an interrupt pending - hint: we don't have the
2629 * interrupt handler registered yet. */
2630 e100_hw_reset(nic);
2631
2632 pci_set_master(pdev);
2633
2634 init_timer(&nic->watchdog);
2635 nic->watchdog.function = e100_watchdog;
2636 nic->watchdog.data = (unsigned long)nic;
2637 init_timer(&nic->blink_timer);
2638 nic->blink_timer.function = e100_blink_led;
2639 nic->blink_timer.data = (unsigned long)nic;
2640
2acdb1e0
MC
2641 INIT_WORK(&nic->tx_timeout_task,
2642 (void (*)(void *))e100_tx_timeout_task, netdev);
2643
1da177e4
LT
2644 if((err = e100_alloc(nic))) {
2645 DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n");
2646 goto err_out_iounmap;
2647 }
2648
1da177e4
LT
2649 if((err = e100_eeprom_load(nic)))
2650 goto err_out_free;
2651
f92d8728
MC
2652 e100_phy_init(nic);
2653
1da177e4 2654 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
a92dd923
JL
2655 memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN);
2656 if(!is_valid_ether_addr(netdev->perm_addr)) {
1da177e4
LT
2657 DPRINTK(PROBE, ERR, "Invalid MAC address from "
2658 "EEPROM, aborting.\n");
2659 err = -EAGAIN;
2660 goto err_out_free;
2661 }
2662
2663 /* Wol magic packet can be enabled from eeprom */
2664 if((nic->mac >= mac_82558_D101_A4) &&
2665 (nic->eeprom[eeprom_id] & eeprom_id_wol))
2666 nic->flags |= wol_magic;
2667
6bdacb1a 2668 /* ack any pending wake events, disable PME */
3435dbce
JB
2669 err = pci_enable_wake(pdev, 0, 0);
2670 if (err)
2671 DPRINTK(PROBE, ERR, "Error clearing wake event\n");
1da177e4
LT
2672
2673 strcpy(netdev->name, "eth%d");
2674 if((err = register_netdev(netdev))) {
2675 DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n");
2676 goto err_out_free;
2677 }
2678
7c7459d1 2679 DPRINTK(PROBE, INFO, "addr 0x%llx, irq %d, "
1da177e4 2680 "MAC addr %02X:%02X:%02X:%02X:%02X:%02X\n",
7c7459d1 2681 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
1da177e4
LT
2682 netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
2683 netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
2684
2685 return 0;
2686
2687err_out_free:
2688 e100_free(nic);
2689err_out_iounmap:
2690 iounmap(nic->csr);
2691err_out_free_res:
2692 pci_release_regions(pdev);
2693err_out_disable_pdev:
2694 pci_disable_device(pdev);
2695err_out_free_dev:
2696 pci_set_drvdata(pdev, NULL);
2697 free_netdev(netdev);
2698 return err;
2699}
2700
2701static void __devexit e100_remove(struct pci_dev *pdev)
2702{
2703 struct net_device *netdev = pci_get_drvdata(pdev);
2704
2705 if(netdev) {
2706 struct nic *nic = netdev_priv(netdev);
2707 unregister_netdev(netdev);
2708 e100_free(nic);
2709 iounmap(nic->csr);
2710 free_netdev(netdev);
2711 pci_release_regions(pdev);
2712 pci_disable_device(pdev);
2713 pci_set_drvdata(pdev, NULL);
2714 }
2715}
2716
2717#ifdef CONFIG_PM
2718static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
2719{
2720 struct net_device *netdev = pci_get_drvdata(pdev);
2721 struct nic *nic = netdev_priv(netdev);
3435dbce 2722 int retval;
1da177e4
LT
2723
2724 if(netif_running(netdev))
2725 e100_down(nic);
2726 e100_hw_reset(nic);
2727 netif_device_detach(netdev);
2728
2729 pci_save_state(pdev);
3435dbce
JB
2730 retval = pci_enable_wake(pdev, pci_choose_state(pdev, state),
2731 nic->flags & (wol_magic | e100_asf(nic)));
2732 if (retval)
2733 DPRINTK(PROBE,ERR, "Error enabling wake\n");
1da177e4 2734 pci_disable_device(pdev);
3435dbce
JB
2735 retval = pci_set_power_state(pdev, pci_choose_state(pdev, state));
2736 if (retval)
2737 DPRINTK(PROBE,ERR, "Error %d setting power state\n", retval);
1da177e4
LT
2738
2739 return 0;
2740}
2741
2742static int e100_resume(struct pci_dev *pdev)
2743{
2744 struct net_device *netdev = pci_get_drvdata(pdev);
2745 struct nic *nic = netdev_priv(netdev);
3435dbce 2746 int retval;
1da177e4 2747
3435dbce
JB
2748 retval = pci_set_power_state(pdev, PCI_D0);
2749 if (retval)
2750 DPRINTK(PROBE,ERR, "Error waking adapter\n");
1da177e4 2751 pci_restore_state(pdev);
6bdacb1a 2752 /* ack any pending wake events, disable PME */
3435dbce
JB
2753 retval = pci_enable_wake(pdev, 0, 0);
2754 if (retval)
2755 DPRINTK(PROBE,ERR, "Error clearing wake events\n");
1da177e4
LT
2756
2757 netif_device_attach(netdev);
2758 if(netif_running(netdev))
2759 e100_up(nic);
2760
2761 return 0;
2762}
2763#endif
2764
6bdacb1a 2765
d18c3db5 2766static void e100_shutdown(struct pci_dev *pdev)
6bdacb1a 2767{
6bdacb1a
MC
2768 struct net_device *netdev = pci_get_drvdata(pdev);
2769 struct nic *nic = netdev_priv(netdev);
3435dbce 2770 int retval;
6bdacb1a
MC
2771
2772#ifdef CONFIG_PM
3435dbce 2773 retval = pci_enable_wake(pdev, 0, nic->flags & (wol_magic | e100_asf(nic)));
6bdacb1a 2774#else
3435dbce 2775 retval = pci_enable_wake(pdev, 0, nic->flags & (wol_magic));
6bdacb1a 2776#endif
3435dbce
JB
2777 if (retval)
2778 DPRINTK(PROBE,ERR, "Error enabling wake\n");
6bdacb1a
MC
2779}
2780
2cc30492
AK
2781/* ------------------ PCI Error Recovery infrastructure -------------- */
2782/**
2783 * e100_io_error_detected - called when PCI error is detected.
2784 * @pdev: Pointer to PCI device
2785 * @state: The current pci conneection state
2786 */
2787static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2788{
2789 struct net_device *netdev = pci_get_drvdata(pdev);
2790
2791 /* Similar to calling e100_down(), but avoids adpater I/O. */
2792 netdev->stop(netdev);
2793
2794 /* Detach; put netif into state similar to hotplug unplug. */
2795 netif_poll_enable(netdev);
2796 netif_device_detach(netdev);
b1d26f24 2797 pci_disable_device(pdev);
2cc30492
AK
2798
2799 /* Request a slot reset. */
2800 return PCI_ERS_RESULT_NEED_RESET;
2801}
2802
2803/**
2804 * e100_io_slot_reset - called after the pci bus has been reset.
2805 * @pdev: Pointer to PCI device
2806 *
2807 * Restart the card from scratch.
2808 */
2809static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
2810{
2811 struct net_device *netdev = pci_get_drvdata(pdev);
2812 struct nic *nic = netdev_priv(netdev);
2813
2814 if (pci_enable_device(pdev)) {
2815 printk(KERN_ERR "e100: Cannot re-enable PCI device after reset.\n");
2816 return PCI_ERS_RESULT_DISCONNECT;
2817 }
2818 pci_set_master(pdev);
2819
2820 /* Only one device per card can do a reset */
2821 if (0 != PCI_FUNC(pdev->devfn))
2822 return PCI_ERS_RESULT_RECOVERED;
2823 e100_hw_reset(nic);
2824 e100_phy_init(nic);
2825
2826 return PCI_ERS_RESULT_RECOVERED;
2827}
2828
2829/**
2830 * e100_io_resume - resume normal operations
2831 * @pdev: Pointer to PCI device
2832 *
2833 * Resume normal operations after an error recovery
2834 * sequence has been completed.
2835 */
2836static void e100_io_resume(struct pci_dev *pdev)
2837{
2838 struct net_device *netdev = pci_get_drvdata(pdev);
2839 struct nic *nic = netdev_priv(netdev);
2840
2841 /* ack any pending wake events, disable PME */
2842 pci_enable_wake(pdev, 0, 0);
2843
2844 netif_device_attach(netdev);
2845 if (netif_running(netdev)) {
2846 e100_open(netdev);
2847 mod_timer(&nic->watchdog, jiffies);
2848 }
2849}
2850
2851static struct pci_error_handlers e100_err_handler = {
2852 .error_detected = e100_io_error_detected,
2853 .slot_reset = e100_io_slot_reset,
2854 .resume = e100_io_resume,
2855};
6bdacb1a 2856
1da177e4
LT
2857static struct pci_driver e100_driver = {
2858 .name = DRV_NAME,
2859 .id_table = e100_id_table,
2860 .probe = e100_probe,
2861 .remove = __devexit_p(e100_remove),
2862#ifdef CONFIG_PM
2863 .suspend = e100_suspend,
2864 .resume = e100_resume,
2865#endif
05479938 2866 .shutdown = e100_shutdown,
2cc30492 2867 .err_handler = &e100_err_handler,
1da177e4
LT
2868};
2869
2870static int __init e100_init_module(void)
2871{
2872 if(((1 << debug) - 1) & NETIF_MSG_DRV) {
2873 printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
2874 printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT);
2875 }
29917620 2876 return pci_register_driver(&e100_driver);
1da177e4
LT
2877}
2878
2879static void __exit e100_cleanup_module(void)
2880{
2881 pci_unregister_driver(&e100_driver);
2882}
2883
2884module_init(e100_init_module);
2885module_exit(e100_cleanup_module);
This page took 0.272385 seconds and 5 git commands to generate.